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0. Introduction

An important problem in multivariate analysis is to reduce -the dimension
of multivariate data with as little loss of information as possible. Principal
component analysis is a method useful for this problem. This method, which
originated with Pearson [72] and was developed by Hotelling [36], provides
reduction of a large set of correlated variables to a smaller number of
uncorrelated new variables called principal components. Principal component
analysis is algebraically based on latent roots and vectors of a covariance matrix
or a correlation matrix. In particular, latent roots play an important role in
considering how much information is condensed into a smaller number of new
variables. On the basis of a normal sample, tests of hypotheses concerning latent
roots of a covariance matrix may be constructed and the likelihood ratio principle
leads to suitable test statistics, which are expressed as functions of latent roots
of the sample covariance matrix (cf. Anderson [6]).

The problem of deriving the distributions of statistics based on sample
covariance matrices in normal samples has been studied by many authors. Some
works have been done in the area of asymptotic distributions, and others in that
of exact distributions. Furthermore, some asymptotic expansions have been
derived by inverting asymptotic formulae of characteristic functions obtained
by the Taylor series expansion. Surveys of the area of asymptotic distributions
are given by Muirhead [63] and Siotani [82, 83].

It may be emphasized that the sample covariance matrix is not invariant under
a change of scale and so neither are principal components derived from the
sample covariance matrix. In practice, there are many situations in which vari-
ables are measured on different units. The problem of units can be avoided by
employing the sample correlation matrix, since principal components are then
invariant under the different units of the original variables. Very little work
has been done in the problem of deriving the distributions of statistics based on
the sample correlation matrix in normal sample. This may mainly be due to
the fact that an explicit expression for the distribution of the sample correlation
matrix has not been obtained yet and hence the distribution problem associated
with the sample correlation matrix is intractable.

The purpose of this paper is to derive asymptotic expansions for the
distributions of statistics based on the sample correlation matrix in principal
component analysis. This paper is divided into two parts. PartI contains
asymptotic results concerning the latent roots and vectors of the sample corre-
lation matrix. Section 1 is devoted to prepare tools employed in Part I. In
Section 2, asymptotic expansions are given for the distributions of certain func-
tions of the latent roots of the sample correlation matrix both in the case when
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population roots are all simple and in the case when population roots have
multiplicity.  As special cases of the resulting expansions, asymptotic expansions
for the distributions of statistics used as a measure of the importance of principal
components are given in Section 3.1, whereas asymptotic nonnull distributions
of test statistics for testing the equality of the last several latent roots of a cor-
relation matrix are given in Section 3.2. Some numerical comparisons are
shown in Section 3.3. In Section 4, asymptotic expansions are given for the
distributions of latent vectors of the sample correlation matrix. Section 5
contains some tests for latent vectors of a correlation matrix. The likelihood
ratio tests have been successful in finding appropriate statistics for testing hy-
potheses concerning covariance matrices. It is however difficult to obtain the
likelihood ratio statistics for testing hypotheses concerning correlation matrices
in closed form and so approximate tests are proposed in this section.

Part II deals with asymptotic expansions for the distributions of statistics
expressed as functions of the sample correlation matrix. In Section 6.1, an
asymptotic expansion is given for the joint density of certain functions of the
sample correlation matrix. As an example of the use of the results, an asymptotic
expansion for the joint density of elements of the sample correlation matrix is
presented. In Section 6.2, an asymptotic expansion for the distribution of a
function of the sample correlation matrix is derived up to the term of order of
the reciprocal of sample size. Using the resulting expansion, asymptotic nonnull
distributions of the statistics proposed in Section 5 are given in Section 7. Final-
ly, in the bivariate case approximations to the distribution of the sample corre-
lation coefficient are discussed and some numerical comparisons of approximate
distributions are made in Section 8.

Part I. Latent Roots and Vectors of the Sample Correlation Matrix

1. Preliminaries

1.1.  Correlation matrices. Let X;=(X{4..., Xp), a=1,..., N, be a ran-
dom sample of size N=n+1 (n=p) from a p-variate normal distribution with
mean vector g and positive definite covariance matrix X'=(o;;), and let

X=L3X, s=(y=3 X -DOEX-X.
a=1

It is well known that S/n is an unbiased estimate of X and that S is distributed
according to the Wishart distribution Wy(n, X) (see, e.g., Anderson [5, p. 157]).
The population correlation coefficient between the ith and jth components of
the random vector is defined as

Pij = aij/(aiiajj)l/z-
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The px p matrix P=(p;;) is called the population correlation matrix. On the
basis of normal sample {X,}, «=1,..., N, the maximum likelihood estimate of

pij 18
(1.1) ry; = Sij/(siisjj)llz'

The p x p matrix R=(r;;) with r;=1 is called the sample correlation matrix.
Fisher [20] has given the distribution of R in the form

P 0 © P
Cp-n{lPIHP“}'”/ZIRI‘""’“”’ZS S l_IX'i"leXp(— %x'l“x)dx
i=1 ] 0 i=1

for R positive definite, where cp.,,=2”"‘"“2)/2{1’p<%n)} 1, P-1=(p¥), ' =(x,,
..»Xp) and I' is a px p symmetric matrix with p¥r;/(p'ipii)t/2 as its (i, j)th
element. This expression, however, contains the multiple integral, for which the
explicit form has not been derived yet except for the cases P=1I and p=2 where
I is the identity matrix of order p. In view of these facts, it is difficult to obtain
exact distributions of statistics based on the sample correlation matrix. We
are thus led to consideration of the problem of deriving asymptotic distributions.

1.2.  Perturbation method. In order to find approximations to the latent
roots and vectors of the sample correlation matrix, we use the technique known
as the perturbation method.

Consider a diagonal matrix A with the ordered latent roots 4, =---=24, and
assume that the perturbation of A can be expressed as a power series in ¢ as
follows:

(1.2) M=A+ VD + V2 4 S3Y3) 4+ 0(e%),

where V) (j=1, 2,...) are symmetric matrices of order p and & is a small real
number.

We shall first discuss the case when 4, is distinct from other p—1 latent roots.
Let I, be the ath largest latent root of M and ¢, =(cy,,..., ¢,,) the corresponding
latent vector with ¢,¢,=1 and c,,>0. The [, and ¢, can be assumed to take the
form

ly =2 + A0 + 24 + 23 + .-,
3
P
2.

P
c,=e,+¢eY alle; + ¢
i=1 i=1

P
aPe; + & X afPe; + -,
i=1
a
where e,=(0,...,0,1,0,...,0). To determine the unknown coefficients AV,
22,... and a{l, al?,... (i=1,..., p), we substitute (1.3) into the characteristic
equation Me,=1,c, and equate the coefficients in the both sides under the con-
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dition ¢,c,=1. For details we refer to Bellman [9, pp. 60-63] or Wigner [98,
pp. 40-46]. Results are given in the following:

LemMMmA 1.1. Let I, be the ath largest latent root of the pxp symmetric
matrix M defined by (1.2) and ¢,=(cy4..., Cp) the corresponding normalized
(cic,=1 and c,,>0) latent vector. If A, is simple, that is, of multiplicity 1,
the perturbation expansions of 1, and ¢, are given by

(1.9 I, =2y + &0 + 2(v2 + Z dag0'H?)
83(0(3) +2 z /'L U(I)D(Z) Z 12 v(l)v(l)z

S S (1) (1D (1) a
+ 2 Z laﬂlayvaﬂ v[iy v a) + 0(8 )a
pFta y#a

P
(1.5) Cla = — l,al:svﬁg,’ + e2(A;,0{PvY + ﬁ;al, viPos

+ 02) + 83{ D3 Kagha O POSDLD
fFavFa

1
+ l%,vﬁ,},’vgg,” Z /12 (v(l)v(l)v(l) + _Z_v(i;)vg}’)z)
p
+ T T Jap(0P0R? + ofPofol)
+ Z ,1 (0(1)0(2) (2)0(1))
+ 2,002 + o@Dy + vﬁi)}] +0@  if it

P
(1.6) =1+ (- i;;aa S7) + e~ 3 z 22,0, 0HoDuD

fZa
P

+ ﬂ; 13 v(l)v(l)l z )’2 vglﬂ)vﬁfﬁ)) + 0(84),
a

where VO =l}) and dp=(2,—2p)" ! (a#p).

The expansion (1.4) with (=0, j=2, 3,..., gives an expansion of the ath
latent root of the sample covariance matrix S/n, which was first obtained by
Lawley [57]. Sugiura [87] has subsequently derived the expansion, based on
the Taylor series expansion. Sugiura [91] used the perturbation method to ob-
tain asymptotic expansions for the distributions of the latent roots and vectors of
a Wishart matrix S and a multivariate F matrix S;S;! where S; (j=1, 2) are
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independently distributed according to W,(n;, Z)).

We now proceed to the case when the latent roots of A in (1.2) have multi-
plicity. It is assumed that A has r distinct latent roots 6,, 0,,..., 6, with multi-
plicities ¢4, q5,..., 4,, that is,

A== 2dy =0,
(1’7) )“q1+1 = Aq|+q2 = 02’
lp—-q,.+1 = l = Br’

where 0,>--->0,, 2 qg,=p and q,=0. Partition the matrices 4 and V)

(j=1, 2,...) into submatrlces with q,..., ¢, rows and columns as follows:

Oudg, O - 0 vip v v
A= 0 021,“:.. 0 |, vh=|pd pP..vd |,
0 0 - 0,1, vy vy

where I, are identity matrices of order ¢, and V{} are g, x g, submatrices. The
following lemma, due to Fujikoshi [24], is useful in deriving asymptotic expan-
sions for the distributions of statistics based on the latent roots of the sample
correlation matrix in the case when the corresponding population roots have
multiplicity.

LemMmaA 1.2. Let l;2---=1, be the ordered latent roots of a pxp sym-
metric matrix M defined by (1.2). Then, for j=1,..., q, the (g, + - +q4—1+j)th
latent root 1, ..., _, +; is equal to the jth latent root of

W, = 0,1, +eW + W2 + WD + 0(e*),
where

ng) — V‘(IL), W(z) V(Z) + Z 0 V(l)V(l)

W£3) V‘(z:;) + Z 9 (V(I)V(i) + V.%)V/(?L))

- Z 02BV(1)V(1)V(1) + Z 2 eaﬂg Wﬁ,}?V},‘QVﬁ’

B#a
with O,3=(0,— 051 (a#p).
Fujikoshi [24, 25, 26] has obtained, using Lemma 1.2, asymptotic expansions

for the distributions of certain test statistics based on the latent roots of multi-
variate F, multivariate beta and other random matrices. Konishi [44] has
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discussed the perturbation expansions of latent vectors of a symmetric matrix
in the case when the initial matrix A in (1.2) has multiple latent roots.

2. Generalized asymptotic expansions

In this section, asymptotic expansions are given for the distributions of
certain functions of the latent roots of the sample correlation matrix R both in
the case when the population roots are all simple and in the case when the popu-
lation roots have multiplicity. The results are used to obtain asymptotic expan-
sions for the distributions of some statistics expressed as functions of the latent
roots of R.

2.1. An asymptotic expansion when population roots are simple. Let
S=(s;;) be the matrix of the corrected sum of squares and sum of products of
observations in a sample of size n+1 from a p-variate normal distribution with
mean vector g and positive definite covariance matrix ~. As defined in Section
1.1, let P be the population correlation matrix. Since P is positive definite,
there exists an orthogonal matrix H=(h;;) such that

@.1) HPH=A or PH=HA,

where A is a diagonal matrix with the ordered latent roots 4; >--=4,>0. The
sample correlation matrix R defined in Section 1.1 can be expressed as

2.2) R = S5128 55112,

where So=diag(s;;,..., 5p,). Let
2.3) V= (v;) = ﬁ(%z(;l/zszgl/z _ P),
where X, =diag (0y15..., 0pp)-
It is known (see, e.g., Anderson [5] or Kshirsagar [54]) that %2751/25 212

converges to P in probability as n tends to infinity and that the limiting distribu-
tion of Vis normal with means 0 and covariances cov (v;;, V) = Py 1+ PuP ji-
From (2.1), (2.2) and (2.3), it follows that

1

Jn

1
n

1

(2.4) HRH= A+ =V 4 —y® 4 WV“) +0,(n7?),

n
where

v = #(V = LVoP - 1PV, ) B,

(1 L 1 3 3
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3 3

ye = H’(% VoVVo — 1= V3PVo — 25 VoPV3
+ 3V s Y- 2vip - PV3>H
g VoV + g ¥V~ 1¢ 16 FV3

with Vy=diag (vy;,..., Upp)-
Let I, be the ath largest latent root of R. If the latent root A, of P is simple,
then it follows from (2.4) and Lemma 1.1 that the perturbation expansion of I, is

(2.5) I, =12, +\/1—v“) —(v(2)+ Zl s0S92)

\/— w3 +2% Aapvgz}x)v%) Z lipvit’vfdy"
BF#a #a
+ 3 z ) v“)v“)v(”) + 0,(n?)
§F oy E ap”ay“ap YBy “ya 7t ’

where VD =)), Ap=(A,— 25! and

v = Z Zhjahkﬂvjk 5 ('la + 4p) ;hjahiﬁvij’

v = ”;1(; 2 pjuhjahigV; Ve ~ %; 2 hjahigvji(vy; + v
(2.6) + %(la + 4p) ?hjahmv?f’

3
? ;hjahkﬂvuvkkvjk ‘1“6_21: ;pjkhjahkﬂvjjvkk(vjj + Vi)

A=

Uaﬁ

‘w

3 2 X hjahupvi (V34 0k) — 16 (A + ;Lﬁ)?hjahjﬁv:}j'

J ok

Here the summations Z and Z stand for Z and Z respectively. It may be
=1

remarked that the latent roots of R are mf'arlant under the transformation R—
H'RH. Let f(l,..., 1,) be a real-valued function defined on a domain D in the
p-dimensional Euclidean space. We assume that the function f is analytic in a
neighborhood of (4,,..., 4,) (¢ D). Expanding the function f(l,,..., I,) in Taylor’s
series about (I;,..., [,)=(44,..., 4,) and substituting (2.5) in the resulting expansion
gives

QT) Flueos 1) = fCrarins 1) + A= p) +i{§um
. 1592 ép 1949 /p \/nat=1 aaJ a PR = axJ a

W 1 P P
£33 1B+ 55 S oD ) + 0,070,

a=1p=1
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2
where f,ﬁ=a—;36—17f(11,..., I, (pperos L) =(gyerr 2) and v}, v{? are given by
(2.6). To derive an asymptotic expansion for the distribution of f(l,,..., l,) up
to and including the term of order n~!, the term of order n~3/2 in (2.7) is needed.
It is however very lengthy and hence omitted here.
From (2.7), the characteristic function of \/E{ flyseos L) =f(Ay,..., Ap)} can
be written as

@8)  Eew@an){L+ + B3 o2r + z z hagV 92/,

n

k

%é 21 v Dol f, 3> +0 (n‘l)H
where etr (- ) stands for exp {tr(-)} and A is a p X p symmetric matrix having
2l = St )hsah
as its (j, k)th element with the Kronecker delta ;.
To calculate each expectation in (2.8), we use Lemma 5.1 in Sugiura [87].

Putting f(I')=1 and substituting A defined in (2.8) into Suglura s lemma, we ob-
tain after some calculations :

(2.9) E[etr (itAV)]
=exp(= L)1+ f‘/‘) {$znr-4x 300 Sy S Huy

+

IS

; % ; A‘a)‘ﬂirfafﬂf‘y ; % pjkh%ﬂhﬁv(3lahjahka

- ;pjlpklh%a)} + O(n—l)] ’
where
2100 2 =2% %‘,Aaiﬁ{éaﬁ = (e + 2p) X h3h + X %}p,khz hZg} fofp-
a J J
Similarly, putting f(I')=n(;.— p ) (Vin— P1) and taking A defined in (2.8) gives
(2.11) Eletr (itAV)v;,0p,,]
= exp (“ %th") {Pj1Pim + PjmPu

+ 4(“)’; ; Y(B.J, KW (v, L m) fy f, + O(n=112)5,

where
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)4
(2.12) VB, j, k) = )w(/lphjahkﬂ - I; Pjthlhlzﬂ)-
It is now relatively easy to calculate each expectation of the term of order

n~1/2 in (2.8) by using (2.11) and the relation (2.1). Thus we have the following
form for the characteristic function of \/n {f(Iy,..., [,)=f(Ay,..., 4,)}:

2.13) exp<— %1212)[1 + \/%{(iz)gl + (it)gs) + O(n"l)],
where 12 is given by (2.10) and the coefficients g,, g5 are
91 = =~ 5 Tl — ST olihih,
- ﬂ;ﬁ Aap{200hg — 42,0 5(0y + ).,); h%.h%,
+ (A + 20 ; 2 Piuhjah phichig} ] fo

+ ; j’éfu - ; % ;”a)°ﬂ(2)“ﬁ ; h%ahﬁﬂ - ; ; p%kh%ah%ﬂ)fuﬂv
93 = T TAS2 — 4T T, f2y S HbS,

+ T3 T Lo, L5 ey 3 T okt
(2.14) x Glehjahie — 3 piprahis)
+ T B, 1:1) (o, ko K) = 4,0}
+ 30, BB, WG 1o )]
+ 3 32 ASLS 2T T bl (B K
= Ga+ A S by B.J, DN
+ 25 ST S LSl S T 2 hishighiph, ks )
X {5 (8.4, m) = 21,y 0(,5.)}
+ Ay 3 S W, W3, )]

with (B, j, k) defined by (2.12).
Inverting this characteristic function, we have the following theorem.
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THrOREM 2.1. Let 1, Z---21,>0 be the latent roots of the sample cor-
relation matrix R and let H=(h;;)) be an orthogonal matrix such that H'PH
=diag (4y5..., 4,), where P is the population correlation matrix and A, Z--22,
>0 are the ordered latent roots of P. Let f(ly,...,1,) be an analytic function
in a neighborhood of (l,...,1,)=(2;,..., 4,). If the latent roots of P are all
simple and the t* given by (2.10) is not zero, then the distribution function of

f = V/‘h—{f(lls"-, lp) —f(lla"'a ).p)}/T

can be expanded for large n as
(215) Pr(ft <x) = 0(x) = T8 D0 + 95O} + O(n™),

where ®UY)(x) denote the jth derivatives of the standard normal distribution
function ®(x) and g, g5 are given by (2.14).

From the form of the leading term in (2.13), we have the following

CoroLLARY 2.1. Let f(ly,...,1,) be a continuously differentiable function
in a neighborhood of (l,,..., 1,)=(4,,..., 4,). If the population roots 2, are all
simple, then the limiting distribution of ﬁ{f(ll,..., 1,)=f(A1,..., A,)} is normal
with mean 0 and variance 12 given by (2.10).

2.2. An asymptotic expansion when population roots have multiplicity.
We now proceed to the case when the latent roots of the population correlation
matrix P have any multiplicities. Let H be an orthogonal matrix such that
H'PH=diag(4,,..., 4,) where 1, =---21,>0 are the ordered latent roots of P.
Assume that P has r distinct latent roots 0, > --- >0, with multiplicities q,,..., g,
as indicated by (1.7). Let L, (e=1,..., r) be the set of integers q,+---+¢q,-{+1,
v g1t g, (qo=0).
We make the following assumptions for the real-valued function f(l,..., )
where [, =--- =1, are the ordered latent roots of R:
(i) fis analytic in a neighborhood of (Iy,..., [,)=(4y,..., 4,),
(i) ForjelL, kel

of

(2.16) )
- orf -
Uy Iy=0= T AL Uy, 1)=0 = Tep

where ©=(0,,..., 0,, 0,,..., 0,,..., 0,,..., 8,).

Under the assu‘;ﬁptions (6zand (ii) in 65.16), the Taylor series expansion of f(Iy,...,
I,) about (Iy,..., 1,)=(4y,..., 4,) can be written in the form

Fgpor L) = fGgoenes ) + agl PRI
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r r
+1E % 2 5 - - W+
=1 4= wkelg
Then, from (2.4) and Lemma 1.2, it follows that

Slieos ) = SOy 2p) + 7 5, uts VD

EI,—

(S huv@+ 3§ L, uvgv

Z:: 2::1 faptt VR tr Vf,},’) + 0,(n313),

where 0,,=(0,—0,)! and V() are the submatrices of V() partitioned into
q1s-++> q, Tows and columns. Here the (o, f')th elements of V{3, say v/}, are
d col H the (o', f)th el ts of VP 9
P

P 14
v =3 X hjuhipop - %(Gu +0p) 2 Riwhipv;

j=1k=1

<.
=

P
) kZ_:I hjorbip0ji(vj; + Vi)

™M~

z 1
R BV —
lkg.lpjk ja kg VijVkk — 5 4

M

1
4 f
30, +0)3 2
+5 0. + p)lgl jarhjp V3.

The characteristic function of /n{f(ly,..., I,)=f(4y,..., 4,)} can therefore be
expressed in the form

(2.17) El:etr (itAV){l + W(Zf aV@+ 3 zf,o,, tr VYV

+1y ¥ Saptt VD tr V‘1’>+ Op(n-‘)}:|,
2 &6
where A is a symmetric matrix of order p having

> S Sl = 0,80k

a=1a’eL,

as its (j, k)th element. Each expectation in (2.17) can be calculated by an argu-
ment similar to that discussed in Section 2.1. The result is of the form

2.18)  Eexp (it /B {fUpnece ) = fCryeces 2)P]
- exp(— %1212>[1 + 717 (g, + ()33} + O(n-l)],

where
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@19 @=23 3 5 5 06,00 ~ 0. +0) 3 ki

a=1pf=1a’el, B’e

p P
+ z=: Z p%khﬁa’hiﬁ’}faf/l

Jj=1k=1

and

p
g pjkhja’hka’

I M-:

g1==3% % [0

a=1a’'e€ly

-3 _ -
ﬂ;«ﬂ’ezllp Gaﬂ{zgaoﬂ 46¢9ﬂ(9, + Gﬂ) leh a h,lﬂ

P
+ (0 + Hﬂ)z 21 kzlpjkh_uz hjﬂ hk(z'hkﬂ’}]f(z

J

+ 3062 - 2 3 5 3 0.0

a=1p=1a’eLy B’eLp

)4 P
X (26 2 h ’hﬁﬂ' - _21 kzlp%kh%a’hiﬂ')faﬂ5
j=1k=

r

f?
w[-b
M-+

1B=1a’eLyB’eLyg

2
]
-

>

a=

w]-h

Y T 3 ¥ 000,101

1y=1a’eLy B’elp y'€L,

-

M-

p P
(2.20) g Piihip ey 30k 0 by — 1§1 Pj1Prihter)

i M‘

2 T S f L by VB )

'.1M1
il M‘

X {p,-u#(v, k,k) — 4y (v,j,k)}

+ 391J21hiu’w(ﬁsj:j)]//(v’jsj)]

+ Z zoasfa ,ZL Z [Zfﬁ{Q'z zh_]ahks lp(ﬁs]’k)

a=1s#a « S'€Lg

= @+ 0) 3 by ¥ (6,1, )T

r r r r P P P
2y X XX X X fupfofslX X X hiwhuphip
a= =1a'eL, B’eLp J=1k=11=1

1 =1 y=16=1

X (s s DS, eV (61, 10) = 20k52 00,120}

0,0, 3 KRy, Js DU, Ky K)]

J=1k=1

r p
02— 4% X 3 % 0:0,/3fs 2 ki
Jj=1

659
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with
p
(2'21) w(a:js k) = ’2;4 Ga(gahja’hka’ - IZI pjlpklh%a') .
A €Ly =

Inversion of the characteristic function (2.18) yields

THEOREM 2.2, Let I, 2---21,>0 be the latent roots of the sample cor-
relation matrix R, and let H=(h;;) be an orthogonal matrix such that H'PH
=diag (4,,..., 4,) where A, =---21,>0. Assume that the ordered latent roots
AyZ -+ Z 4, have the multiplicities indicated by (1.7) and that the 12 given by
(2.19) is not zero. Then, under the assumptions in (2.16), the distribution
function of

5= S0 Ugpes 1) = [Gogrens I}

can be expanded for large n as
222 Pr(f1 <x) = 00 = 5 {0,005 + gs8O )5} + 00,

where ®U)(x) are the jth derivatives of the standard normal distribution func-
tion ®(x) and g,, g5 are given by (2.20).

From the form of the leading term in (2.18), we have

CoroLLARY 2.2. Let f(ly,..., 1,) be a continuously differentiable function
in a neighborhood of (1,,..., I,)=(24,..., 4,). Under the condition (1.7) for the
population roots and the assumption (ii) in (2.16) for the first derivatives of f,
the limiting distribution of \/ n{f(ly,..., 1,)—f(%y,..., 2,)} is normal with mean
0 and variance t? given by (2.19).

Lee and Krishnaiah [59] have recently obtained asymptotic expressions for
the joint densities of the ratios of linear combinations of the latent roots of the
sample correlation matrices in real and complex multivariate normal samples,
when the population roots are all simple. Konishi [45] has obtained an asymp-
totic expansion for the distribution of a function of the latent roots of the sample
covariance matrix in the case when the population roots are simple and derived,
as special cases of the results, asymptotic expansions for the distributions of
various ratios of latent roots. Recently Fujikoshi [26] has obtained asymptotic
expansions for the distributions of some functions of the latent roots of the
random matrices associated with principal component analysis, MANOVA
model and canonical correlation analysis, when the population roots have any
multiplicities.
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3. Asymptotic expansions for the distributions of statistics associated with
reduction of dimensionality in principal component analysis

3.1. Certain functions of latent roots. Principal component analysis was
first introduced by Pearson [72] for the case of nonstochastic variables, and
later Hotelling [36] generalized this concept to the case of stochastic variables.
Briefly principal component analysis based on a correlation matrix is as follows:

Consider a p-dimensional random vector X'=(X,,..., X,) with correlation
matrix P, Let 4;,=---21, be the ordered latent roots and hy,..., h, be the cor-
responding orthonormal latent vectors of P. Then, from the spectral decom-
position theorem it follows that

P=2hhi+--+4ihh,

G.1) pp'tpr
h,Ph,=}, h,Ph,=0 if a#p.

The linear combination y, =hjX is called the first principal component of X.
Generally, the ath principal component of X is given by y,=h,X. From (3.1)
it is easy to see that the principal components have the properties

Var (y,) = by Ph, = 7,
(3.2)
CoV (s ¥p) = hyPhy = 0.

It may be found that the principal component analysis is algebraically based
on the latent roots and vectors of a correlation matrix or a covariance matrix.
For further details of principal component analysis we may refer to Anderson
[5, Chapter 11], Kshirsagar [54, Chapter 11], Morrison [61, Chapter 8] or
Rao [77, Chapter 8].

In practice, it is necessary to know how much information is condensed into
the principal components. From (3.2) the total variance of the p principal
components is >.2_, A,=tr P=p. The importance of the ath principal com-
ponent in accounting for the total variance is measured by 4,/p. Furthermore,
the fraction of the total variance accounted for by the first g principal components
is measured by > 2_, 1,/p (g <p), which was suggested by Rao [76].

Considering the inference problems based on the sample data which are
drawn from a p-variate normal population with covariance matrix Z, we use the
maximum likelihood estimate of P, namely, the sample correlation matrix R.
When the population roots are simple, the 1,/p and X I_, A,/p are estimated by

q
l/p and a;l L/Ip (@<0p),

respectively, where [, =---=1, are the latent roots of R. Konishi [46] has ob-
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tained asymptotic expansions for the distributions of I, and > Z_,I,/p when the
corresponding population roots are simple.

We now give, using Theorem 2.1, an asymptotic expansion for the distribu-
tion of [,/p. Taking f(ly,..., I,)=1,/p in Theorem 2.1, we obtain the following

THEOREM 3.1. Let l, be the ath largest latent root of the sample correlation
matrix R and let H=(h;;) be an orthogonal matrix such that H'PH =diag (4y,...,
Ap) with the ordered latent roots Ay =---2A,>0. If 2, is simple, then an asymp-
totic expansion for the distribution of l,/p is given by

Pr{/n(l/p — Z/p)t, < x}

= o(x) — j;{m“)(x)/(pm + g @) (pr.?} + O(n™),

where
@ = 2201 ~ 20, 3, + T T o) o
and
91 = — % [4a — ; % ikl — ﬂ;l"{aﬁ {2225
— 4,25 (2g + Ap) ;hfahf,, + (A, + iﬂ)zgj %) P3chjohghiahig} ],
(3) g3 =54 ~ AT, + TRT T 0, Olahyohus = T 0j10uihh)

+ Z zhjahka'p(aaj’ ]) {pjk!p(a9 k, k) - 41#(0(, ja k)}

Jj k

FILTBN @D + T 22 S T hyuhag (o, )
- (la + ;Ls) ;hjahjs‘ﬁ(a’jhi)}za

P P
where the summations Y and Y. stand for Y, and Y , respectively.
J B#a Jj=1 BF#a

It may be remarked that this result holds if only the 2, is distinct from other
p—1 latent roots which may have any multiplicities.

Now recall that the formula (2.13) gives the expansion of the characteristic
function of /n{f(ly,..., 1,)=f(2y,.... 4,)}. Taking f(l,,..., [)=%2_ 1,1, and
putting =1 in (2.13), we obtain the expansion of the joint characteristic function
of ﬁ(la——,la), a=1,..., p, in the form

1., 1.2 L2 L2 _
(34 exp(— L m){l FTrAE bt + B 5 53 buytutyl,) + O l)},

a=1 =1 y=
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where t'=(t,,..., t,), Q=(w,p) is a p X p symmetric matrix with
(3'5) . waﬂ = 2)"012'8{5:1,8 ()“az + Aﬂ)zhz hzﬁ + Z ijkh h%ﬂ},

and b;, is given by g, in (3.3) and b

By 18

b

apy =

4
312000y, — 234, 3 I3

+ el T T 0t (3o = 3 puputy)

3 S by, o ke k) = 4, )

+ 34, W W)

T 225 S (B0, F) = G A) S 6.1, )
X (23 D hiahgh(r0,K) = G+ A) S by o)}

The limiting joint distribution of \/ n(l,—2,), =1,..., p, is singular normal with
mean vector (0,..., 0)' and covariance matrix Q= (a)aﬂ) given by (3.5), since >.2_,1,
=tr R=p, and so the inversion of (3.4) is very complicated. An asymptotic
expansion for the joint density function of any g (g<p) set of {\/ﬁ(lm—/l,);

=1,..., p} is obtainable, using the formula (3.4). For the sake of simplicity
we give an asymptotic expansion for the joint density function of \/7{(!,,—/1“),
a=1,..., g, in the following:

THEOREM 3.2. Let Q=(w,p) be a q x q symmetric matrix with w,; given by
(3.5). IfAy,..., 2, are simple, then an asymptotic expansion for the joint density
function of

= {Jnly— 2w ynl— 2D} (@<p)
is given by
B D1+ 7S b Q) + 3 5 3 by Hop,(: D) + 0071 |
where
d(x; Q) = W—exp(— é—x'Q'Mﬁ),
for 15i,<q and &' =(x4,..., X,)

Hi, o5 Q) = 4’((;;1};) axi,'a'r'axir ¢(x; 2)
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and the coefficients b,, b,g, are given in (3.4).

When the population roots have any multiplicities as in (1.7), the 6, and the
fraction > 1_,4q,0,/p (g<r) of the total variance accounted for by the first
q,+ -+ +q, principal components are estimated by

= T lja, and X 3 Lip

aelgq a=1 a’eLy

respectively, where L, is the set of integers q,+--*+¢q,-1+1,..., g1 +-+¢,

(0=0).
Applying Theorem 2.2 to the case of I;, we have the following

THEOREM 3.3. Under the same notations as in Theorem 2.2, an asymptotic
expansion for the distribution of I,= ¥ 1,/q, is given by
aelg

Pr {\/7(7.1 = 0)[tq < x}

= d(x) - :/1—',;{91‘1’“)&)/(44%) + 93P(x)/(9a10)’} + O(n™1),

where
(3.6) 1=2% 2 0i{d. — 2942122 hip + 22 phhiahis} 143
aeLg pelg J k
and
91= % % [0~ T T phuhahi,
ael J k

-3 0,,{20,0, — 40,0,(6 "2h2,
ﬂ;dﬂ,EZLﬂ 512040, a0s( a+0p)§: Fallip

+ (0, + 6,,)2?, ;Phhjahjﬁ'hkahkﬁ'}],

G2= 34043 T 05T mM,
J

a€eLq fel g
L4
? ZL #gd YEELd@%Z %ijhfﬂh/%y(:wahjahka - ‘IZszpuh%a)
Z [
eLa

ZZh,ahkalI/(d JsDipjy(d, k, k) —4y(d, j, k)}
+ 30d?h§a‘/](da.]s])2]

J

+ 30, Y T 2EShhaV(d, ], k)
s#d J k

aeLgs’eLg

- (Bd + 0s)§hjrzhjs'lp(d5j’j)}2
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with
Y(djo k) = 2. 0u0shjahie = 2 pjupuhia) .
aelg

From Theorem 3.3 it follows that the limiting distribution of /' n(I,—0,) is
normal with mean 0 and variance 73 given by (3.6) and so in general the variance
depends on H and P. In particular case of P with the two distinct latent roots
0, and 0, of respective multiplicities g, and q,, Anderson [6] has obtained the
confidence interval for 0,, showing that

a0
\/292(17 — 429,)(pg19,)~'"?

is asymptotically normally distributed with mean O and variance 1. It may be
remarked that the term of order 1 /\/7 in an asymptotic expansion formula for
1, contains H and the latent roots other that 6,.

An asymptotic expansion for the distribution of /, is obtainable, provided
that the corresponding population root is simple (cf. Konishi [46]). Unfortu-
nately, a similar result for the I, corresponding to the same multiple population
root can not be obtained, since the limiting distribution of [, is no longer normal.

Now, putting f(l,..., [,)=>24-; ¥ 4er, le/p in Theorem 2.2 and differentiat-
ing f with respect to [, at (Iy,..., [,)=(4y,..., 4,), we have

THEOREM 3.4. Under the same notations as in Theorem 2.2, an asymptotic
expansion for the distribution of 3.2_, 3 vcp, l/p (g <7) is given by

PryA(E T Lip— 2 addplig <)

/

a=1a’eLy
= P(x) — 717{914’(”(36)/(1)%)) + 932PX)/(pry))*} + O(n™Y),
where

q 4 P
=23 3 33 0.0, — O+ 0p) X Mol

a=1p=1a’eL, B'eLg

-

p D
+ 'Zl kzl p%kh%a’h%ﬂ’}/‘pz’
j=1k=

and the coefficients g, g5 are given by (2.20) with f,=1 for a=1,..., q, f,=0 for
a=q+1,...,r and f,z=0 for a, B=1,..., .

The problem of deriving the distributions of latent roots of the sample
covariance matrix S/n has been studied by many authors. James [39] has ob-
tained the exact joint density function of the latent roots of S/n in a form involving
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a hypergeometric function of matrix argument (see Constantine [14] and Herz
[35]). Some work has been done on approximations to the hypergeometric
function. Asymptotic results in this area have been given by G. A. Anderson
[3] and Muirhead and Chikuse [64] in the case when the population roots are
simple, and by Chattopadhyay and Pillai [10], Chikuse [13], Constantine and
Muirhead [15] and James [41] in the case when the population roots have multi-
plicity. It is however difficult to obtain results concerning the latent roots of
the sample correlation matrix by arguments similar to those discussed in the
literatures.

Anderson [6] has obtained the asymptotic distributions of the latent roots
and vectors of S, when the population roots have any multiplicities. The method
discussed in Anderson [4, 6] is useful in obtaining the asymptotic distributions
of the latent roots and vectors of Wishart matrices except for the case of the sample
correlation matrix. Sugiura [87] has obtained an asymptotic expansion for the
distribution of the «th largest latent root of S, when the corresponding population
root is simple. His result includes the limiting distribution given by Girshick
[29]. In the case of multiple population roots, Chikuse [12] and Sugiura [91]
have derived the asymptotic expansion of the joint density function of the latent
roots of S from the results given by Chattopadhyay and Pillai [10]. The expan-
sion of this type has also been derived by Fujikoshi [24] based on the perturbation
method with multiple population roots.

3.2. Tests for latent roots of a correlation matrix. On the basis of N=
n+ 1 observations drawn from a p-variate normal population N (g, Z), we consider
first a test of the hypothesis

Ho:dy =2y =2o=14,
that all of the latent roots of P are equal. It is easy to see that H, is equivalent

to the hypothesis H§: P=1I and that the likelihood ratio criterion is given by A,
=|R|N/2, Bartlett [7] has shown that the statistic

- {n ~Lep+ 5)} log |R|

is asymptotically distributed as a chi-square distribution with p(p—1)/2 degrees
of freedom when H, is true. The asymptotic nonnull distribution of |R| will be
discussed in Section 6.2.

If the hypothesis H is rejected, then it is of interest to test the hypothesis
that the last g=p—a latent roots of P are equal, namely,

Hl: ’la+1 = fgyp =000 = '11»

which is one of the most commonly used tests in reduction of dimensionality in
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principal component analysis. Anderson [6] has considered a test of the equality
of any subset of the latent roots of P, which includes the hypothesis H,. The
hypothesis H, is tested by using the statistic

3.7 A= I Ll 3 1)ae.

Bartlett [7] has shown that

- %—,{n— %—(2p +5) - %a}logA1

can be approximated as a chi-square distribution with (g —1)(g+2)/2 degrees of
freedom when H, is true.

We now give, using Theorem 2.1, asymptotic nonnull distribution of the
statistic 4, when the population roots 4,4 y,..., 4, are all simple. Put

_ é; _ _ P _ j 4
[y, )= — NlogAl = qlog(q 1j=§+llj) ,-Z‘ﬂ logl;

in Theorem 2.1. Partial derivatives of f(Iy,..., [,)at (I5,..., I,)=(4,,..., 4,) are

L P
fa = Q( : Z lj)_l - )“;1’ faa = - q( . 2 /,!vj)-2 + 1;2’
Jj=at+1 j=a+1
(3.8)
P
faﬁ = — q(j=§+1lj)_2 (d # ﬁ) for o, B =a+1,..., p

and other first and second partial derivatives are all zero. Then we have the
following

THEOREM 3.5. If the population roots A, ,..., A, are all simple, then an
asymptotic expansion for the nonnull distribution of the statistic A, for testing
the equality of the last q=p—a latent roots of P are given by

~{_ 2 g _ -1 ¥ } . }
Pr[\/N{ NlogA1+j=§+llog/1j qlog (g jgﬂlj) /r,q<x

= ®(x) — j—;,—{g1¢<*>(x)/r,q + 450D (x)[11,} + O(nY),

where
) 4

2,=2 i 3 1(q,1¢ - jzérllj)(qlﬁ - j=$+l)~j)( i ;)72

a=ag+1 f=a+ j=a+1

p p
X {0ap — (g + 4p) ngh%ahiﬂ + jZ > phhthis}

=1k=1

and the coefficients g,, g5 are given by (2.14) with the partial derivatives (3.8).
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We now consider the hypothesis

Hyi Qg1 = dgya ==Xy =1 (A0 > 0)

4

that the last g=p—a latent roots of P are equal to a specified value 4, (>0).
This hypothesis may be tested by using the statistic

(3.9) Ay = (I1 1132 exp{= SNC 3, 1120 - )}

which is based on the likelihood ratio criterion for testing the hypothesis H,
concerning the latent roots of the covariance matrix X, due to Anderson [6].
Taking f(ly,..., [,)= —(2/N)log A, in Theorem 2.1, we obtain the following

THEOREM 3.6. If the population roots A,.i,..., A, are all simple, then an
asymptotic expansion for the nonnull distribution of the statistic A, for testing
the equality of the last q=p—a latent roots of P to a specified value A, is given

by

S 2 p P
Pr[\/n {— NloE A+ 3 logd; = 3 4/l + q(l — log /'Lo)}/tzq < x:l

= 0() = 7 18Oy + 50O ()T} + O™,
where

P p P
T%q =2 Z 2 (;"a - /10)(1[} - 10)162{5” - ()'a + )'ﬂ) Z h%ahﬁﬁ
a=a+1p=a+1 Jj=1

P p
+ X 2 phhihig}
IS

and the coefficients g,, g5 are given by (2.14) with the partial derivatives f,=
1/io—1/Ay foa=1/22 (a¢=a+1,..., p) and other first and second derivatives
being zero.

The asymptotic distributions of the likelihood ratio criteria for the hy-
potheses H,, H, and H, on the latent roots of the covariance matrix X~ have been
studied by many authors (cf. [6], [7], [15], [25], [27], [41], [43], [66], [68], [69],
[85], [39D).

Further, in multivariate analysis various functions of latent roots of some
random matrices including individual latent roots have been proposed as esti-
mates or test statistics. The problem of deriving the sampling distributions in
the null and nonnull cases has been individually considered by many authors.
Examples are found in [11], [15], [21], [23], [25], [33], [37], [38], [51], [62],
[79], [80], [81], [84], [86], [88], [90]1, [91], [92] and others for asymptotic
distributions, and in [14], [17], [18], [32], [39], [40], [52], [53], [75], [95] and
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others for exact distributions. Recently a survey of the area of exact distributions
is given by Krishnaiah [50]. A number of references on multivariate distribution
theory are found in Pillai [73, 74]. ’

3.3. Numerical comparisons. Our asymptotic formula (2.15) in the special
case of f(ly,..., I,)=1, is examined by numerical comparisons. In the case of
p=2, the latent root /; of R can be written as I, =1+|r| where r is the sample
correlation coefficient in a sample of size N=n+1 from a bivariate normal
distribution with population correlation coefficient p. An asymptotic expansion
for the distribution of I, in the bivariate case is, assuming that p>0, given by

(3.10) Pr{Jn(l; —1-p)1l - p?)<x}

— B(x) + \—/I—;p{%di(l)(x) + ¢(3)(x)} )

(see Konishi [46]). Konishi [46] has checked the accuracy of the asymptotic for-
mula (3.10), based on exact values of the probability integral of r due to David [16].

Further comparisons are given in the following:

Table 3.1. Comparison of exact and approximate values of Pr (|r| <r,)

term of term of

ro o) O /Vn) total exact
N=25, p=0.7
.50 .02736 .02873 .05609 .05744
.55 .07481 .03182 .10663 .10494
.60 .16838 .01519 18357 .18366
.65 31551 —.01368 .30183 .30445
.70 .50000 —.02850 .47150 .47078
75 .68449 —.01368 .67081 .66647
.80 .83162 .01519 .84681 .84739
.85 92519 .03182 .95701 .96073
N=25, p=0.9

.83 .03555 .03965 .07519 .07423
.85 .09866 .03710 13576 .13041
.87 21961 .00534 .22495 .22387
.89 .39827 —.03073 .36753 .36883
.90 .50000 —.03665 46335 46244
91 .60173 —.03073 .57100 .56762
.92 .69696 —.01502 .68194 67872
.93 .78039 .00534 .78574 .78645
.94 .84881 .02427 .87309 .87911
95 90134 .03710 .93844 94612

.96 .93907 .04193 .98101 .98350
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Table 3.2. Comparison of exact and approximate values of Pr (|r| <r,)
for N=50 and p=0.9

term of term of

ro o) oV 7) total exact

.85 .03273 .02720 .05993 .05998
.86 .07028 .02895 .09923 .09681
.87 13452 .02009 15462 15229
.88 .23061 .00168 23229 23202
.89 .35628 —.01746 .33882 .33974
.90 .50000 —.02565 47435 .47403
91 64372 —.01746 62626 .62459
.92 76939 .00168 77107 77108
.93 .86548 .02009 .88557 .88871
.94 92972 .02895 95867 .96114

Table 3.3. Comparison of exact and approximate values of Pr (|r|<ry)
Jor N=200 and p=0.7

term of term of

ro o) o7 total exact

.64 .04850 .01126 .05976 05963
.66 13427 .00777 .14205 .14190
.68 .29006 —.00329 .28677 28713
.70 .50000 —.00990 .49010 .49007
71 .60896 —.00807 .60089 .60053
12 70994 —.00329 70664 70622
.73 .79668 .00265 79932 79917
74 .86573 00777 .87350 .87372
.75 91667 .01075 92742 92779
.76 95150 .01126 96276 .96291
77 97358 .00987 98345 98312

In the case of p=4, asymptotic formulae for the distributions of the individual
latent roots of R are examined by simulation, which was done with the help of
Sugiyama [96].

Four independent standard normal deviates are generated and are trans-
formed to a four dimensional normal variate with the specified correlation matrix

100 —0.19 —045 024
~019 100 041 0.6
(3.11) P=
—045 041 100 —0.51

0.24 0.16 -~ 0.51 1.00
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This process is repeated 100 times and the latent roots of the sample correlation
matrix based on the generated observations are calculated. Each simulation is
independently repeated 1000 times and the sample variances of I,— 4, (a=1, 2, 3,
4) are calculated. The percentage points of the latent roots of R are also ob-
tained.

The latent roots and vectors of the population correlation matrix (3.11) are
given by

Ay =1.90223, 1, =1.16044, 1, = 0.68671, A, = 0.25062,
0.51280 0.02702 0.84909 0.12391

— 0.32585 — 0.76858 0.28959 — 0.46824
H = .
— 0.65575 —0.03320 0.29584 0.69380

L 0.44816 — 0.63832 — 0.32813 0.53295

Then asymptotic variances of [,—A, are obtainable by using (2.10) with f,=1
and fy=0 (f#a). The approximate values of the probability integral Pr (I,<x,)
(x=1, 2, 3, 4) can be obtained by using Theorem 2.1, where x, are the upper 10
percentage points of [, calculated by simulation. Comparisons are shown in
the following:

Table 3.4. Comparison of approximate values of Var (l,—1,) with
simulation results
I I, I3 Iy
approximate value 0.0188 0.0090 0.0080 0.0016
simulation result 0.0182 0.0086 0.0078 0.0016

Table 3.5. Comparison of approximate values of Pr(l,<x,) with
simulation results

X4 X, X3 X4
percentage point 1.38310 1.22556 1.12164 1.11638
the term of O(1) 0.91668 0.88982 0.86899 0.86787
the term of O(1/ \/—rT) 0.04438 0.02542 0.03065 0.03664
total 0.96106 0.91524 0.89965 0.90451
simulation result 0.90 0.90 0.90 0.90

From these tables it may be seen that the agreements are good. We can
also see the efficacy of the term of order 1/./ n in asymptotic formulae.
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4. Asymptotic expansions for the distributions of latent vectors of the
sample correlation matrix

This section contains asymptotic results concerning the latent vectors of the
sample correlation matrix R based on a sample of size n+1 observations from
a p-variate normal distribution with positive definite covariance matrix Z.

Let A;=---=4,>0 be the ordered latent roots of the population correlation
matrix P and let hy,..., h, be the corresponding orthonormal latent vectors of P,
so that

4.1) HPH=A4 and H'H =1,

where A=diag(y,..., 4,) and H=(h,,..., h,).

We consider first the characteristic function of the latent vectors of the
transformed matrix H'RH. Let S/n be the sample covariance matrix. It is
easy to check that if the random matrix S is distributed according to the Wishart
distribution W,(n, X), then

A-V2H Z512835512 HA-12

is distributed according to W,(n, I) where Z,=diag(d,y,..., 0,,). Let
n 1/2 1
4.2) Y = (7> (Larrem ggnsssieaa-e - 1).

Noting that Vin (2.4) can be written in the form
V= 2HARYA2H',
we can expand H'RH as

1

4.3) HRH= A + :}—;—VU) + o V@ + 0,(n7302),

where

VO = J2AVY AV - L H/(YPP + PY()H,

V@ = Hr(% YO PY(D 4+ % yzp 4 %Pygl)2>H

- \/2_2(A1/2YA1/2H'Y§,1>H+ H'YSHAVZY A112),
Here Y{V is a diagonal matrix with jth diagonal elements

p p
\/7 1;1 mgl (Zd)?h jlh jmYim for Y= (yij)'
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Let ¢, =(cyg-.., €,) be the latent vector such that cye,=1 and ¢, >0, cor-

responding to the gth latent root of H'RH. If A, is simple, then it follows from
(4.3) and Lemma 1.1 that the perturbation expansion of ¢, is

- 1
Cag = — aa{\/n v;}i) 7(2'411021)”.51}1)
4.4) - z Lo + o] + 0,67 it a# g,

P
ey =1+ (=1 2 2092) + 0,621,

a¥g

where A,,=(4,—4,)"! and

oD = 2Ai) sy — Y2y + 1) 3 F ()1 ey,

ag a’tg ag ) a g =i J’k Jkag jks
p

(Ajlk}“l)'m)1/2{%Sgllsbjksablmsg

= 6 1ubkims = Okgbyims + o Cha + 2g) 3 huchsghsshiihoihun} ¥ 17
with
4.5) bjkag = Z hijhahigh,.
The expansion of the probability density function of Y defined by (4.2) is of the

form (cf. Fujikoshi [24])

c~exp<—%-trY2>[1+\/ { \/2(p+1)trY+gtrY3}+0(n“):],

where ¢c=n~pp+1)/427p/2,
Then we may write the joint characteristic function of \/—n—cag (a=1,..., p;
a#g) and \/ n(c,—1) as

p s
Elexp {i 2. tu/ 1 oy + ity (s — DY
= 3 w_ Ly
= cl\exp za;gz gl — 5 tr
(4.6)
4
[1 + \/ { Z 1,240 (Agd D0SD — n;glm,vﬁ“v“) + 0@)

_1 2 (1)2 _\/j
tzz v } 2ﬁ(p+1)trY+

! tr Y3]dY +0(nY),

NG
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P
where dY= ] dy; and the integration is over the space of a real symmetric matrix
Jjsk
Y. Put

P
@ @jerag = Q{83684 = 5 G+ 2) 2 hughshhy)
for simplicity. Then the integral of the limiting term in (4.6) can be expressed as
(4.8) cgexp (i ¥ 100 — L Y2>dY
o Eg g ) 2

P P
= cgexp |:i {2 (X 14508550907 j;
j=1 a¥#g

P )4 1 P P
+ j<‘k a;gtazlga(ajk-ag + akj-ag)yjk} - ?ng k=1y%k]dY

= exp (— %t;lgtg) s

where £, =(t,..., t,_1, tys 1., tp) and Z,=(0,4.,) (@, B#g) is a symmetric matrix
of order p—1 with

)4

)'aglﬂglgl k=1(ajk'ay + akj-ag)(ajk-ﬂg + akj-ﬁg)

(4.9 Gy, =

N

= A&glﬁg’:éuﬂlaly - {zlulplg + A’;()'z + ).p)} il hjuhjﬂh}g
j=

1 ) 4 P
3t )0+ 1) 5 5 plihshigh ol |
The integrals of other terms in (4.6) are of the form
cS f(¥) exp (i 3 gt — Lr YZ)dY
a¥g

= 6L exn( - L6,24,),

where f(Y) denotes a polynomial in the elements of Y. Putting
p 2 . . p =
a;g taj’ga(-ajk'ay +'akj,‘uq) = tlk (] < k) al’ld a;gtu'lﬂ’aff‘“g = t_]_]

in (4.8) and differentiating the resulting formula with respect to ¢, (1< j<k=<p),
we obtain
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p p
(4100 G [agﬂz,xga (AggviDo$ — zq.,t,,,ug;,’v;,},’ + 2]
1
7&#0; Zlag{ Ziagajk ag@jk- -gg
+

p;e,,;tﬂ” Jke aﬂ(ajk *Bg + Ay j- ﬁy) p?khjahka}ta

s 1
+lz4 DI Zlaalﬂa vyjz%lzz[_iuaajk-aaalm-ga

a¥tg B¥gy#g m

+ Z ;ngajk-avalm-vg

v#g
- (A'jlklllm)”z{% ?'{sbjksublmsg - 5jabklmy - 6kgbjlma
+ %(Aa + A’g) ;hsahsghsjhskhslhsm}:l
X (ajk.,,g + akj'ﬂg)(alm')‘g + aml'yg)tatﬁtw

)4
@.11) G[—- %t,ag zggug})z}
1
—4‘ ; ?%(ajk.,, +akj'ag)ajk'agtg

i2
§ BB B S T ke

X (ajk.ﬂ, + ak].pg)(a,,,,.,g + aml'rg)tﬂtytg!
and

(4.12) G[trY] =0,

(4.13) GtrY3] = ITZ Y Y Aaghpghyg 2 X X jkeng
#* k 1

B#gr#g J
X (axi-pg + Q1k-pg) (@1-yg + G1juyg)lalplys

where bj,, and aj.,, are given by (4.5) and (4.7), respectively.

Combining these results with (4.8), we can obtain a expansion of the joint
characteristic function of \/7%, (x=1,..., p; a#g) and. \/_n—(cgg—l). We note
that a similar result may be obtained, using an approach similar to that in Nagao
[67].

We consider this result in terms of the latent vectors of R. The normalized
latent vector corresponding to the gth latent root of R, say f,, is given by
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fq = (flg"",fpg), = Hc
The characteristic function of \/ n (f,—h,) can be expressed as

E[exp {i 3 /71 (fyy = hup)t}]

. D 14 — . 14 —
= E[exp {l ; (21 huattu)\/ N Cyy + l( 21 h‘uqtu) R (cgg - 1)}] .
a#tg u= u=
Hence, replacing ¢, (a=1,..., p) by >?_, h,t, in (4.8), (4.10)-(4.13) and com-

bining these results, we obtain the following expression for the characteristic
function of \/ n(f,—

14
“.14)  exp( - é—t’HngH;t>[1 + \/%{iugldi“t.,

ubdw

+2Y 3

u=1v=1w

‘u%wtututw} + O(n“‘)] ,

Where t,=(t1,..., tp)’ —(hl, g 1 hg+1,"-5 hp), Zg=(o-1ﬂ-g) is given by (4'9)
and the coefficients are

1
4.15) d\ = —2——;32 ;Aw{— 2040k agBik-gg
+

pgglﬁyajk-aﬁ(ajk-ﬁy + akj-ﬁy) - P?khjahkg}hua

-P-[e—

; Aagz %ajk-ag(ajk-aé + akj-ag)hugv
J

(4'16) dflav)w = # 2 ‘ag ﬁg ngZZZl:_ }’agajk-angIM'gg

1
4 /F48
+ 3 Dieastinery = i) 15 A b shsabimy
= 81ubkims = Ongbjume + 3+ 3) Ehschsghs hushaihont |
X (@jk-pg + k550 @imeyg + Gty uahophoy

-+ PP IDIRE AN 25 330 IR
X (@jx.pg + Akjopg) @meyg + Cmieyg) Pughophn,

Y25 S 5 b DT i

akgpFEg v#

X (akl.ﬂg +'aIk-ﬁg)(ajl-yg + alj‘yq)huahvphwy-
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Inverting this characteristic function, we have the following theorems.

THEOREM 4.1. Let H=(h,,...,h,) be an orthogonal matrix such that
H'PH=diag (y,..., A,), where /., =---22,>0 are the ordered latent roots of
the population correlation matrix P. Let f,=(f,..., f,) be the normalized
latent vector corresponding to the gth latent root of the sample correlation
matrix R, where the sign of f,, is taken to be equal to that of h,, (x=1,..., p).
If 2, is simple, then the limiting distribution of \/W(fg—hg) is normal with
mean vector 0 and covariance matrix

HZ,H, (singular)

where Hy=(h,...,h,_ 1, By 1., h,) and Z,=(0,4.,) (0, B#g) is a (p—1) x (p—1)
symmetric matrix with c,4., given by (4.9).

THEOREM 4.2. Let ©2=3%72. > 8. h,h,40,,., and assume that the t* is
not zero. Then, under the same notations and assumptions as in Theorem 4.1,
an asymptotic expansion for the distribution of the uth element of the normalized
latent vector f, of R is given by

Pr{/n(fy — hy)l7 < x)
= o(x) — :/Ifn—{d,(})di“)(x)/r + dPPI)3} + 0(nY),

where dV and d are given by (4.15) and (4.16) with u=v=w (=), respec-
tively.

Sugiura [91] has obtained asymptotic expansions for the distributions of the
latent vectors of the Wishart and multivariate F matrices under two different
normalizations, when the corresponding population roots are simple. The
exact distributions of the latent vectors of some Wishart miatrices have been
studied by Khatri and Pillai [42] and Sugiyama [93, 94].

Consider now testing the null hypothesis

(4.17) Ho:h, =h,

that the normalized latent vector corresponding to the distinct latent root A, of
P is equal to a specified vector h,, such that hjoh,,=1. From Theorem 4.1 it
follows that

(4.18) n(fg - hy)’Hyz;lH;(fg - hy)

has a limiting chi-square distribution with p—1 degrees of freedom. Testing the
null hypothesis H,, we replace h, in (4.18) by a specified vector h,, and also re-
place the unknown parameters /,, h;; (j#g) and p;; by their sample estimates.
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Anderson [6] has considered the null hypothesis (4.17) concerning the vector
71, say, of coefficients of the first principal component extracted from the co-
variance matrix X, and has given the criterion

(4.19) n{diriS7 'y + (1/d)7riSr, — 23,
where d, is the largest latent root of S and i7,=1. An asymptotic expansion

for the distribution of (4.19) has recently been derived by Hayakawa [34].

5. Tests for latent vectors of a correlation matrix

Consider a p-variate random vector X having a multivariate normal dis-
tribution with mean vector g and positive definite covariance matrix X=(g;;).
The population correlation matrix P can be expressed as

P = Z5l2z 5512,

where X, =diag(c},..., 62) with 6?=g0,. Let A,,..., 1, be the latent roots of P
and let h,,..., h, be the corresponding orthonormal latent vectors of P. Through-
out this section we do not impose the restriction that the latent roots of P are

ordered.
Given N independent observations X,, a=1,..., N, on X, we wish to test
the following hypotheses on the latent roots and vectors of P.

(5.1) Hy: A specified set of a (< p) orthonormal vectors h,q,..., h,, are latent
vectors of P, namely,

h,=h, (@=1,..,4a),

(5.2) Hg;: A specified set of a (< p) orthonormal vectors h,,,..., h,, are latent
vectors of P and the corresponding latent roots are Aqg,..., A4,
namely,

h,=h,, and 1,=1, (x=1,.,a).

We shall now derive test statistics for testing H;) and H,,. The logarithm
of the likelihood function after maximization with respect to ¢ may be written as

(5.3) logL(Z,, P) = — é—N(p log 2n-+ log | XZy| + log |P| + tr P"'B4RB,),

where R is the sample correlation matrix and
B, = diag(s,/a,..., 5,/6,)

with s?=s,/N. Here S=(s;;) is the matrix of the corrected sums of squares and
products of the observations. It is easy to see that the maximum of log L when
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all the parameters are unrestricted is
log max L(Z, P) = — %N(p log 27 + log|S,| + log|R| + p),

where Q is the parameter space of (2o, P) and S,=diag(si,..., s2).
Let

5.49) Ho = (hyg,-.., Byp), A, = diag(4,,..., 4,),
and let H,=(h,, y,..., h,) be any p x (p—a) matrix such that
(5.5) H = [Hyo, H,]
is an orthogonal matrix. Under the null hypothesis H,,, it follows that
A4, 0
[Hyo, H,)P[Hyo, H,] = ( )
0 P3
or equivalently
P = H,,A,H}, + H,P%;H>,

where P¥,=H,PH,, and hence (5.3) can be rewritten as

log L(Zo, A, P%;) = — 5 N{plog2n + log|Zo| + log|4,]
(5.6)

+ log | P%,| + tr Hi,A;'H oBoRB, + tr H,P§5'H,B,RB,}.
The likelihood ratio criterion is given by
5.7 max L(X,, A,, P%,)/max L(X,, P),
wy 2

where w, is a subspace of @ when H,, is true. It is however difficult to obtain
max L(Z,, A,, P%,) in closed form and so an approximate test is proposed here.

[0}
l Differentiating log L(Zy, 4,, P%,) with respect to the parameters o; (j=
1,..., p), 4, (@=1,..., a), P}, and setting the results equal to zero gives

S % 1-1)(10)4(10) v 55 g2 xap =
i§1¢=1la hia hja r‘-jb,-bj +'§1 aglﬂgl iz hjﬂp rijb,-bj——- 1,
(5.8) 'la = Z Z h(i;O)hﬁO)rijbibj,

i=1 j=1
sz = H’zBoRBons

where b;=s,/0;, H;o=(h{1?), H,=(h{?) and P};'=(p**). If g; is estimated
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by a consistent estimate ;, then it follows from (5.8) that the estimates of 4, and
P%, are, respectively, given by

Aa _ i f (IO)h“O)I‘,,B.E,,
(5.9) i=1j=1

sz = HEBORBon,

where b;=s;/¢; and By=diag(s,/8,,..., s,/6,). Substituting (5.9) into (5.6),
we obtain an approximate likelihood ratio criterion

N log {}1 (HyoBoRBoH 10), | HyBoRBoH, | |R|71|B,| ™2},

where (B),, denotes the (a, «)th element of a matrix B. It may be seen that b =
§;/6; converges to 1 in probability as N tends to infinity, namely, By—I in proba-
bility as N—oo. Therefore, we suggest the following statistic for testing the
hypothesis H;:

(5.10) Ty = Nlog { I (H\oR Hyo)uul H;RH,| |R|™'} .

It may be noted that the statistic (5.10) replaced R with S/n gives the likelihood
ratio statistic for testing the hypothesis H;, on the latent vectors of the covar-
iance matrix X, which was obtained by Gupta [31] and Mallows [60].

By an argument similar to that discussed above, we derive a statistic for
testing the hypothesis H,,. Proceeding from the same notations as in (5.4) and
(5.5), except that A, is specified by A4,,=diag(%,0,.-., 440), We obtain

logL,, = — %N{plog 21 + log |2 + log [ Aol + log | P%,

+ tr HygA;4HoBoRB,y + tr H,P¥ H}BoRB,},

where w, is the subspace of Q when H,, is true. Differentiating log L,, with
respect to 6; (j=1,..., p) and P, and setting the results equal to zero gives

p

lagllaéh(lo)h(lo)rublb + ,21 mzl 2 h(2)h(2) *aﬂrijbibj =1,

P%, = H,B,RB,H,.

M

If P%, is estimated by P%,=H;B,RB,H, where B, is defined in (5.9), the likeli-
hood ratio criterion for testing H ,, may be approximated as

N[log {|{H5BoRBoH,| | Al IRI™!|Bo|™2} + tr HygAz4HoBoRB, — a].

Since B,—1I in probability as N— oo, we propose the following statistic for testing
H,,:
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.1 T, = N[log {|H,RH,| |A,l IR|7'} 4 tr AZ{HoRH, — a].

We note that the statistic (5.11) replaced R with S/n gives the likelihood ratio
statistic for testing the hypothesis H,, on the latent roots and vectors of Z,
which was obtained by Gupta [31] and Mallows [60].

The problem of deriving the sampling distributions of T, and T, is mtractab]e
because in general these statistics have not, even asymptotically, chi-square (x?)
distributions. Reasonable approximations to the distributions of T, and T,
might be given in the form of x2, where d is determined from the expectation of
T, or T,. Using Lemma 2.1 in Siotani [82] and neglecting the term of order
1/n, we obtain

(5.12) BT =5p(p—D—a=-S(p-ap—a+D)

1] & p P, a P P
+5 5 2 T UMIOKEY — £ 5 5 ph kO

a=1 i=1 ]=1 a=1 i= j=1

=
-

B Y pIHDhR
Z & 2 lpiihia kg
PR =

i
>_>
5:
Py
S
&
+

to —
M

+ % (Eere8s  gprees)

(5.13) E[T,] = 5 p(p = 2) — %(p —a(p—a+1)

+Lly 5 Zp Azdp3RLORL + L5 eap 0 5 pLADRR)
2= = ! 2445 & et
é— ; z=" ; z=:1 (ExvEBS 4 EBrERd)

P

X igp:l ,21 kX:: l; 2P;AP,kPu P;kPquz)h(Z) (Z)hgczy)h%),
where (HyPH,) ™! =(&46).

In practice the unknown parameters included in (5.12) and (5.13) have to be
replaced by their sample estimates. Nagao [66] has studied asymptotic null
and nonnull distributions of a likelihood ratio criterion for testing the hypothesis
H,, on the latent roots and vectors of X. The exact likelihood ratio criterion
for testing H,) on the ordered latent roots and vectors of X has been derived by
Fujikoshi [22].
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Part II. Various Functions of the Sample Correlation Matrix

6. Generalized asymptotic expansions

The limiting joint distributions of various statistics expressed as functions of
the sample correlation matrix R have been obtained by Olkin and Siotani [71].
In this section we shall derive an asymptotic expansion for the joint density of
certain functions of R. To obtain asymptotic nonnull distributions of test statis-
tics proposed in Section 5, an asymptotic expansion for the distribution of a func-
tion of R is also derived, up to and including the term of order 1/n. The approach
used here is based on that discussed in Konishi [48].

6.1. Asymptotic expansion for the joint density of functions of the sample
correlation matrix. As in Part I, suppose a sample is drawn from a p-variate
normal population N (g, Z). Let f((R)=f)(ry,, ry3,..., p—1,,) be an analytic
function of the sample correlation matrix R in a neighborhood of R=P. Put

V=) = (5 23S 5512 - P)
with X, =diag(0,;,,..., 0,,), where m=n—24 with the correction factor 4 and S

is the usual matrix of corrected sums of squares and products in normal sample.
The expansion of f(*)(R), given in Konishi [48], is of the form

(6.1) F@O(R) = f@(P) + T% ; D{Df(

1
m( Z oPr ++ o{Doip ) “)

i#jk#l
1 1
g B + 4 2 T PR P
1 -
T; p3py p{DoPoW . qr> + 0,(m™2),
q#r

and

(a) - Y
Where fij kl-gqr arq,ar“arij R = .P
oi =v;; — 5 pij(vii + 055,

1 1
(6.2) ”3) = g Piluly; — '2‘('7;’;' + v;)v;; + %pij(v%i + v%)),
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3) 3
vgi Uii0055 — 16 pu(vu +v _])Ull Jji

ENE

+ %(”?i + v})v;; — 15—6‘pij(v?i + v3;).

The summation Y stands for i f throughout this part. The v{% in (6.2)

i*j 1—1 _1 =1
are found to be the (i, j)th elernents of V@ with H=I in (2.4). The joint
characteristic function of \/ m{f@(R)—f*(P)}, a=1,..., a, can be expressed as

[etr (zAV){l + 7= <2 P

1 Ty -
+ —8i T lv“’v}},’fﬁj‘)k,) + Op(m 1)} ’
where A is a p X p symmetric matrix with

a 14 a
aii= _%g Z uthfU’ aij=%§=: (;) (l7é])'

a j=1
i

N'—

Hence, by an argument similar to that in Section 2, we obtain the following form
for the joint characteristic function of \/ﬁ{ F@OR)—f@(P)}, a=1,...,a

1, L
(6.3) exp<— L 9;){1 + 7@ 5 bt
. a a a
LAV DY bopylatply) + O(m-l)} s
a=1p=1 y=1
where Q=(w,) is an a x a symmetric matrix with
1
Wyp = "2“2 Y (Pjx — PiiPw) (P — Pupi) [P [
iFj k+l1
and the coefficients b,, b,;, are
1 a «
b, = — Z;J_Pij(l PP + ‘éj kg;flpjk-ipil-kfgjzkh

busy = g 5, Pyl + dyyop) = 4dyy gl dis, S5
1 @
6.4) + '8“;] kél (dij.p — Pijdiip)(dig.y — pkldkk-v)fgj)-kl

1 s (a) £(B) £(2)
+ 6 igj k;l q;rpjk-;p;r-qqukf:] fkl fqr
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with Pjik-i=Pjk— PijPik and dij-a= kélpik(/’ﬂ—ﬂjkpkt)f;cai)-
If Q is nonsingular, then by inverting (6.3) we have the following theorem.

THEOREM 6.1. Suppose f(*)(R) is an analytic function of the sample cor-
relation matrix R in a neighborhood of R=P. Let

"= (Jm{fOR) = fOP),..., /m{f@(R) — f@(P)}),

where m=n—24. Then an asymptotic expansion for the joint density function
of x is given by

(6.5) e Q)[I +3

where
. 1 1 ' N)—
(s @) = ergp o~ 5 +'97%)
and for 15i,<a

H,llr(x; Q) = ¢((;;1)§;) axilﬁiaxir ¢(xs Q)

with Q=(w,s) given in (6.3), and the coefficients b,, b,s, are given by (6.4).

As a simple application of this theorem, consider an asymptotic expansion
for the joint density function of R=(r;;). Taking

f(l)(R) = ris, f(z)(R) = r13,___’f(17(p—1)/2)(R) =rp_1,p

in Theorem 6.1 and differentiating f(*)(R) with respect to r;; (i< j), we obtain
an asymptotic formula in the form of (6.5) with covariance matrix Q=(-) and
coefficients b., b... given in the following: Q=(w;;.;;) is a symmetric matrix of
order p(p—1)/2 with

1
Wyjoyg = -2—(pjk-ipil-k + PjeiPixar t Pik-jPjiok + Pt jPjk-1)

and
1
b = — jpij(l - Pzzj),
1
bij-kl-qr = §{3Pij(dii-kzdii-qr + djj-kldjj-qr) + zpijdii-kldjj-qr

—4d;;u(dii. g + djj. o)}
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1
+ ?{pjk-i(pir-qplq-k + PigerPir-1)

+ 01 dPir-qPrge1 + PigerPrr-) + Pike {PjregPig-x
+ PigerPirr) T Pite jPjreaPrget + PigerPrr-D} »

where pj.;=pji— pijpu and dj. = PP j1-kt PP ji-1-

The limiting distribution of /n(r;;— p;;) is normal with mean 0 and variance
w;;.;;=(1—p%;)?, which follows immediately from the above result. Asymptotic
joint distributions of correlation coefficients were given in Olkin and Siotani

[71, p. 238].

6.2. Asymptotic expansion for the distribution of a function of the sample
correlation matrix. To obtain asymptotic nonnull distributions of test statistics
concerning the structure of the population correlation matrix, Konishi [48] has
derived an asymptotic expansion for the distribution of an analytic function of
R up to the terms of order 1/ \/ﬁ. Proceeding from the same expansion as in
(6.1), except that f(®)(R) is replaced by an analytic function f(R), we shall derive
an asymptotic expansion for the distribution of f(R) up to and including the term
of order 1/n. Rewrite (6.1) as

1 1
SR) = f(P) + Jortts + tta 4 rths + Oplm™)
for simplicity. Then the characteristic function of \/m{f(R)—f(P)} can be ex-

pressed as

(6.6) E[etr (it V){l + \(/l%uz + 71n—<(it)u3 + @ u%) + Op(m—s/z)}],

where A=(a;;) is a p x p symmetric matrix with

]

1 . .
a; = — %a Pifia and a;; = ‘2_fij @ #J).

L
i

R
31

By Lemma 5.1 in Sugiura [87], it is straightforward to obtain each expectation
in (6.6), but the calculation is tedious. Inverting the resulting characteristic
function under the assumption that the variance of the limiting distribution of
Jm{f(R)—f(P)} is not zero, we have the following theorem.

THEOREM 6.2. Suppose f(R) is an analytic function of the sample corre-
lation matrix R in a neighborhood of R=P. Let ®U)(x) be the jth derivatives
of the standard normal distribution function ®(x). Put m=n—24. Then an
asymptotic expansion for the distribution of f(R) is given by
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6.7)

where

(6.8)

Sadanori KONIsHI
Pr[/m{f(R) — f(P)}/z < x]

= 2() — P00 + a0/

3. b @ED()(20H + 0(m=12),

+ L
m,=1

1

2= 2 & Z ; (Pjk — PijPu) Pu — PP fijfa (> 0)

and the coefficients are

6.9)

1
- ?iéjpij(l plj)fij Z p/k iPi- kfi] okl

= i;j {0:)(3d;; + d;;) — 4d;;}d; f;;

+ i;j kél (dij - P.‘jdn) (du — pkldkk)fij-kl

4

+ ?'gl kgl Z Pir-qPjk- iPig- kfufklf;p’

1

5 i+ 2A{2i§j(pijdii —d;pfi; + p2 Jk§lpjk-ipit-kﬁjfkt}

+ i;j(l = 3p3) (pijdi — dip) fi;
1
+ Zéj k;l P iAPil0% + 3p% + 12p%) — pupu(p? + 6p%

+ 903} fiifu + ;’1 kgz[{ PPl — p2) + 3pi;puPi-x

1
- pjl-k(zpik - pijpjk) dy; — { 2 pu(l — pf) + 2pikpil-k}dij
+ 2pjr.; — pijpil-k)dik:lfij-kl

+ 5 Z ; Z LokPirek — PriPir-a) (Aij — Pi;di) fijeraegr

+ Pra-riPiaPrerPiaPiq-i — PirPirPjr-i

+ plr~k(3pijp%r = PisPjq — 20up jr)}fij-ktfqr]

1

+ Zg«:’, kél qgr s§ Pir-qPjq-iPkt-sPsl- kfu klfqr . st>
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by = aja; + i&j {2(3d; + d;) (2py;df; + d;idy)
— 8(dy;d¥; + dud¥;) — pi(5dy; + 3d;)dk} fi;

+23 3 Hpppu-j + pipu-j — 3pi(Pupic-1 + PiPir-)
i#j k+l

1
+ ?pijpkl(p%l + 3p3 ) dudu + 2p%dijdy — 2{pij(p% + Ph)
- 2pikpjk-i}diidkl]fijfkl + i;j kél (dij - pijdii) {du(pudn

+ 3pudi — 4di) + 4d¥, — pudi} fijou

+ i;j k;l qzkr [2pql-k(dij - pijdii) {pqrqu(3dqq + drr)

- 2(qudqr + pkrdrr)}fij-klfqr + %{(dqr - 3pqrdqq)dijdkl

+ Pijpkt(3dqr - pqrdqq)diidkk}fij'kl-qr]

+ i;j k%_;’ q;r sét (20450 k- iP1q-kPrs- o fij faS e St

+ {Prs(Pie-s — PstPsi-) (dijdgr + P1jPgrdidgy)
- pqrpkt «sPst- kdijdqq}fij . klfqr . st] s

b6=

2
a3,

tolt—l

where fi;, fij-ki» fij-11-o denote the partial derivatives of f(R) at R=P, pj., is
given in (6.4) and

d; = a;ppia(l’ g — P jaPap) fupy ATy = age:p dip g — P japaﬁ)fuﬂ'

As an example of Theorem 6.2 consider an asymptotic expansion for the
nonnull distribution of the likelihood ratio statistic —log|R| for testing the
hypothesis H§: P=1I discussed in Section 3.2. Put f(R)=—log|R| in Theorem
6.2. The partial derivatives of f(R) at R=P are

fi = = 209, fizos = AP~ EyP),; = ApPpit + pilpi¥),

(6.10)
= — 2P YE,PEy + EyP'E,)P ),

ijkl-qr
where P~1=(pi/), (A);; denotes the (i, j)th element of a matrix A4, and E is a
p x p matrix with 1 in the (k, I)th and (I, k)th elements and O otherwise. From
(6.8) and (6.10), it follows that
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72

1 ..
5 2 2 Pk — Pipuw) (P — pupw) (— 2p7) (= 2p*")
iFjiF

i

2y gj ; 12 (P = piip" p) (PuP*' — pwprp*")
2y %(éik — pu)? = 2Atr P2 — p),
where the summation Y. stands for }pj . Then an asymptotic expansion for the
i i=1
nonnull distribution of —log |R]| is given by
Pr {/m(— logR| + log [P])/z < x}
= P(x) - \/—lg {a,2V(X)[(270) + a;2P(%)/(21)*} + O(m™1),
where
a;=pp-1,

ay = — 165 5 3 p2,p% + 16tr P> + %%(trP:‘ - p).
i j k

Similarly, the coefficients in the term of order 1/m are given by b,, by and bg in
(6.9) with the partial derivatives (6.10) and

p p
d;; = 2(£1piapj¢ = pij)’ df; = 2(°§Idizpla - dij)-

The limiting distribution of |R| was obtained by Olkin and Siotani [71].
In the null case, namely, P=1I, Nagarsenker [70] has obtained the exact dis-
tribution of |R|.

7. Asymptotic nonnull distributions of test statistics

7.1. Test statistics concerning latent vectors of a correlation matrix. The
statistics (5.10) and (5.11) proposed in Section 5 are functions only of the sample
correlation matrix R. Using Theorem 6.2 in the last section, we give asymptotic
expansions for the nonnull distributions of these statistics. Put

f(R) = 3T = 3 log (HioR o + log |H;RH;| — log R|

in Theorem 6.2. The partial derivatives of f(R) with respect to r;; (i< j) at R=P
are given by

fs =208 = 209,
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a
fijo = — 4 Zlhg;mhﬁmh&mhg;m(HioPon);a%
&

P—a P—a P=
— 72 Z z z=: hﬁﬁ)h(” hi2)p (2)(P Eaﬁ P )aﬁ

a=1p=1a'=18
+ 2(P7E, P7Y)y;,

D) Fijeaear = 16 £ HIOREOHEOMIORLORI (H3o PHi0):2

+ 2i pf p{; i z Z h(z)hm (z)h(z)h(z)h(z)

d=1f=1a"=18Z1a"=18

X (P37 (Eypr P33 Egrgr + Eqrp P33 E 05 ) P35 1) gp

- 2(P"Y(E P Ey + E P 'E,)PY),;,

where H,, = (A{1?), H, = (h{?), P%, = HyPH, and
psY = (HyoA7'Hio+ Hy P35 H3)y

with A,=diag [(HioPH10)11,.--» (HioPH10)sal, and E,z is defined in (6.10).
Then we have

THEOREM 7.1. An asymptotic expansion for the nonnull distribution of
the statistic T, given by (5.10) for testing the hypothesis (5.1) is

Pr[/m{TyN - 2. log (H1oPH 0)es — log |HyPH,| + log|Pl}/7, < x]

= 0(x) = o @ POE2n) + a0/}

| i by @2)(x)/(21)* + O(m=3/2),
mJ=1
where
= Z Z ij-ipu-k(pﬁ — pU)(p(l) — pkD)
iFj kF1

and the coefficients are given by (6.9) with the partial derivatives (7.1) and

p
di; = 2(‘1;” piapjﬂ-apgzlﬂ) + a; PiaPja) s
aFj

(1.2)

)4
d?j = 2( Z diazpjﬂ'dpg}?) + z diapja) .
“F %
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Similarly, taking
f(R) = T,/N = log |H,RH,| + log|A,e] — log|R| + tr A;4H{oRH,o — a

in Theorem 6.2 and differentiating with respect to r;; (i< j) at R=P, we have the
following theorem.

THEOREM 7.2. An asymptotic expansion for the nonnull distribution of
the statistic T, given by (5.11) for testing the hypothesis (5.2) is

Pr [\/m{T,/N — log |[H3PH,| — log | Al + log |P|
— tr A;¢dH{oPH, + a}/1; < X]
= 2() = J @ PO25) + a2}
L3 by BRI + O(m™31),
m j=1
where
3 =2 Z 2, PiweiPa- (P2 — pi)(p? — p*)

with p{? =(H,oA;4H}o+ H,P351H5),;, and the coefficients a4, as, by, by, be are
given by (6.9) with partial derivatives

fii = 202 — pi),

S () (2)7,(2) 5(2)

Jijoa = —22132“2_11 Z H2R R nG (P3; Ey g P37 )0

+ 2(P71E P71y,
Firira =25 550 50 K¢ Z KO RHHD KPR K,

ijekl-gr =121 a2 521 21 5 i 18" tqa" 1t
X (P33 (Eyrpr P35 Eyg + Ey g P35 Egrgn) P35 V)0
— 2(P™HE P Eyy + EPTE,) PTY);y;

and (7.2) replaced p{}) by p3.

7.2. Some other test statistics. Given N=n+1 observations from a
p-variate normal population N, (z, %), Anderson [6] and Bartlett [7] have
considered a test of the equality of the last p—1 latent roots of the population
correlation matrix P=(p;;) and proposed the test statistic

(3 NI(p - Dlog{ 3, Li(p — D} - 3 logL],
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where [, =---21,>0 are the ordered latent roots of R.  This hypothesis is precise-
ly equivalent (see Anderson [6, p. 142]) to

Hi:pjj=0p forall i<j,

where p is unspecified. It is difficult to obtain a likelihood ratio criterion for
H,; in closed form and so Aitkin, Nelson and Reinfurt [2] have proposed the
approximate likelihood ratio criterion in the form

(7.4 Nllog {1 + (p — DF}(1 — F)~1 — log R[],

where 7= { p(p— 1)} Z r;; for R=(r;;)). The asymptotic null distributions of

(7.3), (7.4) and Lawley’s test statistic [58] have been studied by Aitkin, Nelson
and Reinfurt [2], Anderson [6], Bartlett [7] and Gleser [30]. The asymptotic
nonnull distribution of (7.3) is included in Theorem 3.5 in Section 3.2, and that
of (7.4) was given by Konishi [48].

Another interesting test concerning a correlation matrix is to test the null
hypothesis

H,: P=P, for specified P,,.

Bartlett and Rajalakshman [8] and, in view of information theory, Kullback
[55, 56] have proposed the statistic

(7.5) N{log (|Po|/IR]) — p + tr (P5'R)} .

The asymptotic null distribution of (7.5) has been studied by Aitkin [1], Bartlett
[7], Bartlett and Rajalakshman [8], Kullback [55, 56], and the asymptotic
nonnull distribution by Konishi [48].

8. Further consideration of the use of asymptotic expansion formula

8.1. Sample correlation coefficient. In the case of p=2, the sample cor-
relation matrix R and the population correlation matrix P are, respectively,

reduced to
1 r 1 p
and s
r 1 p 1

where r,,=r,;=r and p,,=p,;=p. The r is called the sample correlation
coefficient, based on a sample of size N=n+1 drawn from a bivariate normal
distribution with population correlation coefficient p. The asymptotic formula
(6.7) in the bivariate case gives an asymptotic expansion for the distribution of a
function of r, which was given by Konishi [48]. As special cases of the result,
we can obtain asymptotic expansions for the distributions of various statistics
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expressed as functions of r. The following results are due to Konishi [48].

@D Pr{m(r—p)(l - p?) < x}
oo o= Do (1

+ (1 + 6p2)x — é—pz.ﬁ}qﬁ(x) + O(m¥2),

Pr {\/m(sin™'r — sin™! p)/(1 — p?)!/2 < x}

= 0(x0) + L (x2 — D(x) + —’%{(A -3y %/ﬂ)x

Jm 2
15+ 5p7x0 = Lo (x) + O(mo02),

where m=n—24 with a correction factor 4 depending on p, ®(x) and ¢(x) are
the standard normal distribution function and its first derivative.

Another use of asymptotic formula for f(r) may be found in Konishi [47].
Solving certain differential equation after deriving an asymptotic expansion for
the distribution of f(r), Konishi [47] has obtained a simple and accurate approxi-
mation to the distribution of r, which is of the form

(8.2) Pr {\/;ﬁ<% log } t ; - 1710g %) < x}

= 0(x) = T (Lo + 2 )b + 0m0),
where m=n—3/2+ p?/4.

It may be noted that (1/2)log {(1+7)/(1—r)} (=z(r)) is the well known
Fisher’s z-transformation [19]. Konishi [47] has made, using exact values as
given by David [16], an overall comparison with previous approximations; a
normalization approximation due to Ruben [78], a t-approximation due to
Kraemer [49] and normal approximations for z(r) due to Fisher [19], Gayen
[28], Nabeya [65]. Further comparisons of these approximations will be given
in Section 8.2.

8.2. Numerical comparisons. Various approximations to the distribution
of r as stated in the last subsection are compared in Tables 8.1-8.3. Table 8.1
gives a comparison of the values of the probability integral Pr(r=ry) (Jro|l<1)
approximated by using (8.1) and (8.2). Tables 8.2 and 8.3 contain comparisons
of the accuracies of various approximations. Exact values are taken from
tables in David [16].
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In the accompanying tables, N, R,, Z,, F,, F,, K and R are the notations
standing for the following:

N: sample size (=n+1),

R,: the case that the values of Pr(r=<r,) are approximated by (8.1) with 4=
3/4—p?[8,

Z,: the case that the values of Pr(r=<r,) are approximated by (8.2),

F,: the case that z(r)=(1/2)log {(1+r)/(1—r)} is approximated by a normal
variate with mean z(p) and variance 1/(N —3),

F,: the case that z(r) is approximated by a normal variate with mean z(p)+
p[2n+p(5+p?)/8n? and variance {l+(4—p?)/2n+(22—6p%—3p*)/6n?}/n,

K: the case that (N —2)"2(r—p*)/{(1 —r%)(1—p*?)}1/2 is approximated by a
t-variate with (N —2) degrees of freedom where p* is the median of the
distribution of r,

R: the case that the values of Pr (r<r,) are approximated by

Table 8.1. Comparison of the values of Pr (r<r,) approximated
by (8.1) and (8.2) for N=25 and p=0.9

term of term of term of

re o(1) o(/yn) o(1/n) total exact

.80 R, .00608 .01880 .01292 .03779 .03129
Z, .03753 —.00773 .00169 .03149

.81 R, .01201 .02711 .00946 .04858 .04178
Z, .05001 —.00974 .00168 .04195

.82 R, .02242 .03550 .00313 .06105 .05574
Z, .06645 —.01218 .00161 .05587

.83 R. .03959 .04167 —.00442 .07685 .07423
Z, .08794 —.01507 .00145 .07432

.89 R, .40099 —.03192 ' —.00039 .36869 .36883
Z, .40531 —.03661 .00002 .36872

.90 R, .50000 —.03768 .00000 46232 146244
Z, .50000 —.03768 .00000 .46232

91 R, .59901 —.03192 .00039 .56747 .56762
Z, .60392 —.03639 —.00003 .56750

95 R, .89506 .03681 .01307 .94494 94612
Z, .95666 —.00868 —.00170 94628

955 R, 91609 .04082 .01237 96928 96838
Z, 97560 —.00541 —.00161 96858

.96 R, 93379 .04285 .01058 98722 .98350
Z, .98800 —.00295 —.00132 .98373

965 R, .94845 .04305 .00784 .99935 199263
Z, .99508 —.00135 —.00090 .99283
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{ro(l - r§)~1<N _ % }1/2 3 {p(l B pz)“<N —%)}1/2

1 -1, 1 2 2y-111"2
{1+7ro(1—ro) + 5 (1 = p?) }

Pr(rsr) =9

It may be seen from these tables that the asymptotic formula (8.2) provides
high accuracy over the whole domain of r, even for relatively small N. Table
8.1 shows that the normal approximation based on the limiting term of (8.1)
can remarkably be improved by the transformation z(r) in the tail areas of the
distribution curve. We can also see the efficacy of the terms of orders 1/ \/T{ and
1/n in the expansion formulaec. The normal approximation with mean z(p)
and variance 1/(N —3), which is the most commonly used for the distribution of

Table 8.2. Comparison of errors in approximating the values of Pr (r<rg):
Error=(approximate value—exact value) x 10%

ro F, F, K R Z, exact
N=11, p=0.5
—.10 597 —90 95 67 34 .02710
—.05 836 —40 116 74 25 .03666
.00 1120 26 138 80 12 .04893
.05 1447 109 160 83 -3 .06449
.10 1806 203 181 84 —20 .08400
45 3516 286 139 12 —77 .39234
.50 3329 104 90 7 —79 46671
.55 2994 —105 35 2 —85 54751
.75 1057 —298 —100 —228 —381 .87402
.80 717 -70 —81 —346 —48 93270
.85 454 124 —47 —400 -3 .97267
.90 213 141 —15 —313 31 99335
N=11, p=0.9

.625 664 —84 218 340 100 .01165
675 1165 —43 314 402 101 .02086
725 1989 60 440 441 81 .03864
175 3253 247 579 414 34 .07439
.80 4071 378 649 377 22 .10461
.89 6217 241 297 83 —42 .38127
.90 6043 92 167 79 —43 43957
91 5698 --80 22 77 —44 .50517
.96 1802 —183 —359 —495 18 .89182
97 1040 84 —240 —669 64 94987
975 723 176 —166 —678 81 .97083

98 450 200 -97 —606 85 98571
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Table 8.3.  Comparison of errors in approximating the values of Pr (r<r,):
Error=(approximate value—exact value) x 10°

rq F, Fy K R Z, exact
N=25, p=09
.80 857 -5 153 177 20 .03129
.81 1093 19 179 180 17 04178
.82 1378 48 207 178 13 05574
.83 1712 84 235 168 9 .07423
.84 2091 122 260 149 3 .09859
.89 3793 103 191 22 —11 .36883
.90 3756 6 113 18 —12 46244
91 3472 —104 22 16 —12 56762
.95 803 -3 —100 —231 16 94612
955 540 43 —74 —236 20 96838
.96 335 66 —48 —210 23 98350
97 85 42 —12 —104 14 99733
N=50, p=0.9
.82 245 . —20 46 72 9 .01285
.83 396 —13 66 83 8 02177
.84 619 1 90 89 6 .03643
.85 929 26 121 88 5 .05998
.86 1323 56 150 75 2 .09681
.89 2539 65 165 11 -2 33974
.90 2597 2 123 8 —2 .47403
91 2312 —71 52 3 -3 .62459
93 1037 —56 —36 —178 2 .88871
94 467 10 —31 —108 6 96114
.95 141 30 —12 —74 7 99174
.96 22 10 -2 —23 3 .99920

z(r), is not so accurate, though this approximation is much superior, in the tail
areas, to that based on the limiting distribution of r.
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