Chain Conditions for Abelian, Nilpotent and Soluble Ideals in Lie Algebras

Toshiharu IKEDA (Received January 16, 1979)

1. Introduction

Let \mathfrak{X} be a class of Lie algebras over a field \mathfrak{f} , and let $\operatorname{Max} \operatorname{\neg } \mathfrak{X}$ (resp. Min- $\operatorname{\neg } \mathfrak{X}$) be the class of Lie algebras which satisfy the maximal (resp. minimal) condition for \mathfrak{X} -ideals. Amayo and Stewart have asked the following among "Some open questions" in [1]: Are there any inclusions between $\operatorname{Max} \operatorname{\neg } \mathfrak{A}$, $\operatorname{Max} \operatorname{\cap } \mathfrak{A}$,

Recently it was shown by Kubo [2] that $Max \rightarrow \mathfrak{A}$ and $Max \rightarrow \mathfrak{N}$ (resp. $Min \rightarrow \mathfrak{A}$ and $Min \rightarrow \mathfrak{N}$) do not necessarily coincide with each other. He showed these facts by considering a certain Lie algebra over the rational number field.

The purpose of this paper is to show the following theorems.

THEOREM 1. Over any field

 $Max - \triangleleft \mathfrak{N} \geqq Max - \triangleleft \mathfrak{E}\mathfrak{A} \quad and \quad Min - \triangleleft \mathfrak{N} \geqq Min - \triangleleft \mathfrak{E}\mathfrak{A}.$

THEOREM 2. Over any field

$Max - \triangleleft \mathfrak{A} \geqq Max - \triangleleft \mathfrak{N}.$

Throughout the paper, we shall employ the notations and terminology in [1].

2. Proof of Theorem 1

Let f be an arbitrary field and A an infinite extension field of f. Let ρ be the regular representation of A. Consider A as an abelian Lie algebra over f, so that ρ becomes a Lie homomorphism of A into Der (A). Thus we can form the split extension

$$L = A \neq \rho(A),$$

where $A \triangleleft L$ and $[a, \rho(b)] = ab$ for any $a, b \in A$.

We first show that any non-zero ideal of L contains A. Suppose $0 \neq I \lhd L$. Then $0 \neq I \cap A \lhd L$. In fact, if $I \cap A = 0$, then there exist a, $b \in A$ with $b \neq 0$ such that $a + \rho(b) \in I$. Hence $I \cap A \ni [1, a + \rho(b)] = b \neq 0$. This is a contradiction. Observing that the Lie ideals of L contained in A are the associative ideals of A and that A is a field, we obtain $I \cap A = A$. Therefore $I \ge A$.

Now let I be an ideal of L such that $I \geqq A$. Then there is a non-zero $x \in A$ such that $\rho(x) \in I$. For any positive integer $n, 0 \neq x^n = [x, n-1\rho(x)] \in I^n$. Hence $I \notin \mathfrak{N}$. Consequently A is the only non-zero nilpotent ideal of L. Thus $L \in Max \to \mathfrak{N} \cap Min \to \mathfrak{N}$.

Finally we choose a t-free subset $\{e_i | i=1, 2, \dots\}$ of A. Since ρ is injective, $\{\rho(e_i) | i=1, 2, \dots\}$ is t-free. For any n put

$$B_{n} = A + \langle \rho(e_{1}), \rho(e_{2}), \dots, \rho(e_{n}) \rangle ,$$

$$C_{n} = A + \langle \rho(e_{n}), \rho(e_{n+1}), \dots \rangle .$$

Then $\{B_n\}$ and $\{C_n\}$ are respectively strictly ascending and strictly descending chains of soluble ideals of L. Therefore $L \notin Max \rightarrow B\mathfrak{A} \cup Min \rightarrow B\mathfrak{A}$.

3. Proof of Theorem 2

Let L be a Lie algebra over t with basis $\{e_{ij} | i < j; i, j = 1, 2, \dots\}$ and multiplication

$$[e_{ij}, e_{mn}] = \delta_{jm} e_{in} - \delta_{in} e_{mj}.$$

This is one of the McLain Lie algebras ([1], p. 111). Put

$$I_{0n} = 0 \quad \text{for } n \ge 1,$$

$$I_{mn} = \langle e_{ij} | i \le m < n \le j \rangle \quad \text{for } 1 \le m < n$$

and furthermore

$$I_m = I_{12} + I_{23} + \dots + I_{m\,m+1}.$$

We prepare two lemmas.

LEMMA 1. If I is a non-zero ideal of L, then there is a positive integer n such that $I_{1n+1} \leq I$.

PROOF. Let $0 \neq x = \sum_{i < j} \alpha_{ij} e_{ij} \in I$. Put $n = \max\{j | \alpha_{ij} \neq 0 \text{ for some } i\}$ and $m = \max\{i | \alpha_{in} \neq 0\}$. Then we have $I \ni [e_{1m}, [x, e_{nn+1}]] = [e_{1m}, \sum_{i} \alpha_{in} e_{in+1}] = \alpha_{mn} e_{1n+1}$. Thus $I_{1n+1} \leq I$.

LEMMA 2. $I_n \in \text{Max-}L$ for any $n \ge 1$.

PROOF. Since Max-L is E-closed and $I_n/I_{nn+1} \in \mathfrak{F} \leq Max-L$, it is sufficient

466

to show that $I_{i+1\,n+1}/I_{i\,n+1} \in \text{Max-}L$ for $i=0, 1, \dots, n-1$. Let J be an ideal of L such that $I_{i\,n+1} < J \leq I_{i+1\,n+1}$. We can find $x \in J$ such that $x = \sum_{j} \alpha_j e_{i+1\,j} \neq 0$. Put $m = \max\{j | \alpha_j \neq 0\}$. Then we have $J \ni [x, e_{m\,m+1}] = \alpha_m e_{i+1\,m+1}$. Hence $I_{i+1\,m+1} \leq J$ and $I_{i+1\,n+1}/J \in \mathfrak{F}$. Therefore $I_{i+1\,n+1}/I_{i\,n+1} \in \text{Max-}L$.

By making use of these lemmas we can now establish Theorem 2. Let $0 < A_1 \leq A_2 \leq \cdots$ be an ascending chain of abelian ideals of L. Put $A = \bigcup_{i=1}^{\infty} A_i$. Then A is an abelian ideal of L. By Lemma 1, there is a positive integer n such that $I_{1n+1} \leq A$. We first claim that $A \leq I_n$. For any non-zero $a = \sum_{i < j} \alpha_{ij} e_{ij} \in A$, put $k = \max\{i | \alpha_{ij} \neq 0 \text{ for some } j\}$. Then we have $[e_{1k}, a] = \sum_{j} \alpha_{kj} e_{1j} \neq 0$. If $k \geq n+1$, we have $[e_{1k}, a] = 0$ since $e_{1k} \in I_{1n+1} \leq A \in \mathfrak{A}$. This is a contradiction. Hence $k \leq n$. Thus $A \leq I_n$, as claimed.

By Lemma 2, $I_n \in Max-L$. Since $A_i \leq A \leq I_n$ for $i = 1, 2, \cdots$, there is a positive integer *m* such that $A_m = A$. Thus $L \in Max \rightarrow \mathfrak{N}$. However $L \notin Max \rightarrow \mathfrak{N}$, since $\{I_i\}$ is obviously a strictly ascending chain of nilpotent ideals of *L*.

ACKNOWLEDGMENT. The author is grateful to Professor S. Tôgô for his various comments.

References

- [1] R. K. Amayo and I. Stewart, Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
- [2] F. Kubo, Finiteness conditions for abelian ideals and nilpotent ideals in Lie algebras, Hiroshima Math. J., 8 (1978), 301-303.

Department of Mathematics, Faculty of Science, Hiroshima University