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§ 1. Introduction

In the theory of harmonic analysis on semisimple Lie groups, it is important
to consider the space <gp, 0<p^2, which is an Lp type subspace of the Schwartz
space ^ = #2, and one of the most important problems at present is to determine
the image of <£p by the Fourier transform. For example, if we consider the space
<&P(X) on a symmetric space X, then the image of <gp(X) is the space of holo-
morphic functions in the interior of a certain tube domain of a complex space
satisfying some boundedness conditions modulo representations of a compact
group (see M. Eguchi [1], Theorem 4.8.1). In the present paper we consider the
corresponding space to <&p for the motion groups.

Let K be a compact connected Lie group acting on a finite dimensional real
vector space V as a linear group. Let G be the semidirect product group of V
and K. We call this group the motion group. Let ft be the dual space of V and
ftc the complexification of ft We fix a K-invariant inner product ( , ) of V9 an
orthonormal basis of Fwith respect to this inner product and its dual basis. We
identify Fand ft with Rn by these bases. Let x = (xl5..., xπ) e V and ξ = (ξί9...9 ξn)
e ft, where n = dim V. We put |x|2 = (x, x). Then |x|2 = x? + + x2. We also
put |ξ|2 = £ 2H ----- μξ2. For any ε>0 we define the tube domain Fε by setting

F* = {ζ = { + iι,6 ft+ift = ftc \η\ g ε},

where i^-1)1/2. We denote by IntFε the interior of Fε. We put F°=IntF°
= ft Then Fε and IntP5 are K-invariant. Let ξ>=L2(K) be the Hubert space
of square integrable functions on K with respect to the normalized Haar measure
dk. Let B(§) be the Banach space of all bounded linear operators on §. For
β>0 we denote by &(Fε) the set of all B(§)-valued C°° functions T on ft which
satisfy the following conditions :

( i ) The function T extends holomorphically to Int Fε

(ϋ) for any ore AT", A 'eN and for any right invariant differential operators
y, y' on K

supζ6lntFe (1 + \ζ\2Y\\yDξT(ζ)y'\\ < oo, (1.1)

where Dα

ζ = δ

(iii) for all fe 6 K and for all ζ 6 Int Fε
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T(kζ) =

where R is the right regular representation of K.
Furthermore, we denote by (̂F°) the set of all B(§)-valued C°° functions on V

which satisfy the above conditions (ii) and (iii) for ε = 0.

Let Uξ be the induced representation of G by the representation ξ e Ϋ of V:

We put dx = (2π)~n/2dxί~ dxn, the Lebesgue measure on V. We can normalize
the Haar measure dg on G so that dg — dxdk. The Fourier transform of a com-

plex valued integrable function / on G is a B(§)-valued function / on Ϋ defined

by

Then ^(jp°) is the image of the space of rapidly decreasing functions and for any

ε>0, &(Fε) is contained in &(F°) (cΐ. Lemma 1).

In §2 we define a space ^ε. For 0<p<;2 we put Vp(G)=&2/P-ι τhen

this space ΉP(G) is an analogous one to the Schwartz space <&* for symmetric

spaces. The main theorem (§3) asserts that ^ε and &(Fε) are topologically

isomorphic by the Fourier transform. In § 4 we consider the dual space of «9*ε,

the space of ε-tempered distributions.

§2. The

Let I be the Lie algebra of K. We denote by U(ϊc) the universal enveloping
algebra of the complexification lc of f . We regard any element of L/(ϊc) as a
right invariant differential operator on K. We denote by λ and μ the left and the
right regular representations of G, respectively, and also denote by the same
symbols their differentials. Let &>ε be the set of all C°° functions / on G satisfying

the following condition : For any α e Nn

9 & e N and y, y' e U(tc)

suPoα)eG *w (i + \*\2nι>ΛΛy)μ(y'W(χ, ®\ < α>, (2.1)

where D^ = d^/dx^'-dx^.
For fe#>ε we denote by y£i,,,X/) the left-hand side of (2.1). And for

Te&(Fε) we denote by fa\tyty (T) the left-hand side of (1.1). We topologize

c ε̂ and &(Fε) by the system of seminorms -{yi'i,,,,'} and {ίβ'i, ,,,'}, respectively.
Then both ^ε and ^T(Fδ) are Frechet spaces.

Let 2 be the space of all complex valued C°° functions on G with compact
supports, having the usual topology. We denote by % the Fourier image of .̂
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Then by the Paley- Wiener type theorems (K. Kumahara [2], Theorems 2 and 3),
J" is contained in &(Fε) for all ε^O and the Fourier transform gives a topological
linear isomorphism of ^0 onto &(F°). We can prove the following lemma
without difficulty.

LEMMA 1. // 0^ε<ε', then

Let / and h be two elements of &>ε. We denote by /*/ι the convolution of
/and /ι as usual. We ρutf*(g)=f(g~ί).

LEMMA 2. For any ε^O, ^δ is closed under the convolution and the
mapping /»->/*.

PROOF. Let /, /i e «9"ε. By the definition of the convolution

we have λ(0) (/*/ι) = (λ(g}f}*h and μ(0) (/*/ι) =f*(μ(g)h) for all 0 e G. Hence we
have λ(y)μ(y')(f*h) = (λ(y)f)*(μ(y')h) for all y, y' e l/(Ic). By the invariance of
D* under the translation of V, we have (D (/*h))(x, fc) = ((D«/)*ft)(x, k). Here
we used the rapidly decreasingness of / and Λ. Let α e ΛΓW, ί e N and >;, j'
e l/(ϊc). Then by the K-invariance of the norm |x| and the inequality

we have for any (x, k) e G

) (x,

(* - fcfc'-!χ', Jϋk'-iyl'Ίίi + \x'\2)J(μ(yyi) (x', k')\dx'dk'.

Hence there exists a constant C>0 such that

Thus/*ft6^«. On the other hand, f*(x, k)=f(-k-lx, k-1). As K acts on V
as a subgroup of SO(V), there exist finite differential operators £>£ and a positive
constant C such that

|(D /*)(x, fc)| <CΣβ
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Moreover, we have (λ(g')n(g) = (μ(g'}f)(g-^ and (μ(g')f*) (g) = (%')/) (T1)-
From these facts and the K-invariance of the norm |x|, we have /* e < f̂i. q. e. d.

From Lemma 2, ̂ ε is a topological *-algebra. In fact, if we reread the
proof of Lemma 2, we can see that the convolution and the involution * are
continuous.

§ 3. The main theorem

THEOREM. For any ε^O, the Fourier transform gives a topological linear
isomorphism of &*ε onto &(Fε).

PROOF. Since &>ε and &(FE) are Frechet spaces, it is sufficient to prove
that the Fourier transform gives a continuous bijection between ^ε and &(Fε).
On the other hand, we know that the Fourier transform gives a topological iso-
morphism of ^o onto &(F°) (see [2], Theorem 3) and that se& and &(Fε) are
contained in ^0 and J"(F°), respectively. Hence it is sufficient to prove that
the Fourier transform gives a continuous surjection of yε to &(Fε) for ε>0.

Let / be an element of « ε̂. Then the function / on V defined by

is C°° ([2], Theorem 3). For ζ e Int Fε we put

JG

that is, it is an operator on ξ) defined as follows : For F e ξ)

(T(ζ)F)(kJ = f ( /(x, fe)
Jv )κ

Since ζ e Int Fε, |Im ζ\<ε and e~<lm^x> <*e*\x\ for all x e V. We have, therefore,

II nOII2 ^ \κ {JF !/(*, k)\e*\*\ dx^dk.

There is a constant C>0 such that

^l(l + |xm/(x,fe)|^C

for all keK and xeV. Then

Hence
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We next see the holomorphy of T(Q in the tube domain. For any α =
(αl5...,απ)e]V

g (1 + \x\2y*\e-<lmS>*>

The integral

( f /fox, k)Df el<^x> F(k-ίkί)dxdk9 (3.1)
Jv JK

therefore, converges absolutely and uniformly in IntP5. Hence for any Fe§,
T(ζ)F is infinitely differentiable and D|(T(QF) equals to (3.1). For any fixed ,
l^J^fl, and fixed Ci,..., C j _ ι , C/+ι, , ίn^C, we regard T(ζ) as a function of
C/ and denote it by Γ/ζy). Then for C = (Cι, , CJelntF8 and for f e C such
that (d,..., C/-ι, ζj + t, Cj+i,..., QeIntFe, we have

ί) -

15 '^fclX> fe)l^<ImC'Λ>KeίίxJ

We choose ί so that 0 < | ί | < e - |Im ζ| . Then

Hence by the condition (2.1) of /and by Lebesgue's convergence theorem, T(0
is diflerentiable in the norm of B($) and d(T(ζ)F)ldζj=(dT(ζ)ldζj)F for all
F e §. By repetition of the same arguments we have that T(Q is infinitely dif-
ferentiable and Dξ(T(ζ)F) = (DlT(ζf)F. Hence T(ζ) is a holomorphic extension
of/toIntFδ.

We next prove the continuity of the Fourier transform. For any α e Nn, £ e
N and y, y' e U(ίc) we can find, by some simple computations, α(1),..., α ( v )e/Vn,

..., 6^ e N, /1>,..., J(v),/(1),..., / ( v )e £7(ϊc) and positive constants
such that

2yu>\D?^

Since for every x e V and fe e K

, , , +

we have
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The relation T(kζ) = RkT(ζ)Rll can be easily checked. Thus Tis a holomorphic
extension of /to IntF6 satisfying the conditions (ii) and (iii) in the definition of
&(Fε). Hence /e^(Fε). And we have proved that the Fourier transform is

continuous.
Conversely, let us assume Te &(Fε). Then we know that the function / on

G defined by

is an element of ̂ 0 and that/=T(see [2], Theorem 3), where dξ = (2π)-nί2dξi

dξn. Let {φj}jej be the complete orthonormal basis of § chosen in [2], § 3.
Then by the conditions in the definition of &(Fε) and by Theorem 1 of [2],
Γ(Q (CelntF ) has a C°° kernel function κ(ζ; kί9 fc2):

*(C; ki, k2) = Σίjej (T(ζ)φj9 Φύφίkjφfa) , (3.2)

and

(T(ζ)F)(k1) = κ(ζ; kίt k2)F(k2)dk2,

Moreover, the series (3.2) converges absolutely and uniformly on IniFexKxK.
If we adopt the similar computations in § 3 of [2] to (1 + \ζ\2)ίyD^T(ζ)yf

9 we can
prove that there exists a constant C^^y such that

|(l + \ζ\2y(Dξykly'kjc)(ζ; kί9 fc2)| ̂  cβfl^

for every ζ e Int Fε and fcl5 k2 e K, where >;fcj (>; e C/(ίc), j = 1, 2) denotes differen-
tiation of K by y with respect to fc,-. And the relation T(/cQ = JRfcT(QjRfc1 cor-
responds to the relation κ(kζ; kl9 k2) = κ(ζ; k±k9 k2k). The function /(#) can be
represented by means of K:

Then for any a9βeNn and y, yf EU(lc\ xβ(D$λ(y)μ(y')f)(x9 k) is a linear

combination of integrals of the form

where dt9βeNn and y9 y'e U(ϊc) and xfi^xfr—xfr, ί'=ίf1—ίj». We fix
(x, k) E G. Now we put for ζ E Int Fε
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Then Φ(ζ) is holomorphic in IntFε and it is rapidly decreasing when Re£->oo.
Let δ be any real number such that 0<<5<ε. We assume that x^O and put
η = — δx/\x\. Then ξ + iηe Int Fε. Shifting the path of integral, we get

As we can choose a constant C depending on α, β and y, y' but independent of

η and k so that

\Φ(ξ + iή)\ ^ c(i + \ξ\2τn,

we can find a constsnt C' depending on α, £, y and y' but independent of η, k and
x such that

e W(l + \x\2)\Ά(Dϊλ(y)μ(y')f)(x9 k)\ ^ C'e*W+<»>x>.

Here ε|x| + <>7, x>=(ε-<5)|x|. Let δ tend to ε. Then the left-hand side is
dominated by C1 which is independent of x and k. Hence we have

Therefore, /e ε̂. This completes the proof of the theorem. q. e. d.

§ 4. e-tempered distributions

Let ε>0. A distribution on G is said to be ε-tempered if it extends to a
continuous linear functional on &*ε. It is not difficult to see that & is dense in
&*ε and that the inclusion mapping of &ι to c ε̂ is continuous. Hence we can
regard the space of ε-tempered distributions as the space of continuous linear
functionals on ̂ δ. Let £*ε and &(Fεy be the set of all continuous linear func-
tionals on &*ε and &(Fε), respectively. They become locally convex linear
topological spaces when equipped with the weak topology.

Let J^* be the transpose of the Fourier transform of ̂ ε onto &(Fε). Then
we have the following proposition as a corollary of the main theorem.

PROPOSITION. (̂ "*)~1 is a topological linear isomorphism of &"z onto
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