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1. Introduction

Graph theory is a subject of combinatorics in mathematics and it is one of
the most flourishing branches of modern algebra with wide applications to various
fields. The problem of decomposing a graph into a union of subgraphs each
isomorphic to a given graph is an important subject of graph theory. There are
many types of decomposition problems, such as, clique decomposition [7, 15],
claw decomposition [18, 19, 20, 22, 24], path decomposition [9, 13, 14], cycle
decomposition [4, 6, 16], bipartite decomposition [10, 11] and so on. Some
of them are used, for example, for combinatorial file organization schemes in
filing theory and some are used for construction schemes of designs of experi-
ments in statistics.

We are concerned with a bipartite decomposition, which includes a claw
decomposition as a special type. It will be used for a design of combinatorial
file organization scheme.

Some results [5, 10, 11, 17, 24] are known about the decompositions of a
complete graph Km with m points. The problem of claw decomposition of a com-
plete graph Km has been raised and solved completely by Yamamoto, Ikeda,
Shige-eda, Ushio and Hamada [24]. The claw decomposition of a complete
graph provides us a balanced file organization scheme of order two for binary-
valued records. It is optimal in such a sense that it has the least redundancy
among all possible balanced binary-valued file organization schemes of order two
having the same parameters, provided the distribution of records has the property
of in variance with respect to the permutation of attributes. Such a scheme is
called HUBFS2 [25]. Huang and Rosa [10] and Huang [11] have investigated
a bipartite decomposition of a complete graph Km by introducing the concept of
the balance of points.

As for the decomposition of a complete multipartite graph, many authors
[18, 19, 20, 21, 22, 24] have studied. The complete solution of the problem of
claw decomposition of a complete bipartite graph has been given by Yamamoto
et al. [24]. Ushio, Tazawa and Yamamoto [20] have given a theorem which
states a necessary and sufficient condition for a complete m-partite graph Km(n,...,
n) with m sets of n points each to have a claw decomposition. Moreover, Tazawa,
Ushio and Yamamoto [18] have given a necessary and sufficient condition for a
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complete m-partite graph Km(n,...9 n) to be decomposed into partite-claws, where
a partite-claw is a particular type of claw. The former decomposition yields a
generalized balanced multiple-valued file organization scheme of order two
which is called GHUBMFS2 [27]. The latter one yields an optimal balanced
multiple-valued file organization scheme of order two, called HUBMFS2 [26],
in that it has the least redundancy among all possible balanced schemes with the
same parameters for an equally likely distribution of multiple-valued records.
The problem of balanced claw decomposition of a complete m-partite graph
Km(n9...9 n) has been solved completely by Ushio [22].

In this paper, we shall study the bipartite decomposition of complete multi-
partite graphs. In Section 3, a theorem which states a necessary and sufficient
condition for a complete bipartite graph K(nu n2) to have a bipartite decom-
position will be given (Theorem 3.2). Some corollaries will also be given. In

• Section 4, we shall investigate a bipartite decomposition of a complete m-partite
graph Km(nl9...9nm) with m > 3 . Especially when nl = '" = nm = n, it will be
discussed that a bipartite decomposition yields a new type of balanced multiple-
valued file organization scheme of order two by introducing the concept of the
balance of points. Some theorems which deal with a balanced bipartite decom-
position of a complete m-partite graph Km(n9..., n) will be given.

2. Preliminaries

This paper is concerned with graphs without loops or multiple lines. Any
term not defined here can be found in [1, 8]. Let G(V, X) be a graph, where V
is the point set and X is the line set of the graph. A graph is called a multipartite
graph if the point set Fcan be partitioned into m subsets Vl9...9 Vm such that no
two points in the same subset are adjacent. Each subset Vt is called its inde-
pendent set. A multipartite graph is said to be a complete m-partite graph if
each point in Vt is adjacent to every point except those in Vt. The complete
m-partite graph is denoted by Km(nl9...9 nm), where nf is the cardinality \Vt\ of
Vi(i=l9...9m). A complete graph Km with m points may be regarded as a
particular type of complete m-partite graph where n1 = --- = nm=\. When m = 2,
a complete 2-partite graph K2(nl9 n2) is usually called a complete bipartite
graph and is denoted simply by K(nl9 n2). In particular, K(l, c) with c + 1
points and c lines is called a claw or star of degree c.

DEFINITION 1. Let G be a complete bipartite graph K(kl9 k2). A complete
m-partite graph Km(nl9..., nm) with m independent sets of nl9..., nm points each is
said to have a K(kl9 k2)-decomposition if it can be decomposed into a union of
line-disjoint subgraphs each isomorphic to G. Each of those subgraphs is called
a block of the original graph Km(nl9..., nm).
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DEFINITION 2. A bipartite decomposition is said to be balanced if each
point of Km(nl9..., nm) belongs to exactly the same number of blocks.

3. Bipartite decomposition of a complete bipartite graph

In this section, we shall discuss a bipartite decomposition of a complete
bipartite graph.

3.1. Bipartite decomposition theorem of K(nu n2)

Given two positive integers kx and /c2, suppose that for a positive integer n
there exist two nonnegative integers x and y such that an equation n = k1x-\-k2y
holds. We call the ordered pair (x, y) a solution vector of the equation. Let
w(n; kl9 k2) denote the number of distinct solution vectors, where w(n; ki9 /c2) = 0
means that there does not exist any solution vector of the equation. We write
w(n), for short, instead of w(n; kl9 k2) throughout this paper. We assume
ni<n2 and fc!<fc2 without loss of generality.

LEMMA 3.1. Let nl9n29kl9k2 be positive integers, where nl<n2 and
kl<k2. A necessary condition for a complete bipartite graph K(nl9 n2) to
have a K(ki9 k2ydecomposition is that the following conditions (i)-(m) hold:

( i ) nxn2 is an integral multiple of ktk2.
(ii) n1 > k1 and n2 > k2.
(iii) w(nt) > 1 and w(n2) > 1.

PROOF. Since K(nl9 n2) has n1n2 lines and every block in the K(kl9 k2)-
decomposition has ktk2 lines, the first condition is, obviously, necessary. If the
second condition does not hold, then no K(ku k2) is a subgraph of K(nu n2),
so that K(nu n2) does not have any K(kx, fc2)-decomposition. Therefore, the
condition (ii) is necessary. Let Vi9 V2 be the independent sets of K(nl9 n2).
For each block B, let Bx denote the independent set of B with cardinality kx and
let B2 denote that of B with cardinality k2. For a point u in Vl9 let y(u) and
x(w), respectively, be the number of J5±*s and that of B2's such that u appears in
Bx and B2, Then the point u is adjacent both to k2y(u) points of y(u) B2

9s and
to kxx(u) points of x(u) B^s. In K(nl9 n2) the point u is adjacent to n2 points
of V2. Therefore, we have

(3.1) n2 = /c1x(w) + fc2X").

If for a point v in V29 we denote by y(v) and x(v) the respective numbers of B^s
and B2s in which v appears, then by the similar discussion we have

(3.2) n± = M ^ +
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As seen in (3.1) and (3.2), the ordered pair (x(v)9 y(v)) is a solution vector of
n1 = k1x + k2y and the ordered pair (x(u), y(u)) is that of n2 = ktx + k2y. Thus
we obtain w ^ ) ^ ! and w(n2)>l, that is Condition (iii). This completes the
proof.

We shall see in the following that the conditions stated in the above lemma
are not sufficient.

THEOREM 3.2. Let nl9 n29 kl9 k2 be positive integers with nl<n2 and
k,<k2.

(a) When w(n1) = l, i.e., when there exists only one solution vector (x0, y0)
of nl = k1x + k2y, a complete bipartite graph K(ni9 n2) has a K(kl9 k2)-decom-
position if and only if there hold Conditions (i)-(iii) in Lemma 3.1 and the follow-
ing Condition (iv):

(iv) There exists a nonnegative integer vector (/i,. ••>//?) such that

(3.3) S j = i/« = «i and Mo"2 = S? = i k2yqfq,

where (xq, yq), q = \9..., /?, are solution vectors of n2 = k1x + k2y.
(b) When w(n1)>2, i.e., when the number of distinct solution vectors of

nl = klx + k2y is greater than or equal to 2, a complete bipartite graph K(nl9 n2)
has a K(kl9 k2)-decomposition if and only if there hold Conditions (i)-(iii) in
Lemma 3.1.

The proof of this theorem will be given in the subsection 3.4. Under the
restrictions imposed on a set of the original parameters, we have some corollaries.

COROLLARY 3.3. For a set of parameters n1 = n2 = n, kl9 k2 (k1<k2), a
complete bipartite graph K(n, n) has a K(kl9 k2)-decomposition if and only if
they satisfy Conditions (i) and (ii) in Lemma 3.1 and the inequality w(n)>2.

PROOF. It is enough to show that when w(n) = l, the solution vector (x9 y)
of n = klx + k2y can not satisfy Condition (iv) of Statement (a) in Theorem 3.2.
Assume that w(n) = l. Let (x, y) be the solution vector of n = k1x + k2y. From
(3.3) we have k±xn = k2yn. Since n = k1x + k2y9 we have n = 2k1x = 2k2y9 which
shows that (0, 2y) and (2x, 0) are also solution vectors of n = k1x + k2y. Con-
sequently, the assumption that w(n)=l implies x = y = 09 which contradicts the
fact that n is positive. This completes the proof.

COROLLARY 3.4. When k1 = k2 = k, a complete bipartite graph K(nx, n2)
has a K(k9 ^-decomposition if and only if

nx = 0 and n2 = 0 (mod k).

When /c1 = l, it can be shown that Theorem 3.2 is equivalent to the follow-
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ing corollary, which has been given by Yamamoto et al. [24].

COROLLARY 3.5. A complete bipartite graph K(nu n2) (n1<n2) has a
K(l, k2)-decomposition if and only if

(1) n2 = 0 (mod k2) when nt < k2,

(2) nln2 = 0 ( m o d k2) when nx> k2.

3.2. Adjacency matrix and bipartite decomposition of K(nu n2)

Let Vl9 V2 be the independent sets of K(ni9 n2), where IP̂ I = ni_, \V2\=n2

and Vt fl K2 = 0 . We label those points in VY and V2 by vll9...9 vlni and v21,...,
v2n2, respectively. Consider a block K(kl9 k2) which is a subgraph of K(nu n2).
Then the block is denoted by {Bx; B2}9 where Bt is a subset of Vt (i = 1, 2). When
IB^fcjL and |B2 | = /c2, the block {Bx; B2} is said to be A-type. When \Bx\ = k2

and |JB2| = /cl5 the block {Bt; B2} is said to be B-type. If k1 = k2, in particular,
we refer to two types as ^4-type. In Fig. 1, a complete bipartite graph K(5, 6)
with two independent sets Vl9 V2 of 5, 6 points each is shown. For k1=2 and
fc2 = 3, an ^4-type block {Bl; B2} with B1 = {i;11, v13} and 5 2 = {z;22, u23, v26} is
also illustrated.

r\

x(5,6)
Fig. 1. A complete bipartite graph and an A-type block
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To a block {B1; B2} of K(nl9 n2), there corresponds a 0-1 matrix M=\\mij\\
of size ntxn2 which is defined by

{ 1 if vlieB1 and v2jeB2

0 otherwise.

This matrix M is called an adjacency matrix of the block {Bl; B2}. Note that
the matrix M is reduced to a matrix of the form

(3.5) |BlU*21

[_0 0

by an appropriate permutation of rows and columns, where Gtu is a t x u matrix
whose elements are all one. To a matrix M whose reduced matrix is of the form
(3.5), there corresponds, obviously, a block {Bt; B2}.

We call an adjacency matrix M of a block {Bx; B2} an A-type matrix or a
B-type matrix according as the block {Bt; B2} is ^4-type or B-type. An ^4-type
matrix is denoted by MA = \\m\f\\ and a B-type matrix is denoted by MB= \
It is easy to see that we have the following relations:

( fcx if v2jeB2 ( k2 if vlieB1

I 0 otherwise, J lJ I 0 otherwise,

/c2 if v2jeB2 ( kx if

0 otherwise, J lJ I 0 otherwise,

(3.8) 2"=i ^"=1 m r ) = S?=i 2"=i m r ) — kxk2.

Suppose that K(nu n2) has a X(fcl5 /c2)-decomposition. Let bt and b2 be
the number of ^4-type blocks and that of B-type blocks, respectively. If we let
the p-th ^4-type block and the q-th B-type block correspond to a ^4-type matrix

and a B-type matrix MB
q\ respectively, then it is easily seen that

(3.9) G
nutt2

Conversely, suppose that there exist bx ^4-type matrices M{p and b2 B-type

matrices M ^ } such that Gnun2 can be expressed in the form (3.9). Consider a

v4-type block and a B-type block corresponding to M^p) and M$\ respectively.

Then it is easily seen that a union of those ^4-type and B-type blocks is a com-

plete bipartite graph K(nl, n2). Thus we have the following theorem.

THEOREM 3.6. A complete bipartite graph K(nu n2) has a K(kl9 k2)-

decomposition if and only if there exist b1 A-type matrices M(^ and b2 B-type

matrices M^ such that Gnun2 can be expressed in the form (3.9).



Bipartite decomposition of complete multipartite graphs 327

3.3. Some lemmas

The following lemmas are useful for the proof of Theorem 3.2. With respect
to the existence of a 0-1 matrix with given row sum and column sum vectors, we
quote a result given by Yamamoto et al. [24, Corollary 1.3].

LEMMA 3.7. Let rly...,rni and s be nonnegative integers. There exists a
0-1 matrix of size nl xn2 having the row sum vector ( r l v . . , rni) and the column
sum vector (5,..., s) if and only if

(3.10) £ ^ 1 rt = n2s and rt < n2 for all i.

Under the condition (3.10), such a matrix is straightforwardly constructed
by the following

LEMMA 3.8. (Algorithm) Form a sequence R in such a way that the first
r1 positions have 1 and the next r2 positions have 2,..., and the last rni positions
have nl9 i.e.,

(3.11) R: . U ^ , 2111;12,..., nilli:Ln1.

Form another sequence C in such a way that the subsequence 1,..., n2 is repeated
s times, i.e.,

(3.12) C: l,...,n2, 1,..., n2,..., 1,..., n2.

Let iR(h) andjc(h) be the values in the h-th position ofR and in the same position
of C, respectively, and consider a set E = {(iR(h), jc(h))\h = l,..., n2s} of n2s
ordered pairs (iR(h), jc(h)). Define a 0-1 matrix M= ||my|| of size n1 x n2 by

(3.13) ij \
1 0 otherwise.

Then the matrix M is a 0-1 matrix of size nt x n2 having the row sum vector
(ru..., rni) and the column sum vector (s,..., s).

PROOF. Since rt<n2 for all i, it can be seen easily that (iR(h),jc(h)) =
(iR(hf),Jc(h')) if and only if h = h!. We observe from two sequences # and C
that the row number i occurs rt times in R for each i = l,...,n1 and that the column
number j occurs exactly s times in C for each j — \,...,n2. Therefore, we have
yZnjlimij = ri(i = l,...,n1) and £?=i rao = s (; = 1,..., n2). This completes the
proof.

For an ordered pair (iR(h), jc(h)), we call iR(h) the row coordinate and jc(h)
the column coordinate.
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We prove the following lemma related to Lemma 3.8.

LEMMA 3.9. Let r l v . . , rni and s be nonnegative integers satisfying the
condition (3.10). Suppose that rh s and n2s are integral multiples of k2, kx and
k1k2, respectively. Then the matrix M constructed by Lemma 3.8 can be
written as the sum of A-type matrices M^p) of size nx x n2, i.e.,

(3.14) M = E ^ i M{p) where bt = n2sl(kxk2).

PROOF. Consider a sequence X composed of all elements in E, which is
given in Lemma 3.8, i.e.,

(3.15) X:e(l),...,e(T)

where e(h) = (iR(h)Jc(h)) and T=n2s. Put t=T/kt. Then bl = t/k2. In this
sequence, if we select the first t elements as the first row, the next t elements as
the second row,..., and the last t elements as the last row, then we have the follow-
ing rectangular array of size k1xt:

e(2) - . e(i)

(3.16) e(t+l) e(t + 2) .-• e(2t)

e(T-t+l) e(T-t + 2) ••• e(T).

Partition this array into bt subarrays, which are of size kx x k2, as follows:

(3.17)

Then each subarray A(p) has the following properties:
Property A. The values of the row coordinates of elements in each row of

A^p) are all equal.
Property B. The values of the column coordinates of elements in each

column of A(p) are all equal.
Since rt are integral multiples of k2 for all i, it can be easily checked that

each A(p) has Property A. Since s is an integral multiple of k1 and t is a common
multiple of k2 and n2, it can be easily checked that each A^ has Property B.
Let £ ( p ) be a set of all elements in A(pK If we define a 0-1 matrix Af(p) = Hm^ll
of size nx x n2 by

{ 1 if (iJ)eE^
(3.18) m\? = ]

I 0 otherwise,

then it can be seen from Properties A and B that the matrix M (p ) is an ^4-type
matrix.

Observing carefully the structures of those matrices M<p) and of the matrix
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y which is constructed by Lemma 3.8, and noting that E = \Jb
pL1E

(<p) and
n £ ( p / ) = 0 for p^p', we have

(3.19) M = SJi-i Af<*> where bi = TI(k1k2).

This completes the proof.

From Lemma 3.9, we have

LEMMA 3.10. Let r1?..., rWl and 5 be nonnegative integers which satisfy the
condition (3.10) and all the conditions in Lemma 3.9. Suppose that n2 — ri9

nx —s and n ^ ^ — 5) are integral multiples of ku k2 and kxk29 respectively.
Then a complete bipartite graph K(nl9 n2) has a K(ki9 k2)-decomposition.

PROOF. Put r'i = n2 — ri(i = l9...,nl) and sf = n1—s. Consider a sequence
Rf obtained from the replacement of rt in (3.11) by r\ and form another sequence
C" in such a way that the subsequence n2,..., 1 is repeated s' times, i.e.,

(3.20) C':n2 , . . . , 1, n2,..., 1,..., n2,..., 1.

Let iR>(h) and jC'{h) be the respective values in the n-th position of Rr and in the
same position of C . We denote {(iR>(h), jc,(h)) \ h = 1,..., n2s'} by E'. Define a
0-1 matrix M ' = ||m}y|| of size nx x n2 by

(3.21) mij = {
1 if

otherwise.

Then M' has the row sum vector (ri,..., r'Wl) and the column sum vector (sr,..., s').
By the method similar to the proof of Lemma 3.9, the matrix M' can be written
as the sum of B-type matrices M ^ of size nx x n2, i.e.,

(3.22) M ' = S J i i Afi4) where b2 = n^'Kk^).

Let S = {(iyj)\i = l9...yn1;j = ly...9n2}. Since r, + r- = n 2 for all f, we have t he
relat ions

(3.23) E [) Ef = S and £ n E' = 0 ,

where E is given in Lemma 3.8. Therefore, since S, E and E' are able to be
identified with GnijM2, M and M', respectively, where M is given in (3.13), we have
Gnun2 = M + M'. Thus by (3.14) and (3.22), GBliB2 is in the form (3.9). Hence,
we have the desired result. This completes the proof.

Finally, we shall give a lemma, which may be called an extension lemma.

LEMMA 3.11. If K(nu n2) has a K(ku k2)~decompositiony then K(dnu dn2)
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has a K(dkl9 dk2)-decomposition for a positive integer d.

PROOF. Let Vl9 V2 be the independent sets of the K(dnl9 dn2), where
\Vi\ = dni (i = 1, 2). Divide Vt into nt subsets of d points each. Construct a new
graph G with a point set, where the point set consists of just constructed subsets
and two points are adjacent if and only if the subsets come from distinct inde-
pendent sets of K(dnl9 dn2). Then G is a complete bipartite graph K(nl9 n2).
If we note that the cardinality of each subset identified with a point of G is d and
that K(nl9 n2) has a K(kl9 /c2)-decomposition, we can see that the desired result
is obtained. This completes the proof.

3.4. Proof of Theorem 3.2

3.4.1. Proof of Statement (a)
(Necessity) Suppose that K(nl9 n2) has a K(kl9 /c2)-decomposition. Let

Vl9 V2 be the independent sets of K(nl9 n2). Let bx be the number of ^4-type
blocks of the K(ku /^"decomposition of K(nl9 n2). Consider x(u)9 y(u), x(v)
and y(v) appeared in the proof of Lemma 3.1. Then in those ^4-type blocks,
there exist k2y(u) lines incident to u for each point u in Vx and there exist kxx(v)
lines incident to v for each point v in V2. Since the sum of k2y(u) over all u in
Fx is the number of all lines in those ^4-type blocks and the same thing also holds
for the sum of kxx(v) over all v in V2, the equality

(3.24) ZveV2 fcl*(lO = ZueF, k2y(u)

holds. Let (x09 y0) denote the solution vector of n1 = klx + k2y. Then since
w(n1) = l, it is observed that x(v) = x0 and y(v) = y0 for all v in V2. Thus by
(3.24) we have

(3.25) k1xon2 = Zuevik2y(u).

For each solution vector (xq9 yq) of n2 = k1x + k2y (q = l,..., (I), let fq be the
number of w's in Vx such that (x(u), y(u)) = (xq, yq). Then we have

(3.26) E J = 1 / , = nx and ZMeFl y(u) = 2 j = 1 yjq where p = w(n2).

Applying (3.26) to (3.25), we obtain the second expression in (3.3). Hence,
Condition (iv) is necessary.

(Sufficiency) We assume that a set of parameters nl9 nl9 kl9 k2 satisfies
Conditions (i)-(iii) in Lemma 3.1. Since by Condition (iii) each of n1 = fc1;c +
k2y and n2 = k1x + k2y has at least one solution vector, a common divisor of k±
and k2 is a divisor of nl and is also that of n2. Therefore, it follows from Lemma
3.11 that it is enough to show the sufficiency of Condition (iv) only when kx and
k2 are relatively prime. The sufficiency will be shown by Lemma 3.10. Consider
a vector (r l5..., rni) and an integer s such that
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(3.27) (r l5..., rni) = {k2yl9..^9k2yl9 k2y2,.~,k2y29...9
/i fi

(3.28) s = kxx0.

Then the second condition in (3.10) is satisfied. Clearly, rt is an integral multiple
of k2 for every i and s is an integral multiple of kx. From (3.3) in Condition (iv)
and (3.28) we have

(3.29) n2s = n2klXo = SS=i k2yqfq,

which implies that the first condition in (3.10) holds. Therefore, n2s is an inte-
gral multiple of kx and is also that of k2. Since kt and k2 are relatively prime,
n2s is an integral multiple of fe1fe2. Noting that rt has the form k2yq from (3.27)
and that n2 = klxq + k2yq, it follows that n2 — ri is an integral multiple of kt for
each i = l,..., nt. Similarly, nx— s is an integral multiple of fc2, since ni = k1x0 +
k2y0. As seen in Condition (i) and in the above, n2(n1 — s) is an integral multiple
of ktk2. Hence, from Lemma 3.10 K(nu n2) has a K(kl9 /c2)-decomposition.
This completes the proof of Statement (a) in Theorem 3.2.

3.4.2. Proof of Statement (b)
As stated in the previous subsection, it is enough to show that Statement (b)

holds only when kx and k2 are relatively prime. There are two cases: w(n2) = l
and w(n2) > 2.

Case (1). w(n2) = l : In this case, it is easy to see that n2<2k1k2. Since
k1 and k2 are relatively prime, each of solution vectors of nl = k1x + k2y is of the
form (z1H-/ife2, z2 + v/c!) for some nonnegative integers \i and v, where z1<k2

and z2<kt. Therefore, noting nl<n2<2k1k2, we have w(n1) = 2, since w{n^)>2.
Two solution vectors (xl9 yj and (x2, y2) of n1 = k1x + k2y have the following
relations:

(3.30) Xj < fc2, X2 = Xt + fe2, J i = J2 + fel, ^2 < fel •

Let (x0, y0) t>e t n e solution vector of n2 = k1x + k2y, so that xo<k2 and ^o<^i-
T>utf1=(klx0n1 — k2y2n2)l(k1k2) and f2 = n2—f1. Since fci and fc2 are relatively
prime, from Condition (i) it can be seen that k1xon1 and k2y2n2 are integral
multiples of k1k2. Therefore,/! is an integer. Using two inequalities xo<k2

and ni<n2i we lead that §<fx<nu so that 0< / 2 <n 2 . Put

(3.31) rt = {
k1x1 (i = l,...,/i)

M2 (* =/i + l,..., n2),

(3.32) s

Here, note that / x -f/2 = n2 and k2yon1 = k1x1fi + k1x2f2. The latter fact can be
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seen after some calculations. From these facts it follows that all the assumptions
in Lemma 3.10 are satisfied. Hence, K(nl9 n2) has a K(ku /c2)-decomposition.

Case (2). w(n2)>2: In this case, put n'i = ni — (w(ni) — 2)k1k2(i==l,2).
Then we show the following

LEMMA 3.12. The equality w(n'1) = w(ri2) = 2 holds.

PROOF. Let (x lp, ylp), p= l , . . . , a, be solution vectors of nl = k1x + k2y,
where a = w(n1), * i i< -* -<x l a and yu>'->yla. Since kt and k2 are relatively
prime, we have x11<fc2 and yi<x<k1. Furthermore, we have

(3.33) xlp = xn + (p-l)k2 and ylp = yla + (cc-p)^ .

Therefore, substituting (3.33) into ni = klxlp + k2ylp9 we obtain n[ = k1x11 +
k2yl(t^-kxkl9 which has two solution vectors (x l l 5 Jia + ^i) and ( x n + fe2» .Via)-
Hence, w(ni) = 2. Similarly, w(n2) = 2. This completes the proof.

We use the following reduction: K(nl9 n2) can be decomposed into four
subgraphs K(n[, n'2), K(n'l9 t^k^k^, K(n2, f1fc1fe2)

 a n ( l K^t^^, t2k1k2), where
ti = w(ni) — 2 (i = l, 2). Clearly, the last subgraph has a K(kl9 /c2)-decomposition.
Since w(n'1) = w(ri2) = 2i n\ and n2 can be represented as n[ = k1x + k2y and n2 =
k1x' + k2y', respectively. From these representations, it follows that each of the
middle two subgraphs has a K(kl9 fc2)-decomposition. Thus it remains only to
prove that the first subgraph K(n'u n2) has a K(ku /c2)-decomposition. Ob-
viously, n[ and n2 satisfy Conditions (i)-(iii) of Lemma 3.1.

We assume first that n[>n2. From w(n'l) = w(ri2) = 2, as seen in the proof
of Lemma 3.12, n\ can be written as

(3.34) n\ = kxxn + k2yn = k^xi2 + k2yi2 for i = 1, 2,

where

(3.35) xn < k2, xi2 = xn + k2, yn = yi2 + kl9 yi2 < kx.

There are two subcases to consider.
Case (2.1). k1xiln2>k2y22n[: Put f21=(k1x11n2 — k2y22n

f
1)/(k1k2) and

f22 = n[—f2l. Then f2l is nonnegative. Since xll<k2 and n'1>n'2,f22 is also
nonnegative. Since /q and /c2 are relatively prime, from Condition (i) it can be
seen that k1x11n

f
2 and k2y22n\ are both integral multiples of kxk2. Therefore,

we conclude t h a t / 2 1 a n d / 2 2 are nonnegative integers satisfying f21+/22 = n\.
Put

r
(3.36) r£ = I

1 /c2y22 0 ' = / 2 i + I ,-- ,
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(3.37) s = k1x11.

Note that klx11n2 = k2y2lf2l + k2y22f22
 a n c * / 2 1 + / 2 2 = ni. Thus by the dis-

cussion similar to that in Case (1), it follows from Lemma 3.10 that K(n[, n2)
has a K{kx, /c2)-decomposition.

Case (2.2). k1x11n
f
2<k2y22n[: Put /2 i=(/c1k2n2 + /c1x11n2-/c2^22ni)/

(k1k2) and j 2 2 = n\— f2l. Though we need the tedious calculations, by the dis-
cussion similar to that in Case (2.1) we can show that /2 1 and/ 2 2 are nonnegative
integers satisfying f21 +/22 = n i - Consider rt given in (3.36) and put

(3.38) 5 = k±xl2.

Then from the method similar to Case (2.1), K(n'u n2) has a K(kl9 /c2)-decom-
position.

In the case when n[ < n2, if we exchange n\ and n'2, it can be shown from the
method in the case n[>n2 that K(n'u n2) has a K(ku /c2)-decomposition. This
completes the proof of Statement (b) in Theorem 3.2.

4. Bipartite decomposition of a complete multipartite graph

In this section, we shall discuss a bipartite decomposition of a complete
m-partite graph with m > 3 .

4.1. Bipartite decomposition theorem of Km(nl9...9 nm)

4.1.1. Necessary conditions and claw decomposition theorem
Let Vi (i = l,..., m) be m independent sets of Km(nu..., nm), where n{ is the

cardinality of Vt. Let iV = £f=1 nt. With respect to a K(kl9 /c2)-decomposition
of Km(nl9..., nm), we have the following theorem, where we assume k1<k2 and
n1 < • • • < nm without loss of generality.

THEOREM 4.1. If a complete m-partite graph Km(n1,..., nm) has a K(kl9 k2)-
decomposition, where k1<k2 andn1<"-<nm9 then the following conditions hold:

( i ) 2i<7 ninj *5 an integral multiple of klk2 .
(ii) (Zi<jW^)/fc2^iV -nm.
(iii) w(N — nt) > 1 for i = 1,..., m.

PROOF. Since Km(nl9...,nm) has Y.t<jninj n n e s a n d every block in the
K{ku /c2)-decomposition has kxk2 lines, Condition (i) is, obviously, necessary.
Suppose that Km(nl,..., nm) can be decomposed into a union of line-disjoint b
blocks. We write those blocks as B^ = {B[p); B(

2
P)} (p=l , . . . , ft), where b =

(IlKjninjMk^MBi*^^ and [fl^| = fc2. Let V^ = KJb
p=1B[^ and F^) =

Wj=i 52
p ) . Then it can be shown that at most nm points of Xm(n l v . . , nm) do not

belong to F ( 1 ) . If not, i.e., if there exist at least nm +1 points which do not belong
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to F ( 1 ) , then those points belong only to F<2) and, moreover, they are not ad-
jacent with each other. Because all lines in Xm(n l v . . , nm) are covered by all
lines joining points in F^> and points in F<2>. This contradicts the fact that
among those points there exist at least two points being adjacent, since the cardi-
nality of each independent set of Km(nu..., nm) is less than or equal to nm. There-
fore, at least N — nm points belong to F ( 1 ) . Since kx points of B(p) are all distinct
for each block B(p\ the number of blocks is at least (N — nn)jk1 which implies
b>(N — nm)/fci- Thus we have (Z;<y ninj)/k2>N — nm. Condition (ii) is, there-
fore, necessary. For a point v of Vif let yt(v) and xt(v) be the number of B[p)'s
and that of B(

2
p)9s in which v appears, respectively. As there exist N — rii lines

incident to v, we have N— ni = k1xi(v) + k2yi(v). The vector (x^v)9 yt(v)) is a
solution vector of N — ni = k1x + k2y. Therefore, we have w(N — nt)>l. Con-
dition (iii) is, therefore, neccessary. This completes the proof.

When k1 = l and n1 = --- = nm, we have the following claw decomposition
theorem, which has been proved by Ushio, Tazawa and Yamamoto [20].

THEOREM 4.2. A complete m-partite graph Km(n,...,n) has a K(l, k2)-
decomposition if and only if the following conditions hold:

(i) ( ™ jn2 is an integral multiple of k2.

(ii) mn > 2k2.

Note that Condition (iii) of Theorem 4.1 always holds when /c1 = l. In
fact, for any positive integer n, the vector (x, y) = (n-[njk2~]k2, [n//c2]) ([<*] de-
note the greatest integer not exceeding a) is a solution vector of n = klx + k2y
with kx — 1, so that we always have w(n)> 1.

4.1.2. Example of a bipartite decomposition constructed cyclically
In the following, we shall give an illustrative example of bipartite decom-

position of a complete m-partite graph, which is constructed cyclically. It is an
example suggestive of an application to a combinatorial balanced multiple-valued
file organization scheme of order two.

EXAMPLE 1. Consider a complete 5-partite graph K5(3, 3, 3, 3, 3) with 5
independent sets, each of them having 3 points. We label 15 points of K5(39 3,
3,3,3) sequentially as vl9...,v15 and we denote its independent sets by Vt =
{vh vi+5, vi+l0} (/ = 1,..., 5). When fcx=2 and /c2 = 3, 15 blocks are given as
follows:

BO) = {vl9 v2; v3 9v8 , i;13} B<9> = {v9 , vl0; vll9 vl9 v6 }

= {v2, v3; v4 , v9 , v14} J3<10) = {vi09 u u ; v129 v2i v7 }

= {v3, v4; v5 , v109 v15} B(n> = {viU v12; v139 v39 v8 }

= {i?4, v5; v6 , vii9 vi } B<12> = {v129 vi3; v14, v49 v9 }
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= {v59 v6; v7 , i;12, v2 } £<13) = {> 1 3 , v14; v15, v59 v10}
= {u6 , t>7; i>8 , v13, v3 } £(14> = {i?14, i ;1 5 ; i>x , t;6, t ; n }

= {i;7, v 8 ; v9 , i;14, i?4 } £<15> = {» 1 S , i^ ; v2 , t>7, ̂ 12} •

= {t;8, t;9; i;10, v159 v5 }

It can be easily checked that these 15 blocks give a K(2, 3)-decomposition of
X5(3, 3, 3, 3, 3). Let B[^ = {vp, vp+1} and B^ = {vp+2, vp+l9 vp+12}, where the
indices of points are reduced modulo 15 to the set of residues {1,..., 15}. Then
B<*> can be expressed with B[p) and B2

P\ i.e., B^ = {B{p); B(
2
p)}9 p = l,..., 15.

From this observation we see that these blocks are constructed cyclically. In
this bipartite decomposition, the following properties can be seen:

(1) Each block contains exactly 5 points and exactly 6 lines (property of
uniformity).

(2) Each line appears in exactly one block (property of uniqueness).
(3) Each point appears in exactly 5 blocks (property of balanceability).
(4) Given any line, the block number of the block containing the line can

be computed algebraically (property of identifiability). This example is also
that of balanced bipartite decomposition (to be continued).

Properties (l)-(4) are essential for a balanced multiple-valued file organi-
zation scheme of order two, namely, BMFS2. Therefore, we can see that a
balanced bipartite decomposition will be applied to a new type of BMFS2. Such
a scheme will be called a bipartite-type BMFS2. With respect to a BMFS2, the
reader is referred to [26].

In the next section, we shall investigate a balanced bipartite decomposition
of a complete m-partite graph.

4.2. Balanced bipartite decomposition of Km(n,..., n)

In this section, we shall restrict our discussion to the case that n1 = -~ = nm = n
and investigate a balanced bipartite decomposition of Km(n,..., n).

4.2.1. Line length and turning in Km(n,..., n)
The concepts of line length and turning are used for a construction of a

balanced bipartite decomposition of Km(n,..., n). We use the following labeling
scheme for Km(n,..., n). Let the points of Km(n,..., n) be labeled by vl9...9 vmn.
Consider the length of vi9 Vj defined by

(4.1) l(vi9 Vj) = min {\i-j\, mn - \i-j\} .

Let vi9 Vj be adjacent if and only if the length of vi9 Vj is not divisible by m. The
m disjoint independent sets of Km(n,...9 n) with this labeling are

(4.2) Vt = {i;,, vi+m9...9 vi+in-i)m}9 i = 1 , . . . , m .



336 Kazuhiko USHIO

The lengths of the lines of Km(n,..., n) are integers in the set {1, 2,..., [mn/2]}.
From the definition of adjacency of points, those integers are not divisible by m.
We denote the set of line lengths of Km(n,..., n) by L, i.e.,

If / is such a line length and l^mn/2, there are exactly mn lines in Km(n,..., n)
having length /. If I = mn/2, there are mn/2 lines of length /.

By the turning of a line (vh v3) of Km(n,...9 n) we mean the increasing of both
indices by one, whereby we obtain a line (vi+l, vj+1) of Xm(n,..., n) from the line
(vi9 Vj). The indices are reduced modulo mn to the set of residues {1,..., mn}.
By the turning of a block we mean the simultaneous turnings of all lines of the
block. Obviously, the turning operation is a cyclic permutation of length mn
on the point set of Km(n,..., n).

Sometimes we may write, for simplicity, the mn points of Xw(n,..., n) as
l,.. . ,mn instead of vl9...9vmn. When two independent sets of a block B are
B1 = {iu..., ikl} and B2 = {jl9...9jk2}9 we denote the block by

(4.4) = {Bi;B2} =

As seen in Section 2, note that the block B is a complete bipartite subgraph with

Fig. 2. A block B of K5(3, 3, 3, 3, 3)

Fig. 3. The block B' obtained by a turning of B in Fig. 2
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the independent sets Bt and B2 in Km(n,...9 n). In Fig. 2 and 3, we illustrate
two blocks of a complete 5-partite graph K5(39 3, 3, 3, 3) with 5 independent sets
Vt ( i= l , . . . , 5), each of them having 3 points. For kx=2 and /c2 = 3, a block
B = {Bl9 B2} with Bl = {v2, v6} and B2 = {v4p9 v9, vl3} is given in Fig. 2. Another
block B' = {B'l9 J52} with £i = {t>3, v7} and £ 2 = {t;5, u10, t;14}, which is obtained
by a turning of B, is also given in Fig. 3.

In addition to these considerations, we shall provide the following lemma
which is useful for the balanced bipartite decomposition constructed cyclically.

LEMMA 4.3. Let Km(n9...9 n) contain a block B whose line lengths are all
distinct and are not equal to mn/2. Suppose that B is turned mn — 1 times.
Then all of the original block B and the produced mn — 1 blocks are line-dis-
joint. Moreover, for each line in B, all lines of Km(n9...9 n) having the same
length as the line appear in these mn blocks.

PROOF. Let Bl = {il9...9ikl} and B2 = {jl9...9jk2} be the two independent

sets of the block B. Put the lengths

(4.5) lpq = l(ip9jq) (p = 1,..., fci; q = 1,..., k2).

We first show that in turning B mn — 1 times, no line duplication occurs.
Since line length is preserved under the turning operation, if the same line of
length lpq appears in B turned through mx positions and in B turned through m2

positions where 0<m1<m2<mn — 1, then we have the unordered pair equality

(4.6) {ip + ml9 jq + m j = {ip + m2, jq + m2).

There are two cases to consider.
Case (1). ip + m1==ip + m2 and jq + m1=jq + m2 (mod mn): In this case,

we have ml = m2 (mod mn).
Case (2). ip + mi=jq + m2 and jq-\-m1 = ip-\-m2 (mod mn): In this case,

since §<m1<m2<mn — 1, we have ip=jq9 which implies that m1==m2 (mod mn).
In two cases above, we conclude that m1 = m2 (mod mn), which contradicts the
fact that 0<m1<m2<mn — 1. Therefore, no line duplication occurs in the
turnings. Using this result and the assumption that lpq is not equal to mn/2 for
each p and q9 mn blocks produced by the turnings contain mn lines of length
lpq. This completes the proof.

EXAMPLE 1 (continued). The set of line lengths of K5(39 3, 3, 3, 3) with
m = 5 and n = 3 is {1, 2, 3, 4, 6, 7}. Line lengths of B^ are 1, 2, 3, 4, 6, 7 which
are all distinct and are not equal to mn/2. As those blocks B^ (p = 2,..., 15) are
produced by turnings of B^\ all of the original block B^l) and the produced 14
blocks B(p) are line-disjoint. Moreover, for each of line lengths 1, 2, 3, 4, 6, 7
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those 15 blocks contain all lines of K5(3, 3, 3, 3, 3) having the same length as
that. Since the set of line lengths of B^\ i.e., {1, 2, 3, 4, 6, 7} is equal to the
set of line lengths of K5(3, 3, 3, 3, 3), those 15 blocks give a K(2, 3)-decom-
position of K5(3, 3, 3, 3, 3). Since those blocks are constructed cyclically, we
see that they give a balanced K(2, 3)-decomposition of K5(39 3, 3, 3, 3) (to be
continued).

Note that a bipartite decomposition constructed cyclically is always balanced.
Consider the size of vi9 Vj defined by

(4.7) s(vhvj) = \i-j\.

It can be seen that the lengths of lines with the same size are all equal. Let S be
the set of sizes of all lines of Km(n,..., n). Then we have

(4.8) S = {1,..., mn-1} - {m,..., ( n - l ) m } .

We denote by l(s) the length of lines whose size is s and denote by L(Sf) the set of
lengths of lines having sizes in a subset S' of S. Then we have the following
lemma.

LEMMA 4.4. When both m and n are odd, consider a set of sizes of lines
(4.9) S' = {/xm + V|AI = 0, 1,..., n - 1 ; v = 1,..., ( m - l ) / 2 } .
Then we have

(4.10)

where L is given in (4.3).

PROOF. Put n = 2q + l. Divide the set L into two subsets as follows:

(4.11) L = L, u L 2 ,

where

(4.12) L1 = {Mm + v|/i = 0, l , . . . ,g ;v = l , . . . , ( m - l ) / 2 } ,

(4.13) L2 = {((2/i + l ) m - l ) / 2 + v| j * = 0, 1,..., q-1; v = 1,..., ( m - l ) / 2 } .

Divide the set S' into two subsets as follows:

(4.14) S' = S ; u S 2 ,

where

(4.15) Si = {|im + v|Ai = 0, l , . . . ,« ;v = l , . . . , ( m - l ) / 2 } ,

(4.16) S'2 = {(q + ti+l)m + v\fi = 0, I,..., <?-1; v = 1,..., ( m -
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We shall show that L(S0 = £i and L(S2) = L2.
Case (1). For any s in Si, since s<qm + (m — l)/2, it follows that mn — s>

qm + (m-\-l)/2>s. Therefore, /(s) = min{s, mn — s} = s. Thus L(S[) = L1.
Case (2). For any s in S2, since s>(q + l)m + l, it follows that mn — s<

qm — l<s. Therefore, l(s) = min {s, mn — s} = mn — s. Divide the set L2 into
q subsets as follows:

(4.17) L 2 = L 2
l ) u - U

where

(4.18) L ^ = {((2^-2i + l ) m - l ) / 2 + v | v = l , . . . , ( m - l ) / 2 } for i =

Divide the set S2 into # subsets as follows:

(4.19) S'2 = S'2
(1) u - U S 2

U ) ,

where

(4.20) S2
(i) = {(q + i)m + v\v = 1,..., (m- l ) /2} for i = l,...,q.

We show that L(S2
U)) = L2

i) for each i. For any s in S^ 0 , let s = (
Since l(s) = mn-s, it follows that J(s) = ((2g-2i + l ) m - l ) / 2 + fv, where rv =
(m + l ) /2-v . Therefore, since {rv| v=l , . . . , (m- l ) /2} = {v| v = l,..., (m- l ) / 2} ,
by (4.18) we have L(S'2

(0) = L2
i) for each i = l , . . . ,g. Thus L(Sf

2) = L2. This
completes the proof.

EXAMPLE 1 (continued). Both ra( = 5) and n( = 3) are odd. The set L of
line lengths of X5(3, 3, 3, 3, 3) is {1, 2, 3, 4, 6, 7}. Consider a set S' of sizes of
lines in (4.9). Then we have S' = {1, 2, 6, 7, 11, 12}. As seen in (4.11), L1 =

{1, 2, 6, 7} and L2 = {3, 4}. As seen in (4.14), S[ = {1, 2, 6, 7} and S2 = {11, 12}.
In this example, we can concretely observe that L(S'1) = L1, L(S2) = L2, and thus
L(S') = L (to be continued).

4.2.2. Balanced bipartite decomposition constructed cyclically
With respect to a balanced bipartite decomposition of Km(n,..., n) which is

constructed cyclically, we have the following theorem.

THEOREM 4.5. / /

(4.21) ( m - l ) n = 0 (mod2A:1fe2),

then a complete m-partite graph Km(n9..., n) has a balanced K(kl9 k2)-decom-
position which is constructed cyclically.

PROOF. The proof is shown by a construction algorithm in which we use
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line length and turning. For a set of parameters m, n, kl9 k2 satisfying (4.21),
we write as (m — l)n = 2pk1k2. There are two cases to consider.

Case (1). n is even: Put n — 2q. Then we have (m — l)q = pklk2. Let t
be the greatest common divisor of p and q. Then we can write as p = tpf and
q = tq', where p' and q' are relatively prime. Since (m — \)q = pk1k2, we have
(m — l)q' = p'klk2. Therefore, kxk2 is an integral multiple of qf. For two
positive integers c and d satisfying q' = cd such that kx and k2 are integral multi-
ples of c and d, respectively, put k1 = ck[ and k2 = dk2. Then we have m— 1 .=
pfk[k2. The set L given in (4.3) can be written as

(4.22) L = { j im+ v | / i = 0, l , . . . , g - l ; v = 1,..., m - 1 } .

It is checked that

(4.23) |L| = (m-l )<? = p '

and that for any / in L we have l^mn/2. Divide the set L into t subsets as fol-
lows:

(4.24) L = L, u - U Lt,

where

(4.25) L / = { ( ( i - W + /i)m + v | / i = 0, l , . . . , ^ - l ; v = l , . . . , / / c i / c i }

for / = 1,..., f.

For each i = l, . . . , t, subdivide the set Lt into p' subsets as follows:

(4.26) Li = L\1) U - U L ^ ' } ,

where

(4.27) L\» = {fcy + iim + V|M = 0, 1,..., q'-l; v = 1,..., k[k'2}

for j = l,...9p\ where fciy = ( i - l ) ^ m + (j-l)fcifei. Obviously, I L P ^ / c ^ for
each i and j . For each z = 1,..., t and j = 1,..., p', form a block Ep^ in such a way
that the set of lengths of lines of the block B\j) is L\j). It is as follows:

(4.28)

where

(4.29) Btf = {̂ m + vl/i = 0, 1,..., c-1; v = 1,..., fc'J,

(4.30) BH> = {hu + ( / ic- l)m + vfci + 1 \n = 1,..., d; v = 1,..., fe^}.

Let U be the set of lengths of lines of B\j\ We shall show that L' = L\j\ Con-
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sider t1=ii'm + vr be a point of B\{* and consider t2 = hiJ + (n"c — l)m + v"fci + l
be a point of B\$. Then

(4.31) t2 - tt = fty + O"c - ju ' - l )m + v'fci - v' + 1.

It can easily be observed that 1 <t2 — t1<mnj2, which shows from the definition
that t2-txeL!. While since 0 < / / ' c - / i ' - l < 4 ' - l and l<v"k[-v'+ l<k'1k'29

it follows from (4.27) that t2 — t1 eL\j). Evaluating the cardinalities of L' and
L[J\ we have L' = L\J). It can be seen that tp' blocks B\j) (i = l,..., f; j = l,..., p')
are line-disjoint, because all the line lengths of B[j)'s are distinct. The turnings
of B\j) ran —1 times yield mntp' line-disjoint blocks of Km(n,..., ri) by Lemma 4.3.

Since mntp' = mnp = (™ V2/(^i^2)» w e n a v e a ^(&i> /^-decomposition. As the
turning is a cyclic permutation of length mn on the point set of Km(n,...9 n), the
K(kl9 fe2)-decomposition is constructed cyclically. Thus we have a balanced
K(ku /c2)-decomposition of Km(n,..., n).

Case (2). n is odd: Put n = 2q + l. Then we have ( m - l ) ( 2 g + l) =
2pkxk2, which implies that m is odd and that pk1k2 is an integral multiple of
2g + l. Let t be the greatest common divisor of p and 2g + l. Then we can
write as p — tp' and 2q + l = tq', where p' and g; are relatively prime and where q'
is odd. Since (m — l)(2q + i) = 2pk1k2, we have (m — l)q'= 2p'k1k2. Therefore,
/ c ^ is an integral multiple of qf. For two positive integers c and d satisfying
q' — cd such that /q and /c2 are integral multiples of c and d, respectively, put
k1=ck[ and k2 — dk'2. Then we have (m — X)\2 = p'k'1k'2. Consider a set L given
in (4.3). It is checked that

(4.32) \L\ = (m-l)(2q + l)l2 = p'fcifc^' = ^fcxfe2

and that for any / in L we have l^mn/2. Consider a set S' given in (4.9). Since
both m and n are odd, from Lemma 4.4 we have L(S') = L. Divide the set S'
into t subsets as follows:

(4.33) S' = St U - U S r ,

where S( is the same form as in (4.25) for i = l,..., t. For each i = l,..., f, sub-
divide the set S,- into p' subsets as follows:

(4.34) St = SP U - U Sj p f ) ,

where iS[J) is the same form as in (4.27) for j = l,..., pf. By the discussion similar
to that in Case (1), for each i = l,..., t and j = l,..., p\ we can form the block B\j)

given in (4.28) in such a way that the set of sizes of lines of the block B\j) is S\j).
Since L(S') = L, it follows that all the line lengths of B\j) (i = l,..., f ; j = l,..., p')
are distinct. Therefore, it can be seen that tp' blocks B\j) are line-disjoint. The
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turnings of B\j) mn — 1 times yield mntp' line-disjoint blocks of Km(n9...9 n) by

Lemma 4.3. Since mntpr — mnp=( ™ )n2l(klk2)9 similarly as in Case (1), we have

a balanced K(kl9 /c2)-decomposition of Km(n9...9 n), which is constructed cyclical-
ly. This completes the proof.

EXAMPLE 1 (continued). A set of parameters m(=5) , n( = 3), fc1(=2),
/c2( = 3) satisfies (m — l)n = 0 (mod2k1k2). Both m and n are odd. In Case (2)
of the proof of Theorem 4.5, we have p = l , p ' = l, t = l9 q' = 39 c = l, d = 3, k[=29

k'2 = l. Two sets are given as L = {1, 2, 3, 4, 6, 7} and S' = {1, 2, 6, 7, 11, 12}.
Since f = l and p' = l, we have a block 5 = { 5 ^ £ 2 } , where ^ = {1, 2} and B2 =

{3,8,13}. The turnings of B 1 4 ( = m n - 1 ) times yield 15( = (™V/CfeiM)

line-disjoint blocks of £ 5 (3 , 3, 3, 3, 3). They give a balanced iC(2, 3)-decom-

position of K5(3, 3, 3, 3, 3), which is constructed cyclically.

4.2.3. Balanced bipartite decomposition theorem of Km(n9...9 n)
In this section, when ki^k2i we shall give a balanced K(kl9 ^ -decom-

position theorem of Km(n9...9 n). The following lemma is useful for a balanced
bipartite decomposition.

LEMMA 4.6. / / a complete m-partite graph Km(n9...9ri) has a balanced
K(kl9 k2)-decomposition9 then a complete m-partite graph Km(dn,...9 dn) has a
balanced K(dkl9 dk2)-decomposition for a positive integer d.

PROOF. This lemma can be verified similarly as Lemma 3.11.

THEOREM 4.7. When kt^k29 a complete m-partite graph Km(n9...9 n) has a
balanced K(kl9 k2)-decomposition if and only if the following conditions hold:

(i) (™ jn2 is an integral multiple of kxk2.

(ii) (m — \)n is a common multiple of2kt and 2k2.

PROOF. (Necessity) Suppose that Km(n9...9 n) has a balanced K(kl9 k2)-
decomposition. Let b be the number of the total blocks and let r be the number
of blocks such that each point of Km(n9...9 n) belongs to exactly r blocks. A
block B has kt + k2 points and ktk2 lines and is denoted by B = {BX; B2}9 where
\B1\ = k1 and \B2\ = k2. We have obviously

(4.35) (^)n 2 = bk±k29

(4.36) mnr=b(k1 + k2).

From (4.35) and (4.36) we have

(4.37) b = m(m-l)n2/(2fc1/c2),
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(4.38) r = (fci + k2) (m - l )nl(2k tk2) .

For a point v, let rx(v) and r2(v) be the number of B^s and that of B2's in which
i? appears, respectively. Counting in two ways the total number of lines to which
v is incident, we obtain

(4.39) ^(^2 +^(^=(111-1)11.

Obviously,

(4.40) ri(v) + r2(v) = r.

Since fcx #fc2, we have from (4.37)-(4.40)

(4.41) r1(U) = (m

(4.42) ^ ^ ( m

Therefore, rx and r2 do not depend on the particular point v. Thus Conditions
(i) and (ii) are necessary. Note that (4.41) and (4.42) imply (4.38).

(Sufficiency) There are two cases to consider.
Case(\). ( m - l ) n = 0 (mod2k1k2): In this case, from Theorem 4.5 it

follows that Km(n,..., n) has a balanced K(ku /c2)-decomposition, which is con-
structed cyclically.

Case (2). (m — l)n ^ 0 (mod 2k1k2): Let d be the greatest common divisor
of kt and k2. In this case, d^l. If d = l, then from Condition (ii) we have
(m — l)n = 0 (mod2/c1k2), which is a contradiction. Therefore, d # l . Put fct =
rffci and k2 = dk2, where fci and /c2 are relatively prime. Then from Condition
(ii) we have (m — l)n = 0 (mod2d/ci/c2). Therefore, we can write from Condition
(i)as

(4.43) b = (mn/d) {(m - l)n/(2dfcifc£)}.

There are two subcases with respect to mn/d.
Case (2.1). mn = 0(modd): Since ( m - l ) n = 0 (mod2dfci/c2) and mn = 0

(mod d), put (m — l)n = 2dk[k'2t and mn — du. Then we have n = mn — (m — \)n =
d(u — 2k\k'2i). Therefore, we have n = 0(modd). Putting n = dn', we have
(m — l)n' = 0 (mod2ki/c2). From Theorem 4.5 it follows that fcm(n',..., nl) has a
balanced K(k'u fc2)-decomposition. From Lemma 4.6 it follows that Km(dn',...,
dn') has a balanced K(dk'u dfc2)-decomposition. Since dn' = n, dk'l = k1 and
dk'2 = k2, it follows that Km(n9...9 n) has a balanced KX/q, fc2)-decomposition.

Case (2.2). mn ̂  0 (mod d): Let e be the greatest common divisor of n
and d. Then e ̂  1. Suppose that e = 1. Then since (m - l)n = 0 (mod 2d/c; /c2),
we have m - 1 = 0 (mod d) which implies that m and d are relatively prime. There-
fore, mn and d are relatively prime. In (4.43), since mn and d are relatively
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prime, we have (m-l)n/(2dfcik2) = 0 (mod d). This implies that ( m - l ) n = 0
(mod2d2fc;fci). Since k1 = dkf

1 and k2 = dk'2, we have ( m - l ) n = 0 (mod2/c1fc2),
which is a contradiction. Therefore, e^l. We can write as n = en' and d = ed'9
where n' and d' are relatively prime. Since (m —l)n' = 0 (mod Id'k'^k'^, we have
m —1 = 0 (modd') which implies that m and d' are relatively prime. Therefore,
mn' and d' are relatively prime. We can write (4.43) as

(4.44) b = (mrijd') { (m- \)n'l(2dr k\k2)} .

In (4.44), since mn' and d' are relatively prime, we have (m — \)n' l^ld'k^k'^^Q
(modd')- T n i s implies that ( m - l ) n ' = 0 (mod2^2/ci/ci). Therefore, from
Theorem 4.5 it follows that Km(n',...,n') has a balanced K(dfk'l9 d'/c^-decom-
position. From Lemma 4.6 it follows that Km(en',..., en') has a balanced
K(ed'k'u ed'fc£)-decomposition. Since en' = n, ed'k'1=dk'1 = kl and ed'k'2 = dk2 =
k2, it follows that Km(n,...,ri) has a balanced X(/cl5 /c2)-decomposition. This
completes the proof.

When fc1 = l, Conditions (i) and (ii) of Theorem 4.7 are simplified to the
following corollary, which has been given by Ushio [22].

COROLLARY 4.8. A complete m-partite graph Km(n,...,n) has a balanced
K(l, k2)-decomposition if and only if

(m-\)n = 0 (mod2/c2).
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