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Introduction

In this paper we investigate Lie algebras which have an ascending series whose
factors are simple. Here simple Lie algebras are non-abelian simple. In [3]
Levich has shown that if H is an ascendant subalgebra of a simple Lie algebra L,
then H=0 or H=L. In particular H is a perfect characteristic ideal of L. In
§1 we shall show that, in a Lie algebra which has an ascending series whose
factors are simple, every ascendant subalgebra is a perfect characteristic ideal.
In §2 we consider a special case and its application. In [6] it has been shown
that, in the Lie algebra L of all endomorphisms of an infinite-dimensional vector
space, every subideal is an ideal of L. We shall show in § 2 that every ascendant
subalgebra of L is an ideal. In §3 we shall show that £(<)F<LE. Using the
results of §§1 and 3, we shall show in §4 that in a Lie algebra which has an as-
cending series whose factors are finite-dimensional simple, every serial subalgebra
is a perfect characteristic ideal. In §5 we apply our results to prove that, in a
semi-simple neoclassical algebra, serial subalgebras and local subideals are perfect
characteristic ideals. In [7] it has been shown that every soluble Lie algebra, in
which every ascendant subalgebra is an ideal, is either abelian or the split exten-
sion of an abelian Lie algebra by the 1-dimensional algebra of scalar multipli-
cations and conversely. We shall finally show in § 6 that in the split extension
of an abelian Lie algebra by the 1-dimensional algebra of scalar multiplications
every serial subalgebra is an ideal.

Let H be a subalgebra of a Lie algebra L and let X be a totally ordered set.
A series from H to L of type X is a family {A,, V,: 0 €2} of subalgebras of L
such that

(1) Forall o, H< A, and HL V,,

@) L\H = U (4,\ V),

3 ALV, if <o,

@4 V,<4,.
The quotient algebras A4,/V, are the factors of the series. If X is well-ordered
(resp. reversely well-ordered, finite), then the series is called an ascending series
(resp. a descending series, a subideal) and we write H ser L (resp. H desc L,
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HsiL) (cf. [1, p. 27]). We denote by U (resp. EA, &) the class of abelian (resp.
soluble, finite-dimensional) Lie algebras. For a class X of Lie algebras, LX is
the class of Lie algebras in which every finite subset is contained in an X-subalgebra.
E(<2)X is the class of Lie algebras which have an ascending series of ideals whose
factors belong to X. Any notation not explained here may be found in [1].

1.

We define a class X, of Lie algebras as follows: Le X, if and only if either
L=0 or L has an ascending series whose factors are simple. To investigate this
class we need

LemmA 1.1 ([3]). Let L be a simple Lie algebra. If H is an ascendant
subalgebra of L, then H=0 or L.

We first state some simple properties of X;.

Lemma 1.2. (1) If L belongs to X, and H is an ascendant subalgebra of
L, then He X,.

(2) X%, is Q-closed.

3) Anx, =(0).

Proor. (1) Assume that LeX, and HascL. If L=0, then H=0€X,.
Let o be an ordinal and let (L,),<, be an ascending series of L such that L, ,/L,
is simple for any a<g. For a<o we put H,=HnL, Leta<o. We have

Ha+ 1/Haz = ((H n La+1) + le)/Ld'

Since HnL,,, asc L,,,, we see that (HnL,,,)+L,)/L, asc L,,,/L,. Since
L, /L, s simple, it follows from Lemma 1.1 that H,,,=H, or that H,, ,/H, is
simple. It is immediate that H € X;.

(2) Assume that LeX; and I<wL. If L=0, then L/I=0€X;. Let (L)<,
be an ascending series of L such that L,, /L, is simple for any a<e. For a<c
we put L,=(L,+I)/I. Leta<o. Then we have

Eaz+]/Eat = (Ltz+1 + I)/(La + I)

(Ly+1+D)/(L,+1) is a homomorphic image of the simple Lie algebra L,, ,/L,.
Hence L,, =L, or L,,,/L, is simple, and therefore we have L/I € X,.

(3) Assume that LeAnX,. If L0, then L has a simple ascendant sub-
algebra and hence L&U. Therefore L=0.

LemMA 1.3 ([1, Proposition 1.3.5]). Let L be a Lie algebra. If H is a
perfect ascendant subalgebra of L, then H is an ideal.
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LemMma 1.4. Let LeX,. If H is an ascendant subalgebra of L, then H is
a perfect ideal of L.

Proor. By Lemma 1.2 (1) we have HeX,. Hence by Lemma 1.2 (2)
H/H?€QX, nA=X,nNA. By Lemma 1.2(3) H=H2 The statement now
follows from Lemma 1.3.

Now we show the following

THEOREM 1.5. Let LeX,. If H is an ascendant or a descendant sub-
algebra of L, then H is a perfect characteristic ideal of L.

ProOF. (1) Assume that Hasc L. By Lemma 1.4 H is a perfect ideal of
L. Let 6 be a derivation of L and form the split extension K=L+4{d>. Then
H is a perfect subideal of K. By Lemma 1.3 H< K. Hence HicH.

(2) Let (H,),<, be a descending series from H to L. We shall show by
transfinite induction on « that H<tL. If a=0, then the result is trivial. Let
>0 and assume that Hy<aL for all f<a. If « is a limit ordinal, then H,=
Np<gHg<aL. 1If o is not a limit ordinal, then H,<H,_;<tL. By Lemma 1.4
we have H L. Now the statement follows from (1).

COROLLARY 1.6. Let L be a Lie algebra and let (L,),<, be an ascending
series of L such that L, /L, is simple for any a<o. Then for any a<o, L, is a
perfect characteristic ideal of L.

The next result is well known. For the proof see [1, Lemma 13.4.1].

LemMMaA 1.7. The sum of the minimal ideals of a Lie algebra is a direct
sum of a subset of them.

We shall give a characterization of X, by the following

ProPOSITION 1.8. Let L be a Lie algebra. Suppose that L has an ascend-
ing series whose factors are generated by simple ascendant subalgebras. Then
L belongs to X;.

Proor. It follows easily from Lemma 1.3 that every simple ascendant sub-
algebra is a minimal ideal. By Lemma 1.7 each factor is a direct sum of simple
ideals. Refining them, we have L€ X,.

2.

In this section we consider special cases and applications of the results of
§1. First we need the next result. The proof can be found in [1, Lemma 13.4.3].
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LemmA 2.1. Suppose that L=@®,_, L,, where each L, is a simple ideal of
L. Let I be an ideal of L. Then I=@® .y L, for some subset M of A.

We can generalize this lemma as follows:

PROPOSITION 2.2.  Let L be generated by a family (L,),., of simple ascend-
ant subalgebras of L. If H is an ascendant or a descendant subalgebra of L,
then H is a characteristic ideal of L and H= @, L, for some subset M of A.

ProOF. As int the proof of Proposition 1.8 we see that each L, is a simple
ideal of L and L=@,.y L, for some subset N of A. By Proposition 1.8 and
Theorem 1.5 H is a characteristic ideal of L. Now Lemma 2.1 completes the
proof.

PROPOSITION 2.3. Let L be a Lie algebra and let (L,),<, be an ascending
series of L with simple factors. Then the following are equivalent:

(1) Cpp (Lys1/L)=0 for all a<o.

(2) The only ascendant subalgebras of L are the L,.

(3) The only descendant subalgebras of L are the L,.

(4) The only subideals of L are the L,.

(5) The only ideals of L are the L,.

(6) The only characteristic ideals of L are the L,.

Proor. By Corollary 1.6 each L, is a characteristic ideal of L. Hence the
statements (1), (3) and (6) make sense. Evidently we have the following impli-
cations:

@Q=2@, )@= () =(6).

By Theorem 1.5 we see that (6)=>(2) and (6)=>(3).

Now we show that (1)=(5). Let HsIL and let a be the minimal ordinal
with respect to L,5H. Evidently o is neither 0 nor a limit ordinal. Hence
L, <H. Since H/L,_;nL,L,_, is an ideal of the simple Lie algebra L,/L,_,,
we see that H/L,_,nL,/L,_,=0or L/L, ,<HJL, ,. Since L,%H, we have
H/L,_,nL,/L,_,=0. Hence

[H/La—l’ Laz/La—l] S H/Laz—l n La/La-—l =0.

Since Cp;,_(L,/L,-,)=0, we have H=L,_,.

Next we show that (5)=>(1). Suppose that Cp,; (L,+;/L,)=0 for some
ordinal «<o. Since L,,,/L,<x<L/L,, we have C;,; (L,;/L,)<<L/L,. Hence we
can find an ideal H of L such that L,<H and H/L,=C,;; (L,+,/L,). By (5)and
'L,< H there exists an ordinal f§ such that f>a+1 and H=L,; Therefore we
have
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[La+1’ La+1] < [Lﬂ9 Laz+1] = [H’ La+1] < Lat'
Hence L,,,/L, is abelian. This is a contradiction.

This proposition is a generalization of [6, Lemma 7]. The following is
there used: Let L be a Lie algebra having two subideals H, K such that K is simple.
If Kn H=0, then [K, H]=0 (cf. [5, Lemma 4.6]).

We generalize this in the following

PROPOSITION 2.4. Let L be a Lie algebra with a subalgebra H and let K
be a simple ascendant subalgebra of L such that K n H=0.

(1) If H is ascendant in L, then [K, H]=0.

(2) If H is descendant in L, then [K, H]=0.

ProOOF. By Lemma 1.3 we have K<aL. If K=0, then there is nothing to
prove. We assume that K=0.

(1) Let (H,),<, be an ascending series from H to L and let « be the minimal
ordinal with respect to K n H,>=0. Evidently « is neither 0 nor a limit ordinal.
Hence Kn H,_,=0. Since Kn H, is a non-zero ascendant subalgebra of K, we
have K< H, by Lemma 1.1. Since H,_,<<H,, we have

[K,Hl<[K,H,_,J<Kn H,_, =0.

(2) Let (H,).<, be a descending series from H to L and let a be the minimal
ordinal with respect to K& H,. Clearly « is neigher 0 nor a limit ordinal. Hence
K<H, ,. If KnH,x0,then Kn H, is a non-zero descendant subalgebra of K.
By Theorem 1.5 we have K< H,. Thus we have K n H,=0 and therefore

[K,Hlc [K,H]J= KnH,=0.

As an application of Propositions 2.3 and 2.4 we shall show that the Lie
algebra of all endomorphisms of an infinite-dimensional vector space lies in the
class M’ of Lie algebras in which every ascendant subalgebra is an ideal (cf. [7]).

Let ¢ be an infinite cardinal with successor ¢t. Let V be a vector space of
dimension ¢. For any infinite cardinal d<c*, L(c, d) is the Lie algebra of all
linear transformations a: V- V such that the image of « has dimension <d. Let
F=1L(c, Ny), T be the set of endomorphisms of trace zero (in the sense of [5,
p. 306]), and S be the set of scalar multiplications. In [6] it has been shown that
the ideals of L= L(c, c*) are precisely the following:

a) L(c,d) for No<d<c",

b) L(c, d)+S for Ro<d<c,

¢) Any subspace X of L such that T<X<F+S,

d) S,

e) {0}.
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Further, every subideal of L is an ideal.
Now we shall show the following

THEOREM 2.5. Let L=L(c, c¢*). Then every ascendant subalgebra of L is
an ideal.

PrOOF. Let HascL. If HnT=0, then by Proposition 2.4 [H, T]=0.
(In [5] it has been shown that T is simple.) As in [6, p. 85] we have H<S.
Hence H< L. 1If Hn T=0, then by Lemma 1.1 T<H. By Proposition 2.3 and
the argument of [6, p. 82] we see that every ascendant subalgebra of L which
contains F+S is of the form L(c, d)+S with Ny<d<c¢*. Hence H+F+S=
L(c, d)+ S for some d with No<d<c*. If d=N,, then T<H<F+S, which is
the case ¢) of Theorem (A)in [6]. Letd>N,. Sincedim (H+F+S)/(H+T+5S)
<dim F/T=1and H+T+Sasc H+ F+S, we have H+ T+S<<H+ F+S. Hence

(H + T+ ST+ S)<t (L(c, d) + ST+ S).

By the argument of Lemma 12 in [6] L(c, d) has no proper ideals of finite codi-
mension. Hence H+T+S=L(c, d)+S. Since T<H, we have H+S=L(c, d)
+S. Since

L(c, d)/H n L(c, d) = (L(c, d) + H)/H < (H + S)/H,

we have dim L(c, d)/H n L(c, d)<1. Hence H N L(c, d) is an ascendant sub-
algebra of L(c, d) of codimension <1 and so it is an ideal of L(c, d) of codimen-
sion <1. Since L(c, d) has no proper ideals of finite codimension, we have
Hn L(c, d)=L(c, d). Hence L(c, d)<H<L(c, d)+S. Since dimS=1, we have
H=1L(c, d) or L(c, d)+S. Thus H=L.

REMARK. It is easy to see that in a Lie algebra in which every subideal is
an ideal, every descendant subalgebra is an ideal.

3.

In this section we shall give a sufficient condition for a Lie algebra to be
locally finite.

Let L be a finitely generated Lie algebra. Let {a,,..., a,} be a set of genera-
tors for L and let F be a free Lie algebra generated by {x,,..., x,}. Then there
exists a homomorphism 6 from F to L such that 6(x;)=a; (1<i<n). L is said to
be finitely presented if there exist finitely many elements y,,..., y,, of F such that
Ker0=3%m, yE. (See [4, p. 31] for the well-definedness of the definition.) We
denote by Fp the class of finitely presented Lie algebras.

We shall show some properties of &p.
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Lemma 3.1. (1) & < &p.
(2) Let L be a finitely generated Lie algebra. If I is an ideal of L such
that L/I is finitely presented, then I is finitely generated as an ideal.

Proor. (1) Let Le and let {e,,..., ¢,} be a basis for L. Then [¢;, e;]=
>ty ;e for some oy €t (1<, j, I<n), where T is a base field. Let F be a free
Lie algebra generated by {xy,..., x,} and let 0 be a homomorphism from F to L
such that 0(x;)=e¢; (1<i<n). We put y;;=[x;, x;]1— 27 o;;x; (1<1i, j<n) and
I=3%,;yf;, where yf; is the ideal of F generated by y;; Clearly I<Ker0.
Hence we have a homomorphism

y: F/I — F[Ker 0.

Obviously we have an isomorphism 8: F/Ker0—L. Let ¢=0: F/I>L.
Then ¢(x)=e; (1<i<n), where X;=x;+I1eF/l. Since [X; X;]=2/-; ;X in
F[I1, F/1 is spanned by {X,,..., X,}. Since {¢(X,)} ={e;} is a basis for L, {x,,..., X,}
is a basis for F/I. Hence ¢ is injective. Therefore y/ is injective. Thus we have
KerO0=I=3%,; yf;.

(2) Let L=<ay,..., a,y and let F be a free Lie algebra generated by {x,...,
X,}. We have a homomorphism 0: F—L such that 6(x;)=a; (1<i<n). Let
R=0-!(I). We have a homomorphism 8: F-»L/I such that 0(x;))=a;e L/l
(I1<i<n). Since L/I is finitely presented, there exist finitely many elements
Viseers Y Of F such that Ker§=3Y"_, yf. Clearly Ker@=R. Thus we have

I =6(R) = 9(2'}'=1 Yf) = Z'}':l O(J’j)l"

REMARK. Lemma 3.1 (2) is the Lie analogue of [4, Lemma 1.43 (i)]. The
Lie analogue of [4, Lemma 1.43 (ii)] is also valid, i.e., &p is E-closed.

Now we have the following

THEOREM 3.2. Let X be any {s, E}-closed subclass of §p. Then B(<)X
<L¥X.

Proor. Let Lef(<)X and let (L,),<, be an ascending series of ideals of L
such that L, ,/L,e X for all a<o. Let H be a finitely generated subalgebra of
L. Since H/H n L,=0, there exists an ordinal o minimal with respect to H/H n L,
€X. Now suppose that a is a limit ordinal. Since H is finitely generated and
H/HNL,e X<&p, we can apply Lemma 3.1 (2) to see that there exist finitely
many elements x,,..., x, of H N L, such that HnL,=>"7_, x¥. Since « is a limit
ordinal, there exists an ordinal B such that f<a and x,e Ly (1<i<n). Since
HnLy<H,wehave HNL,=3 - x¥<HNL;<HNL, Hence HnL,=Hn L,
Therefore H/HNLy;=H/HnL,eX. This contradicts the minimality of a.
Thus « is not a limit ordinal.
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Next suppose that « is non-zero. We have
HnL/HnL, ,=2(HnNL)+L,_y)L,—y <L,JL, {€X.

Hence HNnL,/HNL,.,esX=X. Therefore H/HNL,.,eeX=X, which con-
tradicts the minimality of «. Thus « must be zero and hence H € X.

COROLLARY 3.3. Let X be any {s, E}-closed subclass of § Then E(<)X
<LX. In particular B(<)F<LG.

Proor. By Lemma 3.1 (1) F<&p. Hence the statement follows from
Theorem 3.2.

4.

In this section we shall find some classes of Lie algebras in which every
serial subalgebra is a characteristic ideal. We begin by showing some elementary
properties of serial subalgebras.

LEMMA 4.1. Let L be a Lie algebra and let H be a serial subalgebra of L.
(1) If K<L, then Hn K ser K.
(2) IfLe@, then HsiL.

Proor. (1) Let {A,, V,:0€Z} be a series from H to L. Then clearly
{4,nK, V,nK: oceZ} is a series from Hn K to K.
(2) Since Le g, there exists a series from H to L of finite type.

For a locally finite Lie algebra we have some more properties.

LEMMA 4.2. Let LeLE and let H be a subalgebra of L. Then

(1) Hser L ifand only if H F si F for every finite-dimensional subalgebra
F of L.

(2) If Hser L and 0 is a homomorphism of L, then O(H) ser O(L).

ProOOF. See the proof of [2, Lemma 2 and the conclusion of the proof of
Theorem A].

REMARK. Since the join of two subideals of a finite-dimensional Lie algebra
need not be a subideal, the second statement of [1, Proposition 13.2.4] is false.

LEMMA 4.3. Let LeLE. If H is a finite-dimensional serial subalgebra of
L, then H*=N{., H'< L.

Proor. Let xeL. Since LeL@ and H € §, there exists a finite-dimensional
subalgebra F of L such that {x, H)<F. By Lemma 4.2 we see that H=
HnFsiF. By[l, Lemma 1.3.2] H°<F. Hence [x, H*]J< H®. Thus H°<L.
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Now we define a class X, of Lie algebras as follows: LeX, if and only if
either L=0 or L has an ascending series whose factors are finite-dimensional and
simple. By Corollaries 1.6 and 3.3 we see that X, <f(<)F<LE. Hence we can
use Lemmas 4.2 and 4.3 for ¥X,-algebras. Now we have the following

THEOREM 4.4. Let LeX,. If H is a serial subalgebra of L, then H is a
perfect characteristic ideal of L.

Proor. If L=0, then there is nothing to prove. Let (L,),<, be an ascending
series of L such that L,, /L, is finite-dimensional simple for any a <g. We shall
show the following by transfinite induction on o:

(x) If Hser L,, then H= L.

If =0, then the result is trivial. Let «a>0 and assume that (*) holds for any
B<a. Let HserL,. By Lemma 4.1 (1) we have H n Lgser L, for all f<a. It
follows that H n Ly<a L for all f<a«. 1If a is a limit ordinal, then we have

H=HnL,=\Uy,(HN Ly)< L.

If o is not a limit ordinal, then we have (H+L,_,)/L,_, ser L,/L,_, by Lemma4.2
(2). Since L,/L, €& (H+L,_ ,)/L,_, si L,/L,_; by Lemma 4.1 (2). Since
L,/L,_, is simple, we see that H<L, ; or that L,=H+L,_,. In the former
case H=HNnL,_;<tL. So we consider the latter case. Since HNnL,_ ;<L and
L,=H+L,_,, we have

LJHNL,_,=H/HN L+ L,_yJHN L,_,.

Hence HIHNL, =~L,/L, . Therefore H/HnL,_, is finite-dimensional and
simple. By Lemma 4.2 (2) we have H/HNL,_,ser LIHNL,_;. By Lemma 4.3

HIH N Ly =(H/H 0 L_)°< LIH 0 L, .

Thus we have H<tL. This completes the proof of (¥). Now the statement
follows from Theorem 1.5.

COROLLARY 4.5. Let L be a Lie algebra over a field of characteristic zero.
If L has an ascending series whose factors are finite-dimensional and semi-
simple, then every serial subalgebra of L is a perfect characteristic ideal of L.

PrOOF. Since a finite-dimensional semi-simple Lie algebra over a field of
characteristic zero is a direct sum of simple ideals, we have Le X,. Now Theorem
4.4 completes the proof.

S.

We consider a special case of X, in this section.
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PROPOSITION 5.1. (1) Let L be generated by a family (L;);., of finite-
dimensional simple ascendant subalgebras. Then if H is a serial subalgebra
of L, H is a perfect characteristic ideal of L and H=@® ,.\y L, for some subset
M of A.

(2) Let L be a locally finite Lie algebra and let (L,);., be a family of
finite-dimensional simple serial subalgebras of L such that L={L;: Ae A).
If H is a serial subalgebra of L, then H is a perfect characteristic ideal of L and
H=@® L, for some subset M of A.

PROOF. (1) As in the proof of Proposition 1.8 we see that L;<aL for all
ledA and L=®,y L, for some N=A. Hence LeX,. By Theorem 4.4 we see
that H is a perfect characteristic ideal of L. It follows from Lemma 2.1 that
H=@®,. L, for some subset M of A.

(2) By Lemma 4.3 we have L,=L¢<aL for all Lle A. Argue as in (1).

Now we recall the definition of a semi-simple neoclassical algebra (cf. [1,
Chap. 13]). Let LeLy. The sum o(L) of all locally soluble ideals of L is the
largest locally soluble ideal of L. L is called semi-simple if 6(L)=0. Let L be a
Lie algebra and let H be a subalgebra of L. H is said to be a local subideal of
L, denoted by H Isi L, if Hsi {H, X for any finite subset X of L. Over a field of
characteristic zero L is said to be a neoclassical algebra if L is generated by finite-
dimensional local subideals of L. The class of neoclassical algebras is denoted
by . Generally we have H<LE.

LEMMA 5.2. Let L be a locally finite Lie algebra. If H is a local subideal
of L, then H is a serial subalgebra of L.

Proor. Let F be a finite-dimensional subalgebra of L. Since HIsi L, we
have Hsi<{H, F). Hence HNFsi F. By Lemma 4.2 (1) we have H ser L.

We shall prove that in a semi-simple neoclassical algebra every serial sub-
algebra is a perfect characteristic ideal.

THEOREM 5.3. Let L be a semi-simple neoclassical algebra over a field of
characteristic zero. If H is a serial subalgebra or a local subideal of L, then H
is a perfect characteristic ideal of L and is a direct sum of some finite-dimen-
sional simple ideals of L.

Proor. By [1, Theorem 13.4.2] L is a direct sum of ﬁnite-dimensiqnal simple
ideals of L. The statement follows from Proposition 5.1 (1) and Lemma 5.2.

COROLLARY 5.4. Let L be a neoclassical algebra over a field of character-
istic zero. If H is a serial subalgebra of L, then H+o(L)<xL. In particular
if H is a local subideal of L, then H+a(L)<aL.
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ProoF. By Lemma 4.2 (2) we have
(H + a(L))/o(L) ser L/o(L).

By [1, Theorem 13.3.9] L/a(L) is a semi-simple $-algebra. By Theorem 5.3 we
have

(H + a(L))/o(L)<s L/o(L).

Thus H+o(L)<sL. If HlsiL, then by Lemma 5.2 we have Hser L. Hence
H+o(L)< L.

Corresponding to Proposition 2.3 we have

ProOPOSITION 5.5. Let L be a Lie algebra and let (L,),<, be an ascending
series of L such that L, /L, is finite-dimensional and simple for any a<o.
Then the following are equivalent:

(1) Crp,Lys1/L) =0 forall a<o.

(2) The only serial subalgebras of L are the L,.

(3) The only local subideals of L are the L,.

(4) The only ascendant subalgebras of L are the L,.

(5) The only descendant subalgebras of L are the L,.

(6) The only subideals of L are the L,.

(7) The only ideals of L are the L,.

(8) The only characteristic ideals of L are the L,.

Proor. By Proposition 2.3 we have the equivalence of (1), (4), (5), (6), (7)
and (8). By Lemma 5.2 we see that (2)=(3). Clearly (3)=>(6). By Theorem 4.4
we see that (8)=>(2).

6.

It is trivial that X,<X, and X, n =X, n §. Since there exists an infinite-
dimensional simple Lie algebra ([1, Theorem 10.3.1] or [5, Lemma 4.1]), we
have X,<X,. We have a characterization of an X; N F-algebra.

PROPOSITION 6.1. Let L be a Lie algebra.

(1) L belongs to X, N§ if and only if L is finite-dimensional and every
2-step subideal of L is perfect.

(2) Over a field of characteristic zero L belongs to X, N & if and only if L
is finite-dimensional semi-simple.

Proor. (1) The necessity follows from Theorem 4.4. Let L be a finite-
dimensional Lie algebra in which every 2-step subideal is perfect. Let I be a
minimal ideal of L. If J<I, then J=J2. By Lemma 1.3 J<L. Hence J=0
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or I. Therefore I is simple. Induction on dim L completes the proof.

(2) First we shall show that if L e X,, then the only LEW-ideal of L is the
zero ideal. Let I be an LEU-ideal of L and let (L,),<, be an ascending series of
L such that L, /L, is simple for any a<o. We show by transfinite induction on
o that INL,=0. If a=0, then there is nothing to prove. Let >0 and assume
that I n Lg=0 for all f<a. If a is a limit ordinal, then I N L,=\Ugzc(I N Lp)
=0. If o is not a limit ordinal, then (I/NnL,)+L,_,)/L,-; is an LEA-ideal of
L,/L,-,. Since L,/L,_, is simple, we see that L,/L,_;=((INL)+L,-{)/ Ly
or InL,<L,_,. By [1, Lemma 8.54] L,/L,_; cannot be locally soluble.
Hence InL,<L,_,. Therefore InL,=InL,_,=0. Thus if LeX, n, then
L is semi-simple. Since a finite-dimensional semi-simple Lie algebra over a
field of characteristic zero is a direct sum of simple ideals, we see that if L is
finite-dimensional semi-simple over a field of characteristic zero, then Le X, n §&.

By the proof of Proposition 6.1 (2) we have the following
ProposITION 6.2. X, N LEA=(0).

Now we define classes X; and X, of Lie algebras as follows: Le X, if and
only if H ser L implies H< L. Le X, if and only if H ser L implies Hch L. In
[7] the class M’ is investigated. Clearly X, <X;<9'. By [7, Theorem 5.2]
EUA NI =W NI, where T is the class of Lie algebras in which every subideal is
an ideal. We shall show that EA N X;=ANT.

LemMMA 6.3. Let L=A 4+ (z), where A is an abelian ideal of L and ad, z=
id,. If H is a serial subalgebra of L, then H is an ideal.

Proof. Let ay,...,a,eA. We put F={a;)+--+<a,y+{z). Clearly
F<L. Hence LeL®. Now suppose that H is a serial subalgebra not contained
in A. Then there exists x=a-+z in H with ae 4. Put E={a)+{z). Since
HserL and LelLy, HNEsiE by Lemma 4.2 (1). Since dim E<2, we have
HnE<E. Hence a=[a+z,z]eHNE. Therefore ze H. Let be A and put
G=(b)+<{z). We have HNnG<aG and hence b=[b, z]e HNG. Therefore
H=L. Thus we see that if H ser L, then H< A or H=L. In each case we have
H<L.

THEOREM 6.4. EU N X3 =EA N M =eA nT.

ProoF. Clearly X;<IM'<IT. Let LeeANIT. By [7, Theorem 5.2] Le A
or Lis as in Lemma 6.3. Thus we have L€ X;.

As for X, we have the following
THEOREM 6.5. LeeUnX, if and only if Le &, or Le §,\U.
Proor. Clearly &, <eUnX,. Let Le,\A. Since L is complete, we
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have Der (L)=Inn(L). Let Hser L. Since dim L=2, we have H<L. Hence
HDer(L)YcH. Thus LeX,. Conversely let Lee2nX,. By [7, Theorem
52] Le W or L=A+4<{z), where A4 is an A-ideal of L and ad, z=id,. Clearly
X, NALF,. Let fbe an endomorphism of A. Then f induces a derivation f of
L such that zf=0. Since LeX,, we have Ae&,. Thus we conclude that
Le@, or Le &,\U.
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