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§1. Introduction

Let M be a closed manifold, and let w; and v; be the ith Stiefel-Whitney
class and the ith Wu class of M, respectively. Then, the Wu formula means that
they are related by the equality

(1.1) Uy = X1 0",

(cf. Proposition 3.2), where 0'=c(Sq*) € ##(2) is the conjugation of Sq' given in
[7, 11, §4] and is defined inductively by

0' = Sg' + TIzi Sq'0~ = Sq' + TIzi0ISg)  (120).

The main purpose of this paper is to study the Wu classes by using (1.1).
To do this, we study the element 6! in §2, and prove the following basic
formula (Theorem 2.4), where we use always the notation

t' =2"1 for any positive integer ¢:
(1.2) Ifn=2%-1, then
6" = Sq*'Sq*-1"...Sq1;
and if n=2¥—1—t{—---—t; with k2t,>--->1,21, then
0" = ¥ 1<pi<<psk ST PP,

where I(py,..., p)=(i1,..., ix) is given by

ip, = (k—ps+1) —t; (s=1,...,D, i, =(k=-p+1) (P#Py-P)>
and SqU-i0) = Sgh...Sq* with Sq°=1 and Sq*=0 for i<0.

As an application of this formula, we see the well known formula

g2+l = gangqt

(Corollary 2.14) and the one given by D. M. Davis [2, Th. 2] (Corollary 2.16).
By using the former, we can reduce the equality (1.1) to the form given in Theo-
rem 3.9, and we obtain the equality
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Vans1 = izt W) 10g442-2
(Theorem 3.10). We notice that this equality implies immediately the well known

result that the odd dimensional Wu class v,,,, of an oriented manifold M

vanishes.
In § 4, we are concerned with a closed manifold M whose total Stiefel-Whitney

class wM satisfies the condition
(1.3) WM =1+ Y45, Wy (b'=2b"1),

For such a manifold, by noticing that w,w.. =0 if ¢=b+2 (Proposition 4.2) and
by using (1.2), we can reduce (1.1) to the following explicit form (Theorem 4.3):

U= 2f=q (Wp) bt if i=a'21,
(L4) 0= 252,358, +1 (W) Wy )U™8" if i=aj+a; with a;>a,21,
;=0 otherwise.

Some examples of manifolds satisfying (1.3) are given at the end of §4.

These equalities are applied in §5 to study some sufficient conditions that
the unoriented bordism class of M with (1.3) vanishes. In fact, under (1.3) and
the condition that dim M is not equal to a power of 2, we can show that almost
all the Stiefel-Whitney numbers of M vanish by using (1.4) and the fact that
v;=0 for i>dim M/2; and we obtain the following results (Theorems 5.1 and

5.4):

THEOREM. Let M be a closed manifold. Then, the unori_ented bordism
class [M] of M is 0, if one of the following three conditions holds:
(1) The total Stiefel-Whitney class wM satisfies (1.3), and

dimM = pj+---+pi+1 with p;>-->p,>1 and k=22, (p'=2r"1).

(2) wM=1+wy,+w, for some b and ¢ with c>b=1 in (1.3), and dim M is

not a power of 2.
(3) wM=1+w, for some ix1.

The author wishes to express his hearty thanks to Professor M. Sugawara
for his valuable suggestions and discussions.

§2. Some relations in the mod 2 Steenrod algebra

Let «7(2) be the mod 2 Steenrod algebra. For any sequence I=(i,,..., i)
of positive integers, put

Sq' = Sq'---Sqix e H(2), |I| =ij+-+iy;
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and define the element 6" € «7(2) by
2.1 =1, 0"=3-,59" (nz1).
Then, we have clearly the relations
(2.1 6"=Sq" + X1z} Sq'0"* = Sq" + Y11 0"iSq! (n=0),

which give the inductive definition of 6. Thus, it is easily seen that 6" is equal
to c(Sq™) in [7, p. 26] or x(Sq™) in [2].

To study 0", we use the following notation:
Let I=(iy,..., iy) and T=(t,,..., t;) be sequences of positive integers. Put

(2.2) Sq" —(T) = L1gp,<<psk Sq 17T @120
where I—T(py5..., pP)=(j15---» ji) is given by
Jps = ip,—1s (s=1,..,1, Jp= i (P#P15--- PD>»
and SqUuJK) =SqJ1...Sq/* under the convention that
) Sqg°=1 and Sq¢/=0 if j<O.
Then, Sq’ —(T) can be defined inductively on the lengths k of I and [ of T by
Sq' — (T) = Sq' if 1=0, Sqg' —(T)=0 if I>k;

.2y Sq' — (T) = Sq'+"{Sq" — (T} + Sq**{Sq" — (T)}
= {Sq'x — (T)}Sq'*~" + {Sq'* — (T)}Sq'*

under the convention (x), where J,=(j,-.., js— 1, js+1,..;,jm) for J=(jisevs jm)-
Furthermore, put Sq! —(f)=Sq’ —(J(¢)) and

0" — () = Zn=a{Sq' — @O} for n, 120,
where J()=(2""1, 272,..., 1). Then we see the following

0 for n<2t—1,

PROPOSITION 2.3. 0" — (f) = {
or—2+1  for nz2'—120.

Proor. The equality for n<2*—1 or t=0is seen immediately by definition.
We prove the equality for n=2¢t—12=1 by the induction on n. By (2.1),
(2.2)' and the above definition, we see that

0 = ()) = Bey Sq (@ — (1= 1) + T S¢'O" - () (=29
By the equality for n<2t—1, the inductive assumption and (2.1), this is equal to
E?;:"H Sqi-l'en—i—t'+l + 2?212"“ Sqien-i-—Zr'H = 0»—2:'+1’
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as desired. g.e.d.

Now, the main purpose in this section is to prove the following theorem,
where we use always the notation

t =21 for any positive integer ¢.
THEOREM 2.4. (i) Let n=2¢-1. Thgn
o = Sqg’®  (J(k) = (k', (k—1),..., 1)).
(i) Let
n=2%—-1—-t —.—t;=2—-1—|T]
for T=(t,,..., t;) with k=t,> --->t,g1‘ and 121. Then,
o =Sqg’® —(T) (k) =¥, (k-1),..., 1),
where the right hand side is given by (2.2).
By this theorem and (2.2)’, we have the following
COROLLARY 2.5. For n in (ii) of the above theorem with k>t,,
0" = Sq%0"= + Sq*’' 6% where a=k'—1,.
Proor. By the above theorem and (2.2)', 6 is equal to

Sq'® — (T) = Sq*{Sq’*~) — (T)} + Sg* {Sq"*~ — (T}
= SqU08 11T 4 SqFONTITITL (T =(t,en 1),
which is equal to the right hand side of the desired equality. q.e.d.

To prove Theorem 2.4, we prepare several results.

Let P(=RP™) be the oo-dimensional real projective space and P™ be the
m-fold Cartesian product of P. Let u be the generator of H\(P; Z,)=Z,, and
consider the cohomology class

Uy XX U, € H"(P™; Z,) U, ==u,=u).

Furthermore for any sequence A=(ay,..., a,,) of positive integers, we consider
the cohomology class

u(A) = uy(@) X -+ X (@) €H¥P™; Z;)  (u(@)=u”, a’=2%"1).

Then, we have the following proposition, where e=(g,..., &,)-is a sequence with
g=0orland A+e=(as+&,..., @, +8&z)and |4 =aj+-- +a, for A=(ass..; a,):

PROPOSITION 2.6. In H*(P™; Z,), there hold the equalities
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(1) Squ(A) = X 4+e=paj+a (4 +E),
(11) 9"(“1)("')(“",) = Zl|A|[=n+mu(A)’
ProoF. Let x be any 1-dimensional eohiomology class. Then, the equality

Sqixk= (f) xk¥+i of [7, I, Lemma 2.4] implies

2.7 Sqi(x(a)) - { x(a+e) if i=ea’,- e=0orl,

0 otherwise,

where x(b)=x?" (b'=2b"1). Thus, we see by definition that

@7 Salx _{ x(D) if I=J(-1),
) 1 0 otherwise;
(2.8) 6 { xm1=x()) if n=I'-120,
. "X =
0 otherwise.

(i) follows immediately from (2.7) and the Cartan formula.
(i) By the Cartan formula and (2.7)', we see easily that

(2.9) Sq'(uyxuyX -+ Xty) = Fyp 1 us () x(Sq'—(=1)) Uy x -+ xu,,).
Therefore, by (2.1) and Proposition 2.3,
0m(uy XUy X oo XUp) = 2451 ul(t) X 07y, X - X U,,)
== 2 Ug(@) X 0 Xty 1 (A1) X 0" %(u,,),

where a=(aj—1)+---+(a,,—;—1). Hence, we see the equality (ii) by (2.8)
q.e.d.

For the case m=n in (ii) of the above proposition, we have the following
lemma, where A and B are sequences of n positive integers and ¢ and p are se-
quences of n integers consisting of 0 or 1:

LeMMA 2.10. (i) Ifn=2¢—121, then

0m(uy X o XUy) = 2| 4| =k +n-1 ZI|A+a||=2n u(A+e).
(i) Ifn=2¥—t'—s with k>t=>1 and 1<s<t, then
0"(uy X - XU,) = Z||A|l=k'—s+n Z||A+e||=2n u(4+e)
+ X Bl =k —t'~s+n 2 [|B+p|| =20 U(B+P).

Proor. (ii)) Let C=(cy,...,c,) be a sequence of positive integers with
|C||=2n, and assume that u(C) appears a and b times in the first and the second
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summations in the right hand side of the equality in (ii), respectively. Then, by
(ii) of the above proposition, it is sufficient to prove that

a + b = odd.
Assume that a positive integer / appears o; times in C. Then
(2.11) ot, ; 0, Zl%l al =n and Zl;l l'ot, = 2”.

Furthermore, in the first summation in the right hand side of the equality in (ii),
the equality A +¢&=C holds if and only if e=(g,,..., &,) satisfies the condition that

(*) 0=p=0(22), Z;p(-1)p=2n—(k-s+n)=k'-7,
where p, is the number of elements of {i|c;=1, ¢;=1}. Thus

=2 (52)~(51)
which is equal to the coefficient of x*'~*" in the polynomial
(A +x)22---(1 +x0-D")ree
By (2.11), this polynomial is congruent to (1+x)"~*/2mod 2. Hence
a= (”k_,flt/,z) mod 2.
By the same way, since 2n—(k'—t' —s+n)=k’, we see that
bE(”—:,l/z) mod 2.
On the other hand, by using the well known formula

(2.12) (5) =TI, (2‘) mod2 for a= 3,42, f=3,b2 (0<a, b=1),

we see easily that
,,_al/z)E{l mod2 (n/2Sn—a,/25k'—1)
k= 0 mod2 (kK'Sn—ay/25n),
("—“1/2)5{0 mod 2 (n/2=n—a,/25k'—1)
k 1 mod2 (k'Sn—a,/25n),

since n=2k'—t'—s=a; 20 with k'>¢'2s=1. Thus a+b=1mod 2, and (ii)
is proved.
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(i) can be proved similarly by noticing 2n—(k’'+n—1)=k’ and ( n —:,1/ 2 )
=1mod 2 for n=2k'—12a,=0. q.e.d.
By using the above results, we can prove Theorem 2.4.

ProoF oF THEOREBM 2.4. (i) Since 0'=Sq!, we see (i) for k=1. Assume
inductively that (i) holds for k—1. Then

Sq’® = Sqk' 6% -1,
On the other hand, by Proposition 2.6 and Lemma 2.10(i), we see that
Sq¥ 0% " Muy X - X ty) = 8% Ty =k - 1+n u(4)
= YAl =k-1+n 2 jate] =2n W(A+8E) = 0°(uy x - xu,)  (n=2k'—1).
Therefore Sq*' 0% ~1=6n by the following fundamental result in [7, I, Cor. 3.3]:

(2.13) The homomorphism «Z(2)—H*(P™; Z,) given by Sq'—>Sq (u,x---
X U,,) is a monomorphism in degree <m.

Thus, we obtain 6"=Sq’*) as desired.

(i) We prove (ii) by the induction on k. If k=1, then (ii) is clear, since
0°=1=Sq°. Assume inductively that (ii) holds for k—1. Then, by (2.2),
(i) and the inductive assumption, we see that

Sg'® — (T) = Sq*{Sq’*™) — (T} + Sq* {Sq’*~V — (T)}
= Sqe0ma + S 0" (a=k'—t,, Ty=(t)..., 1}),

where the second terms do not appear if k=t, by the convention (*) in (2.2)".
If k=t,, then a=0 and we have the desired equality.
Let k>t;. Then, by Proposition 2.6 and Lemma 2.10(ii), we see that

(590~ + Sq*¥ 0" %) (uy X -+ X u,)
= 5q° X ja)=2n-a W(A) + S¢* 35| = 201 u(B)
= 2 |l4ll=2n-a 2l A+el =2n u(A+e) + Z”n”=2,.-k. 2 1B +p| =2n Y(B+p)
= 0"(uy X -~ X u,), (n=2k'—t,—s, s=ty+--+1)+1).

Therefore Sq0"=*+ Sq*'0»~*" =0" by (2.13).
Thus Sq’®®) —(T)=0", and the theorem is proved completely. g.e.d.
As applications of Theorem 2.4, we have the following known results:
COROLLARY 2.14. fr+l=02n8g1,

ProoF. We notice that
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@15) Sq*718q° = ?26(23:i:£j>sqa""‘jsqf =0

by the Adam relation [7, p. 2].

If n=0, then the equality.holds since 6! =Sq!.

Let 2n=2¢—1—|T|>0 for T=(t,,...,t;) with k=t;>:->t;=1. Then
t;=1. Thus, in the summation of the equality

Sq-’(") — (T) = Zl§m<"-<m§k Sq-’(k)‘T(pn ..... p1)

of (2.2), the term for p,=k—a<k contains Sq?¢~1Sq* and is 0 by (2.15).
Therefore, the above sum is equal to

g7 — (L) ((Rj=(K', (k=100 D), Ti=(t}serer fi-1)).-
On the other hand, 2n+1=2¥—1—|T;| and
Sq'® — (T) = {Sg"®* — (T)}Sq*

by definition, since ¢;_; =2 or I—1=0. Thus, we see the desired equality by
Theorem 2.4. g.e.d.

(ii) and (iii) of the following corollary are due to Davis [2, Th. 2].
COROLLARY 2.16. (i) 02 = Sq2*' + Sq*' 6%,
(ii) 6%t = Sqlk:bgi-t for kz=Ix1,
where J(k; D=(k', (k—1),..., I').
(ili) 6%"~*1 = Sgk'Gk—k-1 4 Sq'-1,(=1)'~1,..1)  for k22,
Proor. By using (2.9) and (2.13), we see easily that
(2.17)  X,8q¢' = ¥;Sq’ implies 3,(Sq" — (1)) = Z,(S¢’ — (V).
(i) By Proposition 2.3, Theorem 2.4, (2.2)' and (2.17), we see that
0% = g+*'~1 — (k) = Sq?**+D) — (k)
= Sg?*¥(S¢’® — (k—1)) + Sg?*'(S¢’® — (k)) = Sq*'0*" + Sq?*".

(ii) We prove the equality by the induction on I. (ii) for /=1 is in Theorem
2.4(i). Assume (ii) for I. Then, by Proposition 2.3, (2.15) and (2.17), we see (ii)
for 14+ 1(Zk) as follows:

g2k’ -1-1 = g2kt _ (1) = (Sq/®:H+DSqh 61y — (1)
= SqlUs1+1)(Sql' gl =1 — (1)) = Sq?ks1+1(2' =1 — (1)) = Sq/k:1+1)g2I'~1-1,
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(iii) By (ii), 02"~!=Sq" 0"~ for any I=1. Thus,
021’—1—1 = 921’—1 — (1) = Sql’ol’—l—l + Sql'—lel’—l

for any /=1 in the same way. By using this equality for I=k, k—1,...,1 and
(2.15), we see immediately (iii). q.e.d.

The following Cartan formula for 6, which may be well-known, is used in
the next section.

ProrosITION 2.18. For any cohomology classes x and y,
0"(xy) = X1+ j=n(0'x)(07y).

Proor. We can prove easily the formula by the induction on n, by using
(2.1)' and the Cartan formula for Sq. q.e.d.

REMARK 2.19. We remark that Proposition 2.6(ii) can be proved by (2.8)
and the Cartan formula

0" (x X y) = Zis = (0°%) X (7).

§3. Odd dimensional Wu classes
Let M9 be a closed d-manifold, and let

v,e H(M¢; Z,)
be the ith Wu class of M4, which is defined to be the element with
{vx, > = {Sq'x, p for every xeH4 ' (M¢; Z,).

Here ue Hy(M?94;Z,) is the fundamental homology class and {,) is the
Kronecker index. Then, the kth Stiefel-Whitney class

w,e H\(M?4; Z,)
of M4 is represented by the Wu classes as the following Wu formula:
(3. l) ([6, Th. 11. 14]) Wk = Zf:o Sqivk_‘.

Conversely, the Wu class is represented by the Stiefel-Whitney classes as
follows:

ProPosITION 3.2. v, = Y., O i,
where 0"~ € £ (2) is the element given by (2.1).

Proor. By (3.1), w,=v,+Sq'vy=v,. Suppose inductively that the
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equality holds for n<k. Then, by (3.1) and (2.1)’, we see that

b= W, + T Sgive_s = we + X421 Sq(The] 0wy
= w + XEH (k] Sqi0* 7w, = Tho, 0w,
as desired. g.e.d.

To prove Theorems 3.9 and 3.10 which are the main results in this section,
we prepare several lemmas where we use the notations ¢’ =21 for any positive
integer t, and I(I)=1 and |I|=i{+:--+i; for any sequence I=(i,..., i;) of
positive integers.

LemMma 33. (i) If l=li+--+L=|L| for L=(,..., L) with 1;>
>, =1, then

Zun=1"} 211l gm=2111ly, = Zl(l) kw||J+L||0m—|[J+L||wm

where J+ L=(j,+l15..., ju+ 1) for J=(j1,.:., ji) and 87 =0 if j<O.
(ii) Ifl=25=1, then

21(1):1 W%IIIHOm—ZHI”Wn — 2@2 w(1i+s)’0m—(i+s)’w”'
(iii) Ifl=2s—121, then
Zl(l)=l w%lllllom—lelllwn = w%lam-uwn + Zi=1 ZigZ W’f(sik’i)em‘q’(s;kyi)wm
where ¢(s; k, i)=(s+i) +(s+2—k)' —

Proor. (i) In the left hand side of the equality, the sum of the terms for
I=(i,, iy, is,..., i) and I'=(i,, i, is,..., ;) With i;#i, is 0, and the term for
I=(iy, iy, i3,..%, i;) is equal to

W Igm=21"hy  with 17 = (i, +1, ig,..., i))-

Let k=1, i.e., I=1{. Then, by using these facts repeatedly, we see easily that
the left hand side of the equality is equal to

ZI(J)=I/2 w‘;-ll-’llgm-ﬂl-’llwm

and hence to Y ;5 , wii*1)'gm~(+10"yw _which is the right hand side of the equality.
In the same way, we can prove (i) for k>1.
(ii) The equality is proved in the above proof. ‘
(iii) Since I=25—1=| S| where S=(s, s—1,..., 1), (i) implies that the left
hand side of the equality in (iii) is equal to

(*) Zl(.l)=s wgusllgm—uusu W

In this summation, let o, (1 <k<s) be the partial sum on
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J=(j1,...,js) With jk22 and jk'!'l ="'=js= 1.
Then, (*) is equal to
wilom2lw, + =1 0p
since the term in () for J=(1,..., 1) is equal to the first term.
Now, by the same consideration as in the proof of (i), g, is equal to the
partial sum on J with j,_; +1=j;=2, and hence to that on J with j,_,+2=j,_,
+2=j,+1=3, and so on. Hence, o, is equal to the partial sum on J with j, =j,

=..w=j,_;=j,—121, which is clearly equal to 35, wii*+9gm-(i+9)'y
Similarly, we see that

2‘22 wY @ (s;k, HPm—o(sik,i) W,
Thus we have proved (iii). q.e.d.

LemMmAa 34. (i) Fort'=2"1z2,

2t7=2 201l gm—2ll1 — 128" —2m+2-2t"
Y252, Y ny=q wilTIGm Iy, = w3+ —2gm Wy
s 201l gm=2|| I - t'—2m+2—1’

(ii) qul 21(1)=q Wl'I ligm=211ll yp, = E:gs wi20m Wa.

Proor. (i) For t=2, the above lemma implies the desired equality as
follows:

2‘21___1 Z,u)=q w%lllllem-ﬂllll w,
- w%em—zw" + Zigzwlf(l;l,i)om—'qw(l;l,i) W, + Zigzw:(li+l)'0m—(i+l)l w,
= wim2w,.
We prove (i) by the induction on t. In the left hand side of the equality, we

see easily by (i) of the above lemma that the sum on g=#'+p with 1<p<t' -2 s
equal to

Tiza Wi {ZE5E T iy=p i IGm-1 =211y 3
By the inductive assumption, this is equal to

Tisawit (T wiwm2gmmir 220ty 3
= Yl Yo wi Lk bgm-eG-LikD) yy o 3 WOy,
On the other hand, the terms for g=t'—1 and t' are given by (iii) and (ii) of the

above lemma for s=t—1, respectively. Thus we see (i).
(ii) (ii) follows immediately from (i). q.e.d.

LeMMA 3.5.
(1) 02(wywap) = Xioa WIT102 27 Wy + 3o s WIT202 27 W,
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() 02 (W Woms1) = Lipa WIT12H 2wy, .
Proor. We notice that the equalities
(3.6) Sq'Wom = WiWom + Womsts S Womi1 = WiWopmsq

hold as special cases of Wu’s formula
@1 @01, 13D Sew=Tho( P I T Ywim, for jsi

By Proposition 2.18, (2.8), Corollary 2.14 and the first equality in (3.6), we
see that

(3.8.8) 0%'(WWam) = X350 (07w,) (6% Iw,,)
= W107'Wy, + ;22 W 0?7V Sq'w,,

— . P2 i’ g2t—i’ i p2t-i’
= W0%Wop + iz WO T Wop iy + Tipa W02V (Wiw,,,).

Consider the equality (3.8.), and substitute (3.8.]—i’/2) for its last term
02 (w, Wy, (i'=2"122) if 21—i’' 20, and so on. Then, we see easily that

02 (W1 Wam) = W10%Wap + 3ot Tiay=q wiT2I1621721 1w,
+ Yio1 Zun=g wilhez-2tly,, , .

Thus, (i) is seen by (ii) of the above lemma.
We can prove (ii) similarly by using the second equality in (3.6). q.e.d.

By the above lemmas, we have the following results.

THBOREM 3.9. The equality in Proposition 3.2 can be rewritten as follows,
where a=1 and t' =2t"1 for any positive integer t:

; - 2a—2 t'—102a—2p~t’
(1) 02a= 2102wy, + 3 02 WE 1029722 ' Wyt .

. — '—1p2a+2-2p—1t’ '—202a+2-2p—t’
(i) Vpa41=2pp1,22 Wi 1029427207 W)+ 3 po 1,023 WY 2029127207y e

ProoF. By Proposition 3.2, Corollary 2.14 and the first equality in (3.6),
we see that

Vaar1 = Lpz1 (02417 2Pw,, + 02972Pw, . )
= X p21{02972P(W Wy, + Wapyy) + 6242wy, 1}

= 3 p210%722(w1wy,).

Thus, we have (ii) by (i) of the above lemma.
(i) is shown in the same way. q.e.d.
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THEOREM 3.10. The odd dimensional Wu class v,,,, of a closed manifold
can be represented by the lower and even dimensional Wu classes and the first
Stiefel-Whitney class w, by the equality

Vaat1 = Liz2a Wi Wagi2-ps  (I'=21).

Proor. The equality for a=0 is clear.
Let a be positive. Then, by the above theorem,

Tiza Wi 024040
= Y iaapay WETIOB I gy LS emp WE 202643 20ty
wiatl  (g=2/-1)
{ 0 (a#2/-1).

Here, in the same way as in the proof of Lemma 3.3 (ii), we see that the second
term is equal to

21'=2()2a+2~2p~2i"
Piz2,pzo Wi 202042772y, Ly

= T ipa W T202a272 gy L T W 20242202y,
whose first sum is equal to
wiatl (g=2/-1), 0 (a#2/-1),

by (2.8). Thus we obtain the desired equality by (ii) of the above theorem.
q.e.d.

As an application of the above theorem, we obtain the following known
result:

CorOLLARY 3.11 ([5, Lemma 3]). If a closed manifold M is orientable,
then the odd-dimensional Wu classes of M vanish.

Proor. By [4, p. 244, Th. 12.1], the assumption is equivalent to w,=0.
Thus the corollary follows immediately from the above theorem. q.e.d.

§4. Wau classes of certain manifolds

In the rest of this paper, we only consider a closed manifold M whose ith
Stiefel-Whitney class w; satisfies

4.1) w; = 0 " if i-is not a power of 2;
i.e., we assume that the total Stiefel-Whitney class wM-is given by
(4.1)' wM =1 + 2]’;1 Wy WbleHbl(M; Zz),



580 Toshio YOSHIDA

where we use at all times the notation
b’ = 2b-1 for any positive integer b.
Under the above assumption, we have the following
ProroSITION 4.2. If c=b+2, then, wyw,=0.
PROOF. W, _, =0 by the assumption and (4.1). Therefore

, fc'=b" —=2b"+t—1
0= Sq*'w._p = 20( P Wap —Wer -+t

by (3.7), and the last sum is equal to w,w, by (2.12) and (4.1). q.e.d.

By Proposition 3.2, (3.7) and this proposition, we see that the Wu class v;
can be written as a sum of cohomology classes (w,)/(w,)*. More precisely,
the purpose of this section is to prove the following

THEOREM 4.3. The ith Wu class v; of a closed manifold M satisfying the
condition (4.1) can be represented by the Stiefel-Whitney classes w, of M as
follows, where

i=aj+ay+--+a; with a;>a,>-->a,21:
(i) Ifk=1,i.e.,ifi=a’ witha=1, then
0= Xf=q (W)@ 2D,

(ii) If k=2, i.e., ifi=a;+a5 with a;>a,=1, then

U= 2821 2041 (W) 7V ()50
(iii) If k=3, then v;,=0.
To prove this theorem, we prepare several lemmas.
LeEMMA 4.4. For any cohomology class y and t' =21,

, (Sq'*’y) if i is a multiple of t/,
sy =
0 otherwise.
ProoF. We see easily by the Cartan formula that
San?Z = (Sqaz)z’ X Sq2a+122 = 0.
These imply immediately the lemma. q.e.d.

LemMMA 4.5. (i) For b'=2t-121,¢'=2"121and i1,
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(W) (Wap)" if i=b't,
Sqi(wayp) = { (Wap)?" if i=2b't,
0 otherwise.
(ii)) Sq'w,, =0 if |I| is not a multiple of b’.
Proor. (i) By (3.7), (4.1) and Proposition 4.2, we see that

. Wb’WZb' if i=b’,
Sq'wap = Wi,y = .
0 otherwise,

for 0<i<2b’. Thus we see the equality for ¢’ =t=1.

The lemma for t>1 follows immediately from that for t=1 and the above
lemma.

(ii) (i) is clear by (i), Proposition 4.2 and the Cartan formula. q.e.d.
LeMMA 4.6. For q=p+12=3,
' )2q'-2p’+1 .
S gyt = { ) i p>2
(W2p)?0 73 + (Wp)?(Wap)?™* if p=2.

Proor. We prove the lemma by the induction on g=p+1, p+2,....
If g=p+1, then ¢’ —p'=p’ and we see that

Sq2PP (o )Pt = Sq* P {(Wyp)? Wap}
=(W2p )P S P Wap + (W) (Wap )P ' SGPP ' Wap + (Wap) P Wopy
by the Cartan formula and the above lemma for t=p. Furthermore,

0 if p>2

S P wa =0, Sg¥7wyy = {
R O I o

by the above lemma for t=1. Thus we see the equality for g=p+1=3.
By the Cartan formula, (i) of the above lemma and the dimensional reason
that Sq*x=0 for i>dim x, we see easily that

Sq2H Py o P+ = gL ()Y (W) P}

= (W24)2 Sg2 @ P, )0 P41,
Thus, we see the equality by the induction on q. g.e.d.
LBmMMA 4.7. Forq=p+123,

S P =Dy )T P+
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0 if p=24,
(Wp)H(wyp)2e' 10 if p=3,
B 0 if p=2,q=3,

)29’ —4 )2 )24’ -5
(W2p) + (W) (Wa) + {(w,,,)“(WZ,,,)ZG"6 if p=2,q24.

Proor. If g=p+1 or p+2, then the left hand side of the equality is equal
to
Sg¥P 2 ()P (Wap)) OF  SqOP T (W) (Wap )P *1),
respectively. Thus, we see the equality for g=p+1 or p+2 by the Cartan for-

mula and Lemma 4.5 (i).
If g=p+2, then we see easily that

S 34D (1,3 )20 P = (wyy )20 SGF D (w8 P
by a way similar to the inductive proof of the above lemma. Thus, we see the
equality by the induction on g. g.e.d.
LemMMA 4.8. For 120 and b’ =2%"12>1,
(i) Sq/C*Pwyp = Fioo (We)* =4 1 (Wp)?Y,
(il) Sq(b+l+l)'—b’ Sq.l(b+l;b) Wy = 0’

where J(k; b)=(k', (k—1),..., b").

Proor. (i) The equality holds for =0 by Lemma 4.5 (i).
Assume inductively the equality for I. Then

SqJ(b+l+l;b) Wapr = qu' Sql(b+l;b) Wope (k =5h + l + l)
= Sg* {Zieo (wp )" 4"+ (w2p)?1'}
= Tleo o {Sg*=28¥ (wy ) =41} {825V (wp)?'}
= (W) Twap + Do {SgF T4 (wp ) T4 (wape )t
= 26 (wp )34+ ()2,

as desired, by Lemmas 4.5(i), 4.6 and Proposition 4.2.
(ii) The equality holds for I=0 by Lemma 4.5(i)). Assume /=1. By (i),

it is sufficient to show that
Thoo SgH Y {4 (wyy 2} =0 (k=b+1+1).
The left hand side is equal to
Thoo Teo {Sgh 020V (1, 4 —441} {Sq2e0°¥ ()21}
= (Wp)® 2oy + {Sg* 72 (W ) T pwpwape + (Wp)3 6wy )2 (W2p)?

+ TIb (SgH 8 (wy )4 1 (w30 ) = 0,
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as desired, by Lemmas 4.5 (i), 4.6, Proposition 4.2 and Lemma 4.7. q.e.d.

Now, by using the above results and Theorem 2.4, we can prove the following
lemma which implies (i) and (ii) of Theorem 4.3.

LemMMA 49. (i) Forazbzxl,
09"~ w,, = (w,)(@=b+1)",
(i) Ifi=aj+a)fora,>a,=1and a,>b=1, then

YLy +1 (W) I (W, )T =BY if b=<a,,

02 oy = { ;
0 otherwise.

Proor. (i) If b=1, then the equality is clear by (2.8). Also, the equality
for a=b is trivial.

Let a>b>1. Then a'—b'=a'—1—-(b'—1)=a’'—1-|J(b—1)|, where J(b
-=((b-1), (b—-2),..., 1), and Theorem 2.4 (ii) shows that

02wy = {Sq’@™D — (J(b—1)}wy = X, Sq’wy,
where J=(ji,..., j,~1) is given by
Jp.=(a=p) — (b—s) (s=1,..,b=1), j,=(a=p) (P#P1>--+s Pp-1)
for 1Sp,<---<p,-;<a—1. Since Sq’w, =0 for 0< j<b’/2 by Lemma 4.5 (i),
Sq’w, =0 if (Paseees Pp-1)#(@a—=b+2,...,a—1),
and hence we see that
0 -b'w,, = Sqla=1iDy,, + T =) Sgl(a-1:1+1) Spl'=b'/2 §aIi=1:b=1)y,

This is equal to (w,,)(@~2*1)’" by Lemmas 4.5 (i) and 4.8 (ii), and (i) is proved.
(ii) Leta,>b=1. Then, i—2b'=2a;—1—(a}—a5)—(2b'—1) and

0i—2bl = Sq(al—l)’o(al—l)'+ai—2b' + Sqﬂioni—Zb'
by Corollary 2.5. Therefore, by the dimensional reason that Sq/x=0 if j >dim x,
i=2b'yy,,, = Sq(ar=1)'glar=1)"+a5=2b"yy
By repeating this process, we see that
0i-2b'yp,,, = Sqllai-1:a2)92a3-26"yy

By (i) and Lemma 4.4, the last is equal to
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Sql(al'l;az)(WZb,)(az—b+1)’ = {Sql(al—az+b—l;b)(WZbI)}(a;—b+l)',

which is equal to the right hand side of the equality in (ii) by Lemma 4.8 (i).
Let a,=b. Then, i—2b'=a;—1—(b'—1) and we see that

0i°2"'w2,,, = {Sq7@=) — (J(b—1))}w,, = Sq Ja=1;b)y,,,

in the same way as in the proof of (i). Thus, we see (ii) for a,=b by Lemma

4.8().
Let b>a,. Then i—2b'=a;+a;—2b" is not a multiple of b'. Thus
0i-2b"y,,.=0 by Lemma 4.5(ii) and (2.1). g.e.d.

ProOF OF (i) AND (ii) oF THEOREM 4.3. The desired results follow im-

mediately from Proposition 3.2, the assumption (4.1), (2.8) and the above lemma.
q.e.d.

To prove Theorem 4.3 (iii), we use the following two lemmas which are valid
without assuming (4.1).

LemMA 4.10. Let i=aj+---+aj with a;>--->a,=1 and k=23. Ifb<a,
then

0i=2b"y,,, = SgAz...SqAxSqok(k'~Df(ar+k=1)'=2b"y,
where A;=((a;—,—1)'(s'—1), (ag_,—2)'(s'=1),..., (a;2+1)'(s'—1)) and Sq¢=1.
ProoF. Seti,=a,,,+:--+a; for 1<s<k. Then, we can prove that
(4.11) 072wy, = Sq42---Sq4:0°:72 wy,  (ps=(a,+5) —a,+iy),

by the induction on s (2<s<k) as follows.
If a,=a,+1, then (4.11) for s=2 is trivial. If a;>a,+1, then

i—-2b' =aj+i,—2b" = 2a;—1—(aj—i,)—(2b' —1) with aj—i; =(a,—1),
and we see in the same way as in the first part of the proof of Lemma 4.9 (ii) that

0i=2b'w,,, = Sqlar= 1) glar= 1) +i=2b"yy = ... = Sq/(ai—lia2+1)2a3+i1=2b"y

by using Corollary 2.5. Thus we see (4.11) for s=2.
Assume inductively (4.11) for s(<k). If a,=a,,,+1, then ¢,,,=¢, and
(4.11) for s+1 is trivial. Let a,;>a,,,+1. Then

@,—2b" = (as+s)’-a;+1:s—-2b’ = 2a,+5—1)—1—(a,—i)—(2b'—1)
with a;—i,=(a,—1)’, and in the same way, we see (4.11) for t=s+1 by
gos=2b"y, ., =Sq(a,+s-1)'—(as-1)'9(a,+s—1)'—(a,-l)'+i,-¥2b'w2b,

= e = Squg(a¢+l)'—(a¢+l)’+i,-2b'w2b’ = SquG(p,—Zb’wzb“
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Thus, we see (4.11). Furthermore, since ¢,—2b'=(a,+k) —a;—2b’
=2a,+k~1)—1-a;—(2b'—1), we see in the same way that

0ok=2b"yy,,, = Sqglartk=1)"=aifartk=1)"=2b"y,
This equality and (4.11) for s=k imply the lemma. q.e.d.
LeEMMA 4.12. For i in the above lemma and b=a,,
0i=26"w,,, = SqAz...SqAiSqau I -DarH=D"~b'y  (l=k—1).

Proor. We sce that (4.11) is also valid in the case b=aq, for 2<s<k—1=1.
Furthermore, since

0,—2b" =(a;+1) —a;—b" =2(a;+1-1)—1—a;—(b'—-1),
we see in the same way as in the above proof that
02128y, = Sqlarti-1)'—aiglartI=1)'=b"y,
Thus, we see the lemma. g.e.d.
Now, we use the assumption (4.1) in the following
LeEMMA 4.13. Let q>p>b=1. Then,
Squ 7 (I} (wy )2 21 (1)1} = 0.
Proor. Put
X; = (wy)2a=b)'—2i"+1 for 1<i<q-b.
Then, by Lemma 4.5 (i) and the Cartan formula, we see that
Sq P {Zizt xi(wap)} = X1+ X2+ X,

1= 2P (Sqv P x) (W)
(4.14) « 2= X (Sqv P x) (W way)
X3 = XD (Sqv P2 x ) (Wap)
Thus we can prove the lemma by showing
(4.15) Y, =Xb (wb,)4(q-b)’—2(p—b)'—2i’+1(WZbI)“i',
(4.16) T, = (Wp ) 4@ =6(@=b)+1 (3, ) 2(p=b)’
+ (W )4 =2(=0) =1y,

(4.17) T3 = 2D (w, )HaT D 2070 24 (4, )2,
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Proof of (4.15). If iZp~b+1, then dimx;<q'—2p'+b'<q'—p’ and so
Sq4~P'x;=0. For 1<i<p—b, by the Cartan formula, Lemma 4.5 (i) and Propo-
sition 4.2, we see that

(597 P' x) (Wap)" = {Sq¥ P ((Wy) (478 ()48 =2+ 1)} (W)
= (WP {SqU "7 (w,) (4D 241} ()
= oo = (W )2ED) HHB(EB) =20 H (3, Y

. (wbl)4(q—b)’-2(p—b)'—2i'+1(w2b,)i'.
Thus, we see (4.15).

Proof of (4.16). In the same way as in the above proof, we see (4.16) by the
following
(5q7 777" %) (Wywap )’
= (Wy) 247D {Sqla~ 1 =p"=b"¥ (), )(@=BY=20"41} (wy w3y )

= (YOm0 (S oy YD 2 ()

(7" ¥ (W™D 25741] (wywy )

(W )2OD 1wy 20D G i=p—b+1)
={ (Wy)SCD"~1wy, @ i=1)
0 (otherwise).

Proof of (4.17). Leti<p—b—1. Then, in a way similar to the above proof,
we see that

(Sq¥ P2V %) (Wap )2V
= (wb’)Z(q—b)'{Sq(q—1)'—p'—2b'i'(wb,)(q—b)’—21’+1} (WZb')Zi'
=eee= (wb,)“‘(q—b)'—S(p—b)'l{qu'—Zb’i'(wb')4(p—b)'-—2i’+1} (WZB')Zi’
= (W, )Ha=BY=6(=b)" [Sp'=2b"¥'(y, )2(P=B)'=2i"+1} (p,, )2,
Here, by using Lemma 4.6, we see that
{qu'-Zb’i’(wb')l(p—b)'—Zi’-i-l} (WZV)ZI' = (wbl)4(p—b)’—4i'+1(w2b’)2i’.
Let i=p—b. Then in the same way as above, we see that
(Sq P72 x) (Wap )V = (wy)H(a™B) =6(P=b) +1(y ) )2(P=D)",
Let p—b<i<qg—b. Then, in the same way,
(8% =7" 725"V x) (W)
= (Wy)2ab) {Sqa=1)'=p"=2b"¥" (1, )(@=B)'~20"+1 } (3, )2’

=-oo= (W )HamDY =6 (S Py ) (Wop )2 = 0,
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because Sq2%'¥~P’w,, =0 by the dimensional reason. Thus, we see (4.17); and the
proof of the lemma is complete. q.e.d.

LeMMmA 4.18. Leti=aj+---+ay witha,>--->a,=1 and k23. Then
0w, =0  for 1=bxa,.

Proor. If b=1, then the equality holds by (2.8) and the assumption.
Let 1<b<a,. Then, by Lemmas 4.10 and 4.9 (i), we see that

0=2"'wy,, = Sq42..-SqAxSq*(wyy )P,

where a=(a,+k—1)'—a; and f=(a,+k—b—1). Since k=3 by the assump-
tion, o is not a multiple of fb’ =(a,+k—2)'. Therefore Sq*(w,;.)? =0 by Lemmas
4.4 and 4.5(@). Thus 6-2%'w,,,=0.

Let b=a,. Then, by Lemma 4.12,
012 gy = Sq4a--SqA-i1Squ PO Y Wy (g=0y-y+k—2, p=0;-)).
Furthermore, by Lemmas 4.9 (ii) and 4.13, we see that
SqT 0P Way = ST LT mp s (W) A I (wyy)UD} = 0,

Thus 6-20'w,,.=0.
Let a,<b. Then, i—2b’ is not a multiple of b’ by the assumption, and we
see 6i~2b’w,,.=0 by Lemma 4.5 (ii) and (2.1). q.e.d.

Proor oOF (iii) oF THEOREM 4.3. The desired result follows immediately
from Proposition 3.2, the assumption (4.1) and the above lemma. qg.e.d.

Thus, we have proved Theorem 4.3 completely. In the rest of this section,
we consider some examples of closed manifolds which satisfy (4.1).

EXAMPLE 4.19. Let RP" be the real projective n-space. Then
WRP" = 1 + u® + u% if n=a'+b'—1 with a>b2x1,
where u e H(RP"; Z,)=Z, is the generator.
Proor. We see the desired result by the fact that
WRP" = (1 + u)"*!
(6, Th. 4.5]) and (2.12). g.e.d.

For a (differentiable real) k-plane bundle {—V over a closed d-manifold V,
we denote by



588 Toshio YosHIDA

p: RP(() —> V

the associated projective space bundle with fiber RP*~1. Then, RP(() is a closed

(d + k—1)-manifold.
Let ¢, be the canonical line bundle over RP", and m¢, be the m-fold Whitney
sum of £,. Consider the natural projection

p;i RP" x RP" — RP"  (i=1,2)

of the product manifold RP"x RP" onto the ith factor, the induced bundle
pFmé, of mé&, by p;, and the Whitney sum

&(n, m) = ptmé, @ p3mé,,

which is a 2m-plane bundle over RP" x RP". Then, we have the associated pro-
jective space bundle

p: RP(&(n, m)) — RP" x RP" with fiber RP?m-1,
ExampLE 4.20. If
n=a'+b'—1 and m=a' with a>b=x1,

then the total Stiefel-Whitney class of the 2n+2m—1(=4a’+2b’—3))-manifold
RP(&(n, m)) is given by

WRP((n, m)) = 1 + p*{(u} +u3) + (uyuz)” + (uyu2)*},
where u;=p¥ue H(RP" X RP"; Z,) and u € H'(RP"; Z,) is the generator.

Proor. For the projective space bundle p: RP({)—V of a k-plane bundle
{ over a closed manifold V, it is proved in [1, (23.3)] that

(4.21) H*(RP(); Z,) is the free H*(V; Z,)-module with basis 1, c,..., c¥1,
with the relation

ck =3k, p*(wid)ck i,

where c is the first Stiefel-Whitney class of the canonical line bundle over RP({)
and w{ is the ith Stiefel-Whitney class of {. Furthermore, the total Stiefel-
Whitney class of RP({) is given by

WRP({) = p*(WV) Xl P*Wid) (1 +0)*.

Consider the case that { is the 2m-plane bundle &(n, m) over the 2n-manifold
RP" x RP* in the example. Then,

we(n, m) = {pt(1+w)"} {p3(1+w)"} = (1 + u) (1 + ug)
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(m=a’), and the first equality in (4.21) is
2@ = {p*uy’ + ug)}e” + p*(uu)”.
Therefore
2o p*(wik(n, m)) (1 +c)>m
=1+ + {p*uf + ug)} A+ + p*(uyuz)* =1+ p*(uf’ + ug).
Thus, by the last equality in (4.21) and Example 4.19, we see that
wRP({(n, m)) = p*(w(RP" x RP")) 322, p*(wil(n, m))(1+c)?m?
=p*{(l +ud +uf )L +uf +ug) + uf +ug)}
=1+ p*{u} + u}) + (uyur)" + (uu)*'},
as desired. q.e.d.
Similarly, we have the following
EXAMPLE 4.22. Ifn=b'—1 and m=a’' with b>a=1, then
wRP(((n, m)) = 1 + p*(u%" + ug).
ReEMARK 4.23. In Proposition 4.2, the assumption is necessary. In fact,
(wy)? # 0, WyWap # 0
in Example 4.20, where wy, =p*(u?" +u%’) and w,, =p*(u u,)®’.
Finally, in connection with the condition (4.1), we notice the following

REMARK 4.24. Let M be a closed manifold.

(i) If wy =0 for some b=1, then w;=0 for b’<i<2b’.

(i) IfwM=14+w;+w;,(i>1)or wM=1+w,;(i=1), and i is not a power of
2 in addition, then w;=0.

In fact, we can show (i) by using the equality
Sqi'wy = w; + izl (b -1}1;—1711—1 )w,-_jwj (b'<i<2b’)

of (3.7) and by the induction on i. (ii) is an immediate consequence of (i).

§5. Unoriented bordism classes of certain manifolds

The purpose in this section is to prove the following

THEOREM 5.1. Assume that a closed manifold M satisfies (4.1), i.e., the
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total Stiefel-Whitney class wM is given by
(5.2 WM =1+ Y45, W, wyeHY(M;Z;) (b'=2071),
and let
(5.3 dimM = pj+--+p; with p,>-->p 21 (p'=2r71).
(i) Ifk=4in (5.3) and
(wp)3imM/¥" =0 for 22b=ps

then the unoriented bordism class [M] of M is 0.
(i) Ifdim M is odd and k=3 in (5.3), then [M]=0.

THROREM 5.4. (i) If wM is given by
wWM=1+w,+w.,  forsome c>bxl,

and k22 in (5.3), then [M]=0.

(ii) If wM=1+w,+w; where i>1 is not a power of 2, then w;=0 and
[M]=0.

(iii) If wM=1+w; for some i=1, then [M]=0.

To prove these theorems, we study the Stiefel-Whitney numbers of M, which
is assumed throughout this section to satisfy (5.2) and k=2 in (5.3), as follows.
By the assumption k=2 in (5.3), we put

(5.3) dimM =p'+q'+m with p>q and q'>m=0,
and consider the following cohomology classes in H*(M; Z,):

A(b) = 252t (W )@=V () YU=E (g<t<p—-2, 1SbSY),
(5.5) B(b) = (wy)p2+1)’ (1=sbsp),
By(b) = 38 _si 1 (W)@ H I ()0~ 0) (1=5s=q,15bss).

Then, we have the following
LemMMA 5.6. Xi-,4,()=0 (g=st=p-2),
P=1B() =0, 33-,B(b)=0 (1=5=9).
Proor. By Theorem 4.3 (i)-(ii), the ith Wu class v; is equal to
Xh=14(b) if i=(p-1)+¢, X-,B(b) if i=p,

and X 3=, By(b) if i=p’'+5', respectively. On the other hand, v;=0 if 2i >dim M
by the definition of the Wu classes. Thus we see the lemma. q.e.d.
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LemMmA 5.7. For any b with 2<b<gq,

A,(b) = wywypA(b) = 0 (g=st=p-2),
B(b) = wyw,yB(b) + wywayB(b+1) =0,
B(b) = wywayB(b) =0  (b<s=g).

Proor. Multiply the equalities in Lemma 5.6 by w,w,,. Then, we see
the lemma by Proposition 4.2. q.e.d.

Lemma 5.8. A, =w,;4,1)=0 (q=t=p-2),

B = w,;B(1) + w;B(2) = 0,
B,=wB(1)=0 (1=5=¢).

ProoF. In the same way, by multiplying the equalities in Lemma 5.6 by
w;, we see the lemma. q.e.d.

LEMMA 5.9. For any b with 2<b=gq, the equality
(Wp)*(wap)? =0
holds for o and B given as follows:

D) a=1+@+q)/b, B=1
@ a=1+@-q+s)b', B=2+(q-s)b (b<s=q).

(3 a=1+p'/2b, p=1+4q'/b.
@ a=1+1, B=1+@-2)2b' (¢st<p-2).
6) a=1, B=2+p|2b.

Proor. (3) By Lemma 5.7 and (5.5), we see that
(Wp)*(Wap )P = (Wy) TP 125" (W )1 ¥ /Y Zq+ 1(b)
= (wy)?/" A (b)) =0 if p2q+2;
(Wp) (W )P = (WyWap)1HP'120 = Eq(b) =0 if p=q+1.
(@) O )P = (W) 1Y () B 200120
Ay o(B) S5z () IO ()220
= (wzb,)((P"Z)"'")lb'gt(b) = 0.

(2) with s=q: (wy)1*P'/b"(w,,)? is equal to
(Wy)1*2' 1% (Wa)? + By 1(b) = wyBy(b) = 0.

(5) By the above result, we see that

Wy (Way)2H2' 12V = wyy, B(b) = 0.
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() By (3) if p=q+1 and by (4) with t=q if p=qg+2, we see that
(Wb’)l+ql/b'(WZb’)l+pI/2bl =0. Hence

(W) THE Yy, = (wy )21 B(b) = 0.
(2) with b<s<gq: In the equality
BL(b) = 8o qus (wp) O =000 (g 14120,
X2zl is equal to
(wy) " 26200026 F (b) =,

and the term for j = p multiplied by w,, is equal to (w,)1*5"/%"(w,,.)2*P’/2b" which
is 0 by (5). Therefore

S dasr s (W) FEH=I0I (1) Y2012 = ) B () = 0.
By taking s=q —1 especially, we see that
(wbl)l+(2p’—q’)/2b’(w2b’)2+q’/2b’ = 0.
Thus, the desired equality is shown as follows:
(Wbl)l+(p'—q'+s’)/b’(w2b,)2+(q’—s’)/b’
= D ()OI (g YU 200200
= (Wap)1+(@= 2012 B () = 0.

These complete the proof of Lemma 5.9. g.e.d.

We notice that the relations in Lemma 5.8 are obtained from those in Lemma
5.7 for b=1 by replacing (w,)*(w,)? by (w,)*(w,)f~1. Thus, for b=1, Lemma
5.9 turns out the following

LeMMA 5.10. The equality
(w)*(w2)) 1 =0

holds for a and B which are given by the equalities obtained from (1)-(5) of
Lemma 5.9 by setting b=1.

To study the Stiefel-Whitney numbers of M, we consider cohomology classes
(W) - D(wyyp)t € HEM(M 3 Zy) (b1, 120),
where the integer k(b, 1) is given by

(5.11) kb, Db’ +2Ib' =dimM = p'+q'+m  (p'>q >m=0).
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LeMMA 5.12.  If (w,)*(W,p )P =0 for some a and B, then
(Wp)¥®:D(wy ) =0 for B=I=<n(x) = (dim M —ab’)/2b’.

Proor. The lemma is clear, since k(b, [)=a for the above I by (5.11).
q.e.d.

By using Lemmas 5.9 and 5.12, we see the following
LemMA 5.13. In (5.11), assume that
(5.19) m = ar’ for r=1 and an odd integer aZ=3.
Then, for any b with 2<bZ<r,
(Wp )k @ D(wap)! =0 if 15I<(dim M—b")/2b".

Proor. For a and f given in Lemma 5.9, we see easily that f and n(x) in
the above lemma are given as follows, where no=(m—b’)/2b’:

I =1, n(a) = n,.
@ B=2+(@-5), n@=no+(q—-G-1))b" (b<s=q).
3) B=1+4IV, n(@) = no + (p—1)' +4q°)/2b".
@ B=1+ P -21)2b, n(@=ne+ (p'+q' —1t)2b" (9<t<p-2).
) B=2+p/2b, n(a) = (dim M —b")/2b’.

Thus, for these # and n(«),

(5.15) Wy ) ®D(wap) =0 (BSI=n(a)).

Here, we notice that ny=(ar’'—b")/2b’' =1 by the assumptions (5.14) and b<r.
Therefore, we see immediately that n(x) in (1) (resp. (2) for s=u=b+2, (2) for
s=b+1, (3), (4) for t=v>gq or (4) for t=q) is not smaller than f—1 of 8 in (2)
for s=gq (resp. (2) for s=u—1, (3), (4) for t=p—2, (4) for t=v—1 or (5)). Thus,
we have the lemma by (5.15). g.e.d.

LeEMMA 5.16. In (5.11), assume that

(5.17) m=ar’  for r21 andan odd integer a=1.
Then
(w)kD(wy)! =0 if 0=<I<(dim M—1)/2.

Proor. By using Lemma 5.10 instead of Lemma 5.9, we see the lemma in
the same way as in the above proof, since we have

w)tD(w)) =0 (B-1=I=n(w),
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instead of (5.15), for § and n(x) obtained from the above (1) —(5) by setting b=1,
where ny=(ar'—1)/2=0. q.e.d.

Now, we are ready to prove Theorem 5.1.

ProoF oF THEOREM 5.1. (i) By the assumption that k=4 in (5.3), we see
(5.14) where r=p,. Therefore, by the above two lemmas and Proposition 4.2,
we see immediately that all the Stiefel-Whitney numbers of M are 0 except for

W)k @9,y (2=sbsr=py).

Thus the desired result is an immediate consequence of the theorem of R. Thom
(cf. [8, p. 95, Th.]) that

(5.18) [M] =0 ifall the Stiefel-Whitney numbers of M are 0.

(ii) By the assumption that dim M is odd and k=3, we see (5.17) with
r=1. Thus we see that all the Stiefel-Whitney numbers of M are 0 by the above
lemma and Proposition 4.2, and that [M]=0 by (5.18). q.e.d.

To prove Theorem 5.4, we notice the following
LemMA 5.19. Assume that
(*) wM =1+ wy, + wy,,  for some b1,
and let k(b, l) be the integer given by (5.11). Then
(W )k D(wyy ) =0 for 0=I1=dim M/2b'.

Proor. By the assumption (*), Lemma 5.7 .for b in (*) holds without
multiplying w,-w,,.. Thus, we see by the same proof as in Lemma 5.9 that

(Wp)* H(Wap)f~t =0
for o and § given by (1)—(5) in Lemma 5.9, and hence we have
(W )k D(wyy)t = 0 B-1=1=n(a—1))

instead of (5.15) by Lemma 5.12. Here, n(a—1)=n(x)+1/2 and so n(x—1) is
given by the equalities obtained from those of n(x) in (1)—(5) in the proof of
Lemma 5.13 by replacing n, with ny+1/2=m/2b’ 20 and (dim M —b’)/2b’ with
dim M/2b’. Therefore, we have the lemma in the same way as in the proof of
Lemma 5.13. q.e.d.

Proor oF THEOREM 5.4. (i) Let c=b+1. Then, the desired result fol-
lows immediately from the above lemma and (5.18).
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Let c>b+1. Then, by the second equality in Lemma 5.6,
(W) 4 (w Ym0,
By Proposition 4.2, this equality implies that
(Wp)P~2+D'+1 = 0 and  (w,)@-c+D’+1 = Q,

Hence (wy,)*(®0=0=(w,)*(c-® and all the Stiefel-Whitney numbers of M are
0. Thus, the desired result for ¢>b+1 follows immediately from (5.18).
(ii), (ili) By Remark 4.24(ii), it is sufficient to show that

(*) if wM=1+w, forsome b=1, then [M]=0.

If k=2 in (5.3), then (%) is a special case of (i).
Let k=1 in (5.3), i.e., dim M =p’ for some p=1. Then, by the assumption
of (x), Theorem 4.3 (i) and the dimensional reason, we see that

(W) b)) =, = 0.
Thus [M]=0 by (5.18). g.e.d.

ExAMPLE 5.20. The unoriented bordism classes of the (4a’'+2b’—3)-
manifold RP(&(a’+b'—1, a’)) given in Example 420 and the (2b'+2a’—3)-
manifold RP(&(b'—1, a’)) given in Example 4.22 are all 0.

Finally, we notice that Theorem 5.4 (i) does not hold if k=1 in (5.3) (i.e.,
dim M is a power of 2), as is seen by the following two examples.

ExAMPLE 5.21. Consider the closed (2n+2(=2'))-manifold RP(n, n, 0)
=RP(p¥E,®p3E,®pié,) (n=t'—1,1t=2, 3, 4), given in [9, Lemma 3.4], where
D; is the projection of RP" x RP" x RP° onto the ith factor and &; is the canonical
line bundle over RP!. Then,

[RP(n, n,0)] # 0, w,RP(n,n,0) =0 for i=3.

ProofF. The first assertion is valid, because [RP(n, n, 0)] is indecomposable
by [9, Lemma 3.4]. The second assertion is shown by using [11, Lemma 2.9]
and [6, p. 39, Prop. 4]. q.e.d.

ExAMPLE 5.22. For RP?" with p>1, it holds that
[RPP"]#0 and wRP? =1+ w; + wp.

Proor. This is clear by Example 4.19 and (w,)?’ #0. g.e.d.
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