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1. Introduction

Our main aim in this paper is to study the asymptotic properties of the
nonoscillatory solutions of the differential equation

(1)

where n > 2 and Lπ is a disconjugate differential operator defined by

(2) Lny(t) = pa(t) (pH. ,(

The following conditions are always assumed to hold :
( i ) pt e C([α, oo), (0, oo)), 0 <, i <. n, and

(3) pl\t)dt = oo, l < i < n - l ;
JΛ

(ii) α,/, 0eC([α, oo), jR), a is of one sign, there exists a ί0>
α sucn that

0<0(f)<ί for ί>ίθ5 and g(i)-*co as ί->oo;
(iii) h E C(R, jR), h is nondecreasing, and sign /ι(j;) = sign y.

We introduce the notation :

(4) LoJ<0 = PoCOXO, Lιy(t) = p,(0(Li-ιXθy, 1 < i < n.

The domain ^(Lπ) of Lπ is defined to be the set of all functions y: [Tv, oo)-*jR
such that Lfy(ί), 0<i<n, exist and are continuous on [Ty9 oo). In what follows
by a "solution" of equation (1) we mean a function y e ^(Lπ) which is nontrivial
in any neighborhood of infinity and satisfies (1) for all sufficiently large ί. A
solution of (1) is called oscillatory if it has arbitrarily large zeros; otherwise the

solution is called nonoscillatory.
It is well known [5, 7] that in case Lny(f) = y(n\f) equation (1) has a non-

oscillatory solution with a prescribed limit as ί->oo if

(5) \ tn'l\a(t)\dt < oo

and
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Γ°°(6) \ tn~1\f(t)\dt < oo.

In this work we find conditions so that all nonoscillatory solutions of equation

(1) approach limits as ί-»oo.
The literature on asymptotic nature of oscillatory and nonoscillatory solu-

tions of functional equations is growing by the day. Our study in this paper is
related to the works of Kitamura, Kusano and Naito [2], Kusano and Onose
[3, 4], Philos and Staikos [6] and Singh [8]; but our results are different from
and more complete than those obtained in the above papers. In fact, since the
pioneering work of Hammett [1] the asymptotic study of nonoscillatory and
oscillatory solutions of (functional) differential equations continues to offer new
avenues to be explored.

2. Main results

Let i*e{l, 2,..., n — 1}, l<k<n — 1, and t, se[α, oo). We define /0 = 1 and

(7) Ik(t, s; plk,...9 pj = \ P7ϊ(r)lk-ι(r, s; pik_ί9..., ptl)dr.
Js

It is easily verified that for 1 <Ξ k < n — 1

(8) Ik(t, s; p/k,..., pit) = \ pTΪWk-itt, r; jpίk,..., ph)dr.
Js

For the sake of brevity we employ the notation :

(9) Jt(t, s) = Po^t)!^, s; Pl,..., pa, Jt(t) = Jt(t, α) ,

(10) Xί(ί,s) = ̂ 1(0/i(ί,s;Pπ-ι,...,PB-ί), xχί) = K,(ί,α), O ^ i ^ n - 1 .

Γ°°
LEMMA!. In addition to (i)-(iii) suppose α(ί)>0 and \ p^l(t)\f(t)\dt

< oo. Let y(f) be a nonoscillatory solution of equation (1). Then

(11)

PROOF. Without any loss of generality, suppose T>t0 is large enough so
that y(g(t))>Q for t>T. Dividing equation (1) by pn(i) and integrating from T
to t, we have

(12) L^XO - L^XΓ) + Γ p?(r)a(r)h(y(g(ryϊ)dr = Γ Pn\r)f(r)dr.
JT JT

If (11) does not hold, then it follows from (12) that ί*-ιXO-> — °o as t-+co.
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This combined with condition (3) on pt(f) implies that L0y(f) = p0(f)y(t) ^ — ao as
ί-»oo, a contradiction. The proof is complete.

LEMMA 2. Suppose the conditions of Lemma I hold. Let y(t) be a
nonoscillatory solution of equation (1). Then

(13) X0 = 0(4,-ι(0) ™ *->«>.

PROOF. Let y(t) be a nonoscillatory solution of equation (1). From re-
peated integration of equation (1), we obtain that there exist constants c0, clv..,
cn^ such that

T

whence we see that

Γ; pl9...9 p^

(f, r; plf..., A-OΛWC/M - e(r)fc(j<flf(r)))]drf

k + Γ P^ωCI/WI + a(r)\h(y(g(r)))\~\dr
JT

for ί>T, where k is a positive constant. The conclusion now follows from
Lemma 1.

We now state and prove one of the main results of this paper.

THEOREM 1. Suppose (i)-(iii) hold. Further suppose that

and

(15) J°° X..f(ί) |fc(cJ,,-ι(OX01Λ < oo

for any constant c^O. If y(f) is Q nonoscillatory solution of equation (1), then
Po(t)y(t) approaches a limit, finite or infinite, as t-+ao.

PROOF. Without any loss of generality we may suppose that y(i) is eventu-

ally positive. Let T be such that y(g(f)) > 0 for t > T.
(a) The case where α(ί)>0. By Lemma 2 there exists a constant c>0 such

that

(16) X O ^ c Wf) for ί>T.

If the conclusion is not true, then there exist two positive numbers β, δ such that
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(17) lim inf,^ p0(ί)y(t) <β<δ<lim sup,^ p0(t)y(t) .

Let T! > T be so large that

(18)

and

(19)

We observe that (17) implies that Lty(t)9 l<i<n — 1, are oscillatory and that
there exist arbitrarily large numbers A and B such that A<B and

Po(A)y(A)<β<δ<p0(B)y(B).

Choose AO<BQ<AI<BI so that Tί<A0,

(20) Po(A<>)y(AQ) <β<δ< pQ(B0)y(B0)

and

(21) Po(AJy(Al)<β<δ<p0(BJy(BJ.

Let [sx, s2] be the smallest closed interval containing B1 such that p0(
5ι)Xsι)

(22) max {p0(OXO : ̂  [slf s2]} = p0(s')X«0 > «•

Due to (20), (21) and (22) we have T1<sί<s'< s2. Let s2 < tλ < t2 < < *„- 1 be
such that

(23)

On repeated integration from equation (1), we have in view of (22)

α»o(oxo)' = (- ir^rHo ('
Jί

(24)
•Pnl(r)U(r) - a(r

Integrating (24) between s1 and s'9 we have

Jr2 Jrn-2

a(r)h(y(g(rmdrdrn.ldrn.2-dr2drί.

This in a manner of [9] gives
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*-β<

Using (8) and (10), the last integral can be rewritten as

" Wr. »ι5 A-ι,»

Hence we obtain

(25) δ - β < Γ Ka. ,(ί, 5,) [|/(ί)l + β(ί)ΛU<β(0))]Λ.
Jsi

From (16), (18), (19) and (25) it follows that

This contradiction completes the proof for the case where α(f)>0.
(b) The case where o(ί)<0. Then either

(26) j"

or

r°°
> -(27) £

If (26) holds, then from (12) we see that L^-iXO-*0^ as ί^oo. Clearly, this

implies LoKO^PoCOKO^00 as t-+ao. If (27) holds, then the argument of the
proof of Lemma 2 shows that XO = ̂ (Λ-ι(0) as *->oo. Once this growth esti-
mate has been obtained, we can proceed exactly as in the proof for the case (a)
to conclude that pQ(t)y(t) approaches a limit, finite or infinite, as ί-»oo. This

finishes the proof.

COROLLARY 1. Under the conditions of Theorem 1, if equation (1) has a

solution y(i) such that

lim inf^ p0(t) \y(f)\ < lim sup^ pQ(t) \y(f)\ ,

then y(t) is oscillatory.
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When specialized to the equation

(28) /»>(0 + a(ί) |X0(ί))|y sign y(g(t)) = f(f) ,

the above results yield the following corollary.

COROLLARY 2. Suppose that

(29)

and

(30) Γ VW-»\a(f)\dt < oo.

Let y(t) be a nonoscillatory solution of equation (28). Then y(t) tends to a
limit, finite or infinite, as ί->oo. Every solution z(t) of equation (28) such that

^ \z(t)\ is oscillatory.

EXAMPLE 1. All nonoscillatory solutions of the equation

ί>n,

where σ=l or —1, approach limits as f->oo. In fact, y(t) = t is one such solu-
tion. All conditions of Corollary 2 are easily verified.

EXAMPLE 2. The equation

where σ=l or —1, has a nonoscillatory solution Xί) = 2 + sinί which does not
approach a limit as f-»oo. Condition (30) of Corollary 2 holds, but condition
(29) does not for this equation.

3. More on asymptotic limits

So far we have dealt with equation (1) in which the differential operator Ln

obeys condition (3). Such an operator Ln is said to be in canonical form.
Recently Trench [10] has shown that any differential operator of the form (2) can
be put in canonical form in an essentially unique way. More precisely, if

Lay(f) = Λ(0(p,-1(0( (Pι(0(Po(OXO)0' )'y

and if (3) is not satisfied, then Lny(f) can be rewritten as

(31) Lay(t) =
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so that

(32) Γ pτl(t)dt = 00, 1 < i < n - 1,
JΛ

and the pi(f), 0^ί<n, are determined up to positive multiplicative constants with
product 1.

Actual computation leading to canonical form is not easy, so that it would
be of practical interest to obtain an analogue of Theorem 1 for equation (1) with
Lπ not in canonical form without representing Ln in canonical form. The purpose
of this section is to present an attempt in this direction.

By a principal system for Ln we mean a set of n solutions Xι(t), X2(t)t»..9

Xn(f) of the equation LMx(f)=0 which are eventually positive and satisfy

(33) l i m ^ o o . = o for 1 <ς i < j < n.

In case Lπ is in canonical form the set of functions {J0(i), Jι(0> > Λ-ι(O)
defined by (9) is a principal system for Lπ, and the set of functions {K0(t), K^f),
..., Kn-^i)} defined by (10) is a principal system for the operator

(34) Mny(t) = po(0(Pi(0(-(p.-i(0(p^)XO)0'-)f)/,

which is also in canonical form. A basic property of principal systems is that
if {^(Oj. j-XnίO} and {X^t),...,^^)} are any two principal systems for LΛ,
then the limits

(35) iim^
i\

exist and are finite. (See e.g. Trench [10].)

THEOREM 2. Let (X^fy...^^)} be a principal system for Ln and let
{^(Oj. j Yn(i)} be a principal system for Mn defined by (34). Let y(f) be a
nonoscillatory solution of equation (1). Then y(t)/Xί(i) approaches a limit,
finite or infinite, as f-»oo if

(36)

and

(37) ^ Yn(t)\h(cXn(t))a(ή\dt < n

for any constant c^O.

PROOF. We represent Ln in canonical form, that is, in the form (31) satisfying
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(32). Let {JS\(f),..., Xn(t)} and {¥&),..., ?„(*)} stand for the sets of functions

{J0(0*-fΛ-ι(0} and {K0(0,...,£π-ι(0}> respectively, where Jf(0 and £#)»
0<ϊ<n, are constructed from βf(ί), 0<i^n, according to the rules (9) and (10),
respectively.

Theorem 1 says that the function £0(OXO(=XO/Λ(0=X')/^ι(0) tends
to a limit as ί-»oo if

(38) f YJ[i)\f(f)\dt «*>

and

(39) Y£WcXjVMt)\dt < «>

for any constant c^O. Since (35) implies that (38) and (39) are equivalent to
(36) and (37), respectively, the conclusion readily follows.

Let us now consider equation (1) in which Ln satisfies the condition

(40) Γ pτl(t)dt < oo, 1 < i < n - 1.
Jα

Using (7), define for

(41)

(42) kt(t) = p^(t)Ii(co, t;

It is easily verified that {j,,-ι(0>— ,Jo(0) and {fc«-ι(05 » k0(t)} form principal
systems for Ln and Mπ, respectively. This fact leads to the following corollary
to Theorem 2.

COROLLARY 3. Let y(t) be a nonoscillatory solution of equation (1) with
Ln satisfying (40). Suppose that

and

for any constant c^O. Then XO/7»-ι(0 approaches a limit, finite or infinite,
as ί-*oo.

EXAMPLE 3. Consider the equation

(43)
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where σ = l or —1. Put L4y(t) = (t3y"(f)Y. Then the operator M4 associated
with L4 (see (34)) coincides with L4, and integration of L4x(ί) = 0 shows that

{1/t, l,logί,0

is a principal system for L4=M4. All the hypotheses of Theorem 2 are satisfied,
and so for every nonoscillatory solution y(t) of equation (43), ty(i) tends to a
limit as f->oo. One such solution is y(i) = l/t2.
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