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648 Sadanori KONISHI

0. Introduction

An important problem in multivariate analysis is to reduce the dimension
of multivariate data with as little loss of information as possible. Principal
component analysis is a method useful for this problem. This method, which
originated with Pearson [72] and was developed by Hotelling [36], provides
reduction of a large set of correlated variables to a smaller number of
uncorrelated new variables called principal components. Principal component
analysis is algebraically based on latent roots and vectors of a covariance matrix
or a correlation matrix. In particular, latent roots play an important role in
considering how much information is condensed into a smaller number of new
variables. On the basis of a normal sample, tests of hypotheses concerning latent
roots of a covariance matrix may be constructed and the likelihood ratio principle
leads to suitable test statistics, which are expressed as functions of latent roots
of the sample covariance matrix (cf. Anderson [6]).

The problem of deriving the distributions of statistics based on sample
covariance matrices in normal samples has been studied by many authors. Some
works have been done in the area of asymptotic distributions, and others in that
of exact distributions. Furthermore, some asymptotic expansions have been
derived by inverting asymptotic formulae of characteristic functions obtained
by the Taylor series expansion. Surveys of the area of asymptotic distributions
are given by Muirhead [63] and Siotani [82, 83].

It may be emphasized that the sample covariance matrix is not invariant under
a change of scale and so neither are principal components derived from the
sample covariance matrix. In practice, there are many situations in which vari-
ables are measured on different units. The problem of units can be avoided by
employing the sample correlation matrix, since principal components are then
invariant under the different units of the original variables. Very little work
has been done in the problem of deriving the distributions of statistics based on
the sample correlation matrix in normal sample. This may mainly be due to
the fact that an explicit expression for the distribution of the sample correlation
matrix has not been obtained yet and hence the distribution problem associated
with the sample correlation matrix is intractable.

The purpose of this paper is to derive asymptotic expansions for the
distributions of statistics based on the sample correlation matrix in principal
component analysis. This paper is divided into two parts. Part I contains
asymptotic results concerning the latent roots and vectors of the sample corre-
lation matrix. Section 1 is devoted to prepare tools employed in Part I. In
Section 2, asymptotic expansions are given for the distributions of certain func-
tions of the latent roots of the sample correlation matrix both in the case when
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population roots are all simple and in the case when population roots have

multiplicity. As special cases of the resulting expansions, asymptotic expansions

for the distributions of statistics used as a measure of the importance of principal

components are given in Section 3.1, whereas asymptotic nonnull distributions

of test statistics for testing the equality of the last several latent roots of a cor-
relation matrix are given in Section 3.2. Some numerical comparisons are

shown in Section 3.3. In Section 4, asymptotic expansions are given for the

distributions of latent vectors of the sample correlation matrix. Section 5

contains some tests for latent vectors of a correlation matrix. The likelihood

ratio tests have been successful in rinding appropriate statistics for testing hy-
potheses concerning co variance matrices. It is however difficult to obtain the
likelihood ratio statistics for testing hypotheses concerning correlation matrices

in closed form and so approximate tests are proposed in this section.

Part II deals with asymptotic expansions for the distributions of statistics

expressed as functions of the sample correlation matrix. In Section 6.1, an

asymptotic expansion is given for the joint density of certain functions of the

sample correlation matrix. As an example of the use of the results, an asymptotic

expansion for the joint density of elements of the sample correlation matrix is

presented. In Section 6.2, an asymptotic expansion for the distribution of a

function of the sample correlation matrix is derived up to the term of order of

the reciprocal of sample size. Using the resulting expansion, asymptotic nonnull
distributions of the statistics proposed in Section 5 are given in Section 7. Final-

ly, in the bivariate case approximations to the distribution of the sample corre-

lation coefficient are discussed and some numerical comparisons of approximate

distributions are made in Section 8.

Part I. Latent Roots and Vectors of the Sample Correlation Matrix

1. Preliminaries

1.1. Correlation matrices. Let X'Λ = (XlΛ9...9 XpΛ), α = l,..., N, be a ran-
dom sample of size N = n + 1 (n^p) from a p-variate normal distribution with

mean vector μ and positive definite co variance matrix I" = (σί7 ), and let

= = Σ«,
α=l α=l

It is well known that S/n is an unbiased estimate of Σ and that S is distributed

according to the Wishart distribution Wp(n, Σ) (see, e.g., Anderson [5, p. 157]).

The population correlation coefficient between the ith and jth components of

the random vector is defined as
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The pxp matrix P = (pij) is called the population correlation matrix. On the

basis of normal sample {XJ, α=l,..., N, the maximum likelihood estimate of

Pij is

(1-1) rtj = V(V;;)1/2.

The pxp matrix β = (r0 ) with ru = 1 is called the sample correlation matrix.
Fisher [20] has given the distribution of JR in the form

i=ι o o ί=ι

for R positive definite, where cp.π = 2-^ M - 2 >/ 2 ryn P~l=(ρV), x' = (xi9

...,xp) and Γ is a p x p symmetric matrix with pί /r ίy/(p ί ίp / /)1/2 as its (ϊ, j)th
element. This expression, however, contains the multiple integral, for which the
explicit form has not been derived yet except for the cases P = 7 and p = 2 where
/ is the identity matrix of order p. In view of these facts, it is difficult to obtain

exact distributions of statistics based on the sample correlation matrix. We

are thus led to consideration of the problem of deriving asymptotic distributions.

1.2. Perturbation method. In order to find approximations to the latent
roots and vectors of the sample correlation matrix, we use the technique known
as the perturbation method.

Consider a diagonal matrix A with the ordered latent roots λί^. ^.λp and

assume that the perturbation of A can be expressed as a power series in ε as
follows :

(1.2) M = A + εJ/'1) + ε2F<2> + ε3F<3> + 0(ε4),

where V^> (7=1, 2,...) are symmetric matrices of order p and ε is a small real

number.
We shall first discuss the case when λΛ is distinct from other p— 1 latent roots.

Let /α be the αth largest latent root of M and <^ = (clα,..., cpx) the corresponding

latent vector with c'ΛcΛ = l and cαα>0. The /α and cα can be assumed to take the
form

(1.3)
P P P

a

where e^ = (0,..., 0, 1, 0,..., 0). To determine the unknown coefficients
λ(

Λ

2\... and a(ι*\ α^2 ),...(/ = !,..., p), we substitute (1.3) into the characteristic
equation Mcα=/αcα and equate the coefficients in the both sides under the con-
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dition c'ΛcΛ-i. For details we refer to Bellman [9, pp. 60-63] or Wigner [98,
pp. 40-46]. Results are given in the following:

LEMMA 1.1. Let 1Λ be the αί/i largest latent root of the pxp symmetric
matrix M defined by (1.2) and c'Λ = (clΛ,..., cpa) the corresponding normalized
(c'ΛcΛ=l and cαα>0) latent vector. If λΛ is simple, that is, of multiplicity 1,
the perturbation expansions of 1Λ and CΛ are given by

(1.4) /. = λa + β»ω + β»(r<« + Σ *„»#*)
βΦΛ

i 03/^(3) i 9 V >l i)(l)l>(2) — V I* ιι(l)|i(l)2
+ ε i^αα T ^ 2- A*βVΛβ Vaβ λ* /-Λβ

Va« Vaβ
βφtt βΦΛ

+ Σ Σ A.μ.^^^V"^) + ̂ (ε4),

(1.5) cία =
L

_L ί)(2h i P3 1 v v f j(i)«(i)«(i)
~r ^iα ^ + fi \ 2, Z- AoιβAΛyviβ vβγ vγa

(βφct yφa

2

iβ

iβ

0(8*)

(1.6) caα = 1 + ε ^ - £ ^»<J)2 + ε'( - Σ Σ

P P
4- V ^3 i)(l) j ι(l)2 _ V
-Γ 2- ^^αα v«β Z-.

βΦΛ βΦtX.

where Vu) = ( v ) and λΛ = (λΛ-λrl (α

The expansion (1.4) with t4j? = 0,;/ = 2, 3,..., gives an expansion of the αth
latent root of the sample covarίance matrix S/n, which was first obtained by
Lawley [57]. Sugiura [87] has subsequently derived the expansion, based on
the Taylor series expansion. Sugiura [91] used the perturbation method to ob-
tain asymptotic expansions for the distributions of the latent roots and vectors of
a Wishart matrix S and a multivariate F matrix SjSj1 where S7 (j = l, 2) are
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independently distributed according to Wp(nj9 Γ7 ).

We now proceed to the case when the latent roots of A in (1.2) have multi-

plicity. It is assumed that A has r distinct latent roots Θ l 9 Θ2,..., θr with multi-

plicities ql9 g2,..., qr, that is,

(1.7)

li =-=*,, = 0:,

— ...— _ f)
-1 /lqι+q2 U 2>

where θί> ~>θr, Σ ^α = p and q0 = Q. Partition the matrices A and
α=l

(7 = 1, 2,...) into submatrices with ql9...9 qr rows and columns as follows:

Λ = 0

0 0

where Iq>x are identity matrices of order qΛ and F$ are qΛ x qβ submatrices. The
following lemma, due to Fujikoshi [24], is useful in deriving asymptotic expan-

sions for the distributions of statistics based on the latent roots of the sample
correlation matrix in the case when the corresponding population roots have
multiplicity.

LEMMA 1.2. Let /1g: ^/p be the ordered latent roots of a pxp sym-

metric matrix M defined by (1.2). Then, for j = l,..., qΛ the (qv-\ f-^α

latent root lqι+...+qgc_l+j is equal to the jth latent root of

O(ε4),

where

Fujikoshi [24, 25, 26] has obtained, using Lemma 1.2, asymptotic expansions
for the distributions of certain test statistics based on the latent roots of multi-
variate F, multivariate beta and other random matrices. Konishi [44] has
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discussed the perturbation expansions of latent vectors of a symmetric matrix
in the case when the initial matrix A in (1.2) has multiple latent roots.

2. Generalized asymptotic expansions

In this section, asymptotic expansions are given for the distributions of
certain functions of the latent roots of the sample correlation matrix R both in
the case when the population roots are all simple and in the case when the popu-
lation roots have multiplicity. The results are used to obtain asymptotic expan-
sions for the distributions of some statistics expressed as functions of the latent
roots of R.

2.1. An asymptotic expansion when population roots are simple. Let
S = (stj) be the matrix of the corrected sum of squares and sum of products of
observations in a sample of size n + 1 from a p-variate normal distribution with
mean vector μ and positive definite covariance matrix Σ. As defined in Section
1.1, let P be the population correlation matrix. Since P is positive definite,
there exists an orthogonal matrix H = (hi}) such that

(2.1) H'PH = A or PH = HA,

where A is a diagonal matrix with the ordered latent roots A 1^ ^Ap>0. The
sample correlation matrix R defined in Section 1.1 can be expressed as

(2.2) £

where S0 = diag (sll9...9 spp). Let

(2.3) V= (ΌU)

where Σ0 = diag (σll9...9 σpp).

It is known (see, e.g., Anderson [5] or Kshirsagar [54]) that — Zo

converges to P in probability as n tends to infinity and that the limiting distribu-
tion of Fis normal with means 0 and covariances cov(υij9 ^>kί) =

From (2.1), (2.2) and (2.3), it follows that

(2.4) H'RH = A + -=rw + --F<2> + - = F ( 3 > + O,(/Γ2),
y n n n^J n p

where

= H'(y- ±-V0P - yW)#,

VΌPV0 - y FK0 - yF0F+ -
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with 70 = diag(ϋllv.., iλp,).
Let /α be the αth largest latent root of R. If the latent root λa of P is simple,

then it follows from (2.4) and Lemma 1.1 that the perturbation expansion of /α is

(2.5) /. = λ. + -^.tfc' + £(»£> + Σχλxfv$>)

*? + 2 Σ A^β<y»<$> - Σ ^p<i>»<VJ

+ Σ Σ A.jλ.y'WrM1.') + 0,(JΓ*),
β±Λ yΦΛ

where F W ) = t ; ) , " - Γ 1 a n d

v™ = ~τ
T1 7 A:

(2.6) +

jξ-ΣΣpjkhj^VjjV^υjj + vkk)

P P

Here the summations Σ and Σ stand for Σ and Σ > respectively. It may be
β*a j 0=1 j=l

0=stα
remarked that the latent roots of jR are invariant under the transformation R-+

H'RH. Let /(/!,..., /p) be a real-valued function defined on a domain D in the
p-dimensional Euclidean space. We assume that the function / is analytic in a

neighborhood of(λί9...9 λp) (eD). Expanding the function /(/15..., lp) in Taylor's
series about (/15..., /P) = (A1,..., λp) and substituting (2.5) in the resulting expansion
gives

Σ Σ
α=l /
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w h e r e / β , = / ( / 1 , . . , / p ) = a n d "$'"« are given by

(2.6). To derive an asymptotic expansion for the distribution of/(/15..., /p) up
to and including the term of order n"1, the term of order n~3/2 in (2.7) is needed.
It is however very lengthy and hence omitted here.

From (2.7), the characteristic function of ^fή{f(ll9..., /P)-/(A15..., λp)} can
be written as

(2.8) ^Γetr (itAV) ll + -Wi υ%>fΛ + Σ Σ λβ,ι?<J)2/«
L ( V n ^α=1 Λ=iβΦΛ

1 p p \ 1 ~|

2 α=l β=l Λ<X J P J J

where etr ( ) stands for exp {tr ( )} and A is a p x p symmetric matrix having

Σ Λ(i - W jΛ.
α=l

as its (7, k)th element with the Kronecker delta δjk.
To calculate each expectation in (2.8), we use Lemma 5.1 in Sugiura [87].

Putting/(Γ) = 1 and substituting A defined in (2.8) into Sugiura's lemma, we ob-
tain after some calculations

(2.9) E[etτ(itAVy]

+ Ύ Σ Σ Σ λ Λ λ β λ γ f a f β f y Σ Σ Pjkh]βhly($λΛhJΛhkΛJ α β y j k

where

(2. 10) τ^ = 2 Σ Σ AΛί-5^ - (A. + λβ) Σ hjxhjβ + Σ Σ PJkh
2

Jxhlft}fJβ.
a β J j k

Similarly, putting f(Γ)=n(y]k-pj^(ylm-pl^ and taking Λ defined in (2.8) gives

(2.11) Eletr(itAV)υJkυlm]

+ pjmpkl

4{tί)2 Σ Σ Ψ(βJ, W(γ, I, m)fβfyβ y
where
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(2.12) ψ(β, 7, fe) = λβ(λβhjβhkβ - ΣjipMβ) .

It is now relatively easy to calculate each expectation of the term of order
n~1/2 in (2.8) by using (2.11) and the relation (2.1). Thus we have the following

form for the characteristic function of yj~ή{f(lι9 .., lp)—f(λί,...9 λp)}:

(2.13) exp(- yτ2/2)[l + ̂ {(/00ι + OΌ303}

where τ2 is given by (2.10) and the coefficients gί9 g3 are

(2.14)

- Σ λxβ{2λxλβ - 4λxλβ(λa
βΦΛ

+ (Λ, +

a β j j k

93 = 4- Σ A'/' - 4 Σ Σ A^/2/, Σ hjxhjβ
3 x a β j

+ Σ Σ Σ fjβfy ί^λΛλβλy Σ Σ Pjtfβ
at β γ 3 j k

Σ Σ
j k

+ ΣΣ 4Jα[ Σ f,{2 Σ Σ hjahksφ(β,j, k)
Λ SΦΛ β j k

+ 2Σ Σ Σ ΣΛnΛΛCΣ Σ Σ hjxhkβhlβ^(y, k, I)
a β γ δ j k I

x {Σhmxφ(δ,j,m) - 2λxhjxφ(δ,j,j)}

+ λΛλβ Σ Σ hjMβWyJ9j)ψ(δ9 k, k)]

with iKjβJ, fe) defined by (2.12).
Inverting this characteristic function, we have the following theorem.
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THEOREM 2.1. Let / 1^ ^/p>0 be the latent roots of the sample cor-
relation matrix R and let H = (hi}) be an orthogonal matrix such that H'PH
= diag(A1,..., λp\ where P is the population correlation matrix and λ^-~^λp

>0 are the ordered latent roots of P. Let /(/15..., lp) be an analytic function
in a neighborhood of ( I ί 9 . . , 9 l p ) = (λί9...9 λp). If the latent roots of P are all
simple and the τ2 given by (2.10) is not zero, then the distribution function of

n =
can be expanded for large n as

(2.15) Pr(/* <x) = Φ(x]

where Φ(7)(x) denote the jth derivatives of the standard normal distribution
function Φ(x) and gί9 g3 are given by (2.14).

From the form of the leading term in (2.13), we have the following

COROLLARY 2.1. Let /(/1?..., lp) be a continuously differentiate function
in a neighborhood of ( I ί 9 . . . 9 Ip) = (λl9...9 λp). If the population roots λΛ are all
simple, then the limiting distribution of ^/~ή{f(lί9..., /p)—/(λl5...,λp)} is normal
with mean 0 and variance τ2 given by (2.10).

2.2. An asymptotic expansion when population roots have multiplicity.
We now proceed to the case when the latent roots of the population correlation
matrix P have any multiplicities. Let H be an orthogonal matrix such that
H'PH = diag(λ 15..., λp) where λ1^ ^λp>0 are the ordered latent roots of P.
Assume that P has r distinct latent roots Θi>-->θr with multiplicities ql9...9 qr

as indicated by (1.7). Let Lα (α=l,..., r) be the set of integers q±-\ \-qa,ί-\-!9

We make the following assumptions for the real-valued function f(lί9...9 lp)
where l^ ^ ••• ̂  lp are the ordered latent roots of R:

(i) /is analytic in a neighborhood of (/1?..., Ip) = (λί9...9 λp\
(ii) For;eLα, keLβ

(2.16)

where Θ = (Θ1,..., θ l f Θ2,..., Θ2,..., Θr9...9 θr).
qi 42 Qr

Under the assumptions (i) and (ii) in (2.16), the Taylor series expansion of/(/l5...,
lp) about (/!,..., /P) = (λ1,..., λp) can be written in the form

/(/i,-, y =/(Aι,..-, V + Σ Σ (/, - W«
α=l 7*eLβ
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+ T Σ Σ Σ Σ(h
^ α=l β=l jeL α keLβ

Then, from (2.4) and Lemma 1.2, it follows that

.», Ap) + -TΓ.Σ /.tr
V Λ *=ι

+ -

Λ tr F« + Σ
α=l α=l 0*α

+ Σ Σ. /„, tr F<ι> tr Vfl) +

where θΛβ = (θa-Θβ)-ί and F^} are the submatrices of VU> partitioned into
ql9...9qr rows and columns. Here the (α', '̂)th elements of F$, say t?^ίj,, are

Σ̂ Σ^yα'V^ k - y

υ&β- = T Σ Σ Pjkhja'hkβ-VjjVkk ~ \ Σ Σ hj* hkβ V
*•

+

The characteristic function of ^n{f(lί9...9lp)—f(λί9...9λ^)} can therefore be
expressed in the form

(2.17) E\etr(itAV)\l + Wf/.tr F α̂> + Σ Σ/A^r
L I y Λ \α=l α=l /ϊ^α

+ L Σ Λ/r tr F<ι> tr

where A is a symmetric matrix of order p having

Σ Σ /.(i - WVwα=l α'eLα

as its 0", fc)th element. Each expectation in (2.17) can be calculated by an argu-
ment similar to that discussed in Section 2.1. The result is of the form

(2.18)

= exp(- y

where
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(2.19) τ2 « 2 Σ Σ Σ Σ W<W - (0. + 0,) Σ A?.
α=l/?=l <κ'eLΛβ'eLβ 7 = 1

+ Σ Σ P2

jkh
2

jx hl,, }fJβ
J — 1 fc — 1

and

01 = - 4- Σ Σ [0. - Σ Σ P^Λy 'A*.'
^ α=l α 'eL* j = l fc=l

- Σ Σ 0.,{20.0, - 4θ.θ,,(θ. + θβ) Σ A}.-*?,-
βφΛβ'eLβ 7 = 1

(2.20)

2 Σ Σ
7=1 fc=l

+ Σ - Σ Σ Σ Σ 0,0,
α=l α=l j?=l z'eLκβ'eLβ

= 4- Σ
J α=l

- 4 Σ Σ Σ Σ

Σ Σ Σ Σ 0.0,0,/.ΛΛ
1 y=l α'6Lα β'eLβ γ'eLγ

r r r

+ Σ Σ Σ Σ Λ Λ Λ C Σ Σ hjx.hkα=l ^=1 y=l α'eLα j = l fe = l

r P

+ Σ Σ0..Λ Σ Σ CΣ/ /,{2Σ Σ h}..hu*(βj,k)
α = l s τ έ α α'eLα s'eLs /?=! 7 = ! fc=l

- (0. + θs}^hjΛ.hJs^(βJJ)}Y

+ 2 Σ Σ Σ Σ Σ Σ /.,/,/,[£ Σ
' ' '

-ί

+ θxθβ Σ Σ Kj. *ίβ Ψ(yJ,J)Ψ(8, k,
7 = 1
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with

(2.21) ^(α,j,fc)= Σ 0.(0ΛA«'- Σp/rfΆ).
α'eLα / = !

Inversion of the characteristic function (2.18) yields

THEOREM 2.2. Let / 1^ ^//7>0 be the latent roots of the sample cor-
relation matrix R9 and let Jff = (/?l J ) be an orthogonal matrix such that H'PH
= diag(/l1,..., λp) where 11^ ^A/7>0. Assume that the ordered latent roots
λ^- ^λp have the multiplicities indicated by (1.7) and that the τ2 given by
(2.19) is not zero. Then, under the assumptions in (2.16), the distribution
function of

can be expanded for large n as

(2.22) Pr(/f < x) = Φ(x) -

where φ(J\x) are the jth derivatives of the standard normal distribution func-
tion Φ(x) and gl9 g3 are given by (2.20).

From the form of the leading term in (2.18), we have

COROLLARY 2.2. Let /(/19..., lp) be a continuously differentiate function
in a neighborhood of ( I ί 9 . . . , /P) = (λl5..., λp). Under the condition (1.7) for the
population roots and the assumption (ii) in (2.16) for the first derivatives off,
the limiting distribution of ^ / ~ n { f ( l l 9 . . . , Ip)—f(λl9...9λp)} is normal with mean

0 and variance τ2 given by (2.19).

Lee and Krishnaiah [59] have recently obtained asymptotic expressions for

the joint densities of the ratios of linear combinations of the latent roots of the
sample correlation matrices in real and complex multivariate normal samples,

when the population roots are all simple. Konishi [45] has obtained an asymp-
totic expansion for the distribution of a function of the latent roots of the sample

covariance matrix in the case when the population roots are simple and derived,
as special cases of the results, asymptotic expansions for the distributions of
various ratios of latent roots. Recently Fujikoshi [26] has obtained asymptotic
expansions for the distributions of some functions of the latent roots of the
random matrices associated with principal component analysis, MANOVA
model and canonical correlation analysis, when the population roots have any
multiplicities.
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3. Asymptotic expansions for the distributions of statistics associated with
reduction of dimensionality in principal component analysis

3.1. Certain functions of latent roots. Principal component analysis was
first introduced by Pearson [72] for the case of nonstochastic variables, and
later Hotelling [36] generalized this concept to the case of stochastic variables.
Briefly principal component analysis based on a correlation matrix is as follows :

Consider a p-dimensional random vector X' = (Xί9...9 Xp) with correlation
matrix P. Let λ^ ^λp be the ordered latent roots and hί9...9hp be the cor-
responding orthonormal latent vectors of P. Then, from the spectral decom-
position theorem it follows that

p=W*ί + +v»A>
h'ΛPhΛ = λa9 h'ΛPhβ = 0 if aϊβ.

The linear combination yί=hf

lX is called the first principal component of X.
Generally, the αth principal component of X is given by y(X=h'ΛX. From (3.1)
it is easy to see that the principal components have the properties

(3.2)

It may be found that the principal component analysis is algebraically based
on the latent roots and vectors of a correlation matrix or a covariance matrix.
For further details of principal component analysis we may refer to Anderson
[5, Chapter 11], Kshirsagar [54, Chapter 11], Morrison [61, Chapter 8] or
Rao [77, Chapter 8].

In practice, it is necessary to know how much information is condensed into
the principal components. From (3.2) the total variance of the p principal

components is Σα = ι\ = tr-f> = P The importance of the αth principal com-
ponent in accounting for the total variance is measured by λjp. Furthermore,
the fraction of the total variance accounted for by the first q principal components

is measured by Σα = ι>UP (<1<P)> which was suggested by Rao [76].
Considering the inference problems based on the sample data which are

drawn from a p-variate normal population with covariance matrix I, we use the
maximum likelihood estimate of P, namely, the sample correlation matrix R,

When the population roots are simple, the λjp and Σα=ι λjp are estimated by

IJp and Σljp (q<p),
α=l

respectively, where l^ -^lp are the latent roots of R. Konishi [46] has ob-
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tained asymptotic expansions for the distributions of /α and Σ« = ι IJp when the
corresponding population roots are simple.

We now give, using Theorem 2.1, an asymptotic expansion for the distribu-

tion of IJp. Taking /(/!,..., lp) = ljp in Theorem 2.1, we obtain the following

THEOREM 3.1. Let /α be the xth largest latent root of the sample correlation

matrix R and let H — (htj) be an orthogonal matrix such that HfPH = diΰig(λl9...,
λp) with the ordered latent roots λί ^ ••• ̂ λp>0. If Aα is simple, then an asymp-

totic expansion for the distribution of IJp is given by

where

and

τl = 2λl(l -

4- [A. - Σ Σ P3 ΛA« - Σ
^ j k βφa.

4λxλβ(λx + λβ)Σh2

Jxhjβ + (λ.

j k

O(n-),

(3.3) 03 = ̂  λl - 4λ* Σ tή. + 4 λl Σ Σ Pj
J j J j k

Σ ̂

- Σ Pj,PklhL)

ί/ie summations Σ /br Σ* Σ » respectively.

It may be remarked that this result holds if only the λΛ is distinct from other

p— 1 latent roots which may have any multiplicities.
Now recall that the formula (2.13) gives the expansion of the characteristic

function of -/ϊΓ{/(ilf..., Ίp)-f(λi9...9λ,)}. Taking ./(/ l s..., / p )=ΣΣ=tUα and
putting ί=l in (2.13), we obtain the expansion of the joint characteristic function
of ^f~n(lΛ — Aα), α = l,..., p, in the form

(3.4) Σ Σ + 0(n-*)\ ,
J
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where t' = (tl9..., tp\ Ω = (ωΛβ) is a pxp symmetric matrix with

(3.5) . ωα, = 2λΛλβ{δΛβ - (λΛ + λβ)

and bα is given by gl in (3.3) and bΛβγ is

(3.5) . ωα, = 2λΛλβ{δΛβ - (λΛ + λβ) Σ hjΛhjβ + ΣΣ PJkhj
j j k

3 j k

+ Σ Σ hjjιkxφ(β,j,j) {Pjkψ(y, k, k) - 4ψ(γ,j, k)}
j k

j

+ Σ ^{2ΣΣ.hj.hJf(β,j,k) - (λ. +
SΦΛ j k j

x {2 Σ Σ hjΛh^(y9j9 k) - (Aβ + λs) Σ hjΛhjaψ(γ9j,j)} .
j k j

The limiting joint distribution of ^/ n(lΛ — Aα), α= 1,..., _p, is singular normal with
mean vector (0,..., 0)' and co variance matrix Ω = (ωtxβ) given by (3.5), since Σ?=ι'α

= tr jR = p, and so the inversion of (3.4) is very complicated. An asymptotic
expansion for the joint density function of any q (q<p) set of {^ n(lΛ — λΛ):>

α=l, . ..,]?} is obtainable, using the formula (3.4). For the sake of simplicity
we give an asymptotic expansion for the joint density function of >/n(/ a — Aα),
α = l,..., q, in the following:

THEOREM 3.2. Let Ω = (ωΛβ) be a q x q symmetric matrix with ωΛβ given by
(3.5). J/A!,..., λq are simple, then an asymptotic expansion for the joint density
function of

is given by

φ(x; 0)^1 + -τ^{ !>«#«(*; β) + βΣ Σ Σ^βγH^^x; Ω)}

where
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and the coefficients bα, bΛβγ are given in (3.4).

When the population roots have any multiplicities as in (1.7), the θd and the

fraction Σ2 = ι Qβjp (q<r) of the total variance accounted for by the first

qι H \-qq principal components are estimated by

ϊd = Σ lJqΛ and £ Σ /.<//>,
α e L d α=l α'eL α

respectively, where Lα is the set of integers ^H h^ α _ι + l,..., ^ f i H hgα

(4o = 0).

Applying Theorem 2.2 to the case of ld, we have the following

THEOREM 3.3. Under the same notations as in Theorem 2.2, an asymptotic

expansion for the distribution ofld= Σ '«/<?</ /5 <7wew by

Pτ{JnQΛ-θΛ)lτd<x}

= Φ(x)-4Γ{,

where

(3.6) τ\ = 2 Σ Σ Θ2

d{δaβ - 2θdΣhjxhjβ + ΣΣp2j
J i "

and

01= -y Σ C^-ΣΣp 3 Λ A«
αeLd

- Σ Σ β^ί^Λ - 40,0,0, + θβ)Σhjxhjβ.βΦdβ'eLβ j

Σ Σ
ΛeLdβeLd j

+ 4- Σ Σ Σ
•* <xeLd βeLd γeLd j k

+ Σ \_

+ Σ 0Λ Σ Σ {2ΣΣhjxhks,ψ(dj,k)
sφd ΛeLd s'eLs j k
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with

Ψ(dJ,k) = Σ θd(θdhjahkΛ - ΣpjiPkMJ
αeL d I

From Theorem 3.3 it follows that the limiting distribution of ^/ n(la — Θd) is

normal with mean 0 and variance τ2

d given by (3.6) and so in general the variance
depends on H and P. In particular case of P with the two distinct latent roots

θί and Θ2 of respective multiplicities qγ and q2, Anderson [6] has obtained the
confidence interval for Θ2, showing that

is asymptotically normally distributed with mean 0 and variance 1. It may be
remarked that the term of order l/^/ n in an asymptotic expansion formula for
]2 contains H and the latent roots other that 02.

An asymptotic expansion for the distribution of /α is obtainable, provided
that the corresponding population root is simple (cf. Konishi [46]). Unfortu-
nately, a similar result for the /α corresponding to the same multiple population
root can not be obtained, since the limiting distribution of 1Λ is no longer normal.

Now, putting /(/!,..., ίp)=Σ2 = ι Σα'eLα '«'/P in Theorem 2.2 and differentiat-
ing/with respect to I. at (/19..., /Jl) = (λ1,..., λp\ we have

THEOREM 3.4. Under the same notations as in Theorem 2.2, an asymptotic

expansion for the distribution of Σα = ι Σα'eL« 1*1 P (<l<r) *s given by

Pr {V

7^( Σ Σ UP - Σ qJMhw < x}
α=l α'eL« α=l

where

τfβ) = 2 Σ Σ Σ Σ θ.θβ{δ,, - (θ. + θβ) ±Kj..K}β.tx=l β=l &'eLΛ β'eLβ 7 = 1

+ Σ Σ P2

Jkhjx,hlβ,}/P*,
j=l fc=l

and the coefficients g l 5 g^ are given by (2.20) with /α = l for α = l,..., q, /α = 0/or

α = f̂ + l,..., r andfΛβ = Qfor α, β = l,..., r.

The problem of deriving the distributions of latent roots of the sample

covariance matrix S/n has been studied by many authors. James [39] has ob-
tained the exact joint density function of the latent roots of S/n in a form involving



666 Sadanori KONISHI

a hypergeometric function of matrix argument (see Constantine [14] and Herz
[35]). Some work has been done on approximations to the hypergeometric

function. Asymptotic results in this area have been given by G.A.Anderson

[3] and Muirhead and Chikuse [64] in the case when the population roots are

simple, and by Chattopadhyay and Pillai [10], Chikuse [13], Constantine and

Muirhead [15] and James [41] in the case when the population roots have multi-
plicity. It is however difficult to obtain results concerning the latent roots of
the sample correlation matrix by arguments similar to those discussed in the

literatures.

Anderson [6] has obtained the asymptotic distributions of the latent roots
and vectors of S, when the population roots have any multiplicities. The method
discussed in Anderson [4, 6] is useful in obtaining the asymptotic distributions

of the latent roots and vectors of Wishart matrices except for the case of the sample
correlation matrix. Sugiura [87] has obtained an asymptotic expansion for the
distribution of the αth largest latent root of S, when the corresponding population

root is simple. His result includes the limiting distribution given by Girshick
[29]. In the case of multiple population roots, Chikuse [12] and Sugiura [91]
have derived the asymptotic expansion of the joint density function of the latent
roots of S from the results given by Chattopadhyay and Pillai [10]. The expan-

sion of this type has also been derived by Fujikoshi [24] based on the perturbation
method with multiple population roots.

3.2. Tests for latent roots of a correlation matrix. On the basis of N =

n + l observations drawn from a p-variate normal population Np(μ, Σ), we consider
first a test of the hypothesis

Ho /i1 = λ2 — ••• = Ap

that all of the latent roots of P are equal. It is easy to see that H0 is equivalent
to the hypothesis H$: P = I and that the likelihood ratio criterion is given by Λ0

= \R\N/2. Bartlett [7] has shown that the statistic

is asymptotically distributed as a chi-square distribution with p(p—l)/2 degrees
of freedom when H0 is true. The asymptotic nonnull distribution of \R\ will be
discussed in Section 6.2.

If the hypothesis H0 is rejected, then it is of interest to test the hypothesis
that the last q = p — a latent roots of P are equal, namely,

H I ' λa+ι = λa+2 =•••= λp,

which is one of the most commonly used tests in reduction of dimensionality in
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principal component analysis. Anderson [6] has considered a test of the equality
of any subset of the latent roots of P, which includes the hypothesis Hί. The
hypothesis Hί is tested by using the statistic

Bartlett [7] has shown that

- 5) - ~^a\\ogΛι

can be approximated as a chi-square distribution with (q — 1) (q + 2)/2 degrees of

freedom when Hi is true.

We now give, using Theorem 2.1, asymptotic nonnull distribution of the
statistic Λί when the population roots Afl+1,..., λp are all simple. Put

. +ι y

in Theorem 2.1. Partial derivatives of /(/i,..., /p) at (/!,..., /P) = (λl5..., Ap) are

Σ ^r1 - A;1, /„ = - «( f A;r
2

j=α+l

(3.8)

Λ> = - «( . Σ ^ r2 (« * 0 for α, )S = α + 1,..., p
J= =Λ+1

and other first and second partial derivatives are all zero. Then we have the

following

THEOREM 3.5. // the population roots λa+i,...,λp are all simple, then an
asymptotic expansion for the nonnull distribution of the statistic Λί for testing

the equality of the last q = p — a latent roots of P are given by

Pr L/^1- %log Λ! + Σ log A,- - q log (q-* Σ
L ( ιy j=a+l j=a+ί

where

τ?β = 2 Σ Σ (94- Σ λj)(qλβ- f A;)( Σ
α=β+l 18=0+1 7=β+l 7=β+l 7=0+1

x {δaβ ~ (A. + λj^KjJ}, + t

ffce coefficients gγ, g3 are given by (2.14) wiίft ίhe partial derivatives (3.8).
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We now consider the hypothesis

H2: λa+1 = λa+2 ='"= λp = λ0 (λ0 > 0)

that the last q = p — a latent roots of P are equal to a specified value λ0 (>0).

This hypothesis may be tested by using the statistic

(3.9) Λ2={ Π /,M8}"/ 2exp{-ytf( Σ /, Mo-<7)K
j=a+l ( ^ j=a+l J

which is based on the likelihood ratio criterion for testing the hypothesis H2

concerning the latent roots of the co variance matrix Σ, due to Anderson [6].
Taking /(/!,..., lp)= -(2/N)logΛ2 in Theorem 2.1, we obtain the following

THEOREM 3.6. // the population roots Aβ+1,..., λp are all simple, then an
asymptotic expansion for the nonnull distribution of the statistic Λ2 for testing
the equality of the last q = p — a latent roots of P to a specified value λ0 is given

by

-Iogλ0mτ2 q < x

= Φ(jc) -

where

Σ

+ Σ Σ Pj*t*ίM
7=1 λ=l

/ιe coefficients gί9 g3 are given by (2.14) wz'ί/i ίΛe partial derivatives /α =

l/λ0 — l/λα, /α α=l/Aα (α = α + l,..., /?) αnJ oί/zer ^zrsί α/id second derivatives
being zero.

The asymptotic distributions of the likelihood ratio criteria for the hy-

potheses f/o, # t and #2

 on tne latent roots of the covariance matrix Σ have been
studied by many authors (cf. [6], [7], [15], [25], [27], [41], [43], [66], [68], [69],

[85], [89]).
Further, in multivariate analysis various functions of latent roots of some

random matrices including individual latent roots have been proposed as esti-
mates or test statistics. The problem of deriving the sampling distributions in
the null and nonnull cases has been individually considered by many authors.
Examples are found in [11], [15], [21], [23], [25], [33], [37], [38], [51], [62],

[79], [80], [81], [84], [86], [88], [90], [91], [92] and others for asymptotic
distributions, and in [14], [17], [18], [32], [39], [40], [52], [53], [75], [95] and
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others for exact distributions. Recently a survey of the area of exact distributions
is given by Krishnaiah [50]. A number of references on multivariate distribution
theory are found in Pillai [73, 74].

3.3. Numerical comparisons. Our asymptotic formula (2.15) in the special

case of/(/!,..., 1P) = 1Λ is examined by numerical comparisons. In the case of
p = 2, the latent root / x of R can be written as /! = l + |r| where r is the sample
correlation coefficient in a sample of size N = n +1 from a bivariate normal
distribution with population correlation coefficient p. An asymptotic expansion

for the distribution of / t in the bivariate case is, assuming that p>0, given by

(3.10) Pr { /iΓ(/ι - 1 - P)/(1 - P2) < *}

= Φ(x)

(see Konishi [46]). Konishi [46] has checked the accuracy of the asymptotic for-
mula (3.10), based on exact values of the probability integral of r due to David [16].

Further comparisons are given in the following:

Table 3.1. Comparison of exact and approximate values of Pr (| r \ < r 0)

r,

.50

.55

.60

.65

.70

.75

.80

.85

.83

.85

.87

.89

.90

.91

.92

.93

.94

.95

.96

term of

0(1)

.02736

.07481

.16838

.31551

.50000

.68449

.83162

.92519

.03555

.09866

.21961

.39827

.50000

.60173

.69696

.78039

.84881

.90134

.93907

term of

0(1 /V/0

N=25, ,0=0.7

.02873

.03182

.01519

-.01368

-.02850

-.01368

.01519

.03182

7V=25, ,0=0.9

.03965

.03710

.00534

-.03073

-.03665

-.03073

-.01502

.00534

.02427

.03710

.04193

total

.05609

.10663

.18357

.30183

.47150

.67081

.84681

.95701

.07519

.13576

.22495

.36753

.46335

.57100

.68194

.78574

.87309

.93844

.98101

exact

.05744

.10494

.18366

.30445

.47078

.66647

.84739

.96073

.07423

.13041

.22387

.36883

.46244

.56762

.67872

.78645

.87911

.94612

.98350
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Table 3.2. Comparison of exact and approximate values of Pr (\r | </•<,)
for N=50andp =0.9

r,

.85

.86

.87

.88

.89

.90

.91

.92

.93

.94

term of
0(1)

.03273

.07028

.13452

.23061

.35628

.50000

.64372

.76939

.86548

.92972

term of

.02720

.02895

.02009

.00168
-.01746
-.02565
-.01746
.00168
.02009
.02895

total

.05993

.09923

.15462

.23229

.33882

.47435

.62626

.77107

.88557

.95867

exact

.05998

.09681

.15229

.23202

.33974

.47403

.62459

.77108

.88871

.96114

Table 3.3. Comparison of exact and approximate values of Pr (|r | <r0)
forN=2Wandp=0.7

r0

.64

.66

.68

.70

.71

.72

.73

.74

.75

.76

.77

term of
0(1)

.04850

.13427

.29006

.50000

.60896

.70994

.79668

.86573

.91667

.95150

.97358

term of
0(1/V«)

.01126

.00777
-.00329
-.00990
-.00807
-.00329
.00265
.00777
.01075
.01126
.00987

total

.05976

.14205

.28677

.49010

.60089

.70664

.79932

.87350

.92742

.96276

.98345

exact

.05963

.14190

.28713

.49007

.60053

.70622

.79917

.87372

.92779

.96291

.98312

In the case of p = 49 asymptotic formulae for the distributions of the individual
latent roots of R are examined by simulation, which was done with the help of
Sugiyama [96].

Four independent standard normal deviates are generated and are trans-
formed to a four dimensional normal variate with the specified correlation matrix

(3.11)

1.00 -0.19 -0.45 0.24

-0.19 1.00 0.41 0.16

-0.45 0.41 1.00 -0.51

0.24 0.16 -0.51 1.00
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This process is repeated 100 times and the latent roots of the sample correlation
matrix based on the generated observations are calculated. Each simulation is
independently repeated 1000 times and the sample variances of lΛ — λΛ (α = l, 2, 3,
4) are calculated. The percentage points of the latent roots of R are also ob-
tained.

The latent roots and vectors of the population correlation matrix (3.11) are
given by

A! = 1.90223, λ2 = 1.16044, λ3 = 0.68671, A4 = 0.25062,

H =

0.51280 0.02702

- 0.32585 - 0.76858

- 0.65575 - 0.03320

0.84909 0.12391

0.28959 - 0.46824

0.29584 0.69380

0.44816 - 0.63832 - 0.32813 0.53295

Then asymptotic variances of /α — λa are obtainable by using (2.10) with /α=l
and fβ = Q (β^α). The approximate values of the probability integral Pr (la<xΛ)
(α = l, 2, 3, 4) can be obtained by using Theorem 2.1, where xa are the upper 10
percentage points of /α calculated by simulation. Comparisons are shown in
the following:

Table 3.4. Comparison of approximate values of Var(/α —Aα) with

simulation results

approximate value 0.0188 0.0090 0.0080 0.0016
simulation result 0.0182 0.0086 0.0078 0.0016

Table 3.5. Comparison of approximate values of Pr(/α<xα) with

simulation results

percentage point

the term of 0(1)

the term of 0(l/λ/T)
total
simulation result

From these tables it may be seen that the agreements are good. We can

also see the efficacy of the term of order I/ x/~ή~ in asymptotic formulae.

*1

1.38310

0.91668

0.04438

0.96106

0.90

X
2

1.22556

0.88982

0.02542

0.91524

0.90

*3

1.12164

0.86899

0.03065

0,89965

0.90

X
4

1.11638

0.86787

0.03664

0.90451

0.90
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4. Asymptotic expansions for the distributions of latent vectors of the
sample correlation matrix

This section contains asymptotic results concerning the latent vectors of the
sample correlation matrix .R based on a sample of size n + 1 observations from

a p-variate normal distribution with positive definite covariance matrix Σ.
Let λ1^. "^.λp>0 be the ordered latent roots of the population correlation

matrix P and let hl9..., hp be the corresponding orthonormal latent vectors of P,
so that

(4.1) H'PH = A and HΉ = /,

where yi = diag(A l5..., λp) and H = (hl9...9 hp).

We consider first the characteristic function of the latent vectors of the
transformed matrix H'RH. Let S/n be the sample covariance matrix. It is
easy to check that if the random matrix S is distributed according to the Wishart
distribution Wp(n, Σ)9 then

is distributed according to Wp(n, /) where I'0 = diag(σ11,..., σpp). Let

(4.2) Y = - - Λ-

Noting that V in (2.4) can be written in the form

we can expand H'RH as

(4.3) H'RH = A + -Ύ- F'1) + — V™ +\j n n

where

Here y^1} is a diagonal matrix withjth diagonal elements

. P P
2 ^—\ v—\ / i i \ i / 9 i i /» i/Σ Σ (λιλm) ' hflhjnyin for 7 =
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Let cg=(clgί..., cpg) be the latent vector such that c'gcg—\ and cgg>0, cor-
responding to the #th latent root of H'RH. If λg is simple, then it follows from

(4.3) and Lemma 1.1 that the perturbation expansion of cg is

(4.4) - Σ ViW + θ + °p(«'3/2) if «

-yJΣ^/^J + OpOr3'2),

where λ,.=(λ, — λ.)~l and

»?; = Σ Σ Σ Σ αμkλ.λj1/2^ έAΛ*..*ι
j =l fe=l /=! m=l ( 2 s=l

3 P 1
- δj*bkimg - δkgbjima + -j ( α̂ + ̂ 7) Σ hsjιsghsjhskhslhsm\yjkylm

T" s=l J

with

(4.5) Vα 0= Σ^iΛkMfe

The expansion of the probability density function of Y defined by (4.2) is of the

form (cf. Fujikoshi [24])

where c = π-^

Then we may write the joint characteristic function of ^j n cΛg (α = l,..., p;

a=£g) and ̂  n(cgg-l) as

£[exp {i Σ ία V¥cα, + ί ί, v/ n (cw - 1)}]

(4.6)
x Γ1 + τr{ I ^-( îv^y - Σ AΛ8^

L V w ^α*0 /'^^

Σ A2.»<i> _ j (/, + i) tr r + tr
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where d7= Π dyik and the integration is over the space of a real symmetric matrix
J£k

Y. Put

(4.7) ajk.Λ9 = (2λjλkyt*{δ jA9 - Y (A. + A,) £; Λ^AΛ, }

for simplicity. Then the integral of the limiting term in (4.6) can be expressed as

(4.8)

= cfexpΓz{ Σ ( Σ txλβxajj.aβ)yjj
J L j=l ΛΦg

+ .Σ 1 /Λ.(^* .f + **;•«>,-* -

where ^=(ίl5..., ^_1? ίg+1,..., ίp) and Σg=(σΛβ.g) (α, j?^gr) is a symmetric matrix
of order p — 1 with

(4.9) σα)8.g = -T Λ^ Σ Σ (ajk.Λg + akj.Λg)(ajk.βg + akj.βg)

The integrals of other terms in (4.6) are of the form

exp(/ αΣ Ά«t><5,> - ^-tr

where f(Y) denotes a polynomial in the elements of Y. Putting

Σ 'Λαίάj t.^ + αfcjtβg) == <;t ( < fc) and '

in (4.8) and differentiating the resulting formula with respect to tjk

we obtain
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(4. 10) <?[ Σ /A. WX1.' ~ Σ λββv$»tt + »«>)]
ΛΦg βφg

= Y Σ ΣΣ^{- 2λagajk.ΛgaJk.gg£ y.Φg j k

+ Σ λββajk.Λβ(aJk.βg + akj.βg) - p*JkhjΛhkg}lΛ
βφθ

+ / 2T? Σ Σ^αΛΛ^ΣΣΣΣ -^Λfe.α^ίm.^
T- ΛΦgβΦgyΦg j k I m L

4- Σ ^\gajk Λ\alm \g

saAmsί/ — & joking ~ <>kgbjlmΛ

(4.11)

= - "T Σ Aα*ΣΣ(βy*.α, + akj -
** αήfcg j fc

- -o- Σ Σ Σ λlgλβgλyg Σ Σ Σ Σ^7fc.α f lf^Zm α
<•> ctφg βφg γφg j k I m

and

(4.12) G[trr]=0,

(4.13) Cr[trT3] = - ζ- Σ Σ Σ λΛgλβgλygΣ Σ Σajk.Λg

" alk.βg)(<*jl yg + <*lj yg)t*tβi

where bjkeg and ajkfΛ0 are given by (4.5) and (4.7), respectively.
Combining these results with (4.8), we can obtain a expansion of the joint

characteristic function of ..J ncΛg (α=l,..., p; α/0) and J n(cgg-ϊ). We note
that a similar result may be obtained, using an approach similar to that in Nagao

[67].
We consider this result in terms of the latent vectors of R. The normalized

latent vector corresponding to the gth latent root of R, say/^, is given by
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The characteristic function of ^J n (fa—h^ can be expressed as

E[exp {i £ ^(fug - hug)tu}-}
M = l

= E[exp {i Σ ( Σ Ί,,A)V~"C«9 + '( Σ h,ιgQ^(cgg - 1)}] .
ιι=l

Hence, replacing tx (α=l,..., p) by Σ2=ι^« in (4.8), (4.10)-(4.13) and com-
bining these results, we obtain the following expression for the characteristic
function of ^/ n (fg—hg):

(4. 14) exp - ±.fH.ΣtH'sl + {i Σ d

Σ
M=l υ=ι w

where ί' = (ίl9..., ίp), H^h^...^^^ fcff+1,...,fcp), Σg = (σα^.g) is given by (4.9)
and the coefficients are

(4.15)

^

+ Σ λβgajk.Λβ(ajk.βg + αk </.00) -
β^9

~ ~T Σ ΛΛgΣ Σajk'Λg(ajk «g + a

*+ aϊg j k

(4.16)
j k I m

Σ λvgajk.ΛValm.vg - (λjλkλlλ
vφg

- δjybklmg - δkgbjlma

S~ Σ Σ Σ ΛΛgλβgλygΣ Σ Σ Σajk *galm Λg
v etϊg β*g γϊg j k I m

- - - Σ Σ Σ λgtgλβgλγgΣ Σ Σ ^ J fc ' <X ̂J fc '

j k I
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Inverting this characteristic function, we have the following theorems.

THEOREM 4.1. Let H = (hi,...,hp) be an orthogonal matrix such that

H'PH = diag(λ 15..., λp), where λi^ '^.λp>0 are the ordered latent roots of
the population correlation matrix P. Let fg = (fig9...,fpg) be the normalized
latent vector corresponding to the gth latent root of the sample correlation
matrix JR, where the sign of fΛg is taken to be equal to that of hxg (α=l,..., p).
If λg is simple, then the limiting distribution of \/ n(fg — hg) is normal with

mean vector 0 and covariance matrix

HgΣgH'g (singular)

vvhereHg^(hi9...9hg.i9hg+ί9...9hp)andΣg = (σaβ.g)(oί9β^g) is α (p-l)x(p-l)
symmetric matrix with σΛβ.g given by (4.9).

THEOREM 4.2. Let τ2 = ΣZϊgΣβϊghμJlμβσaβ g and assume that the τ2 is
not zero. Then, under the same notations and assumptions as in Theorem 4.1,
an asymptotic expansion for the distribution of the μth element of the normalized

latent vector fg of R is given by

M - hμg)/τ < x}

= Φ(x) - 4^{d(

where d(

μ

l) and d(

μ^ are given by (4.15) and (4.16) with u — v = w ( = μ), respec-
tively.

Sugiura [91] has obtained asymptotic expansions for the distributions of the
latent vectors of the Wishart and multivariate F matrices under two different
normalizations, when the corresponding population roots are simple. The
exact distributions of the latent vectors of some Wishart matrices have been
studied by Khatri and Pillai [42] and Sugiyama [93, 94].

Consider now testing the null hypothesis

(4.17) H0:hg = hg0

that the normalized latent vector corresponding to the distinct latent root λg of

P is equal to a specified vector hg0 such that hgJιgQ = l. From Theorem 4.1 it
follows that

(4 18) »(/, - hfYHβΣ^H'g(fβ - hg)

has a limiting chi-square distribution with p—1 degrees of freedom. Testing the

null hypothesis HQ9 we replace hg in (4.18) by a specified vector hg0 and also re-
place the unknown parameters λa9 hu (j^g) and pu by their sample estimates.
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Anderson [6] has considered the null hypothesis (4.17) concerning the vector

7Ί, say, of coefficients of the first principal component extracted from the co-
variance matrix Σ9 and has given the criterion

(4.19) "{diriS'Vi + (i/dι)risrι - 2} ,

where dx is the largest latent root of S and 7*ί7Ί = l. An asymptotic expansion
for the distribution of (4.19) has recently been derived by Hayakawa [34].

5. Tests for latent vectors of a correlation matrix

Consider a p-variate random vector X having a multivariate normal dis-
tribution with mean vector μ and positive definite co variance matrix Γ = (σίj ).
The population correlation matrix P can be expressed as

P = ΣζWΣΣζW,

where Z0 = diag(σ?,..., σ£) with σ\ = σtί. Let λl9...9 λp be the latent roots of P
and let h ί9...9 hp be the corresponding orthonormal latent vectors of P. Through-
out this section we do not impose the restriction that the latent roots of P are
ordered.

Given N independent observations XΛ9 α = l,..., N9 on X, we wish to test
the following hypotheses on the latent roots and vectors of P.

(5.1) #(!>: A specified set of a (<p) orthonormal vectors felθ5 , Λ f lo
 are latent

vectors of P, namely,

(5.2) £Γ(2) : A specified set of a (<p) orthonormal vectors Λ10,..., Λα0 are latent
vectors of P and the corresponding latent roots are A10,...,Aα0,
namely,

ha = hΛθ and λΛ = λΛθ (α = 1,..., a).

We shall now derive test statistics for testing #(1) and ff(2). The logarithm
of the likelihood function after maximization with respect to μ may be written as

(5.3)

where R is the sample correlation matrix and

τ1,..., splσp)

with sf = s«/N. Here S = (stj) is the matrix of the corrected sums of squares and
products of the observations. It is easy to see that the maximum of log L when
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all the parameters are unrestricted is

logmaxL(£0, P) = - \-N(p\o%2π + log |S0| + log \R\ + p),
Ω L

where Ω is the parameter space of (I"0, P) and S0 = diag(s?,..., sj ).
Let

(5.4) #10 = (fc10,..., fc«o)> Λa = diagC*!,..., λa),

and let H2 = (ha +1,..., hp) be any px(p-a) matrix such that

(5.5) H = [H10, H2]

is an orthogonal matrix. Under the null hypothesis //(1), it follows that

Λ 0
Q9 H2~\ = 1 o p2*2

or equivalently

P = HloΛaH'lo + H2P22H2,

where Pf2 = #2P#2, and hence (5.3) can be rewritten as

o, Λa9 P$2) = - 4-^{plog2π + log \Σ0\ + log |
(5.6)

+ log|Pf2 | + trH10Λ-iH'10B0RB0 + tr H2P$^H'2BQRBQ}.

The likelihood ratio criterion is given by

(5.7) max L(I0, Λα, P|2)/max L(Σ09 P) ,
ωi Ω

where ω^ is a subspace of Ω when jF/(1) is true. It is however difficult to obtain
max L(I0, Λa, P|2) in closed form and so an approximate test is proposed here.

ωi
Differentiating log L(Γ0, Λa, P|2) with respect to the parameters σ/0' =

1,..., p), λα (α = l,..., α), Pf2 and setting the results equal to zero gives

Σ Σ λ-^h^h^r^bj + Σ *ϊ"!ΣWiWp* 'rtjblbί = I,
i=l α=l

(5.8) Aα = Σ ι

P*2 = H^

where bj = sjlσjt Hί0=(h\j0)), H2 = (h($} and Pίί^ίp*-*). If σ7 is estimated
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by a consistent estimate σ,-, then it follows from (5.8) that the estimates of Aα and

P|2 are, respectively, given by

I* = Σ Σ AM 'Λo My,
(5.9) '-'•'-I

P*2 — H2B0RB0H2,

where £,- = s, /σ, and ^0 = diag(s1/σ1,..., sp/σp). Substituting (5.9) into (5.6),
we obtain an approximate likelihood ratio criterion

N log { Π (H'10B0RB0Hlo)m \ H'2B0RB0H2 \ |Λ|-' \β0\-*} ,
α=l

where (B)αα denotes the (α, α)th element of a matrix B. It may be seen that 57- =

Sy/Oy converges to 1 in probability as N tends to infinity, namely, B0-*I in proba-
bility as N-+CO. Therefore, we suggest the following statistic for testing the

hypothesis H(1):

(5.10) 7\ = N log{Π (Hi0ΛH10)JHiΛH2 | |Λ|-1}.
α=l

It may be noted that the statistic (5.10) replaced R with S/n gives the likelihood
ratio statistic for testing the hypothesis /f (1) on the latent vectors of the co var-

iance matrix Γ, which was obtained by Gupta [31] and Mallows [60].
By an argument similar to that discussed above, we derive a statistic for

testing the hypothesis H(2). Proceeding from the same notations as in (5.4) and
(5.5), except that Λa is specified by /iα0 = diag(A10,..., λa0), we obtain

logLW 2 = - N{plog2π + log |I0I + log \Λa0\ + log |Pf2|

+ tr H2P^H'2

where ω2 is the subspace of Ω when H(2) is true. Differentiating logLω2 with

respect to σ7 (j = l,..., p) and PJ2 and setting the results equal to zero gives

P a s , P P—aP—a , . , .

Σ Σ λ;,}* i0)Ay.°Vy*|6y + Σ Σ Σ tighflp^'rubibj = 1,
t=l α=l i=l α=l y?=l

If Pf2 is estimated by £f2 = fί2£0Rβ0/ί2 where 50 is defined in (5.9), the likeli-
hood ratio criterion for testing H(2) may be approximated as

Since £0->/ in probability as Λf-»oo, we propose the following statistic for testing
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(5.11) T2 = N[log{\H'2RH2\\Λa0\\R\-1} + tτΛ^H\0RHlo - α] .

We note that the statistic (5.11) replaced R with S/n gives the likelihood ratio
statistic for testing the hypothesis #(2) on the latent roots and vectors of Σ,
which was obtained by Gupta [31] and Mallows [60].

The problem of deriving the sampling distributions of Tt and T2 is intractable,
because in general these statistics have not, even asymptotically, chi-square (χ2)
distributions. Reasonable approximations to the distributions of 7\ and T2

might be given in the form of χj, where d is determined from the expectation of
Ti or T2. Using Lemma 2.1 in Siotani [82] and neglecting the term of order

l/.n, we obtain

(5.12) £[Γ>] = p(p - 2) - β - - - ( p - a)(p - a

Y αΣ Σ ϊ^pljhWhΫ* - αΣ Σ

+ 2 Σ Σ «0)4 + j- PΣ Σaξ*β Σ Σ
α=l i=l - α = l j β = l i=l j = l

1 P— α P— a P~a P~a

+ 1 Σ Σ Σ Σ (ί"Έ" +
^ α=l /?=! γ = l <5=1

x Σ Σ t Σ (2p ί tpy i kp t l -
^ t

(5.13) £[Γ2] = - - / > ( / » - 2) - -G> - α)(/, - a

+ \ Σ Σ Σ A-oV?^U0)^0) + y Σ" Σ"^ Σ Σ pWWti
^ <x=ί i=l j = ί Z α = ι / 5 = ι i=l j = l

1 P~α P—fl P—fl P— a

+ 4-Σ-Σ Σ Σ «"ί" + «"«•')Z α=ι /5=ι y = ι δ=ι

x g Σt t^g^

where (Hf

2PH2)-1=(ξ^).

In practice the unknown parameters included in (5.12) and (5.13) have to be

replaced by their sample estimates. Nagao [66] has studied asymptotic null

and nonnull distributions of a likelihood ratio criterion for testing the hypothesis

H(2) on the latent roots and vectors of Σ. The exact likelihood ratio criterion

for testing H(2) on the ordered latent roots and vectors of Σ has been derived by

Fujikoshi [22].
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Part II. Various Functions of the Sample Correlation Matrix

6. Generalized asymptotic expansions

The limiting joint distributions of various statistics expressed as functions of
the sample correlation matrix R have been obtained by Olkin and Siotani [71].
In this section we shall derive an asymptotic expansion for the joint density of
certain functions of R. To obtain asymptotic nonnull distributions of test statis-
tics proposed in Section 5, an asymptotic expansion for the distribution of a func-
tion of R is also derived, up to and including the term of order l/n. The approach
used here is based on that discussed in Konishi [48].

6.1. Asymptotic expansion for the joint density of functions of the sample
correlation matrix. As in Part I, suppose a sample is drawn from a p-variate

normal population Np(μ, Σ). Let /(α)(^)=/(α)(ri2» ri3» > rp-i,p) be an analytic
function of the sample correlation matrix .R in a neighborhood of JR=P. Put

•-1/2 _

with IΌ = diag(σ11?..., σpp), where m — n — 2A with the correction factor A and S
is the usual matrix of corrected sums of squares and products in normal sample.
The expansion of/(α>(#), given in Konishi [48], is of the form

1 i

(6.1) /(β)CR) = /(α)OP) + "T^— Σ ^r)/i°f)

V m 2 iφj J IJ

ιvt\ *7 ^** ij J ij Q *** +-* i jm\ Δ iΦi δ iφi kφl

i _L_ y y
' ΛO Δ* Δ*^O iφj k Φ l (

where and

(6.2) βjf = -
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-

έ
p
Σ throughout this part. The υty in (6.2)

are found to be the (i, ;)th elements of 7<«> with H=I in (2.4). The joint
characteristic function of ^/m{/(a)(R)-/(a)(P)}, α = l,..., a, can be expressed as

sΓetr (tAV)\l + 4= Σ */γ Σ »J}>/{j>
L ( V "* <*=! N ̂  i^J

where A is a p x p symmetric matrix with

β« = - \ Σ Σ /.Pu/ίj', β(J = y Σ /./If (/ ^ /).
2..!^-! 2α = 1

Hence, by an argument similar to that in Section 2, we obtain the following form
for the joint characteristic function of Jm{f(*\R)—f(*\P)}9 α = l,..., a:

(6.3)

ί3 Σ Σ Σ *.ίτVί*,) +
α=l?=l y=l

where Ω=(ωα/,) is an α x α symmetric matrix with

ωαί = y Σ.

and the coefficients b,, bxβγ are

(6.4) + --J, Σtftj.β - PtidH.fKdu.j - pHdkk.y)f<ti>.kl

Σ Σ
fc^l 9^r
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with Pjk.i^pjk-Pijpik and dv.β= Σ Pufβji-pjkPkύfί"^

If Ω is nonsingular, then by inverting (6.3) we have the following theorem.

THEOREM 6.1. Suppose f(*\R) is an analytic function of the sample cor-
relation matrix R in a neighborhood of R = P. Let

*' =

where m = n — 2A. Then an asymptotic expansion for the joint density function
of x is given by

(6.5) φ(x; 0)l+-{±b.H.(x; Ω)

Σ Σ Σ
α = l / i = l y = l

where

and for 1 ̂  ix ̂  α

-̂>' Ω> - - * ( * ί Ω)

wiί/i Ω = (ωΛβ) given in (6.3), αnί/ the coefficients bΛ, bΛβy are given by (6.4).

As a simple application of this theorem, consider an asymptotic expansion
for the joint density function of R = (ri}). Taking

in Theorem 6.1 and differentiating f(a\R) with respect to 7γ/0'</), we obtain
an asymptotic formula in the form of (6.5) with co variance matrix β = ( ) and
coefficients b., b... given in the following: Ω = (ωfy.feί) is a symmetric matrix of
order p(p— 1)/2 with

-(pjk'iPii-k + Pji tPik i + Ptk jPji k + Pu jPjk i)

and

j.kldjj.qr) + 2pijdii.kldjj.qr
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+ g~ (Pjk i(Pir - qPlq - k + Piq - rPlr - k)

+ ' Pjl fβ'tr-qPkq l + Piq rPkr l) + Plk &jr qPlq k

+ Pjq rPlr k) + Pil j(Pjr- qPkq l + Pjq rPkr l)} >

where ρjk.i = Pjk-PijPik and d^.^
The limiting distribution of ^/n^ — plV) is normal with mean 0 and variance

ωίj..ίj. = (l— p?/)2, which follows immediately from the above result. Asymptotic

joint distributions of correlation coefficients were given in Olkin and Siotani

[71, p. 238].

6.2. Asymptotic expansion for the distribution of a function of the sample
correlation matrix. To obtain asymptotic nonnull distributions of test statistics
concerning the structure of the population correlation matrix, Konishi [48] has
derived an asymptotic expansion for the distribution of an analytic function of
R up to the terms of order 1/^/n. Proceeding from the same expansion as in
(6.1), except that/<α)(R) is replaced by an analytic function f(R), we shall derive
an asymptotic expansion for the distribution off(R) up to and including the term

of order 1/n. Rewrite (6.1) as

=f(P) + - U l + u2 + u3 + <?,(«-')

for simplicity. Then the characteristic function of ^m{f(R)—f(P)} can be ex-

pressed as

(6.6)

where A = (aij) is a p x p symmetric matrix with

1 p 1= - -^ Σ Piβ/i« and atj = ~^fij (i Φ j).

By Lemma 5.1 in Sugiura [87], it is straightforward to obtain each expectation
in (6.6), but the calculation is tedious. Inverting the resulting characteristic

function under the assumption that the variance of the limiting distribution of

— /(P)} is not zero, we have the following theorem.

THEOREM 6.2. Suppose f(R) is an analytic function of the sample corre-

lation matrix R in a neighborhood of R = P. Let Φ(j\x) be the jth derivatives

of the standard normal distribution function Φ(x). Put m = n — 2A. Then an
asymptotic expansion for the distribution off(R) is given by
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(6.7) Pr[V

+ i Σmj=ι

where

(6.8) τ2 = ̂ -Σ Σ (Pjk - PijPikHPti ~ PtkPkύfijfki (> 0)
^ i¥v ki=l

and the coefficients are

aι = - -y Σ Pi/1 - P?y)/ιy + ̂  Σ Σ Pjk iPn kfij.ki*
* i*t*j ^ i¥v fc¥=/

«3 = .Σ {PlβdU +

+ Σ Σ (dυiφj k=f=l

b2 = - - β f + 2J{2 Σ (Ptjdtt ~ dy)/y + Σ Σ
* i+j i¥=j fe^i

+ Σ. (I - SpfjXp^,, - dy)/y

. - Pli)

dii ~ Pw(l - Pkί)

+ y .Σ. jgi ΣflPkq(Pir.k -. . j i

+ Pkq riPiqPkrPklPjq i ~ PirPlrPjr i

(6.9) + p,,.k(3pijpl - piqpjq - 2pirpjr)}fij.klfqr]
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{2(34 +.

Σ_ ΣL{pjiPik j + PjkPu j ~

_

2plkdijdkl - 2{Pij(pjk +

ij - pudu) {dkk(pkldlt

Σ Σ Σ [2p,ι.άdtJ -
i¥ y fc¥=ί «¥=r

+ Σ Σ Σ Σ &Pit'SPjk iPlq kPrS qfijfklfqrfSti+j ki*l qi=r si=t

dqr 4- Pijpqrdudqq)

~ PqrPkt sPs/ kdijdqq}fij . kίfqr . s J ,

ijifij.kbfij M qr denote the partial derivatives of f(R) at R = P9 pjk^ is
given in (6.4) and

ij = Σ Pία(P^ ~ PjaP*β)f*β> dfj = Σ djβjβ ~ Pj<xpaβ)fΛβ.

As an example of Theorem 6.2 consider an asymptotic expansion for the
nonnull distribution of the likelihood ratio statistic — log |#| for testing the

hypothesis H$: JP = 7 discussed in Section 3.2. Put/(R)= -log|#| in Theorem

6.2. The partial derivatives of/(£) at R = P are

' , ftj.kl =
(6.10)

/V.H * = - 2(P-\EqrP-iEkl + EuP-iEJP-%,

where P~1=(ρί /), (^4)ί7 denotes the (ί, ;)th element of a matrix ^4, and jE^w is a

p x p matrix with 1 in the (fc, /)th and (/, fc)th elements and 0 otherwise. From

(6.8) and (6.10), it follows that
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y Σ. Σ(pjk ~ PtιPά(Pn - PttAίX- 2pί'')(- 2p*').

Σ Σ ΣΣ(pjkPίj - Pijpijpik)(puPkl - pikpkιp
kl)

i j k I

ί k

P
where the summation Σ stands for Σ Then an asymptotic expansion for the

nonnull distribution of —log |R| is given by

Pr{v>m(- log \R\ + log |P|)/τ < *}

where

- p).
i j k

Similarly, the coefficients in the term of order 1/ra are given by ί>2> ^4 an<l ^β in

(6.9) with the partial derivatives (6.10) and

dij = 2( Σ PtePy. - Py), dfy = 2( Σ ^iαPyα - dtj) .
α=l α=l

The limiting distribution of |.R| was obtained by Olkin and Siotani [71].

In the null case, namely, P = /, Nagarsenker [70] has obtained the exact dis-
tribution of |K I .

7. Asymptotic nonnull distributions of test statistics

7.1. Test statistics concerning latent vectors of a correlation matrix. The
statistics (5.10) and (5.11) proposed in Section 5 are functions only of the sample
correlation matrix R. Using Theorem 6.2 in the last section, we give asymptotic
expansions for the nonnull distributions of these statistics. Put

f(R) = \T, = Σ log(#'10K//10)aa 4- log \H'2RH2\ - log \R\
yv α=l

in Theorem 6.2. The partial derivatives of/(jR) with respect to rtj (i<j) at R = P
are given by

/y = 2pJ}> - 2p'J,
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- 2 Σ Σ Σ° "f
α=l β=l α' = l /?' = !

(7-1) /„.»;.„ = 16 Σ A}
α=l

p— a P — fl P — α P — a P — a P ~ a

2ΣΣ Σ Σ Σ Σ
α=l 0=1 α' = l 0' = 1 α" = l 0" = 1

where /ί10 = (Mj0)), ^2 = (Ajf), P& = ̂ ^̂ 2 and

with ^t=diag[(HioPH10)n,-.(HioPiiio)«J» and Eaβ is defined in (6.10).
Then we have

THEOREM 7.1. An asymptotic expansion for the nonnull distribution of
the statistic Tt given by (5. 10) for testing the hypothesis (5.1) is

Pr [ jm{TJN - ± Iog(ffίottfi0).. - log |HiP/ί2| + log |P|}/Tl < x]
α=l

+ ~ Σ b2j Φ
(

where

i+j kiΊ J 'J

and the coefficients are given by (6.9) with the partial derivatives (7.1) and

dij = 2(Σ^pίxpjll.Λp$ + Σ

(7.2)
x+β α=l

*+)

fj = 2( Σ dtopjf.jty + Σ dlxpj,).
**β α=l
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Similarly, taking

/(Λ) = T2/N = log \H'2RH2\ + log \ΛΛθ\ - log \R\ + tr Λ^#'1()##ιo - a

in Theorem 6.2 and differentiating with respect to ry 0'</) at R=P, we have the
following theorem.

THEOREM 7.2. ^4n asymptotic expansion for the nonnull distribution of
the statistic T2 given by (5. 11) for testing the hypothesis (5.2) is

Pr [ Vm{Γ2/N - log \H'2PH2\ - log K0I + log |P|

+ 0}/τ2 < x]

= 2 Σ Σ Pjk.iPu.άpff - PIJ)(ρβ} - P*1)

with ρ(ff=(H10Λ^Hr

10 + H2Pξ2

lHr

2)ij9 and the coefficients ai9 a3, b2, b4, b6 are
given by (6.9) with partial derivatives

- 2 Σ° Σ" "f PΣ
α=l ^=1 α'=l /?'=!

PΣ Pf "f "Σ PΣ PΣ

and (7.2) replaced p^> by p$.

7.2. Some oί/iβr test statistics. Given AΓ = n-J-l observations from a
p-variate normal population Np(μ, Σ), Anderson [6] and Bartlett [7] have
considered a test of the equality of the last p— 1 latent roots of the population
correlation matrix P = (pί7 ) and proposed the test statistic

(7.3) ΛΓ[(p - 1) log { Σ IJ(P - 1)} - Σ log U ,
<x=2 α=2
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where ^ ̂  ^ lp> 0 are the ordered latent roots of R. This hypothesis is precise-
ly equivalent (see Anderson [6, p. 142]) to

H3: pu = p for all i < j,

where p is unspecified. It is difficult to obtain a likelihood ratio criterion for
#3 in closed form and so Aitkin, Nelson and Reinfurt [2] have proposed the
approximate likelihood ratio criterion in the form

(7.4) N[log {1 + (p - l)f} (1 - P)'-1 - log \R\],

{ 1 i -i P
-yp(p —1)> Σ rij f°r R = (rij)' The asymptotic null distributions of

(7.3), (7.4) and Lawley's test statistic [58] have been studied by Aitkin, Nelson
and Reinfurt [2], Anderson [6], Bartlett [7] and Gleser [30]. The asymptotic
nonnull distribution of (7.3) is included in Theorem 3.5 in Section 3.2, and that
of (7.4) was given by Konishi [48].

Another interesting test concerning a correlation matrix is to test the null
hypothesis

H4: P = P0 for specified P0.

Bartlett and Rajalakshman [8] and, in view of information theory, Kullback
[55, 56] have proposed the statistic

(7.5) JV{log(|P0 |/|Λ|) - P + tr(Po^)}.

The asymptotic null distribution of (7.5) has been studied by Aitkin [1], Bartlett
[7], Bartlett and Rajalakshman [8], Kullback [55, 56], and the asymptotic
nonnull distribution by Konishi [48].

8. Further consideration of the use of asymptotic expansion formula

8.1. Sample correlation coefficient. In the case of p = 2, the sample cor-
relation matrix R and the population correlation matrix P are, respectively,

reduced to

1 P
and

r 1 / V P 1

where 7*12 = r21 = r an<l Pi2 = P2i—P The r is called the sample correlation
coefficient, based on a sample of size N = n + l drawn from a bivariate normal
distribution with population correlation coefficient p. The asymptotic formula

(6.7) in the bivariate case gives an asymptotic expansion for the distribution of a
function of r, which was given by Konishi [48]. As special cases of the result,
we can obtain asymptotic expansions for the distributions of various statistics
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expressed as functions of r. The following results are due to Konishi [48].

(8.1) Pr{ v /m(r-p)/( l-p 2 )<x}

(l + op2)*3 - ±-P

2x5φ(x) + 0(rrΓ3/2),

Pr { ̂ roίsin-1 r - sin"1 p)/(l - p2)1/2 < x}

- 2

where m — n — 2A with a correction factor A depending on p, Φ(x) and φ(x) are
the standard normal distribution function and its first derivative.

Another use of asymptotic formula for /(r) may be found in Konishi [47].
Solving certain differential equation after deriving an asymptotic expansion for
the distribution of /(r), Konishi [47] has obtained a simple and accurate approxi-
mation to the distribution of r, which is of the form

(8.2) Pr > log ± - log ± < ,

where m = n — 3/2 -f- p2/4.
It may be noted that (l/2)log{(l + r)/(l-r)} ( = z(r)) is the well known

Fisher's z-transformation [19]. Konishi [47] has made, using exact values as
given by David [16], an overall comparison with previous approximations; a
normalization approximation due to Ruben [78], a ί-approximation due to
Kraemer [49] and normal approximations for z(r) due to Fisher [19], Gayen
[28], Nabeya [65]. Further comparisons of these approximations will be given
in Section 8.2.

8.2. Numerical comparisons. Various approximations to the distribution
of r as stated in the last subsection are compared in Tables 8.1-8.3. Table 8.1
gives a comparison of the values of the probability integral Pr(r^r0) (|r0|<l)
approximated by using (8.1) and (8.2). Tables 8.2 and 8.3 contain comparisons
of the accuracies of various approximations. Exact values are taken from
tables in David [16].
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In the accompanying tables, ΛΓ, Ra, Za

standing for the following:

Fl9 F2, K and R are the notations

N: sample size (= n +1),

Ra: the case that the values of Pr(r^r0) are approximated by (8.1) with Δ =

3/4-p2/8,

Zα: the case that the values of Pr (r^r0) are approximated by (8.2),

Fί: the case that z(r) = (l/2)log {(l + r)/(l — r)} is approximated by a normal

variate with mean z(p) and variance 1/(ΛΓ —3),

F2: the case that z(r) is approximated by a normal variate with mean z(p)-h

p/2n + p(5 + p2)/8n2 and variance {l+(4-p2)/2π + (22-6p2-3p4)/6n2}/n,

K: the case that (N-2)1/2(r-p*)/{(l-r2)(l-p*2)}1/2 is approximated by a

t-variate with (N — 2) degrees of freedom where p* is the median of the

distribution of r,

R: the case that the values of Pr (r ̂  r0) are approximated by

Table 8.1. Comparison of the values ofPτ(r<^rQ} approximated
by (8.1) and ($.2} for N=25 and p=0.9

/Ό

.80

.81

.82

.83

.89

.90

.91

.95

.955

.96

.965

Ra

z
a

Ra

z
a

Ra

z
a

Ra

z
a

Ra

z
a

Ra

z
a

Ra

z
a

Ra

Z
a

Ra

z
a

Ra

Z
a

Ra

z
a

term of
0(1)

.00608

.03753

.01201

.05001

.02242

.06645

.03959

.08794

.40099

.40531

.50000

.50000

.59901

.60392

.89506

.95666

.91609

.97560

.93379

.98800

.94845

.99508

term of
0(1 Hn)

.01880

-.00773

.02711

-.00974

.03550

-.01218

.04167

-.01507

-.03192 '

-.03661

-.03768

-.03768

-.03192

-.03639

.03681

-.00868

.04082

-.00541

.04285

-.00295

.04305

-.00135

term of
0(llri)

.01292

.00169

.00946

.00168

.00313

.00161

-.00442

.00145

-.00039

.00002

.00000

.00000

.00039

-.00003

.01307

-.00170

.01237

-.00161

.01058

-.00132

.00784

-.00090

total

.03779

.03149

.04858

.04195

.06105

.05587

.07685

.07432

.36869

.36872

.46232

.46232

.56747

.56750

.94494

.94628

,96928

.96858

.98722

.98373

.99935

.99283

exact

.03129

.04178

.05574

.07423

.36883

.46244

.56762

.94612

.96838

.98350

.99263
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-̂Pr (r ̂  r0) = Φ - f - f - ̂  - L - V

 )1/2

2/J

{i + i/ id - /ί)-1 + |p2d - P2)-

It may be seen from these tables that the asymptotic formula (8.2) provides

high accuracy over the whole domain of 7% even for relatively small N. Table

8.1 shows that the normal approximation based on the limiting term of (8.1)

can remarkably be improved by the transformation z(r) in the tail areas of the

distribution curve. We can also see the efficacy of the terms of orders I/ ^Jn and

1/n in the expansion formulae. The normal approximation with mean z(p)

and variance \.f(N — 3), which is the most commonly used for the distribution of

Table 8.2. Comparison of errors in approximating the values ofPr (r
Error—(approximate value—exact value) x 10s

ro

-.10

-.05

.00

.05

.10

.45

.50

.55

.75

.80

.85

.90

.625

.675

.725

.775

.80

.89

.90

.91

.96

.97

.975

.98

F>

597

836

1120

1447

1806

3516

3329

2994

1057

717

454

213

664

1165

1989

3253

4071

6217

6043

5698

1802

1040

723

450

F
2

-90

-40

26

109

203

286

104

-105

-298

-70

124

141

-84

-43

60

247

378

241

92

-80

-183

84

176

200

K

95

116

138

160

181

139

90

35

-100

-81

-47

-15

#=11, ,0=0.9

218

314

440

579

649

297

167

22

-359

-240

-166

—97

R

67

74

80

83

84

12

7

2

-228

-346

-400

-313

340

402

441

414

377

83

79

77

-495

-669

-678

-606

z
a

34

25

12

-3

-20

-77

-79

-85

-81

-48

— 3

31

100

101

81

34

22

-42

-43

-44

18

64

81

85

exact

.02710

.03666

.04893

.06449

.08400

.39234

.46671

.54751

.87402

.93270

.97267

.99335

.01165

.02086

.03864

.07439

.10461

.38127

.43957

.50517

.89182

.94987

.97083

.98571
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Table 8.3. Comparison of errors in approximating the values 0/Pr (r<Ξr0):
Error^(approximate value—exact value) xlO 5

r, Λ F, K R z
a

exact

7V=25, ̂=0.9

.80

.81

.82

.83

.84

.89

.90

.91

.95

.955

.96

.97

.82

.83

.84

.85

.86

.89

.90

.91

.93

.94

.95

.96

857

1093

1378

1712

2091

3793

3756

3472

803

540

335

85

245 .

396

619

929

1323

2539

2597

2312

1037

467

141

22

-5

19

48

84

122

103

6

-104

-3

43

66

42

-20

-13

1

26

56

65

2

-71

-56

10

30

10

153

179

207

235

260

191

113

22

-100

-74

-48

-12

46

66

90

121

150

165

123

52

-36

-31

-12

-2

111

180

178

168

149

22

18

16

-231

-236

-210

-104

I

72

83

89

88

75

11

8

3

-78

-108

-74

-23

20

17

13

9

3

-11

-12

-12

16

20

23

14

9

8

6

5

2

2

-2

-3

2

6

7

3

.03129

.04178

.05574

.07423

.09859

.36883

.46244

.56762

.94612

.96838

.98350

.99733

.01285

.02177

.03643

.05998

.09681

.33974

.47403

.62459

.88871

.96114

.99174

.99920

z(r), is not so accurate, though this approximation is much superior, in the tail

areas, to that based on the limiting distribution of r.
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