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In the article [11] Traverso defined the notion of seminormal subrings of a
commutative ring and developed an interesting theory on such subrings. In
particular, to study the structure of seminormal subrings of a noetherian ring, he
used a nice method by which a subring A4’ is constructed from a ring B by glueing
prime ideals p,,..., p, of B lying over a prime ideal p of a subring 4 of B (for the
precise definition see §1). Such a subring A’ is called the ring obtained from
B by glueing over p, or simply a glueing of prime ideals p,,..., p,. Traverso
showed that any seminormal subring A4 in a noetherian ring B is obtained from B
by a finite number of glueings, if B is a finite A-module (cf. Theorem 2.1 in [11]).

The aim of this paper is to show some results on glueings of prime ideals in
the above sense. In §1 we give a necessary and sufficient condition for a finite
number of prime ideals p,,..., p, of a noetherian ring B to be glued. - In other
words, we give a condition under which there is a subring 4 of B such that B is
a finite A-module and that p,,..., p, are the prime ideals of B lying over a prime
ideal p of 4. Moreover we investigate when the ring A’ obtained from B by
glueing over p coincides with A. Although Pedrini [8] and Tamone [10] have
already attacked the same problem, the rings treated by them are very special
ones. So, in §2, we apply our results in § 1 to these special cases and show how
our results work there in a unified way. Next, in § 3, we show that Serre’s prop-
erty (S,) goes down from a noetherian ring B to a glueing A of prime ideals of
height 1. This result also has been shown by Pedrini [8] in very special cases
of integral domains, but we give a complete proof of this without any assumption.
Moreover we show that if A is a glueing of prime ideals p,,..., p, of a noetherian
ring B one of which has height>1 and if any p, contains a regular element of B,
then A does not have the property (S,) or A coincides with B. In the last section
we study local rings which are glueings of maximal ideals of semilocal rings.
When A is a local subring of a semilocal ring B which is finite over 4, we give
several conditions for A to be a glueing of maximal ideals of B. In particular a
condition for A4 to be such a glueing of a regular semilocal ring B will be given in
terms of multiplicity of 4 and the conductor of A in B in the case where A is the
locality of a closed point of an algebraic variety.

All the rings in this paper are commutative with unit.
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§1. A condition for prime ideals to be glued

First we shall recall some basic results on glueing of a noetherian ring B over
a prime ideal of a subring of B. Let A be a noetherian ring and B an overring of
A such that B is a finite A-module. Let p be a prime ideal of 4, and denote by
k(p) the quotient field of A/p. Then Traverso [11] proved the existence of the
largest subring A’ of B containing A satisfying the following conditions:

i) There is exactly one prime ideal p' of A’ lying over p.

ii) The quotient field x(p") of A'[p’ is isomorphic to x(p) by the canonical

homomorphism x(p)—x(p’).
This largest subring A’ of B is called the ring obtained from B by glueing over p.

LeEMMA 1. Let A, B and p be as above, and let p,,..., p, be the prime
ideals of B lying over p. Let k(p;) be the quotient field of B/p;, and let &; and
w; be the canonical homomorphisms B—B/[p; and x(p)—x(p;), respectively, for
each i. If A’ is a subring of B, then the followings are equivalent:

(i) A’ is the ring obtained from B by glueing over p.
(ii) A’ is the subring of B consisting of all b € B satisfying the followings:

a) = (b) belongs to w(k(p)) for each i.

b) wil(n(b))=wj!(n;(b)) for any i and j.

The proof is easy and given in [11], p. 588.

Next we give another characterization of A’. For this purpose put C=
Kk(py) x - X k(p,) and let p; be the canonical projection of C to x(p;). Let ¢ be
the homomorphism of B to C such that p;¢ is the canonical homomorphism
B—B[p,—k(p,), and let  be the homomorphism of x(p) to C such that py is
w;. Let the following diagram be the pullback one of commutative rings with
respect to ¢ and ¥ :

B d D

4 i

Co—g—x(p)
Then we have the following

LeMMA 2. The homomorphism i is injective, and the image i(D) is the
ring A' obtained from B by glueing over p.

PrOOF. Since ¥ is injective, so is i clearly. Now, by definition, D consists
of the elements (b, a) of B x x(p) such that ¢(b)=y(x). If b is an element of A4’,
then my(b) is an element of wy(x(p)) and a=w;!(n(b)) is independent of i by
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Lemma 1. Then it is easy to see that ¢(b)=y(«), and hence A’ is contained in
i(D). Conversely let b be an element of i(D). If i((b, ®))=b, then we have
¢(b)=y(a). This means that w(a)=m,(b) for each i, and hence b belongs to A4’
by Lemma 1. qg.e.d.

In the following we may identify A’ with D by the injection i.

Now let B be a noetherian ring and let py,..., p, be prime ideals of B. Then
we say that (B; py,..., p,) can be glued over a subring A of B, if B is a finite
A-module and if there is a prime ideal p of A such that p,,..., p, are the prime
ideals of B lying over p. By Nagata-Eakin’s Theorem (cf. [3]) A4 is necessarily
noetherian. The following proposition gives a condition for (B; py,..., p,) to be
glued.

PROPOSITION 1. Let B be a noetherian ring of finite dimension and let
Pise-., P, be prime ideals of B. Then (B; py,..., P,) can be glued over a subring
of B if and only if the followings are satisfied:

(i) dim B/p;=dim B/p; for any i and j.
(ii) There is an injective homomorphism w from an integral domain R to the
residue ring B[N\ ,p; such that BN\ ,p; is a finite R-module.

Proor. First assume that (B; py,..., p,) can be glued over a subring A of
B. If p=Anp; then we see p=(N,;p)NA. Put R=A/p and let w be the
canonical homomorphism R=A/p—B/N’p;. Then it is clear that R and w
satisfy the assertion (ii) of Proposition 1. On the other hand, we see dim B/p;
=dim R, because we have p,N A=p and B is a finite A-module. This means
that the assertion (i) of Proposition 1 is satisfied. Conversely assume that the
assertions (i) and (ii) are satisfied. Let m be the canonical homomorphism
B—B/NL,p;. Denote by A the inverse image n~!(w(R)) of w(R). Then it is easy
to see that 4 is a subring of B with a prime ideal N\2_,p;, and that A/N\7-;p;
is isomorphic to R. Since B/N\’.p; is a finite A/N\}-;p;module, B is a finite
A-module. If q is a prime ideal of B such that qn A=N}-,p; we have gop;
for some j. Since NJ= p;=qNA>p; N AD N}-,;p;, we see gD A=p; N A. This
means q=p; because B is integral over A. Since B/N}-,p; is integral
over A/N\}-yp;, we have dim A/N}- p;=dim B/p; for some j, and hence
dim A/N\%p;=dim B/p, for any h by our assumption (i). Therefore we see
dim A/A n p,=dim B/p,=dim A/N\}.p; and hence we have p,nN A=} ,p; for
any h. This means that py,..., p, are the prime ideals of B lying over the
prime ideal N p; of A. q.e.d.

ReMARK 1. Let B, py,..., P, R, w and = be as above and consider the pull-
back diagram of commutative rings with respect to = and w:
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B f S
1 f
B/N,p,—w— R

Then we see easily that 4A=n"!(w(R)) is isomorphic to S by the homomorphism f.

ReMARK 2. If there is a subring C of B such that n(C)=w(R), then
(B;py,..., p,) can be glued over C+ N p; of B. In fact it is clear that A=
7~ Y(w(R)) is equal to C+ N’ ,p;. In particular if (B; py,..., p,) can be glued
over a subring C of B, then it can be also glued over C+ N p;.

In the proof of Proposition 1 we have obtained a subring A=n"'(w(R)) of
B from given R and w, which we shall denote by Ay in the following. Moreover
let A be the ring obtained from B by glueing over p; N Ag. We call Ay a glueing
of (B; py,.--, P,). Assuming that the assertions (i) and (ii) of Proposition 1 are
satisfied, we denote by o the composition of canonical homomorphisms

B~ BINIyp; — [Ty Blp;c, Tz, x(p).

On the other hand we may identify the quotient field Q(R) of R with a subfield of
the total quotient ring Q(B/N\I-p;)=IT%-, x(p;) by a canonical homomorphism
w; obtained from w, because the image of a non-zero element of R by w is not a
zero-divisor of B/N\7_p;.

PROPOSITION 2. Assume that the assertions (i) and (ii) of Proposition 1
are satisfied and let the following diagram

B S S,

| I

ITi=x(py) W O(R)

be the pullback one with respect to ¢ and w,. Then Ay is isomorphicto S, by
the homomorphism f,.

ProoF. Since R is isomorphic to n(Ag)=Ag/N\%,p; as seen in the proof of
Proposition 1, this is a direct consequence of Lemma 2. q.e.d.

THEOREM 1. Let the notations be as above and assume that the assertions
(i) and (ii) of Proposition 1 are satisfied. Then Ay coincides with Ay if and
only if we have w;(R)=0(B)nw,(Q(R)). In particular if R is a normal
domain, Ag is a glueing of (B; py,..., P,)-

ProoOF. First assume that Ag=Ag. Then it is sufficient to show that w,(R)
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20(B)Nw(Q(R)). Let x be an element of o(B) N w,(Q(R)). Since S, is iso-
morphic to the subring of B x Q(R) consisting of the elements (b, r) satisfying
a(b)=w,(r), there exists an element y in S, such that x=0f,(y)=w,g,(y). By
our assumption, f;(y) is an element of Agx=Ax= f,(S;) and hence we see easily
by Remark 1 that g,(y)=g(y) is in R. This means that x=w,g,(y) is contained
in w,(R).

Conversely assume that w(R)=0(B) n w,(Q(R)). If y is an element of S,
x=0f,(y)=w.g9.(y) is in o(B) N w;(Q(R)) and hence in w,(R). Therefore from
definition of 7, o, w and w, it is easy to see that there is an element z in B/ ,p;
whose image in 17, k(p;) by the canonical injection B/N\% p;—=T1/=; k(p,) is
x, and that z is in n(B) N w(R). This means that there is an element s in S
such that wg(s)=nf(s)=z in the diagram of Remark 1. Since nf(s)=nf,(y)=z,
fG)—fi(y) is in N2 p;. Since Ay contains N'.,p;, this means, from Lemma 2
and Proposition 2, that A, coincides with Az. Lastly assume that R is an integral
domain. Since B/N\7_p; is integral over w(R), (B) is integral over w,(R).
Therefore a(B) n w,(Q(R)) must be w;(R) and hence we have Ag= Ay. qg.e.d.

§2. Examples

(1) Let k be a field and let B be a finitely generated k-algebra. Let
Pis-.-» P, be prime ideals of B. Then (B; py,..., p,) can be glued over a subring
of B if and only if we have dim Bfp;=dim B/p; for any i and j. In fact
B/N\%-,p; is also a finitely generated k-algebra, and hence, from Noether’'s nor-
malization lemma (cf. [1], Chap. 5, § 3, Th. 1), there is a subring R of B/N\_,p;
isomorphic to a polynomial ring over k such that B/N\%_p; is a finite R-module.
Therefore (B; py,..., P,) can be glued over a subring Ay of B by Proposition 1,
and moreover we have Ag=Ap by Theorem 1. In particular if we choose
algebraically independent elements z,..., z; of B over k such that B is integral
over k[zi,..., z;] and that we have (N\I-1p) Nk[zy,..., z,] =(24,..., 2), then
A=k'[z,..., z]+ N\I1p; for any subfield k' of k such that [k: k']J<oo is a
glueing of (B;p4,..., p,)- Thisisthe main result of Tamone [10] and follows easily
from Proposition 1, Remark 2 and Theorem 1 by using the fact that B/N\'.p;
is integral over a subring isomorphic to k'[z4,..., 2;]/(Z1seer Z) XK [Zg4 15005 Z4)-
Moreover A is a finitely generated k'-algebra by Lemma 9, in [1], Chap. 5, §1,
no. 9.

(2) Let k be a valued field and let B be an analytic k-algebra. Let
Pis---s P, be prime ideals of B. Then (B; py,..., p,) can be glued over a subring
of B if and only if we have dim B/p;=dim B/p; for any i and j. This follows
also from an analogous result for analytic k-algebras to Noether’s normalization
lemma for finitely generated algebras over a field. Precisely, B/N\}-,p; contains
a regular local ring over which it is a finite module (cf. Sitze 3, 4 in Kap. II, §5
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of [5]).

(3) Let B be a noetherian ring, and let p, and p, be prime ideals of B
which may be equal to each other. Let m; be the canonical homomorphism
B—-B/p; for i=1,2. Let ¢ be an isomorphism of B[p, onto B[p, and let A be
the subring of B consisting of the elements b in B such that ¢n,(b)=mr,(b).
Assume that B[y, is a finite A-module by the canonical homomorphism AC,B

—B[p,. Then A is a glueing of (B; vy, P2).

Proor. It is easy to see ANp;=A4Np,=p; Np,, which we denote by p.
Since B/p, is a finite A-module, so is B/p,. Therefore we have

B = Ab, +-++ Ab; + py = Ab] + -+ Ab; + p,

for some elements b; and b in B. Now let p, be generated by xy,...,x,. If b
is an element of B, we see

b=ab; +-+ab,+ c;xy +-+ cx;
for some elements a; in 4 and c; in B. Moreover there are elements g;; in A and
y;in p, for 1<i<t and 1< j<s such that

¢ = a;by +--+ aib; + y;.

This means that we have

=aib; ++ab, + X;;a;b5x; + iy
and hence

B=A+ Aby; +--+ Ab, + X, ; Abx,,

because Y ; y;x; is an element of p; N p, which is contained in 4. In particular if
we put R=A/p, then B/p, N p, contains a subring isomorphic to R over which it
is a finite module. Therefore (B; p,, p,) can be glued over A by Proposition 1
and Remark 2. Next let ¢* be the isomorphism of k(p,) onto x(p,) obtained
from ¢ naturally and h; the canonical injection of x(p)=Q(4/p)=0(R) into «(p;)
fori=1,2. Leto and w, be as in Proposition 2 and Theorem 1, and let p; be the
canonical projection of x(p,) x x(p,) for i=1,2. Then if we have a(b)=w(x)
for be B and x € Q(R), we see, from h,=¢*h,, n;=p,0 and h;=p;w,,

¢ny(b) = ¢*ny(b) = ¢*n,0(b) = ¢*p,wy(X)
= ¢*hy(x) = hy(x) = p,w;(x) = p,0(b) = m,(b)

and hence b is an element of A. This means that o(b)=w,(x) belongs to o(A4)
=w,;(R) and hence that we have w,(R)=0(B) N w,(Q(R)). By Theorem 1 and
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Remark 2 our assertion follows from this and the fact that 4 contains p=p, N p,.
q.e.d.

REMARK 3. Pedrini treated some special cases of the above example (3) in
Theorems 1 and 3 of his paper [8].

§3. Property (S,) and glueings

Let A be a noetherian ring. Then we recall that A has Serre’s property
(S,) if and only if Ass(A) and Ass(A/fA) for any regular element f of A have
no embedded prime ideals. First we show a lemma giving a condition for a
noetherian ring with (S;) to have (S,), which is due to S. Itoh and essential in
later discussion.

LEMMA 3. Let A be a noetherian ring whose prime ideals of height >1
contain regular elements. Let AV be the set of elements z in the total quotient
ring Q(A) of A such that any prime ideal of A containing the ideal A:,z is of
height >2. Then A has (S,) if any only if A=AW,

Proor. First assume that A has (S,). By definition A is contained in
AWM, If AM contains an element z=a/b not belonging to 4 where a and b are
in A and b is regular, then any minimal prime divisor p of A:,z=bA:,a is of
height >2. Moreover we see depth 4,=1, because pA, is the radical ideal of
(bA:4a)A,. On the other hand we have depth A, > inf (2, ht 4,)>2 from (S,).
This is a contradiction. Therefore we see that A=A, Conversely assume
that A does not have (S,). Then there exists a prime ideal p of A such that
depth 4,<1 and ht 4,>2, because A has (S;). If b is a regular element in p,
the image b of b in A, is also regular in 4,. Therefore we see depth A,=1.
This means easily that p4, is an element of Ass,, (4,/bA,) and hence that p is
an element of Ass, (4/bA) by Lemma (7.C) in [6]. Therefore there exists an
element a in A such that bA:,a=A: a/b=p. Then a/b belongs to AM) from
the fact that ht(p)>2. Moreover a/b is not an element of A by p=4A:,a/b.
So A does not coincides with A, q.e.d.

Now we give the following theorem which includes Theorems 2 and 4 of
Pedrini [8] as special cases.

THEOREM 2. Let B be a noetherian ring and let p,..., p, be prime ideals
of B. Let A be a glueing of (B; py,..., P,) and put p=ANnp;. Then we have the
followings:

(i) If any p; is of height 1 for i=1,..., n and if B has (S,), then A has also (S,).
(ii) Assume that A is not equal to B. If any p; contains a regular element of
B for i=1,..., n, then A, is of depth 1. Furthermore if some p; is of height >1,
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then A does not have (S,).

Proor. (i) First we show that ht (p)=1. It is clear that ht(p)> 1, because
ht (p)=1. If ht(p)>2, there are prime ideals q, and q, of 4 such that p=2q,
2q,. Then, by Going-up theorem, there are three prime ideals P, Q; and Q,
of B such that PRQ,EQ,, PnAd=p, Q,nA=q, and Q, N A=q,. Since P
is one of p,,..., p,, P is of height 1. This is a contradiction. Now let Q be a
prime ideal of B and put g=Qn A. Then we see that ht (Q)>2 if any only if
ht(q)>2. In fact if Q contains p=N\}_,p;, so does q. Then we see that
ht (Q)>2<0Q02p; for some i<>qR2p<>ht(q)>2. If Q does not contains p, we
have q=2p. Then we see By =A, by Lemma 1.6 of [11] and hence ht (Q)=ht (q).
Since we have ht (p)=ht (p;)=1 for i=1,..., n, and p=\}_p; contains a regular
element of B, we see easily that the total quotient ring of A may be considered to
coincides with that of B. Let z be an element of A" and let a be the ideal
A:,z. Then aB is contained in B:gz. Therefore if P is any prime ideal of B
containing B:yz, B N A4 is a prime ideal of A containing a and hence is of height
>2. This means from the above that P is of height >2, and so z is an element
of B, Therefore we see that A1) = B()=B by Lemma 3, because B has (S,)
and hence (S;). Let x be an element of A). Then x belongs to B, but p does
not contains A:,x, because ht (p)=1. If s is an element of (4:,X)~p, a=sx is
an element of A. Let w; be the canonical homomorphism x(p)—x(p;), and =,
the composition of the canonical homomorphisms B— B/p,—k(p;) for i=1,..., n.
Then we see easily that m(x)ewy(r(p)) and wi!(m(x))=wj(n)(x))=a/s for
i, j=1,..., n, where a and § are the classes of @ and s in A/p<k(p). This means
by Lemma 1 that x belongs to A, since 4 is a glueing of (B; py,..., p,). There-
fore we see A=AM). Since B has (S,) and we see easily ht (Qn 4)=0 for any
prime ideal Q of B of height 0, A has also (S;). Therefore A has (S,) by
Lemma 3.

(ii) Let S be the multiplicatively closed subset A~p of B. Then 4, = A is semi-
normal in Bg by Corollary 2.2 in [11] and the conductor Ag:p Bs is pA,=
N7-,p;Bs, because the conductor A:pzB is equal to p=N"p; by Proposition
1.2 in [10]. Then we see easily from the proof of Theorem 2.1 in [11] that 4,
is a glueing of (Bg; p,Bs,..., ,Bs). Moreover if an element a in p; is regular in
B, the image of a in By is regular in Bg. Therefore we may assume that B is a
semilocal ring with the maximal ideals p,,..., p, and that A4 is a local ring with the
maximal ideal p. Since p and p; contain regular elements of B and we see easily
from Lemma 1.6 in [11] that any regular element of A4 is also regular in B, we may
consider that the total quotient ring Q(A) of A is a subring of the total quotient
ring Q(B) of B. Then we see that Q(4)=Q(B), because p=A:zB contains a
regular element of B. Therefore if z is an element of B which does not belongs
to A, there are a regular element b of 4 and an element a of A such that z=a/b
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in Q(A)=Q(B). Then we see that zpcB(A4:3B)cA and hence that p=4:,z,
since zAX A. This means that bA:,a=p, and so p is contained in Ass, (4/bA).
In other words we have depth A=1. In particular if some p; is of height >1,
so is p. Therefore 4 does not have (S,). qg.e.d.

COROLLARY. Let B be a noetherian ring, and let A be a subring of B which
is seminormal in B. Assume that B is a finite A-module. If a prime divisor
in A of the conductor ¢ of A in B is of height >1 and if ¢ contains a regular
element of B, then A does not have (S,).

Proor. If p is a prime divisor in 4 of ¢ of height >1, let S be the multi-
plicatively closed subset A~p of 4. Then Ay is seminormal in Bg and ¢y is the
conductor of Ag in By as seen in the proof of Theorem 2, (ii). Since ¢ is a radical
ideal by Lemma 1.3 in [11], ¢ is the maximal ideal of Ag=A,. Therefore we
see, from the proof of Theorem 2.1 in [11], that Ag is obtained from Bg by
glueing over the prime ideal pAs of A of height >1. This means by Theorem
2, (ii) that Ag does not have (S,). Therefore, from the definition of (S,), it is
easy to see that A does not have (S,). g.e.d.

REMARK 4. Let B and A4 be as in Corollary to Theorem 2. Assume that
B has property (S,). Then even if any prime divisor in B of the conductor of
A in B is of height 1, A does not necessarily have property (S,). In fact let B be
a finitely generated algebra over an algebraically closed field k. Assume that B
is a normal domain and the dimension of B is larger than 1, and let p, and p, be
two prime ideals of B such that ht(p;)=ht(p,)=1. Then we see dim B/p,=
dim B/p,=dim B—1>1 and hence there is a glueing A, of (B; p;, p,) as seen in
§2, (1). If p is the prime ideal 4, Np;=A, Np, of A;, we have dim A4,/p=
dim B/p;>1 and hence p is not a maximal ideal of 4;. Since A, is also a finitely
generated k-algebra as seen in § 2, (1), there are infinitely many maximal ideals of
A, containing p. Let m, and m, be such two different maximal ideals of 4, and
let A be a glueing of (4,; m,, m;). Then we see easily that 4 is seminormal in
B and that the conductor of A4 in B is the ideal p, N p,. Then A does not have
property (S,), although B does.

REMARK 5. The author proved originally Theorem 2 and its Corollary for
noetherian domains using a well known criterion for a noetherian domain 4 to
have (S,): 4 has (S,) if and only if A= ,4, where p runs over all prime ideals
of A of height 1. However S. Itoh pointed that if we use Lemma 3 instead of
this criterion, the same proof can work in the more general cases stated in the
above results. On the other hand S. Goto obtained in [4] the following result
holding a close similarity to ours: Let B be a semilocal Cohen-Macaulay ring
with maximal ideals n,,..., n,. Assume that we have dim B=dim B,, for any i,
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and let 4 be a glueing of (B; n,..., n,) different from B. Then A4 is a Cohen-
Macaulay ring if and only if dim B=1.

§4. Glueings of semilocal rings

Let A be a noetherian local ring with maximal ideal m and residue field k.
Denote the multiplicity e ,(m) of m, the embedded dimension dim, m/m? and the
graded ring Y. 2, mi/mi*t! associated to A by e(4), embdim(4) and G(A),
respectively. Furthermore let G(A)* be the ideal > 2, m!/m!*! of G(4). Then
we have the following

LeMMA 4. Let B be a noetherian semilocal local ring, and let n,,..., n,
be the maximal ideals of B. If A is a glueing of (B; ny,...,1,), then Aisa
local ring and G(A) is isomorphic to a graded subring G of G(B,,)+--+ G(B,,)
such that G* =G(B, )*++--+G(B,)*. In particular we have

embdim (4) = X7, [x(1;): x(m)] embdim (B,,),

where m is the maximal ideal n;n --- N n, of A. Moreover suppose that ht (n;)
=ht(m) for 1<i<s and ht (n))<ht(m) for s+1=<j=<n. Then we have

e(A) = 251 [xk(n): x(m)]e(B,,).

ProoF. It is easy to see that A is a local ring and that m coincides with
the Jacobson radical n,n---nNn,=n,---n, of B, because A is a glueing of
(B;ny,..., n,). Hence m* is equal to n{n---nnj for s=1, 2,.... Let f; be the
canonical homomorphism B/n§ N --- N n§—»>B/n{@---@B/n; for each s>1. Since
n§ and n$ are coprime for any i#j, f; is an isomorphism by Chinese remainder
theorem. Therefore we see easily that f; induces an isomorphism between
msmstl=nsn---nug/mstin - nngtt and n{/mitt@---@ng/mstt for each s=1,
and hence that G(4)~A/m®G(B, ) ®---®G(B,,)* as graded rings. Since 4/m
is isomorphic to a subring of B/n; N --- N n,=B[n; @ --@B/n,, the first assertion
is proved. The second one is a direct consequence of the above isomorphism.
Lastly we see also from the above that

length, (B/m") = 21, length, (B/n}) = X -, lengthy (B/n) [x(ny): x(m)].

Since we have length, (4/ms)=length, (B/m*)—length, (B/A4) and length, (B/A)
=length, (B/N\}=, n,)/(4/m))< o0, we see, from the definition of multiplicity and
our assumption on heights of maximal ideals n,,..., n,,

e(4) = 231 [x(n): k(m)]e(B,). q.e.d.

PROPOSITION 3. Let B be a noetherian semilocal ring with maximal



On glueings of prime ideals 361

ideals ny,..., n,, and let A be a local subring of B with maximal ideal m such
that B is a finite A-module. Then the followings are equivalent if B is not equal
to A:

(i) A isseminormal in B and the conductor of A in B is m-primary.

(ii) A is a glueing of (B; n,,..., n,).

(iii) m is equal to the Jacobson radical n=n;n---nn, of B.

(iv) The canonical homomorphism f: m/m2—-n/n2 induced by the injection
AC,B is surjective.

(v) The homomorphism f is bijective.

(vi) We have n? n m=m? and embdim (4) =37, [x(n,): k(m)] embdim (B, ).
(vii) The homomorphism f induces a bijection between the ideals G(A)* and
GB,) ®-®G(B,)".

Proor. (i)=>(ii). Assume that A4 is seminormal in B. Then the conductor
¢ of A in B must be a radical ideal by Lemma 1.3 of [11]. Therefore if ¢ is m-
primary, we see c=m. Then we see from the proof of Theorem 2.1 of [11] that
A is the ring obtained from B by glueing over m. In other words 4 is a glueing
of (B; ny,..., n,).
(ii)=>(vii). This is a direct consequence of Lemma 4.
(vii)=>(v)=>(iv). Trivial.
(iv)=(iii)). Let A’ be the ring obtained from B by glueing over m. Then A4’ is
a local ring with maximal ideal n=n;n---nn, If f is surjective, we have
n=m+n? and hence n=mAd’+nn. Therefore we have n=m4A’ by Nakayama’s
lemma. This means that we have mA’=m+(mA4’)? =m+ m(m4’). Since B
is noetherian and a finite A-module, A is also noetherian by Nagata-Eakin’s
theorem (cf. [3]). Therefore A’ and m’ are both finite A-modules and so we
see m=mA’ again by Nakayama’s lemma. This means that m=n.
(iii)=>(ii)). Let A’ be as above. Then we see A'/n is isomorphic to 4/m by the
induced homomorphism of the injection Ac,A4’. Therefore we have A'=A+n
=A+m=A from the assumption that m=mn.
(ii))=>(). This is well known. (Cf. §1in [11].)
(v)=>(vi). Since the kernel of f is n2nm/m?2, f is injective if and only if n2nm
=m2. Moreover the right hand side of the second equality in (vi) is equal to the
dimension of the vector space n/n? over k= A/m as seen in the proof of Lemma 4.
From these facts our assertion follows easily. q.e.d.

ProPOSITION 4. Let k be an algebraically closed field, and let A be a
local ring of a closed point of an algebraic variety defined over k. Let B be
the integral closure of A in the quotient field of A, and let n,,..., n, be the
maximal ideals of B. Then the followings are equivalent:

(i) Bis regular and A is a glueing of (B; ny,..., n,).
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(ii) The multiplicity e(A) of A coincides with the number n of the maximal
ideals of B and the conductor of A in B is the maximal ideal m if e(4)>1.

Proor. First notice that we have ht (n;)=dim B=dim A for any i and that
B,, is unmixed in the sense of §25 in [7] as seen easily from analytically
unramifiedness of B,, (cf. (36.4) in [7] or Theorem 31 of Chap. VIII in [12]). Now
assume that the assertion (i) is true. Then B,, is a regular local ring and hence
we see e(B,,)=1. If mis the maximal ideal of A, then B/n; is isomorphic to A/m
for each i by the assumption that k is algebraically closed. Therefore we have
e(A)=3%7-1eB,)=n by Lemma 4. On the other hand we see m=n,n---nNn,
by Proposition 3. This means that the conductor of 4 in B is equal to m if
e(A)=n>1. Conversely assume that e(A4) is equal to n and that B22A4. Then,
since ht (1;)=dim A for each i, we see n=3 -, e(mB,,) by a similar argument
in the proof of Lemma 4 or by Corollary 1 to Theorem 24 of Chap. VIII in [12],
where we denote by e(mB,,) the multiplicity of an w;B,-primary ideal mB,,.
This means that e(mB, )=1 for any i. Since mB,, is n;B, -primary, we see easily
1=<e(n;B,)<e(mB,)=1 by the definition of multiplicities of n;B, -primary ideals.
Then we have e(B, )=e(n;B,,)=1 and hence B,, is a regular local ring by Theo-
rem (40.6) in [7], because B,, is unmixed as noticed in the above. Therefore B
is regular. Moreover there is a system of parameters x;,..., x; of mB,, such that
e(mB, )=e((xy,..., Xx;)B,,) by Theorem (24.1) in [7], because B, /n;B, =B/n; is
an algebraically closed field. Since B,, is regular, any system of parameters of
B,, is distinct by Theorem (25.7) in [7] and hence we see length B, /(x4,..., x;)B,,
=e((x4,...» X5)B,)=e(mB,)=1. This means that (x,,..., x;)B,, coincides with
the maximal ideal n;B,, and hence we have mB, =n;B,,. Since n,..., n, are
the prime divisors of mB, we see mB=n; N - N1, On the other hand if m is
the conductor of 4 in B, then mB is an ideal of A containing m and so coincides
with m. Therefore A4 is a glueing of (B; ny,..., n,) by the equivalence (ii)<>(iii)
in Proposition 3. qg.e.d.

REMARK 6. Let 4 and B be as in Proposition 4. From the proof of Propo-
sition 4 we see that if e(4) coincides with the number of the maximal ideals of
B, then B is regular. However A is not necessarily a glueing of (B; ny,..., n,).
For example let A be a local ring of an ordinary triple point of a plane curve.
Then we have e(4)=3 and the derived normal ring B of A in the quotient field
of A has exactly three maximal ideals n,, n,, n;. But 4 is not seminormal and
hence not a glueing of (B; n,, n,, nj), because singular seminormal points on
a plane curve are only ordinary double points (cf. [9]). Therefore the condition
that the conductor of 4 in B is the maximal ideal of A is indispensable in the
assertion (ii) of Proposition 4.

ReEMARK 7. Let A and B be as above, and assume that they satisfy the
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conditions (i) and (ii) of Proposition 4. Then we see embdim (4)=e(4) x dim 4
by Lemma 4. On the other hand G(B,,) is isomorphic to a polynomial ring over
k for each i and hence G(A) is reduced, because it is isomorphic to a subring of
a reduced ring G(B,,)+ -+ G(B,,) again by Lemma 4. If dim A=1, these two
properties means, conversely, that A is seminormal (cf. Theorem 1 in [2]).
However the author does not know whether a similar result holds for higher
dimensional cases.

ReEMARK 8. Let 4 be a reduced noetherian local ring with maximal ideal
m and infinite residue field A/m, and let B be the integral closure of A in its total
quotient ring. Assume that B is a Cohen-Macaulay ring and a finite 4-module,
and that we have ht(n;)=dim B for each maximal ideal n; of B (i=1,..., n).
Then if we have e(4)=> 7%, [B/n;: A/m] and m is the conductor of 4 in B, B is
regular and A4 is a glueing of (B; ny,..., n,). In fact this can be shown in a similar
way to the proof of Proposition 4. But we omit the proof.
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