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Introduction

The main purpose of this paper is to establish a notion of Cohen-Macaulay
modules over an arbitrary commutative ring which generalizes that of Cohen-
Macaulay modules over a noetherian, commutative ring. A finite module over
a noetherian ring is said to be a Cohen-Macaulay module if its depth is equal to
its Krull dimension (cf. [6]). Adapting M. Hochster’s approach to a theory of
grade, D. G. Northcott set up the concept of polynomial grade of modules over a
commutative ring in [7] which is a generalization of the notion of depth. The
author showed in [8] a relation between the polynomial grade of a module and the
valuative dimension of it which was defined by P. Jaffard in [5]. Namely, let A
be a quasi-local ring and M a non-zero, finite A-module. Then the polynomial
grade Gr (M) of M is equal to or less than the valuative dimension Dim M of M.
This fact suggests to us giving a definition of a Cohen-Macaulay module over an
arbitrary ring in terms of polynomial grade and valuative dimension.

However it seems that many nice properties of Cohen-Macaulay modules over
a noetherian ring come from the following inequality: depth M <dim A/p for all
prime ideals p in Ass (M), where M is a non-zero, finite module over a noetherian
local ring A. In particular it follows from this fact that a noetherian, Cohen-
Macaulay ring is universally catenarian. First the author has guessed that a
generalization of this inequality could be obtained. However S. Itoh has recently
pointed out to the author that it does not hold in general, i.e., we can find a non-
zero, finite module M over a quasi-local ring A and an attached prime ideal p of
M such that Gr(M)>Dim (A/p) (see Appendix). Therefore if we would define
a Cohen-Macaulay module M over an arbitrary ring A by Gr (M)=Dim M, many
nice properties of the Cohen-Macaulay modules over a noetherian ring may not be
accomplished. For this reason, adding the condition that the ring A/Ann (M)
is catenarian to the above one, we may introduce the following definition: A
non-zero, finite module M over a ring A is said to be a Cohen-Macaulay module
if Dim(M,) is finite for all peSupp(M) and Gr(M,)+Dim (4,/q4,)=
Dim M, for all pairs of prime ideals p, g in Supp (M) such that q<p (see (4.4)).
This would be a natural generalization of the notion of Cohen-Macaulay modules
over a noetherian ring.

In section 1 we give the terminology and the notations which we will use in
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this article. Section 2 deals with the polynomial heights and includes a gener-
alization of Theorem 2in [8]. In section 3 we study the polynomial grade and the
valuative dimension of the module M[X]. In section 4 we introduce the motion
of Cohen-Macaulay modules over an arbitrary ring and basic facts about these
modules are established. Some examples of Cohen-Macaulay rings in our wider
sense are presented in section 5.

1. Terminology

Throughout this paper, all rings are assumed to be commutative with identity,
and all modules are assumed to be unitary. If 4 is a ring and p is a prime ideal
of A, then ht (p) stands for the height of p and dim A for the Krull dimension of
A. If X4,..., X, are indeterminates over A4, then p[Xj,..., X,] is a prime ideal
of the polynomial ring A[X,,..., X,]. The limit of the sequence {ht(p[X,,
wey X, D} (n=0, 1,...) is called the polynomial height of p and is denoted by Ht (p)
(see [8]).

If A is an integral domain, the valuative dimension of 4, denoted by Dim A4,
is defined to be Sup {dim V|V is a valuation overring of A}, and more generally
the valuative dimension of a ring A is defined to be Sup,cspeccq) {Dim (4/p)}
(see [5]). If A is a ring and M is a non-zero A-module, then Ann (M) denotes
the set of annihilators of M, and by the valuative dimension of M we understand
the valuative dimension of the ring A/Ann (M). The valuative dimension of the
module M is denoted by Dim M or Dim (M).

Let a be an ideal of a ring A and M an A-module. Then we denote by
M[X,,..., X,] the A[X,,..., X,]-module M®,A[X,,..., X,]. A sequence
{ay, a,,..., a,} of m elements of a is called an A-sequence on M composed of
elements of a if the sequence

0————) M/(al, az,..., ai_. 1)M—£!—) M/(al, a2,-.., ai_1)M

is exact for each i, 1<i<m. The upper bound of the lengths of all such A-
sequences on M is called the classical grade of a on M and it is denoted by
gr {a; M}. Furthermore the limit of the sequence {gr x,,... x,3{a[X1,..., X,1;
M[X,,..., X,]}} (n=0, 1,...) is called the polynomial grade of a on M and is
denoted by Gr, {a; M}. A prime ideal p of A is said to be attached to the zero
submodule of M if Gryu, {pA,; M} =0 and the set of prime ideals attached to the
zero submodule of M is denoted by Att (M) (see [7]).

If M is an A-module, we denote by Supp (M) the support of M, which is the
set of prime ideals p of 4 such that M, %0. Min (M) means the set of prime ideals
which are minimal prime ideals of the ideal Ann (M). To simplify the notation,
we write Gr(M,) in place of Gry, {p4,; M,} and Dim(M,) stands for the
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valuative dimension of A,-module M, where p is a prime ideal in Supp (M).

2. Polynomial heights

The following theorem plays an important role in our theory.

(2.1) (J. Brewer, P. Montgomery, E. Rutter and W. Heinzer [2], Theorem 1)
Let A be a ring and B a prime ideal of A[X4,..., X,] with Pn A=p. Then we
have ht (B)=ht (p[X,,..., X, +ht (B/p[X4,..., X,]).

We have a similar equality for polynomial heights.

(2.2) THROREM. Let A be a ring and P a prime ideal of A[X,..., X,]
with Bn A=p. Then Ht (P)=Ht (p)+Ht (B/p[X,,..., X,])-

ProoF. Let Yi,..., Y, be indeterminates over A[X,,..., X,]. Then P[Y,,
..., Y,] is a prime ideal of A[X,,..., X,, Y;,..., Y,,] and we see P[Y,,..., ¥, ] N
AlY,,..., Y, ]1=p[Y,,..., Y,.]. Hence, by (2.1) and the fact that the ring A[X,,
veos Xy Yoo, VA0 X s X Yese.., Y] is isomorphic to (A[Xy,..., X,1/p[ X,
voes X,]) [Y1,..., Y], We obtain

ht (B[ Yy..., ¥,]) = ht (p[Yes..., Yoy Xyppeery Xo) +
ht (BLY 1., Yol /oL Yeros Yoo Xooer X,1)
= ht ([ X1eor X, I [ Voo, YD) +
ht (B/PLX 1ees X, D) [Virenos Yol)

Therefore letting m tend to infinity, it follows from the definition of poly-
nomial height that

Ht(P) = Ht (p[Xy,..., X,]) + Ht(B/p[X},..., X, ]
= Ht(p) + Ht (B/p[X ..., X,1)- g.e.d.

(2.3) CorOLLARY. Let the assumptions be as in (2.2). Then Ht(P)=
Ht (p) +ht (B/p[X,..., X,])-

Proor. By (2.2), it is sufficient to show that ht(PB/p[X,,..., X,])=
Ht (P/p[X,,..., X,]). Put S=A4—p. Then A[X,,..., X,]s is isomorphic to
A,[Xy,..., X,). Since the height and the polynomial height are not changed by
any localization, we have ht(P/p[X,..., X,])=ht (Ps/p[X},..., X,]s) and
Ht(B/v[X1,..., X,])=Ht(Bs/p[X1,..., X, ]s). Itisclear that Pg/p[X;,..., X, ]s
is a prime ideal of a noetherian ring (4,/p4,)[X;,..., X,]. Accordingly it
follows from Prop. 1, (7) of [8] that ht (Ps/p[X1,..., X, 1s) =Ht(Bs/p[Xis...,
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X,]s). We may therefore conclude that ht (B/p[X3,..., X,]) =Ht (B/p[X;,...,
X, D. qg.e.d.

(2.4) REMARK. We see the following statements by the proof of (2.3).
Let A4 bearing and P a prime ideal of A[X,,..., X,]. Putp=PnA4. Then
Ht (B/p[X:s-.., X,])=ht (B/p[X1,..., X,])S<n. Inparticularif n=1and P
p[X], then Ht (B/p[X1]) =ht (P/p[X;]) =1.

(2.5) CorOLLARY. Let the situation be as in the statement of (2.2) and
suppose that ht (p)=Ht (p). Then ht (B)=Ht (P).

PrOOF. By the definition of polynomial height, we see easily that ht (p)
<ht (p[X},..., X,])<Ht (p). Hence, by the assumption, ht (p[Xy,..., X,])=
Ht (p). It therefore follows from (2.1) and (2.3) that ht () =ht (p[X3,..., X,1)
+ht (B/p[X,,..., X,1)=Ht (p) +ht (B/p[X%,..., X, 1) =Ht (P). q.e.d.

To show Theorem 2.7 which is a generalization of Theorem 1 of [8], we
need the following

(2.6) LeMMA. Let A be a quasi-local domain and m the maximal ideal of
A. Suppose that Ht (m) is finite. Then Dim A=Ht (m).

Proor. Assume that Ht (m) =k where k is a non-negative integer. Then,
by the fact that Dim 4=k if and only if dim A[X;,..., X;] =2k ([1], Theorem
6), we have only to show that dim A[X;,..., X;]1=2k. PutP=m[X,..., X;],
X,,..., X3). Then, since ht (m[X;,..., X, ])=k by Prop. 2 of [8], it follows
from (2.1) that ht () =2k. Therefore dim A[X,,..., X, ] =2k.

Suppose next that Q is a prime ideal of A[X;,..., X;]. Letq=4nQ.
Theng=m. Hence, by Prop. 1, (3) of [8], ht ([ X,..., X;]) SHt (q9) Ht (m).
This shows that ht(q[X,..., X;])<k. However we see ht(Q/q[X},..., Xz]) <k
by (2.4). Consequently, by (2.1), we obtain that ht (Q)=ht (q[X7,..., X; 1)+
ht (Q/q[X1,..., Xi]) <2k. It thus follows that dim A[X;,..., X;]1<2k. Accord-
ingly we establish the equation dim A[X,,..., X, ]=2k. g.e.d.

(2.7) THEOREM. Let A be a ring. Then we have Dim A=Sup {Ht (p)},
where the supremum is taken over all the prime ideals p of A.

Proor. By virtue of Theorem 1 of [8], it is sufficient to show that if
Dim A= 0, then Sup,csyeccaytHt (P)} =c0. For this purpose, we have to prove
that if Sup,cs,cccq){Ht (p)} <k, then Dim A<k for each non-negative integer
k. Assume that Sup,.speccq)tHt (p)} k. Suppose first that 4 is an integral
domain. Then Ht (p) =k, where p is a prime ideal of A. Hence, by Prop. 1,
(5) of [8], Ht(pA,)<k. Thus, it follows from (2.6) that Dim A4,<k.
However, by the definition of valuative dimension, we see that Dim A=
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Sup,especca) {Dim A,}.  Therefore we have Dim A<k.

Next we proceed to general case. Let p and q be prime ideals of 4 with
q<p. Then, by Prop. 1, (4) of [8], we have Ht (p/q)<Ht (p). Since Ht(p)<Kk,
we can conclude Ht (p/q)<k. Thus Sup {Ht(p/q)} <k, where p/q runs over all
prime ideals of A/q. Accordingly Dim A=Sup,cspecqy {Dim (4/q)} k.  g.e.d.

(2.8) PROPOSITION. Let A be a ring, and let p and q be prime ideals of A
with qG&p. Then Dim A/q=Dim A/p+1.

Proor. Let m be a prime ideal of 4 such that pcm. Then q[X,,....X, 15
p[X,,..., X,]JEmM[X,,..., X,] in A[X,,..., X,]. Therefore

ht ((m/q) [Xls"'9 Xn]) = ht (m[XI’"'9 Xn]/q[X19"'9 Xn])
g ht (m[Xh“" Xn]/p[Xl’“" Xn])+1
= ht((m/p) [Xy,..., X, D+1.

Let n tend to infinity. Then we see Ht (m/q)= Ht(m/p)+1. Denote by V (p)
the set of prime ideals m of A such that m=p. It follows from (2.7) that

Dim 4/q2 SuPpey(y) (HE (@)} 2 SuPyeyqyy (Ht (M/p)} + 1 = Dim A/p + 1.
g.e.d.

3. Polynomial grade of M[X]

The following (3.2) and (3.5) are due to S. Itoh but the proofs given here
are slightly different from his original ones.

(3.1) (D. G. Northcott [7], Lemma 8 of Chapter 5) Let A be a ring, p a
prime ideal of A and M an A-module. Then the following statements are
equivalent:

(i) p is attached to the zero submodule of M.

(i) If ais a finitely generated ideal contained in pA,, then there exists a
non-zero element m of M, such that am=0.

(3.2) LemMA. Let A be a quasi-local ring with the maximal ideal m
and M an A-module. Furthermore let ‘B be a prime ideal of A[X] such that
BnA=mand m[X]EPB. If Gr(M)=0, then Gr (M[X]z)=1.

Proor. The assumptions concerning A and B ensure that P=(m[X], f),
where f is a monic polynomial of positive degree. Since the ideal generated by
the coefficients of fis A, it follows from Theorem 7 of Chapter 5 in [7] that fis an
M{[X]-regular element. Thus we have an exact sequence
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0— M[x1-2 M[X]— N—0

where N=M[X]/fM[X]. We shall now show P eAttx(N). Suppose that
b is a finitely generated ideal such that b=®B. Then we may write b=(a; +b,f,
a,+b,f,...,a,+b,f), where a;em[X] and b,e A[X] for 1<i<n. Let abethe
ideal of A which is generated by the coefficients of ay, a,,..., a,. Then a is a
finitely generated ideal contained in m. Hence, by the assumption that Gr (M)
=0 and (3.1), there exists a non-zero element m of M such that am=0. We let
m denote the image of m under the natural mapping M—N. Then am=0.
This shows b =0, whence we see that bA[X]x(m/1)=0 in Ng. On the other
hand, since f is a monic polynomial of positive degree, m is not in fM[X], and
hence m+0. Next we shall show that any element of A[X] which is not contained
in P does not annihilate the element /. For this purpose we assume that g is
an element of A[X] such that gmi=0. Then gm=fe, where ee M[X]. Since
fis a monic polynomial, we find an element h of A[X] such that e=hm. Hence
gm=fhm, and so (g—fh)m=0. By the same theorem, g—fhem[X] because
m=0. It thus follows that ge(m[X], f)=P. Therefore we see that any
element of A[X]—P does not annihilate 1. Consequently /140 in Ny. We
may conclude that P € Att 44, (N) by (3.1).
Now localizing the above sequence at B, we obtain the exact sequence

0 —s M[X]g L M[X]y — Ny — 0.

Accordingly, by Theorem 15 of Chapter 5 in [7], we establish that Gr (M[X]g)=
Gr(Ng)+1=1. g.e.d.

(3.3) (M. Hochster [4], Cor. 1 to Prop. 2) Let A—B be a homomorphism
of rings, a an ideal of A and M an A-module. Suppose that B is a faithfully
flat A-module. Then Gr, {a; M}=Grg{aB; M®,B}.

(3.4) LeMMA. Let A be a ring, p a prime ideal of A and M an A-module.
Then GI‘ (Mp)=Gr (M[Xl,..., Xn]p[x1 .... X”])'

Proor. Since A[X;,..., X,lyx,,..x,; is a faithfully flat A4,-module, our
lemma follows from (3.3). q.e.d.

(3.5) THEOREM. Let A be a ring, M an A-module and B a prime ideal of
A[X]. In addition, let p denote ANS® and assume p[X]EV. Then
Gr (M[X]g)=Gr (M,)+1.

Proor. Without loss of generality we may suppose that 4 is a quasi-local
ring and p is the maximal ideal of 4. Let S denote the complement of P in A[X].
Then we see easily that for every non-negative integer n,
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8ayy,... v {PLY1se00s Y15 MYy, Y13
S 8y, vx1 PLY15ee Yoy X15 ML Yy, Y, XT3
= BLA[X1[Y 1,0, Yn) {BLYy,..., V,1; M[X][Y,,..., Y1}
£ 8apxiys,e ¥as{PLY 150 Vs MIX][Y,,..., Y ls}
= BLA[X1glY 1,00 Y] {‘BA[X]gs[Ypm, Y.1; M[X]q;[Yp---: Y.1}.

Let n tend to infinity. Then it follows that Gr(M)=Gr(M[X]g). We may
therefore assume that Gr (M) is finite.

Now suppose Gr (M)=k. Then, by the definition of polynomial grade, there
exists a non-negative integer m such that gr y, .y, {p[Y:,..., Yl; M[Y,,...,
Y.1}=k. Put A'=A[Y,,..., Volyy,,v,d P =PLY10eos Yolpry,v,a and M'=
M[Y,,..., Y, dyy,,...v,y- Furthermore let P’ denote PA'[X]. Then we see
that P’ is a prime ideal of A'[X], and we can show that P’ N A'=p’ and p'[X] &
P’. Since A'[X]y is a faithfully flat A[X]y-module, it follows from (3.3) and
(3.4) that Gr(M)=Gr(M) and Gr(M'[X]y)=Gr(M[X]g). Thus, by the
choice of m, k=gry, v, {PY1,.., Yuls M[Yy,..., Y1} S grefp’s M} =
Gr(M')=k. Hence gr . {p'; M'}=Gr(M’). Consequently we may assume that
gr {p; M}=Gr(M)=k. We can therefore find a sequence {a,, a,,..., a,} which
is an A-sequence on M composed of elements of p. Put N=M/(a,, a,,..., a, )M.
Accordingly, by Theorem 15 of Chapter 5 in [7], Gr(N)=0. Hence, by (3.2),
Gr(N[X]y)=1. Since {ay, a,,..., a;} is also an A[X]g-sequence on M[X]y
composed of elements of PA[X ]y and we have N[ X1y =M[X]g/(ay, a,..., ay):
M[X]g, we conclude Gr (M[X]y)=k+1 by the same theorem. g.e.d.

(3.6) LeMMA. Let A be a ring and M a non-zero, finite A-module. If
p € Supp (M), then Dim (M,)=Ht (p/Ann (M)).

Proor. Since M is a finite A-module, Ann(M,)=Ann(M),. Thus,
by the definition of valuative dimension of M, we see that

Dim (M,) = Dim (4,/Ann (M,)) = Dim (4,/Ann (M),)
= Dim ((4/Ann (M))y, anncary)-
On the other hand, by (2.7) and Prop. 1, (5) of [8],
Dim ((4/Ann (M))y/aanqay = Ht (p/Ann (M) (4/Ann (M), /ann(ary)
= Ht (p/Ann (M)).
This yields Dim (M,)=Ht (p/Ann (M)).

(3.7) THEOREM. Let A be a ring and M a non-zero, finite A-module.
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Suppose p € Supp (M) satisfing Gr(M,)=Dim (M,). If P is a prime ideal of
A[X] such that PnA=p, then PeSupp(M[X]) and Gr(M[X]y)=
Dim (M[X]g).

Proor. We begin by noting that P2p[X]. Put a=Ann(M). Then it
is clear that Ann (M[X])=a[X]. Since p e Supp (M) if and only if p=2a, we
see P2p[X]=2a[X], and hence B e Supp (M[X]). First suppose P=p[X].
Then it follows from (3.4) that Gr (M[X]g)=Gr(M,). Moreover, by (3.6), we
have Dim (M [X]g)=Ht (p [X]/a [X])=Ht((p/a) [X]) =Ht (p/a)=Dim (M,).
Thus we conclude in this case that Gr (M[X]y)=Dim (M[X]y).

Next assume that P2 p[X]. Then (3.5) shows that Gr (M[X]g)=Gr (M,)
+1 and it follows from (3.6) that Dim (M[X]g)=Ht (P/a[X]). Let P’ be the
prime ideal of (A4/a)[X] which corresponds to PB/a[X] under the natural iso-
morphism: A[X]/a[X]—>(4/a)[X]. Then P'nA/a=p/a and P'R(p/a) [X].
Accordingly, by (2.3) and (2.4), we obtain Ht (P/a[X])=Ht(P’)=Ht(p/a)+
ht (P’/(p/a)[X])=Ht(p/a)+1. Therefore, from (3.6), we deduce that
Dim (M[X]g)=Dim (M,)+1. Thus these observations show that Gr(M[X]g)
=Dim (M[X]g). g.e.d.

(3.8) CoroLLARY. Let A be a ring and M a non-zero, finite A-module
such that Gr(M,)=Dim(M,) for all prime ideals p in Supp(M). Then
Gr (M[X,,..., X,]g) = Dim (M[X,,..., X,]g) for all prime ideals P in
Supp (M[X4,..., X, D).

Proor. This corollary is an immediate consequence of (3.7). g.e.d.

4. Cohen-Macaulay modules

(4.1) LeMMA. Let A be a ring, and let p and q be prime ideals of A with
qsp. Then Ht(q)+Ht (p/q)<Ht (p).

Proor. This lemma follows from the fact that, for each non-negative integer
n, ht (Q[Xn---, Xn])+ht (p[Xl,"" Xn]/Q[XIS"': X"])_S_ht (p[Xlr", Xn])' q.e. d.

(4.2) LeMMA. Let A be a ring and M a non-zero, finite A-module. As-
sume that p € Supp (M). Then p e Min (M) if and only if Dim (M,)=0.

Proor. The assertion that p e Min (M) means ht(p/Ann(M))=0. But,
by Prop. 1, (8) of [8], this statement is equivalent to Ht (p/Ann (M))=0. There-
fore our lemma follows from (3.6). g.e.d.

(4.3) PROPOSITION. Let A be a quasi-local ring and M a non-zero, finite
A-module such that Dim (M)<oo. Suppose that, for all p € Supp (M), Gr (M)
+Dim (4/p)=Dim (M). Then:



Generalized Cohen-Macaulay modules 623

(i) For all peSupp (M), Gr (M,)=Dim (M,).
(ii) peMin (M) if and only if p € Supp (M) and Dim (4/p)=Dim (M).
(iii)) Min (M)=Att (M).

Proor. Let m be the maximal ideal of 4. Assume that p e Supp(M).
Then, by Theorem 2 of [8], Gr(M,)<Dim (M,). Thus it follows from (3.6)
and (4.1) that

Gr (M,) + Dim (4/p) < Dim (M,) + Dim (4/p) = Ht (p/Ann (M)) + Ht (m/p)
=< Ht (m/Ann (M)) = Dim (M).

Hence we see that Gr(M,)+Dim (4/p)=Dim (M,)+Dim (4/p) by the assum-
tion. But, since Dim (M) is finite, Dim (4/p) is also finite. This therefore shows
that Gr (M,)=Dim (M,) and we have proved the first assertion.

Now, by Exercise 4 of Chapter 6 in [7], it is clear that Min (M) Att (M) <
Supp (M). Hence it follows from (4.2) and the assertion (i) that p e Min (M)
if and only if Gr(M,)=0, which settles the assertion (iii). The hypothesis that
Gr (M,)+Dim (4/p)=Dim (M) for all peSupp(M) shows that Gr(M,)=0
if and only if p € Supp (M) and Dim (4/p)=Dim (M). Consequently these argu-
ments lead us to the assertion (ii). g.e.d.

The following definition is motivated by (4.3).

(4.4) DEFINITION. Let A be a ring. Then a non-zero, finite A-module
M is called a Cohen-Macaulay module if it satisfies the following conditions:

(a) For each prime ideal p in Supp (M), Dim (M,) is finite.

(b) For each pair of prime ideals p, q in Supp (M) such that q=p, Gr (M Q)
+Dim (4,/q4,)=Dim (M,).

Further a ring 4 is called a Cohen-Macaulay ring if A is a Cohen-Macaulay
A-module.

(4.5) LeMMA. Let A be a noetherian local ring and M a non-zero, finite
A-module. Assume that M is a Cohen-Macaulay A-module in the classical
sense, namely depth M=dim M. Then, for each prime ideal q in Supp (M),
depth M +dim A/q=dim M.

Proor. Let q be a prime ideal in Supp (M). Then q2Ann (M). Thus we
use induction on ht(gq/Ann(M)). Put n=ht(q/Ann(M)). If n=0, then
qeAss(M). Hence depth M, =0 and dim A4/q=dim M. Accordingly, we have
the equality in this case. From now on we assume therefore that n>1 and
make the obvious inductive hypothesis. Then qe=Ass (M). It follows that there
exists an element f of q such that the sequence

o—ML MM, —0
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is exact, where M, =M/fM. However M, is also a Cohen-Macaulay A-module
and ht(q/Ann(M,))=n—1. Hence, by the inductive hypothesis, we obtain
depth (M), +dim A/q=dim M,. Adding 1 to both sides, we have depth M, +
dim A/q=dim M. q.e.d.

(4.6) PrROPOSITION. Let A be a noetherian ring and M a non-zero, finite
A-module. Then the following conditions are equivalent:

(i) M is a Cohen-Macaulay A-module in the classical sense. That is to
say, for each maximal ideal m of A in Supp (M), depth M,,=dim M,,.

(i) M is a Cohen-Macaulay A-module in the sense of (4.4).

Proor. Note that if A is a noetherian ring and p is in Supp (M), then
Gr(M,)=depth M, and Dim(M,)=dim M,, and so Dim(M,)<o. Hence
this proposition follows from (4.5) and the fact that the assertion (i) implies
depth M, =dim M, for all p € Supp (M). g.e.d.

(4.7) ProPOSITION. Let A be a ring and M a non-zero, finite A-module.
Then:

(i) If M is a Cohen-Macaulay A-module and S is a multiplicatively
closed subset of A with Mg+0, then Mg is also a Cohen-Macaulay Ag-module.

(ii) M is a Cohen-Macaulay A-module if and only if M, is a Cohen-
Macaulay A,-module for all maximal ideals m in Supp (M).

Proor. This proposition is obvious by the definition. g.e.d.

(4.8) THEOREM. Let A be a ring and M a non-zero, finite A-module.
Then M is a Cohen-Macaulay A-module if and only if the following three state-
ments hold:

(i) For each prime ideal p in Supp (M), Dim (M,) is finite.

(ii) For each prime ideal p in Supp (M), Gr (M,)=Dim (M,).

(iii) For each pair of prime ideals p and q in Supp (M) such that q<p,
Ht (p/Ann (M))=Ht (q/Ann (M)) + Ht (p/q).

Proor. Suppose that M is a Cohen-Macaulay A-module. Clearly we
have the first assertion by the definition. Let p be in Supp (M). Then it follows
from the definition that Gr(M,)=Dim (M,) becasuse Dim(4,/pA4,)=0. This
proves the second assertion. Now assume that p and q are prime ideals in
Supp (M) with q<p. Then, by the definition and the assertion (ii), we obtain
Dim (M,)+Dim (4,/94,)=Dim (M,). However, by (2.7) and (3.6), we see that
Dim (M,)=Ht (q/Ann (M)), Dim (M,)=Ht (p/Ann(M)) and Dim(4,/q4,)=
Ht(p/q). Therefore Ht(q/Ann(M))+Ht (p/q)=Ht (p/Ann (M)), which settles
the third assertion.

Conversely assume that the three conditions hold, and let p and q be prime
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ideals in Supp (M) with q<p. Then the assumptions and the above arguments
show that

Gr(M,) + Dim (4,/q4,) = Dim (M,) + Dim (4,/q4,)
= Ht (q/Ann (M)) + Ht(p/q) = Ht (p/Ann (M)) = Dim (M,).

Consequently M is a Cohen-Macaulay A-module. g.e.d.

(4.9) DEFINITION. A ring A is said to be polynomially catenarian if the
following two conditions hold:

(a) For each prime ideal p of 4, Ht (p) is finite.

(b) For each set of prime ideals, p, q and r of A such that rcqcp,
Ht (p/r)=Ht (q/r)+Ht (p/q).

It is clear that if A is an integral domain, the condition (b) is equivalent to the
statement that Ht (p)=Ht (q)+Ht (p/q) for each pair of prime ideals p and q of
A such that q=p. Suppose next that A4 is a noetherian ring. Then A is poly-
nomially catenarian if and only if A4 is catenarian, because we see that Ht (p)=
ht (p) for all prime ideals p of A.

(4.10) CorOLLARY. Let A be a ring and M a Cohen-Macaulay A-module.
Then A/Ann (M) is polynomially catenarian.

Proor. We can easily prove our corollary by the assertion (iii) of (4.8).
qg.e.d.

(4.11) LeMMA. Let A be a quasi-local ring with the maximal ideal m
and M a non-zero, finite A-module such that Gr (M)=Dim (M). Furthermore
let f be an M-regular element of m. Then Dim (M)=Dim (M/fM)+1.

ProOOF. Since f is an M-regular element of m, f is not contained in any
minimal prime ideal of Ann (M). Thus, by Prop. 1, (9) of [8], Ht (m/Ann (M))>
Ht (m/Ann (M), f))+1. Therefore, by Prop. 1, (4) of [8], Ht(m/Ann(M))>
Ht (m/Ann (M/fM))+1, because Ann (M/fM)=(Ann (M), f). Hence, by (3.6),
Dim (M)=ZDim (M/fM)+1. Therefore Gr(M/fM)+1=Gr(M)=Dim (M)=
Dim (M/fM)+1 by Theorem 15 of Chapter 5 in [7]. It consequently follows
from Theorem 2 of [8] that Gr(M/fM)+1=Gr (M)=Dim (M)=Dim (M/fM)
+1. g.e.d.

(4.12) PrOPOSITION. Let A be a ring and M a non-zero, finite A-module.
Further, let f be an element of A such that the sequence

0o—MI M MM 0
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is exact and M/fM+0. If M is a Cohen-Macaulay A-module, then M|fM
is also a Cohen-Macaulay A-module.

Proor. Put M,=M/fM. Let p be a prime ideal in Supp(M,). Then
peSupp (M) and fep. Now localizing the exact sequence at p, we have an
exact sequence

0o—mM, LM, M, 0.

However, by (4.8), Gr (M,)=Dim (M,) and Dim (M,)<oco. It therefore follows
from (4.11) that Dim (M, ,) is finite. Next let p and q be prime ideals in Supp (M)
such that q=p. Then we see that

Gr(M,,) + Dim(4,/q4,) = Gr (M,) + Dim (4,/q4,) — 1 = Dim (M,) — 1,

because M is a Cohen-Macaulay A-module and Gr (M,)=Gr(M,,)+1. Hence,
by (4.11), Gr(M,,)+Dim (4,/q4,)=Dim (M,,). Accordingly M, is a Cohen-
Macaulay A-module. qg.e.d.

(4.13) THEROREM. Let A be a ring and M a Cohen-Macaulay A-module.
If (A/Ann (M)) [X] is polynomially catenarian, then M[X] is a Cohen-Macaulay
A[X]-module.

Proor. Put a=Ann(M). Then it is clear that Ann (M[X])=a[X]. Let
P be a prime ideal in Supp (M[X]), and put p=ANP. Then P2a[X] and pe
Supp (M). Since M is a Cohen-Macaulay A-module, we see that Dim (M,) is
finite, and therefore, by (3.6), Ht (p/a) is finite. On the other hand, since P/a[X]
nA/a=p/a, it follows from (2.3) and (2.4) that Ht(P/a[X])=Ht(p/a)+
ht (B/p[X])<Ht(p/a)+1<co. Consequently we conclude that Dim (M[X]y)
is finite because Dim (M[X]y)=Ht (PB/a[X]).

Let now P and Q be prime ideals of A[X]in Supp (M[X]) such that Q< P.
Put p=AnNPand q=ANQ. Then p and q are in Supp (M) and q=p. There-
fore, since M is a Cohen-Macaulay A-module, Gr(M,)+Dim(4,/q4,)=
Dim (M,). To complete the proof we shall distinguish between the following
four possibilities: (i) P=p[X] and Q=q[X]; (@) P+p[X] and Q=q[X];
(iii) P=p[X] and Q+q[X]; (@(v) P+p[X] and Q+q[X]. We can observe
that if Q=q[X], then Gr(M[X]g)=Gr(M,) by (3.4) and that if Q=+ q[X],
then Gr(M[X]g)=Gr(M,)+1 in view of (3.5). Furthermore we see that if
P =p[X], then Dim(M[X]y) = Ht(P/a[X]) = Ht((p/a)[X]) = Ht(p/a) =
Dim (M,) by (3.6) and that if B+ p[X], then Dim (M[X]y)=Dim (M,)+1 by the
proof of (3.7). In addition, (2.7) yields Dim (A[X]p/QA[X])=Ht (B/Q) and
Dim (4,/94,)=Ht (p/q).

These arguments show the following equalities. In case (i), it is clear that
Ht (B/Q)=ht (p/q). Thus,
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Gr (M[X1) + Dim (A[X14/RA[X]y)=Gr (M,) + Ht (B/Q)
= Gr(M,) + Ht(p/q) = Gr(M,) + Dim (4,/q4,)
= Dim (M,) = Dim (M[X]g).
In case (ii), by (2.3) and (2.4), Ht (B/Q)=Ht (p/q)+ 1, whence
Gr (M[X]g) + Dim (A[X]15/QA[X]y) = Gr (M) + Ht (B/Q)
= Gr(M,) + Ht(p/q) + 1 = Gr(M,) + Dim (4,/94,) + 1
= Dim (M,) + 1 = Dim (M[X]g).

Since (4/Ann (M))[X] is polynomially catenarian, Ht (P/Q)=Ht(B/q[X])—
Ht (Q/q[X]). In case (iii), we see that Ht (B/q[X])=Ht (p/q) and Ht (Q/q[X])=
1 by (2.4). Therefore

Gr (M[X1g) + Dim (A[X15/QA[X]y) = Gr (M,) + 1 + Ht (P/Q)
= Gr(M,) + 1 + Ht(P/q[X]) — Ht (X/q[X])
= Gr(M,) + 1 + Ht(p/q) — 1 = Gr(M,) + Dim (4,/q4,)
= Dim (M,) = Dim (M[X]) 4.

Finally, in case (iv), by (2.3) and (2.4), Ht (B/q[XT)=Ht (p/q) + 1 and Ht (Q/q[X])
=1. Hence it follows by a similar method that

Gr(M[X]1p) + Dim (A[X15/QA[X]y) = Gr(M,) + 1 + Ht(B/Q)
= Gr(M,) + 1 + Ht (B/q[X]) — Ht(Q/q[XT)
=Gr(M,) + 1+ Ht(p/g) +1 —-1=Gr(M,) + Dim(4,/q4,) + 1
= Dim (M,) + 1 = Dim (M[X]g).

Consequently M[X] is a Cohen-Macaulay A[ X]-module. qg.e.d.

5. Examples of Cohen-Macaulay rings

(5.1) ProrosITION. Let A be a quasi-local ring. Then we have the
following statements:

(i) If Dim A=O0, then A is a Cohen-Macaulay ring.

(ii) Suppose Dim A=1. Then A is a Cohen-Macaulay ring if and only
if Gr (A) is positive.

(iii) Suppose Dim A=2. Then A is a Cohen-Macaulay ring if and only
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if Gr (4)=Dim (4/p) for each prime ideal p in Att(A). In particular a quasi-
local domain A with Gr(A)=Dim A=2 is a Cohen-Macaulay ring.

Proor. Since the assertions (i) and (ii) are obvious, we shall only show the
assertion (ili). The ‘“‘only if” part of (iii) follows from (4.3). We prove the
“if” part of (iii). Suppose now that, for all pe Att(4), Gr(4)=Dim (4/p).
Then, by the facts that Dim A =Sup,.inc4){Dim (4/p)}, Dim A=2 and Min (4)
S Att (4), we see that Dim (4/p)=2 for all prime ideals p in Att(4) and that
Gr (4)=Dim (4). Hence, by (2.8), Min (4)=Att(4). Let p be a prime ideal
of A. Then we have Gr(4,)<Dim(4,) by Theorem 2 of [8]. It therefore
follows that if Ht (p)=0, then Gr(4,)=Dim (4,)=0 and that if Ht(p)=1, then
Gr(4,)=Dim (4,)=1.

Next we assume that p and q are prime ideals of 4 such that q=p and we
shall show the equality Gr(4,)+Dim (4,/q4,)=Dim (4,). Thus, we may also
assume that q & p by the above arguments. Accordingly, since Ht (q) <Ht (p)<2,
we can distinguish three cases: (a) Ht(q)=0 and Ht(p)=1; (b) Ht(q)=1 and
Ht(p)=2; (c) Ht(q)=0 and Ht(p)=2. In case (a), Gr(4,)+Dim(4,/q94,)=
0+1=Dim(4,). We can easily show the equality in cases (b) and (c) by the same
method. Consequently A4 is a Cohen-Macaulay ring.

The second statement of (iii) follows from the fact that if A is an integral
domain, then Att(4)={0}. g.e.d.

(5.2) ExampLE. Let B be a polynomial ring k[X;, X,,..., X,,...] over a
field k, and let m be a positive integer. Further let a=(X2,,, X2,,,...) and let
P=(Xp+1> Xmt2-..). Then it is clear that p=,/a. Put 4=B/a and P=p/a.
Then A is a non-noetherian ring and SB=\/6. Since the ring A/P is isomophic
to k[X,, X;,,..., X,,], A/B is a noetherian, Cohen-Macaulay ring of dimension
m and A/ is catenarian. However, by Lemma 2 of [8] and (2.8), Ht (Q)=
Ht (Q/P) for all prime ideals Q of A, becasue ‘J3=\/F. Thus Dim A=
Dim (A/B)=dim (4/B)=m since A/Pis noetherian. Furthermore 4 is a polynom-
ially catenarian ring, because, for any pair of prime ideals Q; and Q, of 4 with
Q;=Q,;, we obtain Ht(Q,)+Ht (WV,/V,)=Ht (V,/P)+Ht (Q2/P)/(R4/B)) =
Ht (Q,/P)=Ht(Q,). On the other hand A4 is isomorphic to C[Xj,..., X,.],
where C=k[X,t1, Xms2seo (X241, X2425...). Since DimC=0, C is a
Cohen-Macaulay ring. It thus follows from (3.8) that Gr(Ag)=Dim (4) for
all prime ideals Q of A. Consequently, in view of (4.8), we can conclude that
A is a nonnoetherian, Cohen-Macaulay ring with Dim 4 =m.

(5.3) LeMMA. Let A be a Krull domain and p a prime ideal of A. Then
ht (p)=1if and only if Ht (p)=1.

ProoF. Assume that ht(p)=1. Then we see that ht(p)=ht (p4,)=
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Ht (p4,)=Ht (p), because A4, is a noetherian ring. Thus Ht(p)=1. Conversely
suppose that Ht(p)=1. Since ht(p)<Ht(p), ht(p)<1. If ht(p)=0, then
Ht (p)=0 by Prop. 1, (8) of [8]. Therefore we have ht (p)=1. g.e.d.

The following theorem is a generalization of Serre’s criterion of normality
and its proof is quite similar to Fossum’s one of Theorem 4.1 in [3].

(5.4) THEOREM. Let A be an integral domain. Then A is a Krull domain
if and only if A satisfies the following three conditions:

(FC) Given fin A, f+0, there is at most a finite number of prime ideals
p of A such that fep and Ht(p)=1.

(Ry) Ifpis a prime ideal of A such that Ht(p)=1, then A, is a discrete
valuation ring of rank one.

(S;) For each prime ideal q of A, Gr(4,)=inf {2, Ht (q)}.

Proor. First assume that 4 is a Krull domain. Then the conditions (FC)
and (R,) are well known by (5.3). Hence we shall prove the condition (S,). It
will suffice to show that if g is a prime ideal of A such that Ht(q)=2, then
Gr(A4,)=2. Now assume that q is a prime ideal with Ht (q)=2. Then ht(q)=2
by (5.3). It follows from the proof of Theorem 4.1 in [3] that grs,{q4,; 4,}=2.
Thus Gr(4,)=2.

Next, to prove the converse, assume that the three conditions (FC), (R,) and
(S;) hold. We shall show that (S,) implies A=y ,)=14,- Suppose that
X€ Npypy=14, and x+0. Let a=A4:,x. If a=A4, then xe A. Assume the
contrary, that is to say a A. Then there exists a prime ideal q of 4 such that g
is a minimal prime ideal of a. Since a,=A4,:4,x, we see Ht(q)=2. There-
fore the assumption (S,) implies Gr(4,)=2. However, since q is a minimal
prime ideal of a, we see that \/ad,=qA,. This shows Gry,{ad,; 4,} =2 by
Theorem 12 of Chapter 5 in [7]. Accordingly, there exists an integer n such that
we can find an 4,[X,,..., X, ]-sequence {u, v} composed of elements of a4,[X;,
..y X,]. Put r=xu and s=xv. Then r and s are in 4,[X,,..., X,] because
ad,=A,:4,x. Thus us=vr and hence we can write r=uw where we 4,[X,,
ooy X,], since {u,v} is an A [X,,..., X,]-sequence. Therefore x=weKn
A[X,,..., X,]=A, where K is the quotient field of 4. This is a contradiction.
Consequently we have established that the condition (S,) implies 4= Ny, (py=14,-
Now our theorem follows from (FC) and (R,). g.e.d.

(5.5) CoroLLARY. If A is a Krull domain such that Dim AL2, then A
is a Cohen-Macaulay ring.

Proor. This follows from (5.1) and (5.4). g.e.d.

(5.6) ProPOSITION. Let V be a non-trivial valuation ring. Then Gr (V)=1.
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ProoF. Let m be the maximal ideal of V and let x be a non-zero element
of m. Then we have an exact sequence

0— V——x—> V—s V/XV——> 0.

Therefore, to prove the proposition, we have only to show Gr (V/xV)=0, namely
meAtt (V/xV). By (3.1), it is enough to see that, for any finitely generated ideal
a contained in m, there exists a non-zero element m, of V/xV such that am=0.
Now assume that a is a finitely generated ideal of V contained in m. Since V
is a valuation ring, a is a principal ideal aV and hence either aV=xV oraV2 xV.
We denote by Z the image of z under the natural mapping V-V/xV. If aV<xV,
then T#0and aV1=0in V/xV. Thus we may assume that aV2xV. Then x=ay
where yem. Note that y&=xV. Hence y+0 and aVy=0 in V/xV. Con-
sequently we see that me Att (V/xV). q.e.d.

(5.7) CoroLLARY. Let V be a non-trivial valuation ring. Then V is a
Cohen-Macaulay ring if and only if the rank of V is one.

Proor. Since Dim V=dim ¥, our corollary follows from (5.6). g.e.d.

(5.8) LEMMA. Let V be a valuation ring. If B is a prime ideal of V[X,,
ves X,], then Ht (B)=ht (P).

Proor. Let p be a prime ideal of V. Then V, is a valuation ring. It thus
follows from (2.7) and the definition of valuative dimension that Ht (p)=Dim V
=dim V,=ht(p). Therefore we can prove our lemma by (2.5). qg.e.d.

(5.9) LEMMA. Let V be a valuation ring with the maximal ideal m and let
Q be a prime ideal of V[X4,..., X,,] such that ht (Q)=1 and QN V=0. Then Q
is a principal ideal generated by a polynomial which is not contained in m[ X,
vy X1

ProoF. Let S be the set of non-zero elements of ¥, and let K be the quotient
field of V. Then Qg is a prime ideal of K[X,..., X,] and the height of Qg is one.
Thus Qg is a principal ideal because K[X,,..., X,] is a unique factorization
domain. Since Vis a valuation ring, we may assume that Qg=(f), where fis an
element of V[X,,..., X,] which is not contained in m[X,,..., X,]. Accordingly
(f)=Q. Now let v be the valuation on K associated with V and let v* be the
trivial extension of v to K(X;,..., X,). That is to say, v*(Xa;,;,..., X i1 Xi2---Xin)
=inf {v(a;;,...;,) |8i,ipi,+#0}. Assume geQ. Then we can write g=(h/s)f
where he V[X,,..., X,] and seS. Hence it follows that v*(g)=0v*(h/s)+v*(f)
=0v*(h/s), and so v*(h/s)=0. Consequently h/seV[X,,..., X,] and hence
ge€(f). We therefore conclude that Q=(f). g.e.d.



Generalized Cohen-Macaulay modules 631

(5.10) ProposiTION. Let V be a valuation ring of rank one. Then
V[X,] and V[X,, X,] are Cohen-Macaulay rings.

Proor. First, by (2.3) and (2.7), note that Dim V[X,;]=2 and Dim V[X,,
X,]=3. Since Vis a Cohen-Macaulay ring, it follows from (3.8) and (5.1) that
V[X,] is a Cohen-Macaulay ring. Moreover, again by (3.8), we see that
Gr(V[X,, X,1p)=Dim (V[X,, X,]g) for all prime ideals P of V[X,, X,].
Thus, by (4.8), to prove that V[ X, X,] is a Cohen-Macaulay ring, it is sufficient
to show that V[X,, X,] is polynomially catenarian. In view of (5.8), this is
equivalent to the assertion that V[ X, X,] is catenarian. Therefore we have only
to prove that ht(P)=ht (Q)+ht (P/Q) for all pairs of prime ideals P, Q of
V[X,, X,] such that Q& P.

Now assume that 9§ and Q are prime ideals of V[X, X,] with Q&P and m
is the maximal ideal of V. For the remainder of our discussion we separate the
cases: QN V=m; Pn¥V=0; Qn¥V=0and P n V=m.

Case (i) Qn V=m. For this situation we see that m[X,, X,]1cQ&P. It
thus follows from (2.1) that ht()=ht(m[X,, X,1)+ht (P/m[X,, X,]) and
ht (Q)=ht (m[X,, X, ) +ht (Q/m[X,, X,]). However the ring V[X,, X,]/
m[X,, X,] is isomorphic to (V/m)[X,, X,], whence V[X,, X,]/m[X,, X,] is
catenarian. Hence ht (P/Q)=ht (P/m[X,, X,])—ht (Q/m[X,, X,]). Accord-
ingly we have ht (B)=ht (Q)+ht (B/Q) and the desired result follows.

Case (ii) P n V=0. This time it is clear that Qn V=0. Put S=V-{0}.
Then QN S=¢ and P n S=¢. Therefore Qg and P are prime ideals of K[X,,
X,] with Qg5 B, where K is the quotient field of V. Since K[X,, X,] is cate-
narian, we obtain ht () =ht (Ps)=ht (Qg) +ht (Ps/Qs) =ht (Q) +ht (P/Q).

Case (iii)) Q n V=0and P n V=m. In this case we assume that Q=+ 0, because
if Q=0, then the equality holds clearly. Further it is sufficient to show that ht (B)
<ht(Q)+ht(P/Q). Since Dim V[X,, X,]1=3, ht(P)<3. If ht(P)<2, then
this inequality is clear because ht (Q)=1 and ht (B/Q)=1. Hence from now on
we assume ht (B)=3. If either ht (Q)=2 or ht (P/Q)=2, then we can see that
ht (P)<ht (Q)+ht (P/Q). Thus suppose that ht(Q)=1 and ht(P/Q)=1.
Then it follows from (5.9) that Q is a principal ideal. Put Q=(f), where fis an
element of V[X,, X,] not contained in m[{X,, X,]. Considering the natural
mapping V[X;, X,]-V[X;, X,]/m[X}, X,], we put Q=(Q+m[X,, X,])/
m[X,, X,] and P=P/m[X,, X,], and let f be the image of f. Then P is a prime
ideal of V[X,, X,1/m[X,, X,] and 8=(f). Moreover P is a minimal prime
ideal of Q because ht (B/Q)=1. However V[X,, X,]/m[X,, X,] is a noetherian
ring by the proof of case (). We now apply Krull’s principal ideal theorem, which
shows us that ht (B)=1. Tt thus follows from (2.1) that ht (P)=ht (m[X,, X,])
+ht (P)=2, because ht(m[X,, X,])=Ht(m)=Dim V=1. This leads us to a
contradiction. Therefore we have proved the equality in case (iii). g.e.d.
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As we state in Introduction, it is important for a generalization of the notion
of Cohen-Macaulay modules to ask the following question: Let A be a quasi-
local ring and M a non-zero, finite A-module. Then does the inequality Gr (M)
<Dim (4/p) hold for all peAtt(M)? Mr. S. Itoh has showed me a negative
answer. He has kindly allowed me to include his counterexample in this paper as
appendix.

The following appendix is due to Mr. S. Itoh and the author would like to
thank him for his kindness.

Appendix

Let A be a non-noetherian, quasi-local ring and m the maximal ideal of 4.
Suppose that Dim A4 is finite. We fix a sequence cg, ¢y,..., Cpp-.. Of nON-ZETO
elements of m such that coAS(co, c)AS - F(Cos C1seees CAF-. Put B=
A[X](m,x) Where X is an indeterminate. Let J be an ideal of B generated by

{co+c,X"n=1,2,...}.
LemMma 1. N, (X" J)BRJ.

Proor. It is clear that cy,eN,(X”, J)B. We shall show that co<&J.
Suppose contrarily that ¢, €J. Then

(*) heo = X1y (co + ;XD f;

for some h, f;e A[X] such that h(0)=1. Comparing the constant terms of the
equation (x), we see co=>.7,¢0f{(0). This shows that f(0)ém for some i.
Put n=Min {i|f(0)&em}. We also put h=3;a;X/ and fi=3;b;X/ (i=1,
..., m) where a;, b;;e A and a,=1. Comparing the coefficients of X" of the
equation (*), we have coa,=2 " (b;,—iC;+byCo)+ 2 Tptq binco. Therefore
broCs €(Coseevs €u—1)A. Since b,o(=f,(0))Em, ¢, €(cy,..., ¢,—1)A. This is a con-
tradiction. Therefore ¢, & 3. g.e.d.

Let Y, Z be indeterminates over A[X] and put C=A[X, Y, Z], xv,2)- Note
that the ring C is naturally isomorphic to B[Y, Z], y,z) where 1 is the maximal
ideal of B. We now put B’=B/J and let n’ be the maximal ideal of B’. Further
let f be a ring homomorphism B[Y, Z]-B'[Y, xY~1] such that f(Y)=Yand f(Z)=
xY~! where x=X mod J. Then (n’, ¥, xY~1) is a maximal ideal of B'[Y, xY~1]
and f~Y((n, ¥, xY"1))=(n, Y, Z) because f((n, Y, Z))c(n’, Y, xY!) and B[Y,
Z](n, Y, Z)=B'LY, xY 1J/(W, Y, xY )= A/m. Put C'=B[Y, xY '], yr-1)
Then we obtain a surjective ring homomorphism C—C’ which sends X, Y and Z
to x, Yand xY~1! respectively. We denote by J, the kernel of C—C'.

LemMA 2. Yis C/Jo-regular and N, (Y", J0)C 2 Jo-
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Proor. Since Y is B'[Y, xY~1]-regular, Y is also C’-regular. Hence Y is
C/3o-regular because C/J,=C’'. We shall show B'=C’. Assume that b is an ele-
ment of B’ such that b=0in C'. Then there is an element Y ;50 ;50 b;; Yi(xY 1)/
of B'[Y, xY~1] not contained in (n’, Y, xY~!) such that (X, ; b;;Y/(xY~)/)b=0,
where b;;eB’. We see that byoeen’ and (X; b;x))b=0. Since Y ;b;xiEn’,
b=0in B’. Therefore B'<C’. It thus follows from Lemma 1 and the equality
x=(xY"1)Y that N, Y"C'2N\,x"B'+0. This shows that N, (Y?, I)C2Io.

g.e.d.

Let M be an A-module. We denote by Ass, (M) the set of prime ideals p
of A which are minimal prime ideals of Ann(4m) for some meM. Note
Ass , (M) = Att, (M).

Let Z,,..., Z, (where r>Dim A) be distinct indeterminates over A[X, Y, Z]
and put R=A[X, Y, Z, Z,,..., Z ) x,y,22:,.,2,) Furthermore let M be the
maximal ideal of C. Then the ring R is isomorphic to C[Z,,..., Z,)m z,,....z,)-
Put J'=N,(Y", J,)C and K=(Jy, Z,J',-.., Z,J")R.

LBMMA 3. There exists P e Attg (R/R) such that Dim (R/PB)<Gr (R/KR).
(Therefore the R-module R[K gives a counterexample to our question.)

Proor. Let ¢ be an element of C. If ¢YeJ,, then ceJ, because Yis
C/Jo-regular. If cYeJ', then ceJ’. In fact, we can write cY=aqa,Y"+b,(n=1,
2,...)wherea,e Cand b,€J,. Since b,=(c—a,Y" 1)YeJ,and Yis C/I,-regular,
we have c—a,Y" 1 €J,. Therefore ceJ’'. It is now easy to see that Yis C[Z,,
vees Z( S0 Z213'5..., 2,3 )-regular. In particular, Y is R/R-regular.

We next prove that Gr(R/R)=Gr(C/Jo)+r, that is, Grgz {N; R/K}=
Greo {M; C/3Jo}+r where N is the maximal ideal of R. In fact, R/(Y, R)R=
R/(Y, Jo) R=(C/(Y, J0) O [Zy,..., ZJwm/v,30)¢.21,....2,)- Therefore Grg {9 R/K}
=Grg{N; RI(Y, )R} +1. Put R'= (C/(Y, Io)O)NZy,---s ZJm/(v.30)C.21,020)
Since {Z,,..., Z,} is an R-sequence on R’ composed of elements of R,

Grg {9 R/(Y, S)R}=Grg {N; R/(Zy,..., Z)R'} +r=Crc {M; C/(Y, Io)C} +,

and hence
Grg {M; R/K} = Gre {M; C/(Y, Ip)C} + r + 1 = Gre {M; C/T,} + 7.

Finally, by Lemma 2, we can find an element u of 3’ not contained in J,.
Then K:zu32Z,,...,Z, and so K:zu=(Jp:cU, Zy,..., Z)R. Let now p be a
minimal prime ideal of 3,:cu. Then P=(p, Z,,..., Z,)R is a minimal prime ideal
of K:zu and therefore P e Assg (R/R)SAttz (R/R). Since R/P=A/p, we
conclude that Dim (R/)=Dim (4/p)<Dim A<r=<Grg {N; R/K|K}=Gr (R/K).

g.e.d.
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Summarizing the above discussion, we have the following:

THEOREM. Let A be a non-noetherian quasi-local ring and m the maximal
ideal of A. Suppose that Dim A is finite. Then for sufficiently many distinct
indeterminates Z,,..., Z,, there exists an ideal & of R=A[Z,,..., Z, i z,,..2.)
such that Dim (R/B) < Gr (R/R) for some P € Attg (R/R).
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