Subnormality and ascendancy in groups

Shigeaki Tôgô (Received April 15, 1980)

Introduction

Recently subnormality in groups was investigated by Wielandt [7], Peng [4, 5], McCaughan and McDougall [3], and subnormality and ascendancy in groups were investigated by Hartley and Peng [1]. On the other hand, subideality and ascendancy in Lie algebras were examined by Kawamoto [2] and the author [6].

In this paper, following the paper [6] we shall introduce two notions of weak subnormality and weak ascendancy for subgroups, study their properties, and investigate several criteria for subnormality and ascendancy of subgroups.

Let H be a subgroup of a group G. We shall show that when either (a) G is hyperabelian, (b) G has an ascending abelian series and H is finite, or (c) G is finite-by-hyperabelian and H is finite, H is ascendant in G if and only if H is weakly ascendant in G (Theorems 3 and 7). Similar results for subnormality will be shown in Theorems 3 and 6. We shall also give characterizations of weak subnormality and ω -step weak ascendancy (Theorem 4), and show that every finite, weakly ascendant subgroup of a group is at most of ω -step (Theorem 5).

1.

Let G be a group. If x, y are elements of G, then $[x, y] = x^{-1}y^{-1}xy$ and we write $[x, _0y] = x$, $[x, _{n+1}y] = [[x, _ny], y]$ for an integer $n \ge 0$. If X, Y are non-empty subsets of G, [X, Y] is the set of all [x, y] with $x \in X$ and $y \in Y$ and we write $[X, _0Y] = X$, $[X, _{n+1}Y] = [[X, _nY], Y]$.

We write $H \le G$ if H is a subgroup of G and $H \multimap G$ if H is a normal subgroup of G. For any ordinal λ , a subgroup H of G is a λ -step ascendant subgroup of G, denoted by $H \multimap^{\lambda} G$, if there is a series $(S_{\alpha})_{\alpha \le \lambda}$ of subgroups of G such that

- (a) $S_0 = H$ and $S_{\lambda} = G$,
- (b) $S_{\alpha} \triangleleft S_{\alpha+1}$ for any ordinal $\alpha < \lambda$,
- (c) $S_{\beta} = \bigcup_{\alpha < \beta} S_{\alpha}$ for any limit ordinal $\beta \le \lambda$.

H is an ascendant subgroup of G if $H \triangleleft^{\lambda} G$ for some ordinal λ . When $\lambda < \omega$, H is a subnormal subgroup of G, denoted by H sn G.

We say a subgroup H of G to be a λ -step weakly ascendant subgroup of G, if there is an ascending series $(S_{\alpha})_{\alpha \leq \lambda}$ of subsets of G satisfying the above conditions (a), (c) and the following condition:

(b') If α is any ordinal $<\lambda$, then $u^{-1}Hu\subseteq S_{\alpha}$ for any $u\in S_{\alpha+1}$.

We then write $H \leq {}^{\lambda}G$. We simply call such a series $(S_{\alpha})_{\alpha \leq \lambda}$ a weakly ascending series from H to G. We call H a weakly ascendant subgroup of G if $H \leq {}^{\lambda}G$ for some ordinal λ . We then write H wasc G. When $\lambda < \omega$, we call H a weakly subnormal subgroup of G and write H wsn G.

As usual, \mathfrak{F} , \mathfrak{G} , \mathfrak{A} , \mathfrak{A} and $\acute{\mathbf{E}}(\lhd)\mathfrak{A}$ are the classes of finite, finitely generated, abelian, solvable and hyperabelian groups respectively, and Min is the class of groups satisfying the minimal condition for subgroups. $\acute{\mathbf{E}}_{\lambda}\mathfrak{A}$ is the class of groups G having an ascending abelian series $(G_{\alpha})_{\alpha \leq \lambda}$ of subgroups, and $\acute{\mathbf{E}}\mathfrak{A} = \bigcup_{\lambda} \acute{\mathbf{E}}_{\lambda}\mathfrak{A}$. $G \in \acute{\mathbf{E}}(\lhd)\mathfrak{A}$ means that there is an ascending abelian series of normal subgroups of G. $(\mathbf{E}\mathfrak{A}, \acute{\mathbf{E}}\mathfrak{A})$ and $\acute{\mathbf{E}}(\lhd)\mathfrak{A}$ are also denoted by $\mathbf{P}\mathfrak{A}$, $\acute{\mathbf{P}}\mathfrak{A}$ and $\acute{\mathbf{P}}_{n}\mathfrak{A}$ respectively.)

For K, $L \le G$, we denote $K \in \acute{\mathbb{E}}_{\lambda}(L)\mathfrak{A}$ if there is an ascending abelian series $(K_{\alpha})_{\alpha \le \lambda}$ of L-invariant subgroups of G, and denote $\acute{\mathbb{E}}(L)\mathfrak{A} = \bigcup_{\lambda} \acute{\mathbb{E}}_{\lambda}(L)\mathfrak{A}$.

2.

We first show the following two lemmas which will be used in the subsequent sections.

Lemma 1. Let G be a group and let $H \leq {}^{\lambda}G$. Then there exists a weakly ascending series $(S_{\alpha})_{\alpha \leq \lambda}$ from H to G such that for any ordinal $\alpha \leq \lambda$

$$HS_{\alpha}H = S_{\alpha}$$
 and $S_{\alpha}^{-1} = S_{\alpha}$.

PROOF. Let $(S_{\alpha})_{\alpha<\lambda}$ be a weakly ascending series from H to G. Put

$$M_{\alpha} = H(S_{\alpha} \cap S_{\alpha}^{-1})H.$$

Then $M_0 = H$ and $M_{\lambda} = G$. Let α be any ordinal $< \lambda$. Any element u of $M_{\alpha+1}$ is expressed as

$$u = axb$$
 with $a, b \in H$ and $x \in S_{\alpha+1} \cap S_{\alpha+1}^{-1}$.

Hence

$$u^{-1}Hu = (axb)^{-1}H(axb)$$

= $b^{-1}(x^{-1}a^{-1}Hax)b$.

Since $x^{-1}a^{-1}Hax \subseteq S_{\alpha} \cap S_{\alpha}^{-1}$, it follows that

$$u^{-1}Hu \subseteq H(S_{\alpha} \cap S_{\alpha}^{-1})H = M_{\alpha}.$$

For any limit ordinal $\beta \leq \lambda$,

$$M_{\beta} = H(S_{\beta} \cap S_{\beta}^{-1})H$$

$$= H(\bigcup_{\alpha < \beta} (S_{\alpha} \cap S_{\alpha}^{-1}))H$$

$$= \bigcup_{\alpha < \beta} H(S_{\alpha} \cap S_{\alpha}^{-1})H$$

$$= \bigcup_{\alpha < \beta} M_{\alpha}.$$

Therefore $(M_{\alpha})_{\alpha \leq \lambda}$ is a weakly ascending series from H to G satisfying the conditions.

LEMMA 2. Let G be a group.

- (a) If $H \leq {}^{\lambda}G$ and $K \leq G$, then $H \cap K \leq {}^{\lambda}K$.
- (b) Let f be a homomorphism of G onto a group \overline{G} . If $H \leq {}^{\lambda}G$, then $f(H) \leq {}^{\lambda}\overline{G}$. If $\overline{H} \leq {}^{\lambda}\overline{G}$, then $f^{-1}(\overline{H}) \leq {}^{\lambda}G$.

PROOF. Assume that $H \leq^{\lambda} G$ and let $(S_{\alpha})_{\alpha \leq \lambda}$ be a weakly ascending series from H to G. Then $(S_{\alpha} \cap K)_{\alpha \leq \lambda}$ is a weakly ascending series from $H \cap K$ to K and $H \cap K \leq^{\lambda} K$. $(f(S_{\alpha}))_{\alpha \leq \lambda}$ is also a weakly ascending series from f(H) to \overline{G} and $f(H) \leq^{\lambda} \overline{G}$.

Assume that $\overline{H} \leq {}^{\lambda}\overline{G}$ and let $(\overline{S}_{\alpha})_{\alpha \leq \lambda}$ be a weakly ascending series from \overline{H} to \overline{G} . Then $(f^{-1}(\overline{S}_{\alpha}))_{\alpha \leq \lambda}$ is a weakly ascending series from $f^{-1}(\overline{H})$ to G and $f^{-1}(\overline{H}) \leq {}^{\lambda}G$.

3.

We begin this section with

LEMMA 3. Let G be a group such that G=HK with $H \leq G$, $K \triangleleft G$ and $K \in \mathfrak{A}$. If $H \leq^{\lambda} G$, then $H \triangleleft^{\lambda} G$.

PROOF. Let $(S_{\alpha})_{\alpha \leq \lambda}$ be a weakly ascending series from H to G. By Lemma 1 we may assume that $HS_{\alpha}H = S_{\alpha}$ and $S_{\alpha}^{-1} = S_{\alpha}$ for any ordinal $\alpha \leq \lambda$. Then

$$S_{\alpha} = S_{\alpha} \cap (KH) = (S_{\alpha} \cap K)H.$$

Let α be any ordinal $< \lambda$. Let u, v be any elements of $S_{\alpha+1}$, S_{α} respectively. Then

$$u = xa$$
 with $x \in S_{\alpha+1} \cap K$ and $a \in H$, $v = yb$ with $y \in S_{\alpha} \cap K$ and $b \in H$.

By using the fact that $K \in \mathfrak{A}$, we have

$$u^{-1}vu = (xa)^{-1}(yb)(xa)$$

$$= a^{-1}y(x^{-1}bx)a$$
$$\in HS_{\alpha}^{2}H = S_{\alpha}^{2}.$$

It follows that for any $u \in S_{\alpha+1}$

$$u^{-1}S_{\alpha}^{n}u\subseteq S_{\alpha}^{2n}\qquad (n\geq 0).$$

We put $H_{\alpha} = \langle S_{\alpha} \rangle$ for any ordinal $\alpha \leq \lambda$. Then $H_0 = H$, $H_{\lambda} = G$ and $H_{\alpha} \triangleleft H_{\alpha+1}$ for any ordinal $\alpha < \lambda$. For any limit ordinal $\beta \leq \lambda$, we have $H_{\beta} = \bigcup_{\alpha < \beta} H_{\alpha}$. In fact, any $u \in H_{\beta}$ is expressed as

$$u = x_1 x_2 \cdots x_n$$
 with $x_i \in S_B$.

Then $x_i \in S_{\alpha_i}$ for some ordinal $\alpha_i < \beta$. Take $\alpha = \max(\alpha_1, ..., \alpha_n)$. Then each x_i belongs to S_{α} and therefore $u \in H_{\alpha}$. Thus $H \triangleleft^{\lambda} G$.

THEOREM 1. Let G be a group such that G = HK with $H \le G$ and $K \triangleleft G$.

- (a) Let $K \in \acute{\mathbf{E}}_{\lambda}(H)\mathfrak{A}$. If $H \leq {}^{\mu}G$, then $H \triangleleft {}^{\mu\lambda}G$.
- (b) Let $K \in \mathfrak{A}^n$. If $H \leq^{\mu} G$, then $H <^{\mu n} G$.

PROOF. (a) Let $(K_{\alpha})_{\alpha \leq \lambda}$ be an ascending abelian series of *H*-invariant subgroups of *K*. Then for any ordinal $\alpha \leq \lambda$

$$K_{\alpha} \triangleleft HK_{\alpha} \leq G$$
.

Assume that $H \leq {}^{\mu}G$. For each ordinal $\alpha < \lambda$, put

$$\overline{H} = HK_{\alpha}/K_{\alpha}$$
 and $\overline{K}_{\alpha+1} = K_{\alpha+1}/K_{\alpha}$.

Then $\overline{K}_{\alpha+1} \triangleleft \overline{H} \overline{K}_{\alpha+1}$ and $\overline{K}_{\alpha+1} \in \mathfrak{A}$. Since $H \leq^{\mu} H K_{\alpha+1}$ by Lemma 2(a), we have $\overline{H} \leq^{\mu} \overline{H} \overline{K}_{\alpha+1}$ by Lemma 2(b). Hence by making use of Lemma 3 we see that

$$\overline{H} \triangleleft^{\mu} \overline{H} \overline{K}_{\sigma+1}$$
.

If follows that

$$HK_{\bullet} \triangleleft^{\mu} HK_{\bullet + 1}$$

For any limit ordinal $\beta \leq \lambda$

$$HK_{\beta} = H(\bigcup_{\alpha < \beta} K_{\alpha}) = \bigcup_{\alpha < \beta} HK_{\alpha}.$$

Thus we conclude that $H \triangleleft^{\mu\lambda} G$.

(b) Put $K_i = K^{(n-i)}$ for $0 \le i \le n$. Then $(K_i)_{i \le n}$ is an ascending series of *H*-invariant subgroups of *K*. Therefore the assertion in (b) follows from (a).

For elements x, y of a group G, $x^y = y^{-1}xy$ and for $H \le G$, $\langle x^H \rangle = \langle x^a | a \in H \rangle$. With this notation we show the following

Lemma 4. Let $G \in \acute{\mathbf{E}}_{\lambda}\mathfrak{A}$ and let $H \leq G$. If $\langle x^H \rangle \in \mathfrak{G}$ for any $x \in G$, then $G \in \acute{\mathbf{E}}_{\lambda}(H)\mathfrak{A}$.

PROOF. Let $(G_{\alpha})_{\alpha \leq \lambda}$ be an ascending abelian series of G. Let M_{α} be the subgroup generated by all H-invariant subgroups of G_{α} . Then M_{α} is the largest H-invariant subgroup of G_{α} . Obviously $M_0 = 1$ and $M_{\lambda} = G$. For any ordinal $\alpha < \lambda$,

$$[M_{\alpha+1}, M_{\alpha+1}] \subseteq [G_{\alpha+1}, G_{\alpha+1}] \subseteq G_{\alpha}.$$

Hence $\langle [M_{\alpha+1}, M_{\alpha+1}] \rangle$ is an H-invariant subgroup of G_{α} and therefore

$$[M_{\alpha+1}, M_{\alpha+1}] \subseteq M_{\alpha}$$

It follows that $M_{\alpha} \triangleleft M_{\alpha+1}$ and $M_{\alpha+1}/M_{\alpha} \in \mathfrak{A}$.

Let β be any limit ordinal $\leq \lambda$. For any $x \in M_{\beta}$,

$$\langle x^H \rangle \leq M_{\beta} \leq G_{\beta}$$
.

It follows that $\langle x^H \rangle \leq G_{\alpha}$ for some $\alpha < \beta$. Since $\langle x^H \rangle$ is H-invariant,

$$x \in \langle x^H \rangle \leq M_{\sigma}$$
.

Hence $M_{\beta} = \bigcup_{\alpha < \beta} M_{\alpha}$. Thus $G \in \dot{E}_{\lambda}(H)\mathfrak{A}$.

Theorem 2. Let $G \in \acute{\mathbf{E}}_{\lambda}\mathfrak{A}$, let $H \leq G$ and assume that $\langle x^H \rangle \in \mathfrak{G}$ for any $x \in G$. If $H \leq^{\mu} G$, then $H \triangleleft^{\mu \lambda} G$.

PROOF. By Lemma 4, $G \in \acute{\mathbf{E}}_{\lambda}(H)\mathfrak{A}$. Hence the assertion follows from Theorem 1.

As consequences of Theorems 1 and 2 we have the following

THEOREM 3. (a) Let $G \in E(\triangleleft) \mathfrak{A}$. If H wasc G, then H asc G.

- (b) Let $G \in \mathfrak{M}$, let $H \leq G$ and $H \in \mathfrak{F}$. If H wasc G, then H asc G.
- (c) Let $G \in \mathbb{B}\mathfrak{A}$. If H wsn G, then H sn G.

PROOF. (a) and (c) follow from Theorem 1 where we take K = G. If $H \in \mathcal{F}$, we have $\langle x^H \rangle \in G$ for any $x \in G$. Hence (b) follows from Theorem 2.

4.

In this section we shall mainly investigate some properties of weakly ascendant subgroups of step $\leq \omega$.

THEOREM 4. Let G be a group and let $H \le G$. Let $0 \le n < \omega$. Then (a) $H \le {}^nG$ if and only if $[G, {}_nH] \subseteq H$.

(b) $H \le {}^{\omega}G$ if and only if for any $x \in G$ there exists an integer $n = n(x) \ge 0$ such that $[x, H] \subseteq H$.

PROOF. (a) Assume that $H \le {}^nG$ and let $(S_i)_{i \le n}$ be a weakly ascending series from H to G such that $HS_iH = S_i$ for $0 \le i \le n$. Then by induction we have

$$[G, {}_{i}H] \subseteq S_{n-i} \qquad (0 \le i \le n).$$

Taking i = n, we have $[G, {}_{n}H] \subseteq H$.

Conversely, assume that the condition is satisfied and put

$$S_i = H\{x \in G | [x, {}_iH] \subseteq H\}H \qquad (0 \le i \le n).$$

Then $S_0 = H$ and $S_n = G$. For any i < n, every element of S_{i+1} is expressed as u = axb where

$$[x, {}_{i+1}H] \subseteq H$$
 and $a, b \in H$.

For any $h \in H$,

$$u^{-1}hu = (axb)^{-1}h(axb)$$

= $b^{-1}[x, a^{-1}h^{-1}a]a^{-1}hab \in S_i$.

Hence $H \leq {}^{n}G$.

(b) Assume that $H \le {}^{\omega}G$ and let $(S_{\alpha})_{\alpha \le \omega}$ be a weakly ascending series from H to G such that $HS_{\alpha}H = S_{\alpha}$ for $0 \le \alpha \le \omega$. Let $x \in G$. Then there exists an integer $n \ge 0$ such that $x \in S_n$. By induction we have

$$[x, {}_{i}H] \subseteq S_{n-i} \qquad (0 \le i \le n).$$

Taking i = n, we have $[x, H] \subseteq H$.

Conversely, assume that the condition is satisfied and put

$$S_i = H\{x \in G | [x, H] \subseteq H\}H \qquad (0 \le i \le n),$$

$$S_{\omega}=G.$$

Then $S_0 = H$. If i < n, we have

$$u^{-1}Hu \subseteq S_i$$
 for any $u \in S_{i+1}$,

as in the proof of (a). Furthermore

$$\bigcup_{i<\omega} S_i = H(\bigcup_{i<\omega} \{x \in G | [x, {}_iH] \subseteq H\})H$$
$$= HGH = G = S_{\omega}.$$

Therefore $H \leq {}^{\omega}G$.

COROLLARY. (a) Let $G \in \mathcal{F}$. If H wsn G, then H sn G.

(b) Let $G \in Min$. If H wsn G, then H sn G. If $H \le {}^{\omega}G$, then H asc G.

PROOF. (a) follows from Theorem 4(a) and Theorem 3 in [7]. (b) follows from Theorem 4 and Theorem A in [1].

LEMMA 5. Let G be a group, let H wasc G and let $H = \langle U \rangle$ with U a finite set. Then for any $x \in G$ there exists an integer $n = n(x) \ge 0$ such that $[x, u] \subseteq H$.

PROOF. Let $(S_{\alpha})_{\alpha \leq \lambda}$ be a weakly ascending series from H to G such that $HS_{\alpha}H = S_{\alpha}$ for $0 \leq \alpha \leq \lambda$. For each integer $n \geq 0$, let μ_n be the least ordinal such that

$$[x, {}_nU] \subseteq S_{u_n}.$$

Then μ_n is not a limit ordinal. Since $[S_{\alpha+1}, U] \subseteq S_{\alpha}$ for any ordinal $\alpha < \lambda$, $\mu_{n+1} < \mu_n$ unless $\mu_n = 0$. Since the ordinals $\leq \lambda$ are well-ordered, $\mu_n = 0$ for some n. Hence $[x, H] \subseteq H$.

COROLLARY. Let G be a group and let x be an element of G such that $\langle x \rangle$ wasc G. Then x is a left Engel element of G.

PROOF. For any $y \in G$, $[y, {}_{n}x] \in \langle x \rangle$ for some n by Lemma 5. It follows that $[y, {}_{n+1}x] = 1$.

Theorem 5. Let G be a group. Then every finite, weakly ascendant subgroup of G is at most of ω -step.

PROOF. The statement follows from Theorem 4(b) and Lemma 5.

5.

Let \mathfrak{X} (resp. \mathfrak{Y}) be an $\{E, Q\}$ -closed class of groups G such that H wsn G implies H sn G (resp. H wasc G implies H asc G), and let \mathfrak{X}' (resp. \mathfrak{Y}') be a class of groups G such that $H \in \mathfrak{X}$ and H wsn G imply H sn G (resp. $H \in \mathfrak{Y}$) and H wasc G imply H asc G). Using these notations, we show the following

LEMMA 6. Let G be a group and let $H \leq G$.

- (a) Assume that $G \in \mathfrak{XX}'$ and $H \in \mathfrak{X}$. If H wsn G, then H sn G.
- (b) Assume that $G \in \mathfrak{YY}'$ and $H \in \mathfrak{Y}$. If H wasc G, then H asc G.

PROOF. We shall only give the proof of (b), since the other is similar to this. Take a normal subgroup K of G such that $K \in \mathfrak{Y}$ and $G/K \in \mathfrak{Y}'$. If H wasc G, then by Lemma 2

H wasc HK and (HK)/K wasc G/K.

Since 1) is E-closed and

$$(HK)/K \cong H/(H \cap K) \in \mathbb{Q} = \mathfrak{Y},$$

we have $HK \in \mathfrak{Y}$. It follows that H asc HK. Since $G/K \in \mathfrak{Y}'$ and $(HK)/K \in \mathfrak{Y}$, (HK)/K asc G/K and therefore HK asc G. Thus we have H asc G.

THEOREM 6. Let G be a group and let $H \le G$. Assume that one of the following conditions is satisfied:

- (a) $G \in \mathfrak{F}(\mathbf{E}\mathfrak{A}) \cup \mathfrak{F} \text{ Min and } H \in \mathfrak{F}.$
- (b) $G \in (\mathbb{B}\mathfrak{A})\mathfrak{F} \cup (\mathbb{B}\mathfrak{A})$ Min and $H \in \mathbb{B}\mathfrak{A}$.
- (c) $G \in Min \mathcal{F} \cup Min (\mathbb{E}\mathfrak{A})$ and $H \in Min$.

If H wsn G, then H sn G.

PROOF. It is easy to see that Min is {E, Q}-closed. Hence the statement follows from Theorem 3 (c), Corollary to Theorem 4 and Lemma 6.

THEOREM 7. Let G be a group and let $H \leq G$. Assume that

$$G \in \mathfrak{F}(\acute{\mathbf{E}}\mathfrak{A})$$
 and $H \in \mathfrak{F}$.

If H wasc G, then H asc G.

PROOF. The statement follows from Theorem 3 (a) and (b), Corollary to Theorem 4 and Lemma 6.

6.

A weakly ascendant subgroup of a group is not an ascendant subgroup in general (T. Ikeda).

The statements of Theorem 1 and Lemma 6 hold for Lie algebras. The statements and proofs are obtained replacing the terms in groups by the corresponding terms in Lie algebras. The result corresponding to Theorem 1 generalizes Theorem 1 in [6].

References

- [1] B. Hartley and T. A. Peng: Subnormality, ascendancy and the minimal condition on subgroups, J. Algebra 41 (1976), 58-78.
- [2] N. Kawamoto: Subideality and ascendancy in generalized solvable Lie algebras, Hiro-shima Math. J. 9 (1979), 701-716.
- [3] D. J. McCaughan and D. McDougall: Criteria for subnormality, Arch. Math. 29 (1977), 451-454.
- [4] T. A. Peng: A criterion for subnormality, Arch. Math. 26 (1975), 225-230.
- [5] T. A. Peng: A note on subnormality, Bull. Austral. Math. Soc. 15 (1976), 59-64.
- [6] S. Tôgô: Weakly ascendant subalgebras of Lie algebras, Hiroshima Math. J. 10 (1980), 175-184.

[7] H. Wielandt: Kriterien für Subnormalität in endlichen Gruppen, Math. Z. 138 (1974), 199-203.

Department of Mathematics,
Southern Illinois University,
Carbondale, Illinois
and
Department of Mathematics,
Faculty of Science,
Hiroshima University,
Hiroshima