Lie algebras which have an ascending series with simple factors

Yoshimi KASHIWAGI (Received September 18, 1980)

Introduction

In this paper we investigate Lie algebras which have an ascending series whose factors are simple. Here simple Lie algebras are non-abelian simple. In [3] Levich has shown that if H is an ascendant subalgebra of a simple Lie algebra L, then H=0 or H=L. In particular H is a perfect characteristic ideal of L. In § 1 we shall show that, in a Lie algebra which has an ascending series whose factors are simple, every ascendant subalgebra is a perfect characteristic ideal. In §2 we consider a special case and its application. In [6] it has been shown that, in the Lie algebra L of all endomorphisms of an infinite-dimensional vector space, every subideal is an ideal of L. We shall show in § 2 that every ascendant subalgebra of L is an ideal. In § 3 we shall show that $E(\neg) \Re \leq L \Re$. Using the results of §§ 1 and 3, we shall show in § 4 that in a Lie algebra which has an ascending series whose factors are finite-dimensional simple, every serial subalgebra is a perfect characteristic ideal. In § 5 we apply our results to prove that, in a semi-simple neoclassical algebra, serial subalgebras and local subideals are perfect characteristic ideals. In [7] it has been shown that every soluble Lie algebra, in which every ascendant subalgebra is an ideal, is either abelian or the split extension of an abelian Lie algebra by the 1-dimensional algebra of scalar multiplications and conversely. We shall finally show in §6 that in the split extension of an abelian Lie algebra by the 1-dimensional algebra of scalar multiplications every serial subalgebra is an ideal.

Let H be a subalgebra of a Lie algebra L and let Σ be a totally ordered set. A series from H to L of type Σ is a family $\{\Lambda_{\sigma}, V_{\sigma} \colon \sigma \in \Sigma\}$ of subalgebras of L such that

- (1) For all $\sigma, H \leq \Lambda_{\sigma}$ and $H \leq V_{\sigma}$,
- $(2) L \setminus H = \bigcup_{\sigma \in \Sigma} (\Lambda_{\sigma} \setminus V_{\sigma}),$
- (3) $\Lambda_{\tau} \leq V_{\sigma} \text{ if } \tau < \sigma$,
- $(4) \quad V_{\sigma} \lhd \Lambda_{\sigma}.$

The quotient algebras $\Lambda_{\sigma}/V_{\sigma}$ are the factors of the series. If Σ is well-ordered (resp. reversely well-ordered, finite), then the series is called an ascending series (resp. a descending series, a subideal) and we write $H \sec L$ (resp. $H \sec L$,

H si L) (cf. [1, p. 27]). We denote by $\mathfrak A$ (resp. $\mathfrak A \mathfrak A$) the class of abelian (resp. soluble, finite-dimensional) Lie algebras. For a class $\mathfrak X$ of Lie algebras, $\mathfrak L \mathfrak X$ is the class of Lie algebras in which every finite subset is contained in an $\mathfrak X$ -subalgebra. $\mathfrak E(\lhd)\mathfrak X$ is the class of Lie algebras which have an ascending series of ideals whose factors belong to $\mathfrak X$. Any notation not explained here may be found in [1].

1.

We define a class \mathfrak{X}_1 of Lie algebras as follows: $L \in \mathfrak{X}_1$ if and only if either L=0 or L has an ascending series whose factors are simple. To investigate this class we need

LEMMA 1.1 ([3]). Let L be a simple Lie algebra. If H is an ascendant subalgebra of L, then H=0 or L.

We first state some simple properties of \mathfrak{X}_1 .

LEMMA 1.2. (1) If L belongs to \mathfrak{X}_1 and H is an ascendant subalgebra of L, then $H \in \mathfrak{X}_1$.

- (2) \mathfrak{X}_1 is q-closed.
- $(3) \quad \mathfrak{A} \cap \mathfrak{X}_1 = (0).$

PROOF. (1) Assume that $L \in \mathfrak{X}_1$ and H asc L. If L=0, then $H=0 \in \mathfrak{X}_1$. Let σ be an ordinal and let $(L_{\alpha})_{\alpha \leq \sigma}$ be an ascending series of L such that $L_{\alpha+1}/L_{\alpha}$ is simple for any $\alpha < \sigma$. For $\alpha \leq \sigma$ we put $H_{\alpha} = H \cap L_{\alpha}$. Let $\alpha < \sigma$. We have

$$H_{\alpha+1}/H_{\alpha} \cong ((H \cap L_{\alpha+1}) + L_{\alpha})/L_{\alpha}.$$

Since $H \cap L_{\alpha+1}$ asc $L_{\alpha+1}$, we see that $((H \cap L_{\alpha+1}) + L_{\alpha})/L_{\alpha}$ asc $L_{\alpha+1}/L_{\alpha}$. Since $L_{\alpha+1}/L_{\alpha}$ is simple, it follows from Lemma 1.1 that $H_{\alpha+1} = H_{\alpha}$ or that $H_{\alpha+1}/H_{\alpha}$ is simple. It is immediate that $H \in \mathfrak{X}_1$.

(2) Assume that $L \in \mathfrak{X}_1$ and $I \lhd L$. If L = 0, then $L/I = 0 \in \mathfrak{X}_1$. Let $(L_{\alpha})_{\alpha \leq \sigma}$ be an ascending series of L such that $L_{\alpha+1}/L_{\alpha}$ is simple for any $\alpha < \sigma$. For $\alpha \leq \sigma$ we put $\overline{L}_{\alpha} = (L_{\alpha} + I)/I$. Let $\alpha < \sigma$. Then we have

$$\overline{L}_{\alpha+1}/\overline{L}_{\alpha} \cong (L_{\alpha+1} + I)/(L_{\alpha} + I)$$
.

 $(L_{\alpha+1}+I)/(L_{\alpha}+I)$ is a homomorphic image of the simple Lie algebra $L_{\alpha+1}/L_{\alpha}$. Hence $\overline{L}_{\alpha+1}=\overline{L}_{\alpha}$ or $\overline{L}_{\alpha+1}/\overline{L}_{\alpha}$ is simple, and therefore we have $L/I\in\mathfrak{X}_1$.

- (3) Assume that $L \in \mathfrak{A} \cap \mathfrak{X}_1$. If $L \neq 0$, then L has a simple ascendant subalgebra and hence $L \in \mathfrak{A}$. Therefore L = 0.
- LEMMA 1.3 ([1, Proposition 1.3.5]). Let L be a Lie algebra. If H is a perfect ascendant subalgebra of L, then H is an ideal.

LEMMA 1.4. Let $L \in \mathfrak{X}_1$. If H is an ascendant subalgebra of L, then H is a perfect ideal of L.

PROOF. By Lemma 1.2 (1) we have $H \in \mathfrak{X}_1$. Hence by Lemma 1.2 (2) $H/H^2 \in \mathfrak{QX}_1 \cap \mathfrak{A} = \mathfrak{X}_1 \cap \mathfrak{A}$. By Lemma 1.2 (3) $H = H^2$. The statement now follows from Lemma 1.3.

Now we show the following

THEOREM 1.5. Let $L \in \mathfrak{X}_1$. If H is an ascendant or a descendant subalgebra of L, then H is a perfect characteristic ideal of L.

- PROOF. (1) Assume that H asc L. By Lemma 1.4 H is a perfect ideal of L. Let δ be a derivation of L and form the split extension $K = L \dotplus \langle \delta \rangle$. Then H is a perfect subideal of K. By Lemma 1.3 $H \triangleleft K$. Hence $H\delta \subseteq H$.
- (2) Let $(H_{\alpha})_{\alpha \leq \sigma}$ be a descending series from H to L. We shall show by transfinite induction on α that $H_{\alpha} \triangleleft L$. If $\alpha = 0$, then the result is trivial. Let $\alpha > 0$ and assume that $H_{\beta} \triangleleft L$ for all $\beta < \alpha$. If α is a limit ordinal, then $H_{\alpha} = \bigcap_{\beta < \alpha} H_{\beta} \triangleleft L$. If α is not a limit ordinal, then $H_{\alpha} \triangleleft H_{\alpha-1} \triangleleft L$. By Lemma 1.4 we have $H_{\alpha} \triangleleft L$. Now the statement follows from (1).

COROLLARY 1.6. Let L be a Lie algebra and let $(L_{\alpha})_{\alpha \leq \sigma}$ be an ascending series of L such that $L_{\alpha+1}/L_{\alpha}$ is simple for any $\alpha < \sigma$. Then for any $\alpha \leq \sigma$, L_{α} is a perfect characteristic ideal of L.

The next result is well known. For the proof see [1, Lemma 13.4.1].

LEMMA 1.7. The sum of the minimal ideals of a Lie algebra is a direct sum of a subset of them.

We shall give a characterization of \mathfrak{X}_1 by the following

PROPOSITION 1.8. Let L be a Lie algebra. Suppose that L has an ascending series whose factors are generated by simple ascendant subalgebras. Then L belongs to \mathfrak{X}_1 .

PROOF. It follows easily from Lemma 1.3 that every simple ascendant subalgebra is a minimal ideal. By Lemma 1.7 each factor is a direct sum of simple ideals. Refining them, we have $L \in \mathfrak{X}_1$.

2.

In this section we consider special cases and applications of the results of §1. First we need the next result. The proof can be found in [1, Lemma 13.4.3].

LEMMA 2.1. Suppose that $L = \bigoplus_{\lambda \in \Lambda} L_{\lambda}$, where each L_{λ} is a simple ideal of L. Let I be an ideal of L. Then $I = \bigoplus_{u \in M} L_u$ for some subset M of Λ .

We can generalize this lemma as follows:

Proposition 2.2. Let L be generated by a family $(L_{\lambda})_{\lambda \in \Lambda}$ of simple ascendant subalgebras of L. If H is an ascendant or a descendant subalgebra of L, then H is a characteristic ideal of L and $H = \bigoplus_{u \in M} L_u$ for some subset M of Λ .

PROOF. As in the proof of Proposition 1.8 we see that each L_{λ} is a simple ideal of L and $L = \bigoplus_{v \in N} L_v$ for some subset N of Λ . By Proposition 1.8 and Theorem 1.5 H is a characteristic ideal of L. Now Lemma 2.1 completes the proof.

PROPOSITION 2.3. Let L be a Lie algebra and let $(L_{\alpha})_{\alpha \leq \sigma}$ be an ascending series of L with simple factors. Then the following are equivalent:

- (1) $C_{L/L_{\alpha}}(L_{\alpha+1}/L_{\alpha})=0$ for all $\alpha < \sigma$.
- (2) The only ascendant subalgebras of L are the L_{α} .
- (3) The only descendant subalgebras of L are the L_{α} .
- (4) The only subideals of L are the L_{α} .
- (5) The only ideals of L are the L_{α} .
- (6) The only characteristic ideals of L are the L_{α} .

PROOF. By Corollary 1.6 each L_{α} is a characteristic ideal of L. Hence the statements (1), (3) and (6) make sense. Evidently we have the following implications:

$$(2) \Rightarrow (4), (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6).$$

By Theorem 1.5 we see that $(6) \Rightarrow (2)$ and $(6) \Rightarrow (3)$.

Now we show that (1) \Rightarrow (5). Let $H \not\supseteq L$ and let α be the minimal ordinal with respect to $L_{\alpha} \not\preceq H$. Evidently α is neither 0 nor a limit ordinal. Hence $L_{\alpha-1} \leq H$. Since $H/L_{\alpha-1} \cap L_{\alpha}/L_{\alpha-1}$ is an ideal of the simple Lie algebra $L_{\alpha}/L_{\alpha-1}$, we see that $H/L_{\alpha-1} \cap L_{\alpha}/L_{\alpha-1} = 0$ or $L_{\alpha}/L_{\alpha-1} \leq H/L_{\alpha-1}$. Since $L_{\alpha} \not\preceq H$, we have $H/L_{\alpha-1} \cap L_{\alpha}/L_{\alpha-1} = 0$. Hence

$$\lceil H/L_{\alpha-1}, L_{\alpha}/L_{\alpha-1} \rceil \subseteq H/L_{\alpha-1} \cap L_{\alpha}/L_{\alpha-1} = 0.$$

Since $C_{L/L_{\alpha-1}}(L_{\alpha}/L_{\alpha-1})=0$, we have $H=L_{\alpha-1}$.

Next we show that $(5) \Rightarrow (1)$. Suppose that $C_{L/L_{\alpha}}(L_{\alpha+1}/L_{\alpha}) \neq 0$ for some ordinal $\alpha < \sigma$. Since $L_{\alpha+1}/L_{\alpha} \triangleleft L/L_{\alpha}$, we have $C_{L/L_{\alpha}}(L_{\alpha+1}/L_{\alpha}) \triangleleft L/L_{\alpha}$. Hence we can find an ideal H of L such that $L_{\alpha} \leq H$ and $H/L_{\alpha} = C_{L/L_{\alpha}}(L_{\alpha+1}/L_{\alpha})$. By (5) and $L_{\alpha} \leq H$ there exists an ordinal β such that $\beta \geq \alpha+1$ and $H=L_{\beta}$. Therefore we have

$$[L_{\alpha+1}, L_{\alpha+1}] \subseteq [L_{\beta}, L_{\alpha+1}] = [H, L_{\alpha+1}] \subseteq L_{\alpha}.$$

Hence $L_{\alpha+1}/L_{\alpha}$ is abelian. This is a contradiction.

This proposition is a generalization of [6, Lemma 7]. The following is there used: Let L be a Lie algebra having two subideals H, K such that K is simple. If $K \cap H = 0$, then $\lceil K, H \rceil = 0$ (cf. [5, Lemma 4.6]).

We generalize this in the following

PROPOSITION 2.4. Let L be a Lie algebra with a subalgebra H and let K be a simple ascendant subalgebra of L such that $K \cap H = 0$.

- (1) If H is ascendant in L, then $\lceil K, H \rceil = 0$.
- (2) If H is descendant in L, then [K, H] = 0.

PROOF. By Lemma 1.3 we have $K \triangleleft L$. If K = 0, then there is nothing to prove. We assume that $K \neq 0$.

(1) Let $(H_{\alpha})_{\alpha \leq \sigma}$ be an ascending series from H to L and let α be the minimal ordinal with respect to $K \cap H_{\alpha} \neq 0$. Evidently α is neither 0 nor a limit ordinal. Hence $K \cap H_{\alpha-1} = 0$. Since $K \cap H_{\alpha}$ is a non-zero ascendant subalgebra of K, we have $K \leq H_{\alpha}$ by Lemma 1.1. Since $H_{\alpha-1} \subset H_{\alpha}$, we have

$$[K, H] \subseteq [K, H_{\alpha-1}] \subseteq K \cap H_{\alpha-1} = 0.$$

(2) Let $(H_{\alpha})_{\alpha \leq \sigma}$ be a descending series from H to L and let α be the minimal ordinal with respect to $K \leq H_{\alpha}$. Clearly α is neigher 0 nor a limit ordinal. Hence $K \leq H_{\alpha-1}$. If $K \cap H_{\alpha} \neq 0$, then $K \cap H_{\alpha}$ is a non-zero descendant subalgebra of K. By Theorem 1.5 we have $K \leq H_{\alpha}$. Thus we have $K \cap H_{\alpha} = 0$ and therefore

$$[K, H] \subseteq [K, H_{\alpha}] \subseteq K \cap H_{\alpha} = 0.$$

As an application of Propositions 2.3 and 2.4 we shall show that the Lie algebra of all endomorphisms of an infinite-dimensional vector space lies in the class \mathfrak{M}' of Lie algebras in which every ascendant subalgebra is an ideal (cf. [7]).

Let c be an infinite cardinal with successor c^+ . Let V be a vector space of dimension c. For any infinite cardinal $d \le c^+$, L(c, d) is the Lie algebra of all linear transformations $\alpha \colon V \to V$ such that the image of α has dimension < d. Let $F = L(c, \aleph_0)$, T be the set of endomorphisms of trace zero (in the sense of [5, p. 306]), and S be the set of scalar multiplications. In [6] it has been shown that the ideals of $L = L(c, c^+)$ are precisely the following:

- a) L(c, d) for $\aleph_0 \le d \le c^+$,
- b) L(c, d) + S for $\aleph_0 \le d \le c$,
- c) Any subspace X of L such that $T \le X \le F + S$,
- d) S,
- e) $\{0\}$.

Further, every subideal of L is an ideal.

Now we shall show the following

THEOREM 2.5. Let $L=L(c, c^+)$. Then every ascendant subalgebra of L is an ideal.

PROOF. Let H asc L. If $H \cap T = 0$, then by Proposition 2.4 [H, T] = 0. (In [5] it has been shown that T is simple.) As in [6, p. 85] we have $H \le S$. Hence $H \multimap L$. If $H \cap T \ni 0$, then by Lemma 1.1 $T \le H$. By Proposition 2.3 and the argument of [6, p. 82] we see that every ascendant subalgebra of L which contains F + S is of the form L(c, d) + S with $\aleph_0 \le d \le c^+$. Hence H + F + S = L(c, d) + S for some d with $\aleph_0 \le d \le c^+$. If $d = \aleph_0$, then $T \le H \le F + S$, which is the case c) of Theorem (A) in [6]. Let $d > \aleph_0$. Since dim $(H + F + S)/(H + T + S) \le \dim F/T = 1$ and H + T + S asc H + F + S, we have $H + T + S \bowtie H + F + S$. Hence

$$(H+T+S)/(T+S) \triangleleft (L(c,d)+S)/(T+S)$$
.

By the argument of Lemma 12 in [6] L(c, d) has no proper ideals of finite codimension. Hence H+T+S=L(c, d)+S. Since $T \le H$, we have H+S=L(c, d)+S. Since

$$L(c, d)/H \cap L(c, d) \cong (L(c, d) + H)/H \subseteq (H + S)/H$$
,

we have dim $L(c, d)/H \cap L(c, d) \le 1$. Hence $H \cap L(c, d)$ is an ascendant subalgebra of L(c, d) of codimension ≤ 1 and so it is an ideal of L(c, d) of codimension ≤ 1 . Since L(c, d) has no proper ideals of finite codimension, we have $H \cap L(c, d) = L(c, d)$. Hence $L(c, d) \le H \le L(c, d) + S$. Since dim S = 1, we have H = L(c, d) or L(c, d) + S. Thus $H \bowtie L$.

REMARK. It is easy to see that in a Lie algebra in which every subideal is an ideal, every descendant subalgebra is an ideal.

3.

In this section we shall give a sufficient condition for a Lie algebra to be locally finite.

Let L be a finitely generated Lie algebra. Let $\{a_1,\ldots,a_n\}$ be a set of generators for L and let F be a free Lie algebra generated by $\{x_1,\ldots,x_n\}$. Then there exists a homomorphism θ from F to L such that $\theta(x_i)=a_i$ $(1 \le i \le n)$. L is said to be finitely presented if there exist finitely many elements y_1,\ldots,y_m of F such that $\ker \theta = \sum_{j=1}^m y_j^F$. (See [4, p. 31] for the well-definedness of the definition.) We denote by $\mathfrak{F}\mathfrak{p}$ the class of finitely presented Lie algebras.

We shall show some properties of Fp.

Lemma 3.1. (1) $\mathfrak{F} \leq \mathfrak{Fp}$.

(2) Let L be a finitely generated Lie algebra. If I is an ideal of L such that L/I is finitely presented, then I is finitely generated as an ideal.

PROOF. (1) Let $L \in \mathfrak{F}$ and let $\{e_1, ..., e_n\}$ be a basis for L. Then $[e_i, e_j] = \sum_{l=1}^n \alpha_{ijl} e_l$ for some $\alpha_{ijl} \in \mathfrak{k}$ $(1 \le i, j, l \le n)$, where \mathfrak{k} is a base field. Let F be a free Lie algebra generated by $\{x_1, ..., x_n\}$ and let θ be a homomorphism from F to L such that $\theta(x_i) = e_i$ $(1 \le i \le n)$. We put $y_{ij} = [x_i, x_j] - \sum_{l=1}^n \alpha_{ijl} x_l$ $(1 \le i, j \le n)$ and $I = \sum_{i,j} y_{ij}^F$, where y_{ij}^F is the ideal of F generated by y_{ij} . Clearly $I \le \operatorname{Ker} \theta$. Hence we have a homomorphism

$$\psi: F/I \longrightarrow F/\mathrm{Ker}\ \theta.$$

Obviously we have an isomorphism $\bar{\theta}$: $F/\text{Ker }\theta \to L$. Let $\phi = \bar{\theta} \circ \psi$: $F/I \to L$. Then $\phi(\bar{x}_i) = e_i$ $(1 \le i \le n)$, where $\bar{x}_i = x_i + I \in F/I$. Since $[\bar{x}_i, \bar{x}_j] = \sum_{l=1}^n \alpha_{ijl} \bar{x}_l$ in F/I, F/I is spanned by $\{\bar{x}_1, ..., \bar{x}_n\}$. Since $\{\phi(\bar{x}_i)\} = \{e_i\}$ is a basis for L, $\{\bar{x}_1, ..., \bar{x}_n\}$ is a basis for F/I. Hence ϕ is injective. Therefore ψ is injective. Thus we have $\ker \theta = I = \sum_{i,j} y_{i,j}^F$.

(2) Let $L = \langle a_1, ..., a_n \rangle$ and let F be a free Lie algebra generated by $\{x_1, ..., x_n\}$. We have a homomorphism $\theta \colon F \to L$ such that $\theta(x_i) = a_i \ (1 \le i \le n)$. Let $R = \theta^{-1}(I)$. We have a homomorphism $\bar{\theta} \colon F \to L/I$ such that $\bar{\theta}(x_i) = \bar{a}_i \in L/I$ $(1 \le i \le n)$. Since L/I is finitely presented, there exist finitely many elements $y_1, ..., y_m$ of F such that $\ker \bar{\theta} = \sum_{i=1}^m y_i^F$. Clearly $\ker \bar{\theta} = R$. Thus we have

$$I = \theta(R) = \theta(\sum_{i=1}^{m} y_i^F) = \sum_{i=1}^{m} \theta(y_i)^L.$$

REMARK. Lemma 3.1 (2) is the Lie analogue of [4, Lemma 1.43 (i)]. The Lie analogue of [4, Lemma 1.43 (ii)] is also valid, i.e., $\mathfrak{F}\mathfrak{p}$ is E-closed.

Now we have the following

THEOREM 3.2. Let $\mathfrak X$ be any $\{s, E\}$ -closed subclass of $\mathfrak F\mathfrak p$. Then $E(\lhd)\mathfrak X \leq L\mathfrak X$.

PROOF. Let $L \in \not\in (\multimap) \mathfrak{X}$ and let $(L_{\alpha})_{\alpha \leq \sigma}$ be an ascending series of ideals of L such that $L_{\alpha+1}/L_{\alpha} \in \mathfrak{X}$ for all $\alpha < \sigma$. Let H be a finitely generated subalgebra of L. Since $H/H \cap L_{\sigma} = 0$, there exists an ordinal α minimal with respect to $H/H \cap L_{\alpha} \in \mathfrak{X}$. Now suppose that α is a limit ordinal. Since H is finitely generated and $H/H \cap L_{\alpha} \in \mathfrak{X} \leq \mathfrak{F}\mathfrak{p}$, we can apply Lemma 3.1 (2) to see that there exist finitely many elements x_1, \ldots, x_n of $H \cap L_{\alpha}$ such that $H \cap L_{\alpha} = \sum_{i=1}^n x_i^H$. Since α is a limit ordinal, there exists an ordinal β such that $\beta < \alpha$ and $x_i \in L_{\beta}$ $(1 \leq i \leq n)$. Since $H \cap L_{\beta} = H/H$, we have $H \cap L_{\alpha} = \sum_{i=1}^n x_i^H \leq H \cap L_{\beta} \leq H \cap L_{\alpha}$. Hence $H \cap L_{\alpha} = H \cap L_{\beta}$. Therefore $H/H \cap L_{\beta} = H/H \cap L_{\alpha} \in \mathfrak{X}$. This contradicts the minimality of α . Thus α is not a limit ordinal.

Next suppose that α is non-zero. We have

$$H \cap L_{\alpha}/H \cap L_{\alpha-1} \cong ((H \cap L_{\alpha}) + L_{\alpha-1})/L_{\alpha-1} \leq L_{\alpha}/L_{\alpha-1} \in \mathfrak{X}.$$

Hence $H \cap L_{\alpha}/H \cap L_{\alpha-1} \in S\mathfrak{X} = \mathfrak{X}$. Therefore $H/H \cap L_{\alpha-1} \in E\mathfrak{X} = \mathfrak{X}$, which contradicts the minimality of α . Thus α must be zero and hence $H \in \mathfrak{X}$.

COROLLARY 3.3. Let \mathfrak{X} be any $\{s, E\}$ -closed subclass of \mathfrak{F} . Then $E(\triangleleft)\mathfrak{X} \leq L\mathfrak{X}$. In particular $E(\triangleleft)\mathfrak{F} \leq L\mathfrak{F}$.

PROOF. By Lemma 3.1 (1) $\mathfrak{F} \leq \mathfrak{Fp}$. Hence the statement follows from Theorem 3.2.

4.

In this section we shall find some classes of Lie algebras in which every serial subalgebra is a characteristic ideal. We begin by showing some elementary properties of serial subalgebras.

LEMMA 4.1. Let L be a Lie algebra and let H be a serial subalgebra of L.

- (1) If $K \leq L$, then $H \cap K$ ser K.
- (2) If $L \in \mathcal{F}$, then $H \operatorname{si} L$.

PROOF. (1) Let $\{\Lambda_{\sigma}, V_{\sigma} : \sigma \in \Sigma\}$ be a series from H to L. Then clearly $\{\Lambda_{\sigma} \cap K, V_{\sigma} \cap K : \sigma \in \Sigma\}$ is a series from $H \cap K$ to K.

(2) Since $L \in \mathcal{F}$, there exists a series from H to L of finite type.

For a locally finite Lie algebra we have some more properties.

Lemma 4.2. Let $L \in L\mathfrak{F}$ and let H be a subalgebra of L. Then

- (1) H ser L if and only if $H \cap F$ si F for every finite-dimensional subalgebra F of L.
 - (2) If $H \sec L$ and θ is a homomorphism of L, then $\theta(H) \sec \theta(L)$.

PROOF. See the proof of [2, Lemma 2 and the conclusion of the proof of Theorem A].

REMARK. Since the join of two subideals of a finite-dimensional Lie algebra need not be a subideal, the second statement of $\lceil 1 \rceil$, Proposition 13.2.4 \rceil is false.

LEMMA 4.3. Let $L \in L_{\mathfrak{F}}$. If H is a finite-dimensional serial subalgebra of L, then $H^{\omega} = \bigcap_{n=1}^{\infty} H^n \triangleleft L$.

PROOF. Let $x \in L$. Since $L \in L\mathfrak{F}$ and $H \in \mathfrak{F}$, there exists a finite-dimensional subalgebra F of L such that $\langle x, H \rangle \leq F$. By Lemma 4.2 we see that $H = H \cap F$ si F. By [1, Lemma 1.3.2] $H^{\omega} \triangleleft F$. Hence $[x, H^{\omega}] \subseteq H^{\omega}$. Thus $H^{\omega} \triangleleft L$.

Now we define a class \mathfrak{X}_2 of Lie algebras as follows: $L \in \mathfrak{X}_2$ if and only if either L=0 or L has an ascending series whose factors are finite-dimensional and simple. By Corollaries 1.6 and 3.3 we see that $\mathfrak{X}_2 \leq \acute{E}(\sim) \mathfrak{F} \leq L \mathfrak{F}$. Hence we can use Lemmas 4.2 and 4.3 for \mathfrak{X}_2 -algebras. Now we have the following

THEOREM 4.4. Let $L \in \mathfrak{X}_2$. If H is a serial subalgebra of L, then H is a perfect characteristic ideal of L.

PROOF. If L=0, then there is nothing to prove. Let $(L_{\alpha})_{\alpha \leq \sigma}$ be an ascending series of L such that $L_{\alpha+1}/L_{\alpha}$ is finite-dimensional simple for any $\alpha < \sigma$. We shall show the following by transfinite induction on α :

(*) If $H \sec L_{\alpha}$, then $H \triangleleft L$.

If $\alpha=0$, then the result is trivial. Let $\alpha>0$ and assume that (*) holds for any $\beta<\alpha$. Let H ser L_{α} . By Lemma 4.1 (1) we have $H\cap L_{\beta}$ ser L_{β} for all $\beta<\alpha$. It follows that $H\cap L_{\beta} \subset L$ for all $\beta<\alpha$. If α is a limit ordinal, then we have

$$H = H \cap L_{\alpha} = \bigcup_{\beta < \alpha} (H \cap L_{\beta}) \lhd L.$$

If α is not a limit ordinal, then we have $(H+L_{\alpha-1})/L_{\alpha-1}$ ser $L_{\alpha}/L_{\alpha-1}$ by Lemma 4.2 (2). Since $L_{\alpha}/L_{\alpha-1} \in \mathfrak{F}$, $(H+L_{\alpha-1})/L_{\alpha-1}$ si $L_{\alpha}/L_{\alpha-1}$ by Lemma 4.1 (2). Since $L_{\alpha}/L_{\alpha-1}$ is simple, we see that $H \leq L_{\alpha-1}$ or that $L_{\alpha}=H+L_{\alpha-1}$. In the former case $H=H\cap L_{\alpha-1} \lhd L$. So we consider the latter case. Since $H\cap L_{\alpha-1} \lhd L$ and $L_{\alpha}=H+L_{\alpha-1}$, we have

$$L_{\alpha}/H \cap L_{\alpha-1} = H/H \cap L_{\alpha-1} + L_{\alpha-1}/H \cap L_{\alpha-1}$$
.

Hence $H/H \cap L_{\alpha-1} \cong L_{\alpha}/L_{\alpha-1}$. Therefore $H/H \cap L_{\alpha-1}$ is finite-dimensional and simple. By Lemma 4.2 (2) we have $H/H \cap L_{\alpha-1}$ ser $L/H \cap L_{\alpha-1}$. By Lemma 4.3

$$H/H \cap L_{\alpha-1} = (H/H \cap L_{\alpha-1})^{\omega} \triangleleft L/H \cap L_{\alpha-1}$$
.

Thus we have $H \triangleleft L$. This completes the proof of (*). Now the statement follows from Theorem 1.5.

COROLLARY 4.5. Let L be a Lie algebra over a field of characteristic zero. If L has an ascending series whose factors are finite-dimensional and semi-simple, then every serial subalgebra of L is a perfect characteristic ideal of L.

PROOF. Since a finite-dimensional semi-simple Lie algebra over a field of characteristic zero is a direct sum of simple ideals, we have $L \in \mathfrak{X}_2$. Now Theorem 4.4 completes the proof.

We consider a special case of \mathfrak{X}_2 in this section.

- PROPOSITION 5.1. (1) Let L be generated by a family $(L_{\lambda})_{\lambda \in \Lambda}$ of finite-dimensional simple ascendant subalgebras. Then if H is a serial subalgebra of L, H is a perfect characteristic ideal of L and $H = \bigoplus_{\mu \in M} L_{\mu}$ for some subset M of Λ .
- (2) Let L be a locally finite Lie algebra and let $(L_{\lambda})_{\lambda \in \Lambda}$ be a family of finite-dimensional simple serial subalgebras of L such that $L = \langle L_{\lambda} : \lambda \in \Lambda \rangle$. If H is a serial subalgebra of L, then H is a perfect characteristic ideal of L and $H = \bigoplus_{\mu \in M} L_{\mu}$ for some subset M of Λ .
- - (2) By Lemma 4.3 we have $L_{\lambda} = L_{\lambda}^{\omega} \subset L$ for all $\lambda \in \Lambda$. Argue as in (1).

Now we recall the definition of a semi-simple neoclassical algebra (cf. [1, Chap. 13]). Let $L \in L\mathfrak{F}$. The sum $\sigma(L)$ of all locally soluble ideals of L is the largest locally soluble ideal of L. L is called semi-simple if $\sigma(L)=0$. Let L be a Lie algebra and let H be a subalgebra of L. H is said to be a local subideal of L, denoted by H lsi L, if H si $\langle H, X \rangle$ for any finite subset X of L. Over a field of characteristic zero L is said to be a neoclassical algebra if L is generated by finite-dimensional local subideals of L. The class of neoclassical algebras is denoted by \mathfrak{H} . Generally we have $\mathfrak{H} \leq L\mathfrak{H}$.

- Lemma 5.2. Let L be a locally finite Lie algebra. If H is a local subideal of L, then H is a serial subalgebra of L.
- PROOF. Let F be a finite-dimensional subalgebra of L. Since $H \operatorname{lsi} L$, we have $H \operatorname{si} \langle H, F \rangle$. Hence $H \cap F \operatorname{si} F$. By Lemma 4.2 (1) we have $H \operatorname{ser} L$.

We shall prove that in a semi-simple neoclassical algebra every serial subalgebra is a perfect characteristic ideal.

- Theorem 5.3. Let L be a semi-simple neoclassical algebra over a field of characteristic zero. If H is a serial subalgebra or a local subideal of L, then H is a perfect characteristic ideal of L and is a direct sum of some finite-dimensional simple ideals of L.
- PROOF. By [1, Theorem 13.4.2] L is a direct sum of finite-dimensional simple ideals of L. The statement follows from Proposition 5.1 (1) and Lemma 5.2.
- COROLLARY 5.4. Let L be a neoclassical algebra over a field of characteristic zero. If H is a serial subalgebra of L, then $H + \sigma(L) \triangleleft L$. In particular if H is a local subideal of L, then $H + \sigma(L) \triangleleft L$.

PROOF. By Lemma 4.2 (2) we have

$$(H + \sigma(L))/\sigma(L)$$
 ser $L/\sigma(L)$.

By [1, Theorem 13.3.9] $L/\sigma(L)$ is a semi-simple \mathfrak{H} -algebra. By Theorem 5.3 we have

$$(H + \sigma(L))/\sigma(L) \lhd L/\sigma(L)$$
.

Thus $H + \sigma(L) \lhd L$. If H lsi L, then by Lemma 5.2 we have H ser L. Hence $H + \sigma(L) \lhd L$.

Corresponding to Proposition 2.3 we have

PROPOSITION 5.5. Let L be a Lie algebra and let $(L_{\alpha})_{\alpha \leq \sigma}$ be an ascending series of L such that $L_{\alpha+1}/L_{\alpha}$ is finite-dimensional and simple for any $\alpha < \sigma$. Then the following are equivalent:

- (1) $C_{L/L_{\alpha}}(L_{\alpha+1}/L_{\alpha}) = 0$ for all $\alpha < \sigma$.
- (2) The only serial subalgebras of L are the L_{α} .
- (3) The only local subideals of L are the L_{α} .
- (4) The only ascendant subalgebras of L are the L_{α} .
- (5) The only descendant subalgebras of L are the L_{α} .
- (6) The only subideals of L are the L_{α} .
- (7) The only ideals of L are the L_{α} .
- (8) The only characteristic ideals of L are the L_{α} .

PROOF. By Proposition 2.3 we have the equivalence of (1), (4), (5), (6), (7) and (8). By Lemma 5.2 we see that $(2) \Rightarrow (3)$. Clearly $(3) \Rightarrow (6)$. By Theorem 4.4 we see that $(8) \Rightarrow (2)$.

6.

It is trivial that $\mathfrak{X}_2 \leq \mathfrak{X}_1$ and $\mathfrak{X}_2 \cap \mathfrak{F} = \mathfrak{X}_1 \cap \mathfrak{F}$. Since there exists an infinite-dimensional simple Lie algebra ([1, Theorem 10.3.1] or [5, Lemma 4.1]), we have $\mathfrak{X}_2 \leq \mathfrak{X}_1$. We have a characterization of an $\mathfrak{X}_1 \cap \mathfrak{F}$ -algebra.

Proposition 6.1. Let L be a Lie algebra.

- (1) L belongs to $\mathfrak{X}_1 \cap \mathfrak{F}$ if and only if L is finite-dimensional and every 2-step subideal of L is perfect.
- (2) Over a field of characteristic zero L belongs to $\mathfrak{X}_1 \cap \mathfrak{F}$ if and only if L is finite-dimensional semi-simple.
- PROOF. (1) The necessity follows from Theorem 4.4. Let L be a finite-dimensional Lie algebra in which every 2-step subideal is perfect. Let I be a minimal ideal of L. If $J \triangleleft I$, then $J = J^2$. By Lemma 1.3 $J \triangleleft L$. Hence J = 0

- or I. Therefore I is simple. Induction on dim L completes the proof.
- (2) First we shall show that if $L \in \mathfrak{X}_1$, then the only LeVI-ideal of L is the zero ideal. Let I be an LeVI-ideal of L and let $(L_{\alpha})_{\alpha \leq \sigma}$ be an ascending series of L such that $L_{\alpha+1}/L_{\alpha}$ is simple for any $\alpha < \sigma$. We show by transfinite induction on α that $I \cap L_{\alpha} = 0$. If $\alpha = 0$, then there is nothing to prove. Let $\alpha > 0$ and assume that $I \cap L_{\alpha} = 0$ for all $\beta < \alpha$. If α is a limit ordinal, then $I \cap L_{\alpha} = \bigcup_{\beta < \alpha} (I \cap L_{\beta}) = 0$. If α is not a limit ordinal, then $((I \cap L_{\alpha}) + L_{\alpha-1})/L_{\alpha-1}$ is an LeVI-ideal of $L_{\alpha}/L_{\alpha-1}$. Since $L_{\alpha}/L_{\alpha-1}$ is simple, we see that $L_{\alpha}/L_{\alpha-1} = ((I \cap L_{\alpha}) + L_{\alpha-1})/L_{\alpha-1}$ or $I \cap L_{\alpha} \leq L_{\alpha-1}$. By [1, Lemma 8.5.4] $L_{\alpha}/L_{\alpha-1}$ cannot be locally soluble. Hence $I \cap L_{\alpha} \leq L_{\alpha-1}$. Therefore $I \cap L_{\alpha} = I \cap L_{\alpha-1} = 0$. Thus if $L \in \mathfrak{X}_1 \cap \mathfrak{F}$, then L is semi-simple. Since a finite-dimensional semi-simple Lie algebra over a field of characteristic zero is a direct sum of simple ideals, we see that if L is finite-dimensional semi-simple over a field of characteristic zero, then $L \in \mathfrak{X}_1 \cap \mathfrak{F}$.

By the proof of Proposition 6.1 (2) we have the following

Proposition 6.2. $\mathfrak{X}_1 \cap Le\mathfrak{U} = (0)$.

Now we define classes \mathfrak{X}_3 and \mathfrak{X}_4 of Lie algebras as follows: $L \in \mathfrak{X}_3$ if and only if H ser L implies $H \lhd L$. Le \mathfrak{X}_4 if and only if H ser L implies H ch. In [7] the class \mathfrak{M}' is investigated. Clearly $\mathfrak{X}_4 \leq \mathfrak{X}_3 \leq \mathfrak{M}'$. By [7, Theorem 5.2] $E\mathfrak{U} \cap \mathfrak{M}' = E\mathfrak{U} \cap \mathfrak{T}$, where \mathfrak{T} is the class of Lie algebras in which every subideal is an ideal. We shall show that $E\mathfrak{U} \cap \mathfrak{X}_3 = E\mathfrak{U} \cap \mathfrak{T}$.

LEMMA 6.3. Let $L = A \dotplus \langle z \rangle$, where A is an abelian ideal of L and $\operatorname{ad}_A z = \operatorname{id}_A$. If H is a serial subalgebra of L, then H is an ideal.

PROOF. Let $a_1, ..., a_n \in A$. We put $F = \langle a_1 \rangle + \cdots + \langle a_n \rangle + \langle z \rangle$. Clearly $F \leq L$. Hence $L \in L\mathfrak{F}$. Now suppose that H is a serial subalgebra not contained in A. Then there exists x = a + z in H with $a \in A$. Put $E = \langle a \rangle + \langle z \rangle$. Since H ser L and $L \in L\mathfrak{F}$, $H \cap E$ si E by Lemma 4.2 (1). Since dim $E \leq 2$, we have $H \cap E \triangleleft E$. Hence $a = [a + z, z] \in H \cap E$. Therefore $z \in H$. Let $b \in A$ and put $G = \langle b \rangle + \langle z \rangle$. We have $H \cap G \triangleleft G$ and hence $b = [b, z] \in H \cap G$. Therefore H = L. Thus we see that if H ser L, then $H \leq A$ or H = L. In each case we have $H \triangleleft L$.

Theorem 6.4. $\mathbb{E}\mathfrak{A} \cap \mathfrak{X}_3 = \mathbb{E}\mathfrak{A} \cap \mathfrak{M}' = \mathbb{E}\mathfrak{A} \cap \mathfrak{T}$.

PROOF. Clearly $\mathfrak{X}_3 \leq \mathfrak{M}' \leq \mathfrak{T}$. Let $L \in \mathbb{E} \mathfrak{A} \cap \mathfrak{T}$. By [7, Theorem 5.2] $L \in \mathfrak{A}$ or L is as in Lemma 6.3. Thus we have $L \in \mathfrak{X}_3$.

As for \mathfrak{X}_4 we have the following

THEOREM 6.5. $L \in \mathfrak{M} \cap \mathfrak{X}_4$ if and only if $L \in \mathfrak{F}_1$ or $L \in \mathfrak{F}_2 \setminus \mathfrak{A}$.

PROOF. Clearly $\mathfrak{F}_1 \leq \mathbb{E} \mathfrak{A} \cap \mathfrak{X}_4$. Let $L \in \mathfrak{F}_2 \setminus \mathfrak{A}$. Since L is complete, we

have $\operatorname{Der}(L)=\operatorname{Inn}(L)$. Let H ser L. Since $\dim L=2$, we have $H \triangleleft L$. Hence H $\operatorname{Der}(L) \subseteq H$. Thus $L \in \mathfrak{X}_4$. Conversely let $L \in \mathfrak{LU} \cap \mathfrak{X}_4$. By [7, Theorem 5.2] $L \in \mathfrak{U}$ or $L=A \dotplus \langle z \rangle$, where A is an \mathfrak{U} -ideal of L and $\operatorname{ad}_A z = \operatorname{id}_A$. Clearly $\mathfrak{X}_4 \cap \mathfrak{U} \leq \mathfrak{F}_1$. Let f be an endomorphism of A. Then f induces a derivation \overline{f} of L such that $z\overline{f}=0$. Since $L \in \mathfrak{X}_4$, we have $A \in \mathfrak{F}_1$. Thus we conclude that $L \in \mathfrak{F}_1$ or $L \in \mathfrak{F}_2 \backslash \mathfrak{U}$.

References

- [1] R. K. Amayo and I. N. Stewart, Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
- [2] B. Hartley, Serial subgroups of locally finite groups, Proc. Cambridge Philos. Soc. 71 (1972), 199-201.
- [3] E. M. Levich, On simple and strictly simple rings, Latvijas PSR Zinātņu Akad. Vēstis Fiz. Tehn. Zinātņu Sēr. 6 (1965), 53-58 (Russian).
- [4] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups I, Springer, Berlin, 1972.
- [5] I. N. Stewart, The minimal condition for subideals of Lie algebras, Math. Z. 111 (1969), 301-310.
- [6] I. N. Stewart, The Lie algebra of endomorphisms of an infinite-dimensional vector space, Compositio Math. 25 (1972), 79-86.
- [7] S. Tôgô and H. Miyamoto, Lie algebras in which every ascendant subalgebra is a subideal, Hiroshima Math. J. 8 (1978), 491–498.

Department of Mathematics, Faculty of Science, Hiroshima University