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Introduction

In this paper we investigate Lie algebras which have an ascending series whose
factors are simple. Here simple Lie algebras are non-abelian simple. In [3]
Levich has shown that if H is an ascendant subalgebra of a simple Lie algebra L,
then H = 0 or H = L. In particular H is a perfect characteristic ideal of L. In
§ 1 we shall show that, in a Lie algebra which has an ascending series whose
factors are simple, every ascendant subalgebra is a perfect characteristic ideal.
In §2 we consider a special case and its application. In [6] it has been shown
that, in the Lie algebra L of all endomorphisms of an infinite-dimensional vector
space, every subideal is an ideal of L. We shall show in § 2 that every ascendant

subalgebra of L is an ideal. In §3 we shall show that έ(<])g<L5. Using the
results of §§1 and 3, we shall show in §4 that in a Lie algebra which has an as-
cending series whose factors are finite-dimensional simple, every serial subalgebra
is a perfect characteristic ideal. In § 5 we apply our results to prove that, in a
semi-simple neoclassical algebra, serial subalgebras and local subideals are perfect
characteristic ideals. In [7] it has been shown that every soluble Lie algebra, in
which every ascendant subalgebra is an ideal, is either abelian or the split exten-

sion of an abelian Lie algebra by the 1-dimensional algebra of scalar multipli-
cations and conversely. We shall finally show in § 6 that in the split extension
of an abelian Lie algebra by the 1-dimensional algebra of scalar multiplications
every serial subalgebra is an ideal.

Let H be a subalgebra of a Lie algebra L and let Σ be a totally ordered set.
A series from H to L of type Σ is a family {/iσ, Vσ: σ e Σ} of subalgebras of L
such that

(1) For all σ, H < Aσ and H < Vσ,

(2) L\H = \JσmΣ(Λσ\Vσ),
(3) Λt < Vσ if τ < σ,

(4) Vσ^Aσ.
The quotient algebras Λσ/Vσ are the factors of the series. If Σ is well-ordered

(resp. reversely well-ordered, finite), then the series is called an ascending series
(resp. a descending series, a subideal) and we write H serL (resp. H descL,
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H si L) (cf. [1, p. 27]). We denote by 21 (resp. ε2l, $) the class of abelian (resp.
soluble, finite-dimensional) Lie algebras. For a class £ of Lie algebras, L£ is
the class of Lie algebras in which every finite subset is contained in an £-subalgebra.
έ(<ι) •£ is the class of Lie algebras which have an ascending series of ideals whose
factors belong to X. Any notation not explained here may be found in [1],

1.

We define a class Xί of Lie algebras as follows: Le£l if and only if either
L = 0 or L has an ascending series whose factors are simple. To investigate this
class we need

LEMMA 1.1 ([3]). Let L be a simple Lie algebra. If H is an ascendant
subalgebra of L, then H = 0 or L.

We first state some simple properties of 3 .̂

LEMMA 1.2. (1) If L belongs to Xί and H is an ascendant subalgebra of
L, then He£1.

(2) 3̂  is Q-closed.

(3) 31 n *!=((>).

PROOF. (1) Assume that Le^ and f/ascL. If L = 0, then H = 0e^1.
Let σ be an ordinal and let (Lα)α σ̂ be an ascending series of L such that Lα+1/Lα

is simple for any α<σ. For α<σ we put HΛ = H n Lα. Let α<σ. We have

Since H Π Lα+1 asc Lα+1, we see that ((H n Lα+1) + Lα)/Lα asc Lα+1/Lα. Since
Lα + 1/Lαis simple, it follows from Lemma 1.1 that HΛ+1=HΛ or that HΛ+ί/Ha is
simple. It is immediate that H e 3 .̂

(2) Assume that LeX1 and 7<ι L. If L = 0, then L/I = 0 6 3̂  . Let (Lα)α^σ

be an ascending series of L such that Lα+1/Lα is simple for any α<σ. For α<σ
we put Lα = (Lα + /)//. Let α<σ. Then we have

(Lα+1-f/)/(Lα + /) is a homomorphic image of the simple Lie algebra Lα+1/Lα.
Hence Lα + 1=Lα or Lα+1/Lα is simple, and therefore we have L / J e X j .

(3) Assume that Le 21 n 3E le If L^O, then L has a simple ascendant sub-
algebra and hence L έξ 21. Therefore L = 0.

LEMMA 1.3 ([1, Proposition 1.3.5]). Lei L be a Lie algebra. If H is a
perfect ascendant subalgebra of L, then H is an ideal
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LEMMA 1.4. Let LeXi. If H is an ascendant subalgebra of L, then H is
a perfect ideal of L.

PROOF. By Lemma 1.2 (1) we have He^il. Hence by Lemma 1.2 (2)

)$l = £ι n?ί. By Lemma 1.2 (3) H = H2. The statement now
follows from Lemma 1.3.

Now we show the following

THEOREM 1.5. Let Le^. // H is an ascendant or a descendant sub-
algebra of L, then H is a perfect characteristic ideal of L.

PROOF. (1) Assume that //ascL. By Lemma 1.4 H is a perfect ideal of
L. Let δ be a derivation of L and form the split extension X = L-f-<<5>. Then
H is a perfect subideal of K. By Lemma 1.3 H^K. Hence Hδ^H.

(2) Let (Hα)α<-σ be a descending series from H to L. We shall show by
transfinite induction on α that #αoL. If α = 0, then the result is trivial. Let
α>0 and assume that Hβ^L for all β<oc. If α is a limit ordinal, then HΛ =
Γ\β<ΛHβ<3L. If α is not a limit ordinal, then Ha-<ιHΛ^l^L. By Lemma 1.4
we have //αoL. Now the statement follows from (1).

COROLLARY 1.6. Let L be a Lie algebra and let (La)a<^ be an ascending
series of L such that La+1/La is simple for any a<σ. Then for any a<σ, La is a
perfect characteristic ideal of L.

The next result is well known. For the proof see [1, Lemma 13.4.1].

LEMMA 1.7. The sum of the minimal ideals of a Lie algebra is a direct
sum of a subset of them.

We shall give a characterization of £t by the following

PROPOSITION 1.8. Let L be a Lie algebra. Suppose that L has an ascend-

ing series whose factors are generated by simple ascendant subalgebras. Then
L belongs to 3ίl.

PROOF. It follows easily from Lemma 1.3 that every simple ascendant sub-
algebra is a minimal ideal. By Lemma 1.7 each factor is a direct sum of simple
ideals. Refining them, we have L e jE t.

2.

In this section we consider special cases and applications of the results of
§ 1. First we need the next result. The proof can be found in [1, Lemma 13.4.3].
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LEMMA 2.1. Suppose that L=φA e y lLΛ, where each Lλ is a simple ideal of

L. Let I be an ideal of L. Then I=®μeM^μfor some subset M of A.

We can generalize this lemma as follows:

PROPOSITION 2.2. Let L be generated by a family (Lλ)λeΛ of simple ascend-
ant subalgebras of L. If H is an ascendant or a descendant subalgebra of L,
then H is a characteristic ideal of L and H=@μeMLμfor some subset M of Λ.

PROOF. As irr the proof of Proposition 1.8 we see that each Lλ is a simple
ideal of L and L=@veNLv for some subset N of A. By Proposition 1.8 and
Theorem 1.5 H is a characteristic ideal of L. Now Lemma 2.1 completes the

proof.

PROPOSITION 2.3. Let L be a Lie algebra and let (L^Λ^σ be an ascending
series of L with simple factors. Then the following are equivalent:

(1) CL/Lo(Lα+1/Lα) = 0 / o r α / / α < σ .
(2) The only ascendant subalgebras of L are the Lα.
(3) The only descendant subalgebras of L are the Lα.
(4) The only subideals of L are the Lα.
(5) The only ideals of L are the Lα.
(6) The only characteristic ideals of L are the Lα.

PROOF. By Corollary 1.6 each Lα is a characteristic ideal of L. Hence the
statements (1), (3) and (6) make sense. Evidently we have the following impli-
cations :

(2)=»(4), (3)^(4)^(5)^(6).

By Theorem 1.5 we see that (6)=>(2) and (6)^(3).
Now we show that (1)<=>(5). Let H^L and let α be the minimal ordinal

with respect to LΆ^H. Evidently α is neither 0 nor a limit ordinal. Hence

Lα_! < H. Since H/LΛ_ t n LJLa- ί is an ideal of the simple Lie algebra Lα/Lα_ j ,
we see that H/Ltx-ί nL α /L α _ 1 =0 or LJL^^HJL^^. Since LΛ^H9 we have

H/Lβ-1nLβ/Lβ.1=0. Hence

[///Lα_1? L./L..J £ tf/L..! Π LJLa_, = 0.

Since CL/Lα.1(Lα/Lα_1) = 0, we have H = LΛ.ί.
Next we show that (5)ι=ί>(l). Suppose that CL/Lα(Lα+1/Lα)^0 for some

ordinal α<σ. Since Lα+1/Lα<ιL/Lα, we have CL/Lα(Lα+1/Lα)<]L/Lα. Hence we
can find an ideal H of L such that LΛ<H and H/LΛ = CL/Lχ(Lx+ 1/L(X). By (5) and
LΛ<H there exists an ordinal β such that β>α+Γ and H — Lp. Therefore we

have
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[Lα+1, Lα+1] c [L,, Lα+1] = [#, Lβ+1] £ Lα.

Hence Lα + 1/Lα is abelian. This is a contradiction.

This proposition is a generalization of [6, Lemma 7]. The following is
there used: Let L be a Lie algebra having two subideals H, K such that K is simple.
I f K ί } H = Q, then [K, #]=0 (cf. [5, Lemma 4.6]).

We generalize this in the following

PROPOSITION 2.4. Let L be a Lie algebra with a subalgebra H and let K

be a simple ascendant subalgebra of L such that K n # = 0.
(1) IfH is ascendant in L, then [K, H] = 0.
(2) IfH is descendant in L, then [X, /f] = 0.

PROOF. By Lemma 1.3 we have K<πL. If K = 0, then there is nothing to
prove. We assume that K^O.

(1) Let (Hα)α̂ σ be an ascending series from H to L and let α be the minimal
ordinal with respect to K n /fα=^0. Evidently α is neither 0 nor a limit ordinal.
Hence K n Hα_ i =0. Since K n ΛΓα is a non-zero ascendant subalgebra of K, we
have K<HΛ by Lemma 1.1. Since HΛ-l*3HΛ9 we have

[X, H] c [K, //..J £ X.n ff.-i = 0.

(2) Let (HΛ)Λ^σ be a descending series from H to L and let α be the minimal
ordinal with respect to K^HΛ. Clearly α is neigher 0 nor a limit ordinal. Hence
K<HΛ-I. If K n Hα^0, then K n Hα is a non-zero descendant subalgebra of K.
By Theorem 1.5 we have K<HX. Thus we have K n Hα = 0 and therefore

[K, H] c [X, tf J c= K n #. = 0.

As an application of Propositions 2.3 and 2.4 we shall show that the Lie
algebra of all endomorphisms of an infinite-dimensional vector space lies in the
class 501' of Lie algebras in which every ascendant subalgebra is an ideal (cf. [7]).

Let c be an infinite cardinal with successor c+. Let K be a vector space of
dimension c. For any infinite cardinal d<c+, L(c, d) is the Lie algebra of all
linear transformations α: V-+ Ksuch that the image of α has dimension <d. Let
F = L(c9 NO), T be the set of endomorphisms of trace zero (in the sense of [5,
p. 306]), and S be the set of scalar multiplications. In [6] it has been shown that
the ideals of L = L(c, c+) are precisely the following:

a) L(c, d) for N0<d<c+,
b) L(c, d) + S for N0<d<c,
c) Any subspace X of L such that T < X < F + S,

d) S,
e) {0}.
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Further, every subideal of L is an ideal.
Now we shall show the following

THEOREM 2.5. Let L = L(c, c+). Then every ascendant subalgebra of L is
an ideal.

PROOF. Let //ascL. If //nT=0, then by Proposition 2.4 [//, T]=0.
(In [5] it has been shown that T is simple.) As in [6, p. 85] we have H<S.
Hence 7/<aL. If H n T^O, then by Lemma 1.1 T<H. By Proposition 2.3 and
the argument of [6, p. 82] we see that every ascendant subalgebra of L which
contains F + S is of the form L(c, d) + S with K0<d<c+. Hence H + F + S =
L(c, d) + S for some d with N0<d<c+. If d=K0, tnen T<H<F + S, which is
the case c) of Theorem (A) in [6]. Let d> X0 Since dim (H + F + S)/(H+T+S)
<ά\mF/T=\ and # + Γ+Sasc/ί + F-f S, we have /f+T+SoH + F + S. Hence

(H + Γ+ S)/(Γ+ S)-α (L(c, d) + S)/(T+ S).

By the argument of Lemma 1 2 in [6] L(c, d) has no proper ideals of finite codi-
mension. Hence H + TM- S = L(c, d) + S. Since T<H, we have H + S = L(c, d)
+ S. Since

L(c, d)/// Π L(c, d) s (L(c, d)

we have dim L(c, d)/// n L(c, d) < 1 . Hence H Γ\ L(c, d) is an ascendant sub-

algebra of L(c, d) of codimension < 1 and so it is an ideal of L(c, d) of codimen-
sion < 1 . Since L(c, d) has no proper ideals of finite codimension, we have
H n L(c, d) = L(c, d). Hence L(c, d)<H< L(c, d) + 5. Since dim S = 1 , we have
H = L(c, d) or L(c, d) + 5. Thus

REMARK. It is easy to see that in a Lie algebra in which every subideal is
an ideal, every descendant subalgebra is an ideal.

3.

In this section we shall give a sufficient condition for a Lie algebra to be

locally finite.
Let L be a finitely generated Lie algebra. Let {aί9..., an} be a set of genera-

tors for L and let F be a free Lie algebra generated by {xί9...,xn}. Then there
exists a homomorphism Θ from F to L such that θ(Xj) = αt (1 < i < n). L is said to
be finitely presented if there exist finitely many elements jlv.., ym of F such that

Ker Θ = Σ7J= i J>> (See [4, p. 31] for the well-definedness of the definition.) We
denote by gp the class of finitely presented Lie algebras.

We shall show some properties of gp.
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LEMMA 3.1. (1) 5 < gp.
(2) Let L be a finitely generated Lie algebra. If I is an ideal of L such

that LI I is finitely presented, then I is finitely generated as an ideal.

PROOF. (1) Let L e g and let {β l9..., en} be a basis for L. Then \_ei9 e^] =

Σ?=ι <*iβeι f°r some α^ / e ϊ (1 </, 7, /<n), where f is a base field. Let F be a free
Lie algebra generated by {x l9..., xj and let 0 be a homomorphism from F to L

such that 0(xt ) = ef (1 < ί < n). We put y^ — [xf, xy] — Σ ?= i αu*x/ (^ — *> ./ — π) ant*
I=Σijyϊj9 where y?j is the ideal of F generated by y^ . Clearly /<Ker0.
Hence we have a homomorphism

φ : F / I - > F/Ker θ.

Obviously we have an isomorphism 0:F/Kerθ-»L. Let φ — θ°ψ: F/I-^>L.

Then φ(xi) = ei(\.<i<n)9 where x^X -f/eF//. Since [xί? x,-] = Σ "= i ^tji^i m

F/I, F/I is spanned by {xl5..., xn}. Since {^(xί)} = {ej is a basis for L, {3cl5..., x;ί}
is a basis for F/I. Hence φ is injective. Therefore ψ is injective. Thus we have

(2) Let L = <α lv.., απ> and let .F be a free Lie algebra generated by {x 19...9

xn}. We have a homomorphism θ: F-+L such that θ(x^=ai (l<i<n). Let

R = Θ~1(I). We have a homomorphism θ: F-+L/I such that 0(xi) = α ί eL//
(i</<n). Since L// is finitely presented, there exist finitely many elements

j !,..., ym of F such that Ker9 = Σ7=ι y*. Clearly Ker0 = Λ. Thus we have

REMARK. Lemma 3.1 (2) is the Lie analogue of [4, Lemma 1.43 (i)]. The
Lie analogue of [4, Lemma 1.43 (ii)] is also valid, i.e., gp is E-closed.

Now we have the following

THEOREM 3.2. Let £ be any {s, E}-closed subclass of gp. Then έ(<α)3£

PROOF. Let L e έ(<α )̂  and let (Lα)α<^ be an ascending series of ideals of L

such that Lα + 1/Lαe£ for all α«7. Let H be a finitely generated subalgebra of
L. Since H/H Π Lσ = 0, there exists an ordinal α minimal with respect to H/H Π Lα

e£. Now suppose that α is a limit ordinal. Since H is finitely generated and
H/H n Lαe£<gp, we can apply Lemma 3.1 (2) to see that there exist finitely

many elements x t,..., xn of H n Lα such that H n Lα= Σ?=ι x? Since α is a limit
ordinal, there exists an ordinal β such that β<a and xteLβ (l<z<n). Since

H n L^H, we have H n Lα = Σ?=ι xf <^ Π L^<ίί n Lα. Hence H n Lα = /ί n L^.
Therefore H/H n L^ = H/H n Lαe£. This contradicts the minimality of α.
Thus α is not a limit ordinal.
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Next suppose that α is non-zero. We have

H n LJH n LΛ_, s ((H n Lα) + L^^-I < LJL^EΪ.

Hence // n Lα/# n L α _ j es£ = £. Therefore #/// n L α _ j eE£ = 3e, which con-
tradicts the minimality of α. Thus α must be zero and hence H e X.

COROLLARY 3.3. Let X be any {s, Enclosed subclass of g. Tϊjen έ(<ι)£
/n particular έ(

PROOF. By Lemma 3.1 (1) 3r<gp. Hence the statement follows from
Theorem 3.2.

4.

In this section we shall find some classes of Lie algebras in which every
serial subalgebra is a characteristic ideal. We begin by showing some elementary
properties of serial subalgebras.

LEMMA 4.1. Let L be a Lie algebra and let H be a serial subalgebra of L.

(1) IfK<L,thenH(]KseτK.
(2) If Left, then H si L.

PROOF. (1) Let {Λσ, Vσ: σeΣ} be a series from H to L. Then clearly

{Λσ n X, Vσ n K: σ E Σ} is a series from H Π K to K.
(2) Since L e 5? there exists a series from H to L of finite type.

For a locally finite Lie algebra we have some more properties.

LEMMA 4.2. Let LeLg and let H be a subalgebra of L. Then
(1) H ser L if and only if H Π F si F for every finite-dimensional subalgebra

FofL.
(2) // H ser L 0nd 0 is a homomorphism of L, then Θ(H) ser 0(L).

PROOF. See the proof of [2, Lemma 2 and the conclusion of the proof of
Theorem A].

REMARK. Since the join of two subideals of a finite-dimensional Lie algebra
need not be a subideal, the second statement of [1, Proposition 13.2.4] is false.

LEMMA 4.3. Let LeLg. If H is a finite-dimensional serial subalgebra of
L, thenHω = r\^ίH

n^L.

PROOF. Let x e L. Since L E Lg and //eg, there exists a finite-dimensional
subalgebra F of L such that <x, J/><F. By Lemma 4.2 we see that H =
HnFsiF. By [1, Lemma 1.3.2] Hω<α F. Hence [x, #ω] £ #ω. Thus Hωo L.
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Now we define a class £2 °f Lie algebras as follows : L e 3E2 if and only if
either L = 0 or L has an ascending series whose factors are finite-dimensional and
simple. By Corollaries 1.6 and 3.3 we see that £2<έ(<ι)5<Lt$r Hence we can
use Lemmas 4.2 and 4.3 for 3£2-algebras. Now we have the following

THEOREM 4.4. Let Le£2. If H *s a serial subalgebra of L, then H is a
perfect characteristic ideal of L.

PROOF. If L — 0, then there is nothing to prove. Let (Lα)α^σ be an ascending
series of L such that LΛ+ί/LΛ is finite-dimensional simple for any α<σ. We shall
show the following by transfinite induction on α :

(*) If#serLα, then#<ιL.

If α = 0, then the result is trivial. Let α>0 and assume that (*) holds for any
β<α. Let //ser Lα. By Lemma 4.1 (1) we have H n L^serL^ for all β«x. It
follows that H n L^oL for all β<%. If α is a limit ordinal, then we have

H = H Π L α = \Jβ<Λ(H Π L,)<αL.

If α is not a limit ordinal, then we have (// -f Lα_ j)/Lα_ t ser Lα/Lα_ ί by Lemma4.2

(2). Since Lβ/Lβ.163r,(H + Lβ_1)/Lβ.1 si L./L,-! by Lemma 4.1 (2). Since
LJLa-i is simple, we see that H<LΛ_ι or that LΛ = H + La-l. In the former
case H — H n LΛ.^L. So we consider the latter case. Since H n Lα_ ̂ L and

LΛ = H + LΛ-l9 we have

LJH n Lα_! = H/H n L a_! 4- LΛ.,IH n LΛ., .
Hence H/H n LΛ,1^LJLΛ_1. Therefore H/H^^,^ is finite-dimensional and
simple. By Lemma 4.2 (2) we have H/H n Lα_ t ser L/H n Lα_ 1. By Lemma 4.3

///// 01..!= (////ί n L.-!)"^ L/tf n Lα_! .

Thus we have H^iL. This completes the proof of (*). Now the statement
follows from Theorem 1.5.

COROLLARY 4.5. Let L be a Lie algebra over a field of characteristic zero.
If L has an ascending series whose factors are finite-dimensional and semi-
simple, then every serial subalgebra of L is a perfect characteristic ideal of L.

PROOF. Since a finite-dimensional semi-simple Lie algebra over a field of
characteristic zero is a direct sum of simple ideals, we have L e 3£2. Now Theorem
4.4 completes the proof.

5.

We consider a special case of £2

 nl this section.
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PROPOSITION 5.1. (1) Let L be generated by a family (LA)λe/1 of finite-
dimensional simple ascendant subalgebras. Then if H is a serial subalgebra
of L, H is a perfect characteristic ideal of L and H — @μeMLμfor some subset
MofΛ.

(2) Let L be a locally finite Lie algebra and let (Lλ)λeΛ be a family of
finite-dimensional simple serial subalgebras of L such that L = (Lλ:λeAy.
If H is a serial subalgebra of L, then H is a perfect characteristic ideal of L and
H=@μeMLμfor some subset M of A.

PROOF. (1) As in the proof of Proposition 1.8 we see that LΛoL for all
λεΛ and L = @veNLv for some N^A. Hence LE,£2. By Theorem 4.4 we see
that H is a perfect characteristic ideal of L. It follows from Lemma 2.1 that

H= θμeM^μ f°r some subset M of Λ.
(2) By Lemma 4.3 we have LA = Lij><a L for all λ e A. Argue as in (1).

Now we recall the definition of a semi-simple neoclassical algebra (cf. [1,
Chap. 13]). Let LeLg. The sum σ(L) of all locally soluble ideals of L is the
largest locally soluble ideal of L. L is called semi-simple if σ(L) = 0. Let L be a
Lie algebra and let H be a subalgebra of L. H is said to be a local subideal of
L, denoted by H Isi L, if H si </f , Xy for any finite subset X of L. Over a field of
characteristic zero L is said to be a neoclassical algebra if L is generated by finite-
dimensional local subideals of L. The class of neoclassical algebras is denoted
by §. Generally we have §<

LEMMA 5.2. Let L be a locally finite Lie algebra. If H is a local subideal
of L, then H is a serial subalgebra of L.

PROOF. Let jp be a finite-dimensional subalgebra of L. Since H Isi L, we
have H si <H, F>. Hence H Γ) F si F. By Lemma 4.2 (1) we have H ser L.

We shall prove that in a semi-simple neoclassical algebra every serial sub-
algebra is a perfect characteristic ideal.

THEOREM 5.3. Let L be a semi-simple neoclassical algebra over a field of
characteristic zero. If H is a serial subalgebra or a local subideal of L, then H
is a perfect characteristic ideal of L and is a direct sum of some finite-dimen-

sional simple ideals of L.

PROOF. By [1, Theorem 13.4.2] L is a direct sum of finite-dimensional simple
ideals of L. The statement follows from Proposition 5.1 (1) and Lemma 5.2.

COROLLARY 5.4. Let L be a neoclassical algebra over afield of character-

istic zero. If H is a serial subalgebra of L, then // + σ(L)<α L. In particular
if H is a local subideal of L, then H 4- σ(L)o L.



Lie algebras which have an ascending series with simple factors 225

PROOF. By Lemma 4.2 (2) we have

(H + σ(L))/σ(L) ser L/σ(L) .

By [1, Theorem 13.3.9] L/σ(L) is a semi-simple §-algebra. By Theorem 5.3 we
have

(H + σ(L))/σ(L) <ι L/σ(L) .

Thus // + σ(L)<πL. If //IsiL, then by Lemma 5.2 we have HserL. Hence

Corresponding to Proposition 2.3 we have

PROPOSITION 5.5. Let L be a Lie algebra and let (Lα)α^σ be an ascending
series of L such that Lα+1/Lα is finite-dimensional and simple for any α<σ.
Then the following are equivalent:

(1) CL/Lα(Lα+1/Lα) = 0 for all α < σ.
(2) The only serial subalgebras of L are the Lα.
(3) The only local subideals of L are the Lα.
(4) The only ascendant subalgebras of L are the Lα.
(5) The only descendant subalgebras of L are the LΛ.
(6) The only subideals of L are the Lα.
(7) The only ideals of L are the LΛ.
(8) The only characteristic ideals of L are the Lα.

PROOF. By Proposition 2.3 we have the equivalence of (1), (4), (5), (6), (7)
and (8). By Lemma 5.2 we see that (2)^(3). Clearly (3)^(6). By Theorem 4.4
we see that (8)t=ί>(2).

6.

It is trivial that X2^%ι and ϊ2 Π S = ̂ ι Π 5 Since there exists an infinite-
dimensional simple Lie algebra ([1, Theorem 10.3.1] or [5, Lemma 4.1]), we
have 3^2$^!. We have a characterization of an Xl Π

PROPOSITION 6.1. Let L be a Lie algebra.

(1) L belongs to X1 ίl Jy if and only if L is finite-dimensional and every
2-step subideal of L is perfect.

(2) Over afield of characteristic zero L belongs to 3̂  n S if and only if L
is finite-dimensional semi-simple.

PROOF. (1) The necessity follows from Theorem 4.4. Let L be a finite-
dimensional Lie algebra in which every 2-step subideal is perfect. Let I be a
minimal ideal of L. If J<ι/, then J = J2. By Lemma 1.3 J<ιL. Hence J = 0
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or 7. Therefore / is simple. Induction on dim L completes the proof.
(2) First we shall show that if Le£ 1 ? then the only LE^l-ideal of L is the

zero ideal. Let / be an LE^l-ideal of L and let (Lα)α<σ be an ascending series of
L such that La+l/La is simple for any α<σ. We show by transfinite induction on
α that 7 Π Lα = 0. If α = 0, then there is nothing to prove. Let α>0 and assume

that 7 n L 0 = 0 for all β<a. If α is a limit ordinal, then 7 Π Lα = \Jβ<a(I Π Lβ)
= 0. Ifα is not a limit ordinal, then ((/ Π Lα) + Lα_ 1)/Lα_1 is an LE^l-ideal of
Lα/Lα_j. Since LJLΛ_ί is simple, we see that LJLΛ_1=((I n Lα) + Lα_1)/Lα_1

or 7nL α <L α _, . By [1, Lemma 8.5.4] LΛ\LΛ-± cannot be locally soluble.
Hence 7(ΊL α <L α _ 1 . Therefore / n LΛ = I n LΛ_1=0. Thus if Le ^nS, then
L is semi-simple. Since a finite-dimensional semi-simple Lie algebra over a
field of characteristic zero is a direct sum of simple ideals, we see that if L is
finite-dimensional semi-simple over a field of characteristic zero, then LeS^ n S

By the proof of Proposition 6.1 (2) we have the following

PROPOSITION 6.2. 3^ n LE$! = (0).

Now we define classes £3 and £4 of Lie algebras as follows : L e £3 if and
only if H ser L implies 77<] L. L e £4 if and only if // ser L implies 77 ch L. In
[7] the class W is investigated. Clearly £4<£3<90r. By [7, Theorem 5.2]

E$l n 9JΓ = E$l n X, where X is the class of Lie algebras in which every subideal is
an ideal. We shall show that E$I Π £3 =E$I n X.

LEMMA 6.3. Let L = A + (zy, where A is an abelίan ideal of L and adx z =
ΊάA. If H is a serial subalgebra of L, then 77 is an ideal.

PROOF. Let aί9...9aneA. We put jp = <α1> + -h<αrt> + <z>. Clearly
F<L. Hence L e L$. Now suppose that 77 is a serial subalgebra not contained
in A. Then there exists x = a + z in 77 with aeA. Put £ = <0> + <z>. Since
77 ser L and LGL^, 77 n £si E by Lemma 4.2(1). Since dim£<2, we have

HΓ\E«=3E. Hence α = [α + z, z] e77 n E. Therefore ze77. Let be A and put
G = <ί>> + <z>. We have 77nGoG and hence b = [b, z] e77 n G. Therefore
77 = L. Thus we see that if 77 ser L, then H<A or 77 = L. In each case we have

77<ιL.

THEOREM 6.4. E« n £3 = Es2ί n 5DΪ7 = E$l n I.

PROOF. Clearly 3E3 < aπr < 2. Let L e ε2ί n X. By [7, Theorem 5.2] L e 21
or L is as in Lemma 6.3. Thus we have L e £3.

As for 3£4 we have the following

THEOREM 6.5. L e E$Ϊ n S4 t/ and only IfLe^^orLe g2\^ί

PROOF. Clearly g^ESίnϊ^ Let Leg2\^- since £ is complete, we
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have Der (L) = Inn(L). Let HserL. Since dimL = 2, we have H<ιL. Hence
HDer(L)c//. Thus Le£4. Conversely let LeE2ίn£ 4. By [7, Theorem

5.2] Le2I or L = ̂  + <z>, where A is an 2l-ideal of L and adAz = iάA. Clearly
£4 n 21 < 5ι Let / be an endomorphism of A. Then / induces a derivation / of
L such that z/=0. Since Le£4, we have ^eg j . Thus we conclude that
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