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1. Introduction

Let D be a bounded open set in R"9 n>3, with smooth boundary 5, and v
be the unit exterior normal to S. The motion of a viscous incompressible fluid
in D is described by the Navier-Stokes equation:

-̂ - An + (w, grad)w + grad q = f in D x (0, T),

divw = 0 in Dx(0, T),

w(x, 0) = a(x) in D,

with the boundary condition:

(2) tφc, 0 = 0 on Sx(0, T).

Here u(x, 0 = («ι(*> t\...9un(x, f)), q(x, t) and f(x, ί) = (/ι(*, *),...,MX, 0) de-
note the velocity, the pressure and the external force respectively, and (M, grad) =

So far, the above problem has been attacked mainly within the framework
of the Hubert space (L2(D))W. In this framework the existence and uniqueness,
local in time, of strong solutions were established, when n = 3, by Kiselev and
Ladyzhenskaya [9] under some regularity assumptions on the initial data. Then
Kato and Fujita [5], [8] made these assumptions weaker and also proved similar
but stronger results by the method of evolution equations in Hubert spaces.
Inoue and Wakimoto [7] extended the results of [5], [8] to the case when n=4, 5.
But the case n>6 still remains open.

On the other hand, in [5], Fujita and Kato suggested the possibility of
removing the regularity assumptions noticed above by passing from L2 to general
Lp spaces. However, the existence of strong solutions in Lp spaces is still not
known, mainly because of the lack of knowledge about the ZAtheory of the
Stokes system, i.e. the linearized version of the problem (1) and (2).

In this paper we consider in (!/(£>))", n<ρ<co9 the equation (1) under the
following boundary condition (the Neumann condition for 1-forms, see [3]):



518 Tetsuro MIYAKAWA

(3) σ(<5, v)u = 0, σ(δ, v)du = 0 on S x (0, T) ,

where d and δ denote the exterior differentiation and its formal adjoint respec-
tively, acting on differential forms on D, and σ(<5, v) denotes the value at v of the
principal symbol σ(δ) of δ. (Throughout this paper we identify vector fields and
1 -forms by means of the standard Euclidean metric.) In 3-dimensional case (3)
means that u is tangential and rot u is perpendicular to S at each time t. We
shall establish the local existence and uniqueness of strong solutions of the prob-
lem (1) and (3) without any regularity assumptions on the initial data.

In Section 2, we give a brief survey on the decomposition of (Lf(D))n into
the direct sum of solenoidal vector fields and gradients of scalar functions, which
is a generalization of the well-known orthogonal decomposition theorem of
(L\D)Y (see [17]), namely,

= X^D) Θ Gp(D) (direct sum) ,

where

Xp(D) = {u e (!/(/)))"; δu = 0 in D, σ(δ, v)u = 0 on 5} ,

Gp(D) = {u e(L*(D))"; u = dq for some q e Wl p(D)} .

Since the details of the subject are presented in [6], we shall omit the proofs.
Section 3 is devoted to the investigation of the following elliptic boundary

value problem, the Neumann problem for 1 -forms:

I -Δu =/ in D,

σ(<5, v)u = 0, σ(<5, v)du = 0 on 5,

where —A = dδ + δd denotes the Laplacian acting on 1-forms on D. It will be
shown that the Laplacian with the Neumann condition on (I/(D))Π leaves the
space Xp(ΰ) invariant and hence generates a holomorphic semigroup on Xp(D)9

which enables us to discuss the problem (1) and (3) on U spaces. It is to be noted
that the corresponding result is not known for the Stokes system except when D
is a half-space of R3. See [13] in this respect.

Using the results obtained in Sections 2 and 3, we consider in Section 4 the
problem (1) and (3) in the form of the following evolution equation in Xp(D),
n<p<oo:

-^Γ + Au + P(u, grad)w = P/, t > 0,
(5)

where A=Ap is the restriction to XP(D) of the Laplacian with the Neumann
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condition, and P = PP: (Lp(D))n->Xp(D) is the projection along Gp(D).

We shall mainly follow the discussion of [8] and prove the local existence

and uniqueness of solutions of (5), which we shall call strong solutions of (1) and

(3), for any a e Xp(D) under some assumptions on Pf.

In [4], Fabes, Lewis and Riviere discussed the equation (1) in Lp spaces

under various boundary conditions including (2) and (3) and proved the local

existence and uniqueness of weak solutions. But the regularity property of their

solutions is not clear.

The author would like to express his sincere gratitude to Professor A. Inoue,

who helped him with valuable discussions and constant encouragement.

2. The decomposition theorem

In this section we review some results due to Fujiwara and Morimoto [6] on

the direct sum decomposition of (Lp(DJ)n

9 l<p<oo, which will be needed later.

In what follows we denote by W S>P(D) the Sobolev space of order s, with the norm

|| \\S)P. All functions considered in this paper are assumed to be real, unless

otherwise specified. For the sake of convenience, elements in (LP(D))Π will be

regarded as 1-forms. Thus, for example, δu= — divw, σ(<5, v)w = — w v, in the

notation of vector analysis.

THEOREM 2.1. Suppose that ue(Lp(D)yι and δueLp(D). Then the

boundary value σ(<5, v)w makes sense and belongs to W~ί/p'p(S). Further, there

exists a constant C>0 independent ofu such that

(6)

Now, we set

(7) XP(D) = {u e(Lp(DJ)n; δu = 0 in D, σ(<5, v)w = 0 on S} .

By the above theorem one can easily see that XP(D) is a closed subspace of

LEMMA 2.2. The space of all we(CJ)(jD))w satisfying <5w = 0 in D is dense

inXp(D).

Let us now construct a bounded operator Pp: (Lp(D))n^Xp(D) as follows.

For each we(L p (D)) n we can choose qje Wl>P(D), j = 1, 2, such that

{ — Aq^ = δu in D9 f —Δq2 = Q in D,
(ϋ)

qί = 0 on S, l dq2/dv = <τ(δ, v)(dg! — w) on S.

The existence and uniqueness of qj9 j = 1, 2, (up to an additive constant for q2) is
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assured by the Lp-theory of elliptic boundary value problems (see [10], [11]).
Thus, Ppu^u-d(qί + q2) is well-defined and belongs to Xp(D). The bounded-
ness of Pp follows from the well-known estimates of elliptic problems ([10],
[11]). If we set

(9) GP(D) = {u e (!/(£))" u = dq for some q e W^(D)} ,

then it is obvious from our construction of Pp that (!/(£>))" is the sum of XP(D}

and GP(D). More precisely we have

THEOREM 2.3. (i) (L^D))" = XP(D)@ GP(D\ (direct sum).
(ii) Pp is the projection onto Xp(D) along Gp(D).

From this it follows that Gp(D) is also a closed subspace of (Lp(D))n. For
the dual operator P* we have

THEOREM 2.4. P* = Pp,, p' = p/(p- 1) .

Using all these results one can obtain the following

THEOREM 2.5. (i) Xjpy = GP<D). (ii)

Here Xp(D)1 denotes the annihilator of Xp(D).

3. The Neumann problem for 1-forms

Our aim in this section is to investigate the relation between the decompo-
sition theorem of the preceding section and the boundary value problem :

{ -Δu=f in D,

σ(<5, v)u = 0, σ(δ, v)du = 0 on S.

Let us begin with the variational formulation of (4). We set

V= {ue(W* 2(D)Y\ σ(δ, v)u = 0 on 5},

and consider the bilinear form :

α(u, v) = (du, dυ) + (δu, δυ\ u,υeV9

where (M, v) denotes the iΛinner product. Then a direct calculation leads us to

PROPOSITION 3.1. α(w, t;) is coercive on V, i.e., there exist positive con-
stants C0 and Cj such that

(10) a(u9 u) > C0\\u\\l2 - CJiillfo for any ueV.
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Thus it follows from the regularity theorem for coercive forms (see [12])
that if u e Fand/e(L2(D))n satisfy the equation

(11) a(u9 v) = (/, v) for any veV,

then u is in (W2t2(D))n, and satisfies

(12) -Δu=f in £,

with — A = dδ + δd. Multiplying both sides of (12) with ve V and integrating by
parts one can show that

(13) ( <σ(<5, v)dtι, v^dS = 0 for any v e V.
j s

Here < , > denotes the Euclidean metric of Rn. Now, we may assume that the
normal vector v is smoothly extended to a neighbourhood of S in Rn. Since
σ(<5, v)2du = 0 by virtue of δ2 = 0, one can choose υ e V which is equal to σ(δ, v)du
near S. This and (13) imply that σ(δ, v)dw=0 on S. Thus we have deduced the
boundary value problem (4) from (11).

The LMheory of elliptic boundary value problems such as developed in
[11] enables us to give the following

DEFINITION 3.2. We set

(14) D(Bp) = {u e(W2>P(D))n; σ(δ, v)u = 0, σ(<5, v)du = 0 on S},

(15) Bpu=-Δu for ueD(Bp).

Note that Bp is a densely defined closed operator on (I/(D))Π.
The following lemma is of fundamental importance to our purposes.

LEMMA 3.3. Bpu e XP(D) if and only ifue D(BP) n XP(D).

To prove this lemma we need the following

LEMMA 3.4. Suppose υe(W2>p(ΰ))n satisfies σ(δ,v)dv = Q on S. Then,

σ(<5, v)δdv=Q on S.

Note that, by Theorem 2.1, σ(<5, v)δdυ makes sense as an element of
W~l/' *(S), since δdυ e (ί/(D))M satisfies δ(δdv) = δ2dυ = Q in D.

PROOF OF LEMMA 3.3. We first assume that f=Bpu is in XP(D). It suffices
to prove that δu~Q in D, By definition, it is clear that 5/=0 in D, and σ(δ, v)/=0
on S. From this and Lemma 3.4, we have

(16) - A(δu) = -δ(Δu) = δf= 0 in D,

and
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(17) σ(δ, v)dδu = σ(<5, v)(/ - δdύ)

= σ(<5, v)/-<τ(<5, v)δdu

= 0 on S.

Since σ(δ, v)dδu = —d(δn)/dv in the usual notation, one concludes from (16) and

(17) that <5w= const, in D. Therefore we have

(18) Q = (dδu, w) = <σ(d, v)δu, u>dS + (δu, δu)

= -f (δu, σ(δ, v)u>dS + (δu, δu)
Js

= (δu,δu).

Thus δu=Q in D, and hence u is in XP(D).

Conversely, suppose u is in D(BP) Π XP(D), and setf=Bpu. It is obvious that

(19) <5/= -δJw = -A(δu) = 0.

By Lemma 3.4, we have

(20) σ(<5, v)/ = σ(δ, v)δdw -h σ(<5,

= 0 on S,

since <5w = 0 in D. Thus / belongs to XP(D). The proof is completed.

PROOF OF LEMMA 3.4. For each q e C2(D), we have

(21) 0 = (δ*du, q)

= f <σ(<3, v)δdu, qydS + (δdu, dq)
j s

= { <σ(δ,v)δdu,qydS+\ (σ(δ,v)dutdqydS + (du,d2q)
J S - - J S . -

= ( <σ(<5, v)δdu, qydS.
J S . ' . . " • '

Since C2(D) is dense in Wl^'(D\ it follows from the surjectivity of the trace

operator: q-*q\s from W^\D)to Pfi-1/p/ p'(S) = ίF1^^/(S) that σ(<5,v)<Wu=0

on S. This completes the proof.

Lemma 3.3 enables us to define a densely defined closed operator Ap on
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as follows.

ί DG4p) = D(Bp)Π XP(D)9

[ Apu = Bpu = - Au9 for u ε D(AP) .

THEOREM 3.5. Pp maps D(Bp) into D(Ap), and BpPp=^pPp=PpBp on D(Bp\

PROOF. Let u = w + dq be in D(Bp) with w=Ppw. Since u ε (W 2'p(D))n,
the function q is determined by

- Aq = δu in D, and dqfdv = -σ(δ, v)u = 0 on S.

Thus we see qεW3>p(D\ and hence w = u-dqe(W2*p(D))n n ̂ P(D). Because
σ(<5, v)Av=σ(<5, v)du =0 on S, we have w e D(BP) n Xp(D)^D(Ap), and

= 4pw + d(~Aq),

from which we obtain, using Lemma 3.3,

This completes the proof.

COROLLARY 3.6. (λ-J5p)-1Pp=Pp(A-Bp)-1=(λ-^p)~1Pp,/or any λ in the
resolvent set of Bp.

PROOF. To show that (λ-A^ exists and is bounded on Xp(D) it is suffi-
cient to prove that λ-Ap is surjective, since Ap is a restriction of Bp. By assump-
tion, for each feXp(D)9 there exists a unique element vGD(Bp) such that /=
(λ— Bp)v. Thus we have, by Theorem 3.5,

(23) / = V = P

P(
λ ~ *P> = (λ - AP)PP»>

from which follows the existence of (λ-Ap)~l.
Now, let us fix/e(ί/(D))n and choose veD(Bp) such that

(24) (λ -£>=/.

Applying Pp to both sides of (24) we obtain, by Theorem 3.5,

(25) Pp(λ - Bp)v = (λ - Λp)Ppt, = (λ - Bp)Ppι> = Pp/,

so that

(26) Ppι? = Pp(λ - Bpr*f = (λ - Apr
 lPpf = (A - Bp)-^Ppf.

This completes the proof.
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We shall now determine the dual operator A*.

LEMMA 3.7. B* = BP>.

PROOF. By the regularity theorem for the Neumann problem the spectra

of Bp are independent of p, and hence are contained in [0, oo) since B2 is non-
negative. Thus, Tp = (l + Bp)-1 is a bounded operator on (!/(£)))" for l<p<ao.

By an integration by parts,

(27) (Tpf, g) = a,(Tpf, T,g) = (/, T,g) ,

for any fe(L»(D))n and 0 e (L*" (£>))", where a^u, v) = (du, dv) + (δu, δv) + (u, v).

Thus, T* = Tp. so that J5* = Bp,.

THEOREM 3.8. A*= Ap,.

PROOF. Let υ be in D(AP>). Then, an integration by parts yields, for each

(28) (Apu, v) = (δdu, ι?> = <σ(δ, v)du, v)dS + (du9 dυ)
j s

= (du, dυ) = ( <σ(ί/, v)u, dv^dS + (u, δdv)
Js

= - ( <«, σ( ,̂ v)dr>ίίS + (u, Ap,v) = («, Ap.υ) .
J S

Thus we have proved Ap,<=.A*.
Conversely, suppose that v is in D(Ap) and set f=A*v. Then, for any vv =

u + dqe D(BP) with Ppw = M, we have

(29) (B,w, t;) = (̂ ιι, t;) = (11, /) = (w, /) ,

by Theorems 2.5 and 3.5. From this we see that v is in D(B%) n Xp<D) =

P0 and A*Ό = B*Ό = Bp,υ = Ap,υ. This completes the proof.

We are now ready to discuss the semigroups and fractional powers generated
by Ap. In this paragraph (Lp(DJ)n is considered as a complex Banach space.

Before stating our results we note the following fact. As is well known (see
[6]) there exists a neighbourhood U of 5 in Rn such that

(30) U and U n D are diίfeomorphic to S x ( — ε, ε) and S x (0, ε) respectively, for
some ε>0,

and

(31) for each y'eS, the curve yn-+(yf, yn)eSx(-ε, ε) represents a straight
line in U which is perpendicular to S at yf.
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Choosing a system of local coordinates y' = (y1,..., yn-\) of S, one can consider

(/> Λ) = θΊ» » yn-ι> yΛ), yπe(-ε, ε), as a system of local coordinates on U.
In this situation the boundary value problem (4) takes the following form:

(4)'
, 0) = 0, /c=l, . . . ,n-l .

Now, let (ds)2 = Σ\~l9jk(y'> yn)dyjdyk + (dyn)
2 be the representation of the Eu-

clidean metric with respect to the coordinate (/, yn). Then the following lemma
holds, the proof of which is easy and so is omitted.

LEMMA 3.9. Let u(t) be a solution of the boundary value problem

{ΣΓ1 gjk(y', ΰ)ξjξk - (d/dt)2}u(t) = -λeίθu(t), t > 0,
(32)

n —1, w(oo) = i

where (gjk(yr, 0)) is the inverse matrix of (gjk(y', 0)). Then, u(f) = Q whenever
A>0, ζeRn~\ -π<θ<π.

This lemma together with S. Agmon's trick ([!]) tells us that there exist for
each ω, 0<ω<π/2, constants Cω>0, Mω>0, such that each λ, |argA|>ω, |A|>
Mω belongs to the resolvent set of Bp, and

(33) \\(λ-BJ-*\\<CJ\λ\.

This implies the following

THEOREM 3.10. —Bp generates a holomorphic semigroup, e~tBp, on
(L*(D))\

This theorem and Corollary 3.6, Theorem 3.8 lead us to

COROLLARY 3.11. — Ap generates a holomorphic semigroup, e~tAp, on
XP(D). Furthermore, we have Ppe~tBp = e~tBpPp = e~tApPp, and (e~tAp)* =
e-tAp>

By the above results we can now discuss the fractional powers of Bp and Ap.

Without loss of generality we may assume that both Bp and Ap are invertible.
The following theorem plays an important role in the next section.

THEOREM 3.12. (i) D(A$ = D(B$) n XP(D) ,

(ii) AΛ

P = B*p on D(AΛ

P) for 0 < α < 1.

PROOF. Let u be in D(A*) and set v=A'pu G Xp(D). Then we have
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(34) w ΞΞ B-*v = 2*™L Γ λ-*(λ + BpΓ
lvdλ

" π Jo

= Λ;«t; = u,

by a well-known formula for fractional powers of operators (see [16]). Thus
w=ue £>(£«) n XP(D), and A"pu =B*pu.

Conversely, let u be in D(B$)(]XP(D) and set B*u=υ. Then we have

(35) A- P,v = 221 A-«(λ + A^

Thus, w e D(v4«) and hence A*u=B*u by the first part of this proof.

PROPOSITION 3.13. (Xp* = AΛ

p, for 0 < α < 1.

PROOF. This is an immediate consequence of (A~Λ)* = A~?9 which follows
from

{(A + AJ-*}* = (λ + A*rl = (A + AJT*9 λ > 0.

4. The Navier-Stokes equation with the Neumann condition

In this section we fix p9 n<p<co, and consider in (Lp(D))n the problem (1)
and (3). For simplicity, we shall write AP—A,PP — P and the Lp norm will be
denoted by || ||. All functions considered in this section are assumed to be real.

Now, applying P formally to both sides of (1), we obtain the following evo-
lution equation in the Banach space Xp=Xp(D).

(I)

"+Au = Fu + Pf, f > 0 ,
at

ιι(0) = α,

k where Fu = —P(u, grad)w.

Our aim is to establish for an arbitrary aeXp the local existence and uniqueness
of strong solutions in the sense of the following definition.

DEFINITION 4.1. Let Pf be in C((0, ΓJ; Xp)- We shall say that u(t) is a
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strong solution of (I) on [0, T] if and only if
( i ) ιι(ί) e C([0, Γ] Xp) n &((0, T] Xp\ ιι(0) = α,
(ii) u(t) is in D(A) for each t E (0, T], and Au(t) e C((0, T] Xp\

(ϋi) ^L + Au = Fw + Pf on (0, T] .
at

Let us put w(0 = eλMO> λ>0. Then t<0 is a solution of

f > 0,
(I)'

As is shown in the previous section (see the proof of Lemma 3.7) λ + A is invertible
for any A>0. Therefore we shall assume that, for each p, l<jp<oo, both Ap

and Bp are invertible and

(36) \\e-*A>\\ < Ce-', \\e~tβp\\ ^ Ce'* for some C = Cp > 0,

(37) Mje-'^ll ^ CαΓ
α, ||J3^-ίβp|| < CαΓ

α, for ί > 0, 0 < α < 1,

with some Cα = CΛ>P > 0.

The factors e±λt on the right hand side of (I)7 are irrelevant since our consider-
ation is local in time.

We first consider the equation (I) in the form of the following integral equa-
tion.

(II) w(0 = e~tAa + Γ e-«-*A{Fu(s) + Pf(s)}ds.
Jo

We shall give, under some assumptions on P/, a local existence and uniqueness
result for (II) and then show that the solution of (II) thus obtained satisfies (I) if
Pf is Holder continuous.

The following lemma is crucial for our purpose.

LEMMA 4.2. There exists a constant M>0 such that

(i) \\P(u, grad>|| < M\\A^u\\ \\A*'2υ\\ ,

(ii) μ-1/4^, grad)ι>|| < MM1/4!!)! \\A"2υ\\ ,

for any u, veD(A1/2).

PROOF, (i) As is shown in the previous section, the following holds with
continuous injections.

(38) D(A) c D(B) c= (W 2'p(DJ)n

9
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According to a result of Seeley [15] we have

(39) D(B*) = [D(B), (LP(ΰ)γ^.» 0 < α

Thus,

(40)

with continuous injections. Here and hereafter we denote by [X, 7]β, 0<0<1,
the complex interpolation space (Calderόn [2]) of Banach spaces X and Y.
Furthermore, by the Sobolev imbedding theorem,

(41) W * *(D) c

Now, let \l/ be in Xp>. Then, by (40), (41) and Holder's inequality, we obtain

(42) \(P(u, gradX ψ)\ = |((κ, grad)ι;, ιA)l

< CsuPz5 |u(x)| ̂  |Γι<y)| \ψ(y)\dy < Cl l i i l l^ l l i ll^ll^llo^

2!!!! - \\A^v\\ HiAl lo^ for 11, t e/)^1/2),

from which follows (i) since XJ=Xp, (Theorem 2.5).
(ii) We make use of the following facts :

(43) B-* = j^-y Γ t*~le-tBpdt for 0 < α < 1, 1 < p < oo,

(44) Γ t*-*\e-'*>(x9 y)\dt
Jo

for (x, y) e D x D, x ±? y, 1 < p < oo,

where e~tβp(x, y) denotes the kernel function of e~tBp. (43) is verified easily by
(36) and the well-known integral representation of e~tβp whereas (44) will be
proved in Appendix. Thus, for u9 υ e D(Aί/2) and ψ E Xp>,

(45) \(A-v*P(u9 gradX ψ)\ = |((ιι, grad)t;, ̂ /V)l = l((n, grad)ι;,

< C Γ Γ3/4|((w, grad)ί;, e-tB

Jo

Put w(x)= \ i _ [B-ι/2 dy. By the Sobolev inequality we have
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1-p-\ and ||w||0.€

with a constant C>0 independent of ψ. Therefore, by Holder's inequality,

(46) \(A-U*P(u, gradX ψ)\ < C\\ \u\ - \?υ\ ||o,,ΊM|0>,

< C\\ \u\ JΓϋ| ||o,,4<Ho.p' < Cjl i i l lo^l lϋl lLpll^l lo, ! , '

<C\\U\\0t2n\\A^V\\ U</Ίlθ,P ',

since q'~ 1 = 1 — q~ l = (2n)~ ί + p~~ 1 . This estimate implies that when p > 2n,

(47) \\A-u*P(u9 grad) v||

When n<p<2n, we proceed as follows:
As is noted above, we have

(48) D(B^2) c (^^(D))" c'(L»(D))w, for any s > 1.

So, by (39) and the reiteration property of interpolation spaces,

(49)

where r"1 =(2s)~i+(2p)~i. Now put s = pn/(p-n). Then r = 2n, so that by (49),

(50) M-1/4P(w, grad)t;|| < C||W||0,2nM
1/2ί;|| < C\\A"*u\\ \\A"*υ\\ .

This completes the proof of (ii).

We shall now give the existence result for the integral equation (II) by the
use of the following iteration scheme,

(51) ιι0(0 = «~Mα

(52) um+ M = tι0(0 + e-«- »FuJίs)ds9 m > 0.

LEMMA 4.3. Suppose that a e Xp9 P/e C((0, T] X

(53) \\A-v*Pf (f)\\ = o(Γ3/4) as ί - >0.

T/ien, eαc/i um(ί) in (52) is well-defined and belongs to C([0, T]; Xp) (1 C((0, T];
), 0<α<3/4. Furthermore, there exist constants KΛm such that

(54) \\A uJίί)\\ < XαmΓ«, 0 < α < 3 / 4 .

PROOF. In view of (53) and (37), we have
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\\A*u0(t)\\ ^ \\A*e-tAa\\ + Γ \\
Jo

<Z \\A*e~*Aa\\ + ('
Jo

where

(55) Kα0 = sup0<tsr t"\\A*e-'Aa\\ + C,NB(3/4 - α, 1/4) ,

(56) N

Here B( , ) denotes the beta function. Suppose that (54) is valid for u0)..., um.
Then, it follows from Lemma 4.2 that

(57) M um+1(f)|| ^ M'UoWII + μ«+ι/*e-<'- M|

^ xα0r
a + C.M Γ (ί-s)-

Jo

£ {Kα0 + CβMB(3/4 - α,

Thus we may put

(58) Kα,m+ i = K,0 + CaMB(3/4 - α,

This completes the proof.

Let us now put fem=max(X1/4jm, K1/2>m) From (58) we obtain

(59) km+1 £k0 + C.Mβkl

where C1=max(C1/4) C1/2) and )8=max {5(1/4, 1/4), 5(1/2, 1/4)}. By an ele-
mentary calculation it is readily verified that if

(60) fe0 <

then, for each m>0,

ί km Z K = {l-(l-4C1

(61)
OII ^ ̂ rv, r = 1/2, 1/4,

so that, by (58),
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(62) K^ £ K, = Ka0 + CβMB(3/4 - α, 1/4)K2,

and

(63) \\A'um(f)\\ <, KβΓ , for any m Ξ> 0, 0 £ α < 3/4.

Let us put

(64) wm+ ΛO = um+ t(ί) - um(<)

Because of the inequality (easily derived from Lemma 4.2)

(65) \\A-U*(Fu-Fv)\\

<. M{\\AV*u\\ \\Al'\u - v)\\ + \\Al'z(u - υ)\\

one can see that, for 0<α<3/4,

(66)

\\A*wm+1(t)\\

From this we obtain, by induction on m,

(67) IM*H>m(OII £ (2ClMKβΓKΓ^ 7 = 1/2,1/4,

so that

(68) MαwM+1(OII < 2CΛMK2(2CίMKβ)mB(3l4 - α, l/4)r*, 0 < α < 3/4.

Since 2CίMKβ<ί by (61), we see from (68) that ΣmMαwM(OH converges uniform-
ly on compact subsets of (0, Γ] and so does Σjnllwm(OII uniformly on [0, T].
Thus, there exist u in C([0, T]; Xp) and υΛ in C((0, T]; Xp) such that

(69) um(t) — >u(i) in Xp uniformly on [0, T] »

and

(70) A*um(t) — > υΛ(i) in Xp uniformly on compact subsets of (0, Γ], 0<α< 3/4.

Since A* is a closed operator we see that vΛ(t)=A*u(t)9 and hence A*u e C((0, T];
Xp), 0<α<3/4. Moreover, by (63) and (61), we have
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(71) MMOII < Kt-y, γ = 1/4, 1/2, M"n(f)ll < K**~*> 0 < α < 3/4.

Combining (63) and (71) with the inequality (easily derived from Lemma 4.2),

(72) ||Fιι. - FΌ\\ < M(\\A^2u\\ + M1/2^!) M1'2^ - ι;)|| ,

and taking Lemma 4.2 into account, one obtains

( Fum(ί)-^Fu(t) on (0, T],
(73)

[ \\A-v4Fum(t)\\ < CΓ3/4 with C > 0 independent of m.

Applying the dominated convergence theorem to the scheme (52) one concludes
that

(74) ιι(0 = e~'Aa + Γ έΓ<'-β^{Fι/(s) + P/(s)}ds on [0, T] .
Jo

Thus we have constructed a solution of (II) under the assumption (60). In view
of (53), (55), (56) and the fact that

(75) t" \\AΛe~tAa \\ - > 0, as ί - > 0, for each a e Xp,

we have only to choose Γ>0 sufficiently small in order for (60) to be valid. Thus
we have proved the following

THEOREM 4.4. For any aeXp and any P/eC((0, oo); Xp) satisfying (53),
there exist a T>0 and a solution u(t) of (II) belonging to C([0, T];XP)(]
C((0, T] D(A*)) for any α, 0 < α < 3/4.

The solution u(i) constructed above satisfies

(76) M1/2ι*(OII = 0(r1/2), M^/MOII = Kr1/4), t — * 0,

as will be seen from the fact that we can make fc0 in (60), and hence K in (61),
arbitrarily small by choosing T>0 small. This observation leads us to the fol-
lowing definition of the function space 5[0, T], in which the uniqueness result is
to be shown.

DEFINITION 4.5. Let u(f) be continuous on [0, Γ] with values in Xp. We
say that u(f) is in S[0, T] if and only if A^2u(t) is continuous on (0, T] and
satisfies \\Al'2u(t)\\=o(ΓV2)9 ί-»0.

Note that M1/4w(OII ̂ (r1/4) holds for any u(f) in S[0, T] by the well-
known moment inequality (see [16]),

(77)

THEOREM 4.6. The solution of (II) is unique within the class 5[0, T] .
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PROOF. Let u, υ e S[0, T] be two solutions of (II) corresponding to the
same data. Then, since

(78) w(ί) ΞΞ u(f) - v(f) = Γ e-«-»A{Fu(s) - Fv(s)}ds,
Jo

we have, by (65),

(79) MMOII < CiMKo (' (f-s)-?-1/4^-1/4!!^1/2*^)!! + s-^2\\Al^(s)\\)ds
Jo

for y = l/2, 1/4. Here we have chosen X0

 so tnat Myu(f)ll<^o ry» \\AΎv(t)\\<
K0t~

y for y=l/2, 1/4. Since both u and t; are in S[0, T], we can choose Γ0>0
so that (79) holds on (0, T0] with K0 sufficiently small. By induction on m it is
easily shown from (79) that

(80) \\Ayw(t)\\<(2CiMβKor2KQt-y on (0, T0].

Since we may assume 2CίMβK0<!9 it follows from (80) that w(ί)=0 on [0, Γ0].
Repeating the above argument for f>T0, we can choose 7}, j>l, such that
w(ί) = 0 on [Σ)(=o Tk, Σfcίo Til* 7^:0. Since Aί/2u(i) and Al^2v(t) are continuous
on (0, T], we see easily that {7}} is bounded away from 0. Thus we may con-
clude that w(0 = 0 on [0, T].

Finally we shall prove the following theorem concerning the equation (I).

THEOREM 4.7. I/, in addition to the assumptions of Theorem 4.4, Pf is
Holder continuous on [ε, T] for any ε>0, then the solution u(t) of (II) is the
solution of (I) in the sense of Definition 4.1.

PROOF. As is easily verified u(t) satisfies for each ε>0,

(81) u(i) = ίΓ«-ε>Mε) + (* e-^-s^A{Fu(s) + Pf(s)}ds on [ε, T] .
Jε

So, our assertion is true if we show the Holder continuity of Fu(t) on [ε, T],
which, in view of (72), follows if Aί/2u(t) is Holder continuous. Therefore, in
the following, we prove the Holder continuity of A1/2u(f) on [ε, T].

Put u(t) = M0(ί) + vv(0, where

(82) ιι0(0 =

(83)
o

The first term on the right hand side of (82) is estimated as follows.
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(84)

- e~tA)a\\ = \\(e~"A - I)All2e-'Aa\\

«β-<1-1/2 for

Note that here (and hereafter) we use ||(e~M-.Γ).4~ίί||̂ Cyt'x, which is easily

checked by an elementary calculation.

For the second term of (82) we have

(85) A1'2 (t+k £-<'+ »-»xP/(s)ίfc - A1'2 (' e-«-»APf(s)ds
Jo Jo

so that

(86) II
JO

\\(e-"A - Γ)A-*\\

C,h'N (' (t-sr*-3

JO

-oc9 1/4)

-a, 1/4) for ε£t£t+h, 0 < α < 1/4,

and

t+h$ t

Γt
<. \

t+h

for ε< t< t+h.

Combining (86) and (87) with (84) we see that Aί/2uQ(t) is Holder continuous on

[β, T] with exponent α, 0<α<l/4.

The estimation of (83) is carried out as follows. Put
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(88) Al'2w(t+K) - y^'MO = Γ
Jo

Ct+
+ \

sI3 + I4.

Then, by virtue of (76), we have, with some K>0,

Ct+h

(89) ||J3|| < \\(e-hA-I)A-*\\ \\A^3'4e"^-^A\\ \\A~V4Fu(s)\\ds
Jo

CΛh* (f-s)-α-
Jo

< CΛMK2ε-*-V2B(l/4-a, l/4)ftα, for ε < ί < ί + A, 0 < α < 1/4,

and

(90)

fί+Λ

^ C \ (ί + Λ -

ίor ε<t

Thus ^41/2w(ί) is also Holder continuous on [ε, T] with exponent α, 0<α<l/4.
This completes the proof.

REMARK 4.8. Kato and Fujita [8] treated problem (1) and (2) in the form
of the equation (I) in X2, n = 3, with A denoting the Stokes operator. They
proved the local existence and uniqueness under the assumption aeD(Aί/4).
This assumption is needed because, in their case, one must require ueD(A3/4)
in order to obtain a good estimate for the nonlinear term Fu whereas we have
only to require u eD(Al/2) in our case (see Lemma 4.2 in this note).

Appendix

Here we prove the inequality (44),J.e.,

(44) t*-l\U(t,x,y)\dt<.CΛl\x-y\n-2*, (x,y)eDxD, x Φ y, 0 < α < 1,
Jo

where U(t, x, y) denotes the kernel function of e~tB*, 1 <p< oo.
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For 0<ί<l, the following estimate is known (see [14]).

(91) \U(t, x, y)\ < Ct-"'2exp{-\x-y\2/ct}.

Therefore, denoting r = \x-y\^Q,vfe obtain

(92) Γ t*-ι\U(t, x, y)\dt < C Γ ^"^"
Jo Jo

For ί>l, we proceed as follows. Let 0<λi<λ2< - be the eigenvalues of B2

and {φm} be the corresponding orthonormal system of eigenforms. (Note that
Bp is assumed to be invertible by adding a positive constant to the Laplacian.)
As is well known U(t, x, y) admits the following expansion,

(93) U(t, x, y) = Σ£= i exp ( - λmt)φm(x) ® φm(y) ,

so that we obtain for t> 1,

(94)

\V(t, x, y)\

^ ΣS-i exp (-A.01^*)!- 1*̂ )1

[7(1, x, *)}'/2{Tr t/(l, y, y)}1'2

since D is bounded and C/(ί, x, y) is smooth on (0, <x>)xDxD. Here Tr S
denotes the trace of a matrix S. Thus,

(95) (" l -TO, x, y)\dt <cΓ t'-1 exp(-A,ί)Λ = CJ-(o).
Ji Jo

Combining (92) with (95) we therefore obtain

(96) Γ r-*\U(t, x, y)\dt < C^x-yΓ2* + C2Jo

<; c3/|χ-jΊ»-2«,

since D is bounded. This completes the proof of (44).
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