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In the article [11] Traverso defined the notion of seminormal subrings of a

commutative ring and developed an interesting theory on such subrings. In

particular, to study the structure of seminormal subrings of a noetherian ring, he

used a nice method by which a subring A! is constructed from a ring B by glueing

prime ideals p l 5 . . . , pπ of B lying over a prime ideal p of a subring A of B (for the

precise definition see § 1). Such a subring A' is called the ring obtained from

B by glueing over p, or simply a glueing of prime ideals p l 9 , . . , pΛ. Traverso

showed that any seminormal subring A in a noetherian ring B is obtained from B

by a finite number of glueings, if B is a finite A-module (cf. Theorem 2.1 in [11]).

The aim of this paper is to show some results on glueings of prime ideals in

the above sense. In § 1 we give a necessary and sufficient condition for a finite

number of prime ideals p 1 ? . . . , pπ of a noetherian ring B to be glued. In other

words, we give a condition under which there is a subring A of B such that B is

a finite ^4-module and that p 1 ? . . . , pπ are the prime ideals of B lying over a prime

ideal p of A. Moreover we investigate when the ring A' obtained from B by

glueing over p coincides with A. Although Pedrini [8] and Tamone [10] have

already attacked the same problem, the rings treated by them are very special

ones. So, in § 2, we apply our results in § 1 to these special cases and show how

our results work there in a unified way. Next, in § 3, we show that Serre's prop-

erty (<S2) goes down from a noetherian ring B to a glueing A of prime ideals of

height 1. This result also has been shown by Pedrini [8] in very special cases

of integral domains, but we give a complete proof of this without any assumption.

Moreover we show that if A is a glueing of prime ideals p 1 ? . . . , pn of a noetherian

ring B one of which has height > 1 and if any pf contains a regular element of B,

then A does not have the property (S2) or A coincides with B. In the last section

we study local rings which are glueings of maximal ideals of semilocal rings.

When A is a local subring of a semilocal ring B which is finite over A, we give

several conditions for A to be a glueing of maximal ideals of B. In particular a

condition for A to be such a glueing of a regular semilocal ring B will be given in

terms of multiplicity of A and the conductor of A in B in the case where A is the

locality of a closed point of an algebraic variety.

All the rings in this paper are commutative with unit.
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§ 1. A condition for prime ideals to be glued

First we shall recall some basic results on glueing of a noetherian ring B over

a prime ideal of a subring of B. Let A be a noetherian ring and B an overring of

A such that B is a finite 4-module. Let p be a prime ideal of A, and denote by

κ(p) the quotient field of Afp. Then Traverso [11] proved the existence of the

largest subring A' of B containing A satisfying the following conditions:

i) There is exactly one prime ideal p' of A' lying over p.

ii) The quotient field κ(p') of A'jp' is isomorphic to κ(p) by the canonical

homomorphism fc(p)->/c(p').

This largest subring A' of B is called the ring obtained from B by glueing over p.

LEMMA 1. Let A, B and p be as above, and let pl5..., pn be the prime

ideals of B lying over p. Let κ(pf) be the quotient field of B/pj, and let πt and

vvf be the canonical homomorphisms B^Bjpt and κ(p)-+κ(Pi), respectively, for

each i. If A' is a subring of B, then the following s are equivalent:

(i) A' is the ring obtained from B by glueing over p.

(ii) A' is the subring of B consisting of all beB satisfying the following s:

a) n^b) belongs to Wi(κ(p)) for each ί.

b) w71(πi(b)) = wj1(π j (b)) for any i andj.

The proof is easy and given in [11], p. 588.

Next we give another characterization of A'. For this purpose put C =

κ(Pi) x ••• x κ(vn)
 a n c * let Pi be the canonical projection of C to κ(pt). Let φ be

the homomorphism of B to C such that ρ{φ is the canonical homomorphism

B-^BIPi-tKiPi), and let φ be the homomorphism of κ(p) to C such that pψ is

wf. Let the following diagram be the pullback one of commutative rings with

respect to φ and φ:

B. ! D

>\>

Then we have the following

LEMMA 2. The homomorphism i is injective, and the image i(D) is the

ring A' obtained from B by glueing over p.

PROOF. Since φ is injective, so is i clearly. Now, by definition, D consists

of the elements (b, α) of B x κ(p) such that φ(b)-φ(μ). If b is an element of A\

then πt(b) is an element of Wi(κ(p)) and α=w71(πί(fe)) is independent of i by
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Lemma 1. Then it is easy to see that φ(b) = ψ((x)9 and hence A' is contained in

i(D). Conversely let b be an element of i(D). If ί((b,oc)) = b, then we have

φ(b) = ψ((x). This means that wί(α) = πί(b) for each /, and hence b belongs to A'

by Lemma 1. q.e.d.

In the following we may identify A with D by the injection f.

Now let B be a noetherian ring and let p l 5 . . . , pn be prime ideals of B. Then

we say that (B; p l 5 . . . , pn) can be glued over a subrίng A of B, if B is a finite

y4-module and if there is a prime ideal p of A such that p 1 ? . . . , pΠ are the prime

ideals of B lying over p. By Nagata-Eakin's Theorem (cf. [3]) A is necessarily

noetherian. The following proposition gives a condition for {B\ p l 5 . . . , pΠ) to be

glued.

PROPOSITION 1. Let B be a noetherian ring of finite dimension and let

p l 5 . . . , pn be prime ideals of B. Then (B; pί9..., pn) can be glued over a subring

ofB if and only if the following s are satisfied:

(i) dimB/Pi = dim B/pj for any iandj.

(ii) There is an injective homomorphism w from an integral domain R to the

residue ring B/Γ\i=ιPi s u c n t n a t B/^UiPi I S a finite R-module.

PROOF. First assume that (J5; p l 9... 9 pn) can be glued over a subring A of

B. If p = y4Πρί, then we see p = (Λ?=1Pi)Π A. Put R = A/p and let w be the

canonical homomorphism Λ = ̂ 4/p~>jB/Λ?=iP£. Then it is clear that R and w

satisfy the assertion (ii) of Proposition 1. On the other hand, we see dim B/pt

=dim R9 because we have PfΠ A = p and B is a finite ^-module. This means

that the assertion (i) of Proposition 1 is satisfied. Conversely assume that the

assertions (i) and (ii) are satisfied. Let π be the canonical homomorphism

jB-*jB/Λ?=:iPi. Denote by A the inverse image π~1(w(R)) of w(R). Then it is easy

to see that A is a subring of B with a prime ideal Λ?=1P/, and that AIΓ\"=iPi

is isomorphic to R. Since BjΓ\ni=ιPi is a finite y4/Λ"=iPrmodule, B is a finite

A-module. If q is a prime ideal of B such that q n i = Λ"= 1p i, we have q^>Pj

for some . Since Γ\n

i=ίPi = q 0 A^>pj (] A^> Γ\Ί= !P i s we see q3^4 = p^ n 4 . This

means q = pp because B is integral over A. Since B/n?= 1p f is integral

over A/Λ?=iPf, we have dimy4/Π?=iPί = dimβ/py for some j , and hence

dim A/Γ\UiPi = dim J5/pΛ for any h by our assumption (i). Therefore we see

dim A/A nph=dim B/ph=dim A/Γ\ΐ=iPi and hence we have phΓ\A = Γ\UιPi for

any A. This means that p l 5 . . . , pΠ are the prime ideals of B lying over the

prime ideal Γ\"=ιVi of A. q. e. d.

REMARK 1. Let B, p l 5 . . . , pΠ, R9 w and π be as above and consider the pull-

back diagram of commutative rings with respect to π and w:
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B< L

Then we see easily that A = π~1(w(R)) is isomorphic to S by the homomorphism /.

REMARK 2. If there is a subring C of B such that π(C) = w(R), then

(B;pί9..., pn) can be glued over C + Γ\n

i=iVi of B. In fact it is clear that Λ =

π~1(w(R)) is equal to C + r\"=iVi- In particular if (B; p l 5 . . , , pn) can be glued

over a subring C of B, then it can be also glued over

In the proof of Proposition 1 we have obtained a subring A = π~1(w(R)) of

B from given R and w, which we shall denote by ΛR in the following. Moreover

let AR be the ring obtained from B by glueing over pf Π AR. We call v4̂  a glueing

of (B; p 1 ? . . . , pπ). Assuming that the assertions (i) and (ii) of Proposition 1 are

satisfied, we denote by σ the composition of canonical homomorphisms

B - ^ B/nUVi > Π?=i BlVtc^τiUi <Pi)-

On the other hand we may identify the quotient field Q(R) of R with a subfield of

the total quotient ring Q(BIΓ\l}=iVi) = ΓίUi κ(vd by a canonical homomorphism

w1 obtained from w, because the image of a non-zero element of R by w is not a

zero-divisor of

PROPOSITION 2. Assume that the assertions (i) αrcd (ii) of Proposition 1

satisfied and let the following diagram

B< ίl Sι

be the pullback one with respect to σ and w{. Then AR is isomorphic to Sx by

the homomorphism j \ .

PROOF. Since R is isomorphic to π(AR) = ARIΓ\Ί=iVi a s seen in the proof of

Proposition 1, this is a direct consequence of Lemma 2. q.e.d.

THEOREM 1. Let the notations be as above and assume that the assertions

(i) and (ii) of Proposition 1 are satisfied. Then AR coincides with AR if and

only if we have w1(R) = σ(B) f]wί(Q(R)). In particular if R is a normal

domain, AR is a glueing of(B; p l 9 . . . , pπ).

PROOF. First assume that AR = AR. Then it is sufficient to show that wx(R)
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^>σ(B)f]wι(Q(R)). Let x be an element of σ(B)f]wί(Q(R)). Since St is iso-

morphic to the subring of B x Q(R) consisting of the elements (b, r) satisfying

σ(b) = wί(r), there exists an element y in Sί such that x = σfi(y) = w1g1(y). By

our assumption, ft(y) is an element of AR = AR = f1(S1) and hence we see easily

by Remark 1 that g1(y) = g(y) is in R. This means that x = w1#1(j;) is contained

in w^R).
Conversely assume that w1(R) = σ(B) n Wi(Q(R)) If y is an element of Sl9

x = σf1(y) = w1g1(y) is in σ(5) Π vv^Q^)) and hence in w^R). Therefore from

definition of π, σ, w and w r it is easy to see that there is an element z in β/Π?=1Pi

whose image in Π"=i κ(P, ) by the canonical injection B/Λ?=iPi->Π?=i κ(vd is

x, and that z is in π(£) D w(R). This means that there is an element s in 5

such that wg(s) = πf(s) = z in the diagram of Remark 1. Since πf(s) = πfi(y) = z,

f(s)—fi(y) is in ΓλUiPi' Since AR contains r\Ί=1ph this means, from Lemma 2

and Proposition 2, that ^4R coincides with AR. Lastly assume that R is an integral

domain. Since J 5 / Λ " = I P J is integral over w(R), σ(B) is integral over w^R).

Therefore σ(B) Π wί(Q(R)) must be w^R) and hence we have AR = AR. q.e.d.

§2. Examples

(1) Let k be a field and let B be a finitely generated k-algebra. Let

p 1 ? . . . , pn be prime ideals of B. Then (B; p 1 ? . . . , pn) can be glued over a subring

of B if and only if we have dim Bjpt = dim B/pj for any ί and j . In fact

B/ΓΛUiPi is a l s o a finitely generated /c-algebra, and hence, from Noether's nor-

malization lemma (cf. [1], Chap. 5, §3, Th. 1), there is a subring R of BlrΛ"=ιVi

isomorphic to a polynomial ring over k such that B/ίΛ^ίVi is a finite R-module.

Therefore (B; p ί 9...9 pπ) can be glued over a subring AR of B by Proposition 1,

and moreover we have AR = AR by Theorem 1. In particular if we choose

algebraically independent elements zl9..., zd of B over k such that B is integral

over fc[z1?..., zd] and that we have (Λ?= 1p f) Π /c[zl5..., zd] = ( z l 5 . . . , zs), then

A = k'\zu..., z J + Πi=iPi for any subfield k' of k such that [fc: fe/]<oo is a

glueing of (B9pί9...9pn). This is the main result of Tamone [10] and follows easily

from Proposition 1, Remark 2 and Theorem 1 by using the fact that 5/Γ\?=iPi

is integral over a subring isomorphic to /c'[z1?..., zd]l(zl9..., z s)^/c'[z s + 1,..., z j .

Moreover A is a finitely generated /c'-algebra by Lemma 9, in [1], Chap. 5, § 1,

no. 9.

(2) Let k be a valued field and let B be an analytic k-algebra. Let

p l 5 . . . , pn be prime ideals of B. Then (B; pu..., pn) can be glued over a subring

of B if and only if we have dim 5/pf = dim Bjpj for any i and j . This follows

also from an analogous result for analytic k-algebras to Noether's normalization

lemma for finitely generated algebras over a field. Precisely, BjίΛ^xPi contains

a regular local ring over which it is a finite module (cf. Satze 3, 4 in Kap. II, § 5
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of [5]).
(3) Let B be a noetherian ring, and let pί and p2 be prime ideals of B

which may be equal to each other. Let πt be the canonical homomorphism

B-^B/Pifor i = l, 2. Let φ be an isomorphism of B/pί onto Bjp2

 and let A be

the subring of B consisting of the elements b in B such that φπί(b) = π2(b).

Assume that B/p1 is a finite A-module by the canonical homomorphism Ac_>B

-+Bjpv Then A is a glueing of(B\ pu ρ2).

PROOF. It is easy to see Af\pί =A Π ρ 2 = Pi Π p 2 , which we denote by p.

Since B/pt is a finite 4-module, so is B/p2. Therefore we have

B = Abt + — +Ab8 + ψi = Ab[ + — + Ab'Λ + p 2

for some elements bt and b) in B. Now let p t be generated by x l 9..., xr If b

is an element of B, we see

b = aίb1 H h αsfes + c ^ i H h crxf

for some elements at in A and Cj in 5. Moreover there are elements ai} in 4̂ and

yf in p 2 for 1 ̂ i ^ ί and l^j^s such that

Ci = anb[ +--+ aisb's + yt.

This means that we have

6 = a1b1 +•••+ α s65 + ΣijaijbjXi

and hence

B = ^ + i46t +•••+ A6S + Σ U i 4 i J x ί >

because Σ i ^i^i is a n element of p x Π p 2 which is contained in A. In particular if

we put R = A/p, then B/pί Π p 2 contains a subring isomorphic to Λ over which it

is a finite module. Therefore (B; pu p 2) can be glued over A by Proposition 1

and Remark 2. Next let φ* be the isomorphism of K ^ ) onto κ(p2) obtained

from φ naturally and ht the canonical injection of κ(p) = Q{Ajp) = Q(R) into κ(pf)

for i = 1, 2. Let σ and wx be as in Proposition 2 and Theorem 1, and let p f be the

canonical projection of κ(p1)xκ(p2) for i = l, 2. Then if we have ^(ft) = wx(x)

for beJ5 and X6Q(,R), we see, from h2 = φ*hi9 n^pp and /i i=p ίw1,

Φ*nxσ(b) =

= φ*ht(x) = fc2(x) = p 2 W l (x) = p2σ(b) = π2(b)

and hence b is an element of A. This means that σ(b) = w1(x) belongs to

= w1(Λ) and hence that we have wi(R) = σ(B)f\wί(Q(R)). By Theorem 1 and
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Remark 2 our assertion follows from this and the fact that A contains p = Vi Π p 2 .

q.e.d.

REMARK 3. Pedrini treated some special cases of the above example (3) in

Theorems 1 and 3 of his paper [8].

§3. Property (S 2 ) and glueings

Let A be a noetherian ring. Then we recall that A has Serre's property

(S2) if and only if Ass(A) and Ass(A/fA) for any regular element f of A have

no embedded prime ideals. First we show a lemma giving a condition for a

noetherian ring with ( S J to have (S2), which is due to S. Itoh and essential in

later discussion.

LEMMA 3. Let A be a noetherian ring whose prime ideals of height > 1

contain regular elements. Let >4(1) be the set of elements z in the total quotient

ring Q(A) of A such that any prime ideal of A containing the ideal A:Az is of

height >2. Then A has (S2) if any only ifA

PROOF. First assume that A has (S2). By definition A is contained in

If ^4(1) contains an element z = a/b not belonging to A where a and b are

in A and b is regular, then any minimal prime divisor p of A :Az = bA :Aa is of

height > 2 . Moreover we see depth Ap = l, because pAp is the radical ideal of

(bA:Aa)Ap. On the other hand we have depth Ap > inf (2, ht Ap)>2 from (S2).

This is a contradiction. Therefore we see that A = A(ί). Conversely assume

that A does not have (S2). Then there exists a prime ideal p of A such that

depth AP<1 and hiAp>2, because A has (5X). If ft is a regular element in p,

the image 5 of b in Ap is also regular in Ap. Therefore we see depth Ap = l.

This means easily that pAp is an element of Ass^ (Ap/BAP) and hence that p is

an element of AssA(A/bA) by Lemma (7.C) in [6]. Therefore there exists an

element a in A such that bA:Aa = A:Aalb = p. Then a/b belongs to A ( 1 ) from

the fact that ht(p)>2. Moreover a/b is not an element of A by iρ=A:Aalb.

So A does not coincides with A(1). q.e.d.

Now we give the following theorem which includes Theorems 2 and 4 of

Pedrini [8] as special cases.

THEOREM 2. Let B be a noetherian ring and let p l 5..., pπ be prime ideals

of B. Let A be a glueing of(B; p l s..., pn) and put p=A Π pf. Then we have the

fallowings:

( i ) If any p; is of height lfor z = l,..., n and ifB has (S 2 ) , then A has also (5 2 ) .

(ii) Assume that A is not equal to B. If any p f contains a regular element of

B for ί = l , . . . , n, then Ap is of depth 1. Furthermore if some p, is of height > 1 ,
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then A does not have (S2).

PROOF, (i) First we show that ht (p) = 1. It is clear that ht(p) > 1, because

h t ( p f ) = l . If ht(p)>2, there are prime ideals qί and q2 of A such that p i ^

iϋq2. Then, by Going-up theorem, there are three prime ideals ^3, Q x and Ώ 2

of B such that φΞgC^ξΞC^, <β n A = p, Qί Π A = qx and Q 2 Π A = q2. Since φ

is one of p 1 ? . . . , pw, φ is of height 1. This is a contradiction. Now let Q b e a

prime ideal of B and put q = Q ί l i . Then we see that h t (&)>2 if any only if

ht(q)>2. In fact if Q contains p = rλ"=ίVb s o does q. Then we see that

ht(Ώ)>2oQ^Pi for some ι<=>q^p<=>ht(q)>2. If & does not contains p, we

have q=£p. Then we see B& = v4q by Lemma 1.6 of [11] and hence ht (Q) = ht (q).

Since we have ht(p) = h t ( p ί ) = l for / = 1,..., n, and p = r\Ί=ιPi contains a regular

element of B, we see easily that the total quotient ring of A may be considered to

coincides with that of B. Let z be an element of A(1) and let α be the ideal

A:Az. Then aB is contained in B:Bz. Therefore if ^ is any prime ideal of B

containing B :Bz, β̂ Π A is a prime ideal of A containing α and hence is of height

> 2. This means from the above that *β is of height > 2, and so z is an element

of £ ( 1 ) . Therefore we see that A(1)aB^=B by Lemma 3, because B has (S2)

and hence (SJ . Let x be an element of ^4(1). Then x belongs to B9 but p does

not contains ^:^x, because h t ( p ) = l . If s is an element of (v4:^x)^p, a = sx is

an element of A. Let wf be the canonical homomorphism ^ ( p ) - * / ^ ) , and πf

the composition of the canonical homomorphisms B-^jB/p^^Pi) for i = l,..., n.

Then we see easily that π^x) e Wι(κ(p)) and wj1(πi(x)) = w]ί(πj(x)) = a/s for

i, j = l,..., n, where α and s are the classes of a and s in >l/pc:κ;(p). This means

by Lemma 1 that x belongs to A, since A is a glueing of (B; p 1 ? . . . , pΠ). There-

fore we see 4̂ = y4(1). Since B has (S2) and we see easily ht (Q Π ^4)=0 for any

prime ideal ϋ of 5 of height 0, A has also (SJ . Therefore A has (S2) by

Lemma 3.

(ii) Let S be the multiplicatively closed subset A^τρ of B. Then ^ = v4s is semi-

normal in Bs by Corollary 2.2 in [11] and the conductor As:BsBs is τρAp =

Γ\Ί=ιViBs> because the conductor A:BB is equal to p = Λ"=iP f by Proposition

1.2 in [10]. Then we see easily from the proof of Theorem 2.1 in [11] that Ap

is a glueing of (Bs; p^s , . . . , τρnBs). Moreover if an element a in p t is regular in

B, the image of a in Bs is regular in Bs. Therefore we may assume that B is a

semilocal ring with the maximal ideals Px,..., pn and that A is a local ring with the

maximal ideal p. Since p and pt contain regular elements of B and we see easily

from Lemma 1.6 in [11] that any regular element of A is also regular in B, we may

consider that the total quotient ring Q(A) of A is a subring of the total quotient

ring Q(B) of B. Then we see that Q(A) = Q(B), because p = A:BB contains a

regular element of B. Therefore if z is an element of B which does not belongs

to A, there are a regular element b of A and an element a of A such that z = ajb
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in Q(A) = Q(B). Then we see that zpczB(A:BB)czA and hence that p = A:Az,

since zA<χA. This means that bA:Aa = p, and so p is contained in AssA(A/bA).

In other words we have depth A = l. In particular if some p, is of height > 1 ,

so is p. Therefore A does not have (S2). q.e.d.

COROLLARY. Let B be a noetherian ring, and let Abe a subring of B which

is seminormal in B. Assume that B is a finite A-module. If a prime divisor

in A of the conductor c of A in B is of height > ί and if c contains a regular

element of B, then A does not have (S2).

PROOF. If p is a prime divisor in A of c of height > 1, let S be the multi-

plicatively closed subset A^p of A. Then As is seminormal in Bs and c s is the

conductor of As in Bs as seen in the proof of Theorem 2, (ii). Since c is a radical

ideal by Lemma 1.3 in [11], c5 is the maximal ideal of AS = AP. Therefore we

see, from the proof of Theorem 2.1 in [11], that As is obtained from Bs by

glueing over the prime ideal pAs of As of height > 1 . This means by Theorem

2, (ii) that As does not have (S2). Therefore, from the definition of (S2), it is

easy to see that A does not have (S2). q. e. d.

REMARK 4. Let B and A be as in Corollary to Theorem 2. Assume that

B has property (S2). Then even if any prime divisor in B of the conductor of

A in B is of height 1, A does not necessarily have property (S2). In fact let B be

a finitely generated algebra over an algebraically closed field k. Assume that B

is a normal domain and the dimension of B is larger than 1, and let p x and p 2 be

two prime ideals of B such that ht(p 1 ) = ht(p 2 ) = l. Then we see dimJ5/p1 =

dimJ5/p2 = dimB —1>1 and hence there is a glueing A1 of (B; p l 5 p 2) as seen in

§2, (1). If p is the prime ideal Ax Opί=Aί Π p 2 of Λl9 we have dim^!1/p =

dim B/Vi> 1 and hence p is not a maximal ideal of Aγ. Since Ax is also a finitely

generated λ>algebra as seen in § 2, (1), there are infinitely many maximal ideals of

A1 containing p. Let m1 and m 2 be such two different maximal ideals of Ax and

let A be a glueing of (Aί; 1%, m 2). Then we see easily that A is seminormal in

B and that the conductor of A in B is the ideal p x Π p 2 . Then A does not have

property (S2), although B does.

REMARK 5. The author proved originally Theorem 2 and its Corollary for

noetherian domains using a well known criterion for a noetherian domain A to

have (S 2): A has (S2) if and only if A = Γ\ pAp where p runs over all prime ideals

of A of height 1. However S. Itoh pointed that if we use Lemma 3 instead of

this criterion, the same proof can work in the more general cases stated in the

above results. On the other hand S. Goto obtained in [4] the following result

holding a close similarity to ours: Let B be a semilocal Cohen-Macaulay ring

with maximal ideals n l 9 . . . , nπ. Assume that we have dimβ = dimβ π . for any i,
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and let A be a glueing of (B; nu...,nn) different from B. Then A is a Cohen-

Macaulay ring if and only if dim B= 1.

§ 4. Glueings of semilocal rings

Let A be a noetherian local ring with maximal ideal m and residue field fc.

Denote the multiplicity eA(m) of m, the embedded dimension dim* m/m2 and the

graded ring Σ S = o m 7 m i + 1 associated to A by e(A), embdim(^4) and G(A),

respectively. Furthermore let G(A)+ be the ideal ΣΓ=i m'/m'*1 of G(A). Then

we have the following

LEMMA 4. Let B be a noetherian semilocal local ring, and let nu..., nn

be the maximal ideals of B. If A is a glueing of (B; n l 5 . . . , nπ), then A is a

local ring and G(A) is isomorphic to a graded subring G of G(Bnι)-\ h G(BnJ

such that G+ = G(£ n i )
+ + + G(£ n n)+ . In particular we have

embdim(^4) = Σ?=i W n i ) κ(m)]embdim(£Π |),

where m is the maximal ideal rtj Π ••• Π nn of A. Moreover suppose that ht (n r)

= ht(m) for l^i^s and ht(ttj)<ht(m)/or s-f l ^ j ^ n . Then we have

PROOF. It is easy to see that A is a local ring and that m coincides with

the Jacobson radical n 1 n ΠnΛ = n 1 nB of B, because A is a glueing of

(J5;n l5..., nΛ). Hence m s is equal to n\ n ••• Π ns

n for s = l, 2,... . Let fs be the

canonical homomorphism B/n\ (Ί ••• Π nJ->£/nί® ®J5/n* for each s > l . Since

nf and nsj are coprime for any i Φ j , /5 is an isomorphism by Chinese remainder

theorem. Therefore we see easily that fs induces an isomorphism between

m s/m5 + 1 = nί Π ••• Π nj/nf 1 n ••• Π ns

n

+ί and n ί / n ί + 1 0 ®nj/n*+ 1 for each s ^ l ,

and hence that G(^)^,4/m®G(£ n i )
+ ® ΘGCBnrt)

+ as graded rings. Since A/m

is isomorphic to a subring of Bjnx Π ••• Π nΛ = B/n 1 φ ®jB/nπ, the first assertion

is proved. The second one is a direct consequence of the above isomorphism.

Lastly we see also from the above that

lengthy(B/ms) = Σ?=i lengthy(B/nf) = Σ?=i length*(£/nf)[K^): /c(m)].

Since we have lengthy (A/ms) = lengthy (B/ms)-lengthA(B/A) and lengthy (BjA)

= lengthA ((J3/Λ?=i ni)/(^4/m))< oo, we see, from the definition of multiplicity and

our assumption on heights of maximal ideals ni9...9nn,

e(A) = Σf = i L Φ i ) : κ(m)>(fϊn i). q. e. d.

PROPOSITION 3. Let B be a noetherian semilocal ring with maximal
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ideals n^..., nn, and let Abe a local subring of B with maximal ideal m such

that B is a finite A-module. Then the fallowings are equivalent if B is not equal

to A:

( i ) A is seminormal in B and the conductor of A in B is m-primary.

( i i ) A is a glueing of(B; n l5..., nw).

(iii) m is equal to the Jacobson radical n = nί Π ••• Π nn of B.

(iv) The canonical homomorphism f: m/m2->n/n2 induced by the injection

Ac+B is surjective.

( v ) The homomorphism f is bijectiυe.

(vi) We have n 2 n m = m 2 and embdim (A) = Σ?= 1 Ό<(^d' κ(™)] embdim (Bn).

(vii) The homomorphism f induces a bisection between the ideals G(A)+ and

PROOF. (i)=>(ii). Assume that A is seminormal in B. Then the conductor

c of A in B must be a radical ideal by Lemma 1.3 of [11]. Therefore if c is m-

primary, we see c = m. Then we see from the proof of Theorem 2.1 of [11] that

A is the ring obtained from B by glueing over m. In other words A is a glueing

of(B; n l 5 . . . , n π ) .

(ii)=>(vii). This is a direct consequence of Lemma 4.

(vii)=>(v)=>(iv). Trivial.

(iv)=>(iii). Let A' be the ring obtained from B by glueing over m. Then A! is

a local ring with maximal ideal n = n1 n ••• ίlnB. If / is surjective, we have

n = τn + n 2 and hence n = mA' + nn. Therefore we have n = mA' by Nakayama's

lemma. This means that we have mA'= m + (mA')2 = m+ m(mAf). Since B

is noetherian and a finite ^4-module, A is also noetherian by Nagata-Eakin's

theorem (cf. [3]). Therefore A! and m' are both finite ^-modules and so we

see m=mAf again by Nakayama's lemma. This means that m = n .

(iii)=>(ii). Let A' be as above. Then we see A'jn is isomorphic to Ajxn by the

induced homomorphism of the injection Ac+A'. Therefore we have A' = A + n

=A + m=A from the assumption that m = n .

(ii)=>(i). This is well known. (Cf. § 1 in [11].)

(v)o(vi). Since the kernel of / is n 2 n m/m2, / is injective if and only if n 2 Π m

= m 2. Moreover the right hand side of the second equality in (vi) is equal to the

dimension of the vector space n/n2 over k = A/m as seen in the proof of Lemma 4.

From these facts our assertion follows easily. q. e. d.

PROPOSITION 4. Let k be an algebraically closed field, and let A be a

local ring of a closed point of an algebraic variety defined over k. Let B be

the integral closure of A in the quotient field of A, and let nu...9 nn be the

maximal ideals of B. Then the fallowings are equivalent:

(i) B is regular and A is a glueing of(B; nί9...9 nn).
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(ii) The multiplicity e(A) of A coincides with the number n of the maximal

ideals ofB and the conductor of A in B is the maximal ideal m if e(A)>l.

PROOF. First notice that we have ht (n^ = dim B = dim A for any i and that

Bn. is unmixed in the sense of §25 in [7] as seen easily from analytically

unramifiedness of Bn. (cf. (36.4) in [7] or Theorem 31 of Chap. VIII in [12]). Now

assume that the assertion (i) is true. Then Bn. is a regular local ring and hence

we see e(Bn) = 1. If m is the maximal ideal of A, then B/ήj is isomorphic to A/m

for each i by the assumption that k is algebraically closed. Therefore we have

Φ 0 = Σ"=i K^n) — ^ by Lemma 4. On the other hand we see m = n 1 n ••• Π nn

by Proposition 3. This means that the conductor of A in B is equal to m if

e(A) = n>l. Conversely assume that e(A) is equal to n and that B^A. Then,

since ht(n f) = dirndl for each i, we see n = ΣΊ=ι e(mBn.) by a similar argument

in the proof of Lemma 4 or by Corollary 1 to Theorem 24 of Chap. VIII in [12],

where we denote by e(mBn) the multiplicity of an ntBni-primary ideal mBn..

This means that e(m£n.) = l for any ί. Since mBn. is n^.-primary, we see easily

l^e(niBn)^e(mBn) = l by the definition of multiplicities of n/5Π|-primary ideals.

Then we have e(Bn) = e(niBn) = l and hence Bn. is a regular local ring by Theo-

rem (40.6) in [7], because Bn. is unmixed as noticed in the above. Therefore B

is regular. Moreover there is a system of parameters x1?..., xά of mBni such that

e(mBnι) = e((xu...9xd)Bnι) by Theorem (24.1) in [7], because BJΰβ^Bjxx, is
an algebraically closed field. Since Bni is regular, any system of parameters of

Bni is distinct by Theorem (25.7) in [7] and hence we see length BnJ(xί9...9 xd)Bn.

= e((xl9...9 xd)Bn) = e(mBn) = l. This means that (xl9...9 xd)Bn. coincides with

the maximal ideal n /βΠ i and hence we have mBni = niBni. Since n 1 } . . . , wn are

the prime divisors of mB, we see mB = nί π ••• Π ππ. On the other hand if m is

the conductor of A in B, then mB is an ideal of A containing m and so coincides

with m. Therefore A is a glueing of (B; n ί 9... 9 nn) by the equivalence (ii)<^>(iii)

in Proposition 3. q. e. d.

REMARK 6. Let A and B be as in Proposition 4. From the proof of Propo-

sition 4 we see that if e(A) coincides with the number of the maximal ideals of

B9 then B is regular. However A is not necessarily a glueing of (B\ nu...9 nn).

For example let A be a local ring of an ordinary triple point of a plane curve.

Then we have e(A) = 3 and the derived normal ring B of A in the quotient field

of A has exactly three maximal ideals nl9 n 2 , n 3 . But A is not seminormal and

hence not a glueing of (B; n 1 ? n 2 , n 3 ), because singular seminormal points on

a plane curve are only ordinary double points (cf. [9]). Therefore the condition

that the conductor of A in B is the maximal ideal of A is indispensable in the

assertion (ii) of Proposition 4.

REMARK 7. Let A and B be as above, and assume that they satisfy the
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conditions (i) and (ii) of Proposition 4. Then we see embdim (A) = e(A) x dim A

by Lemma 4. On the other hand G(Bn) is isomorphic to a polynomial ring over

k for each i and hence G(A) is reduced, because it is isomorphic to a subring of

a reduced ring G(BUι)-\ \-G(Bnn) again by Lemma 4. If dim A = l, these two

properties means, conversely, that A is seminormal (cf. Theorem 1 in [2]).

However the author does not know whether a similar result holds for higher

dimensional cases.

REMARK 8. Let A be a reduced noetherian local ring with maximal ideal

nt and infinite residue field A/rn, and let B be the integral closure of A in its total

quotient ring. Assume that B is a Cohen-Macaulay ring and a finite ^4-module,

and that we have ht(n f) = d im£ for each maximal ideal r^ of J5(ί = l,..., n).

Then if we have e(A) = Σ?=i [ # / n i : ^ / m ] and m is the conductor of A in B, B is

regular and A is a glueing of (B; nί,..., nπ). In fact this can be shown in a similar

way to the proof of Proposition 4. But we omit the proof.
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