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§1. Introduction

Let M be a connected closed smooth manifold and G be a compact connected
Lie group which acts smoothly on M, and consider the following assumption:

(AI) There is an orbit G-x of xeM such that dim G x = dimM — 1.

Then the following is well-known (cf., e.g., [4; IV, Th. 3.12, Th. 8.2]):

(1.1) For a G-action on M with (AI), where M is simply connected, there
is a triple (K, Kl9 K2) of subgroups of G with K d K ί f ] K2 such that K is a
principal isotropy subgroup with dimG/K = n — l (n = dimM), Kί and K2 are
non-principal ones with ks = n — dimG/Ks^2 (s = l, 2), and the G-manifold M
can be decomposed into the union of two mapping cylinders of the projections
G/K-+G/KS (s= 1, 2). (See (3.2-6).)

Based on (1.1), such actions are studied by several authors. For example,
H. C. Wang [15] investigated such actions on the spheres S" with even n^4 or
odd n^33, and W. C. Hsiang and W. Y. Hsiang [7] have given some examples
which are not listed in [15].

The purpose of this paper is to classify such actions (G, M) with (AI) for the
case that M is a Z2-cohomology sphere, i.e.,

(All) M is simply connected and H*(M Z2) s H*(Sn Z2).

Typical examples of such (G, M) are seen among the linear actions (G, 5Π, ψ) on
Sn via representations ψ: G-»SO(n + l). Moreover, we have the following
example due to W. C. Hsiang and W. Y. Hsiang:

EXAMPLE 1.2 ([7; Example 5.3], cf. [4; Ch. I, § 7 and Ch. V, § 9]). For any
odd integer r^l, consider the (2m — l)-manifold

; |z0|
2 + |z|2 = 2, zfc + z 'z = 0}.

Then, this is a Z2-cohomology sphere. Further, for any subgroup G of S0(m) x
S1, the G-action on W2m~l(r) is defined by
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(X, x) - (z0, z) = (x2zθ9 x'z ' X) for (X, x) e S0(m) x S1, (z0, z) e tf2™-1^) .

This action (G, W 2m~l(r)) satisfies (AI) for the case

G = S0(m) x S1

9 Spin(Ί) x S1 (m = 8) or G2 x S1 (m = 7),

since the principal isotropy subgroup £ is isomorphic to SO(m — 2) x Z2, 5C/(3) x
Z2 or S3 x Z2, respectively; and then Kl in (1.1) can be taken so that

Z(G)° ΠK1^Zr (the cyclic group of order r) and fcj = 2,

(Z(G)° denotes the identity component of the center Z(G) of G). We notice that
W2m~l(r) is the sphere S2m~l if r = 1 , or m is odd and r= + 1 mod 8. Moreover,
(G, W2m~l(r)) is linear if and only if r = 1.

EXAMPLE 1.3 (see Proposition 9.4.2). Consider the subgroup

l, m) = {(z1, z"O

of S3 x S3 = Spin(4). Then, for any relatively prime integers /s and ms (s=l, 2)
with

/s, ms = 1 mod 4, 0 < l^ — m^ = 4 mod 8, 12 — m2 = 0 mod 8,

there is an action (Spin(4)9 M) with dimM = 7, (AI) and (All) such that Xs° =

Sl(ls>
 ms)> where fcs = 2 and G/KS is non-orientable (s = l, 2). Further, this

action induces an effective one (SO(4), M).
For the condition that M is S1 or the action is linear, we only know that the

action is linear if (/15 m l 5 /2, m2) = (l, —3, 1, 1).

Our main result is stated in Theorem 6.1, and is summarized as follows:

MAIN THEOREM. Let an effective action (G, M) with (AI) and (All) be
given, and consider its non-principal orbits G/KS with ks=n — άi
(s = l, 2) given in (1.1). Then we have the following five cases (CI)-(CV):

( CI ) kί + k2 is odd, and n = kί + k2-l or n = 2/c1+2/c2-3;

(CΠ) kί and k2 are even, and n = k1 = k2 or n = k1 + k2 — 1;

(GUI) ks = 2, /c3_ s is even (s = l or 2), and n = 2kί+2k2-3 9

(CIV) (e) fc1 = fe2 = 2 and n = 49 or (o) fe1 = fe2 =

(CV) fct andk2 are odd9and n = χ(kί + k2

= 1,2, 3, 4 or 6).

Furthermore, (G, M) is ί/ze one ^ίt en in Example 1.3 /or ί/ze case (CIV) (o),
and is isomorphic to the effective action induced from the action given in Example
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1.2 for the cases (GUI) and (CI) with k1 or k2 = 2 and n = 2k1+2k2-3, and is
linear for the other cases.

We prepare some known results on compact Lie groups in § 2. After studying
(1.1) more precisely in § 3, we investigate the Poincare polynomials of orbits of an
action with (AI) and (All) in § 5, and consider the five cases (CI)-(CV) in Pro-
position 5.10. In §§ 7-10, we prove the main result stated in Theorem 6.1 for
these cases separately. The proof is done by showing some necessary conditions
for G, K and Ks (s = 1, 2) of an action (G, M) with (AI) and (All) in the first half
of each section, and by studying the existence and uniqueness of such actions with
G, K and Ks satisfying the necessary conditions in the second half.

We notice that actions (G, M) with (AI) for cohomology real projective spaces
M can be investigated by using the results in this paper. The classification of such
(G, M) for cohomology complex projective spaces M have been done by F.
Uchida [13].

The author wishes to express his hearty thanks to Professor M. Sugawara,
Professor F. Uchida and Dr. K. Fujii for their valuable suggestions and dis-
cussions.

§ 2. Preliminaries

In this paper, groups are compact Lie groups and subgroups are closed
subgroups, and 17° denotes the identity component of a group 17.

The following (2.1) is well-known (see [2], [9], [11]).

(2.1) Suppose that a group U is connected, and acts effectively and trans-
itively on the sphere S*"1 (/c^2). Then the U-action on Sfc-1 is equivalent to
the following linear action of U on Sk~l via the standard representation c:
U-*SO(k) with an isotropy subgroup H.

(i) If k is odd, then U is simple and (U, k, c, H) is

(S0(k), k, Pk, S0(k- 1)) or (G2, 7, φ2, Sl/(3)) .

(ii) // k is even, then U contains a simple normal subgroup U' such that
the restricted U'-action on S*"1 is transitive and U/U' is of rank at most 1, and
(U,k,c,H)is

(S0(k), k, Pk, S0(k- l))(fc*4), (S17(0, 21, (μ^, SU(l- 1)),

(17(0, 21, (μί)R, l/(/ - 1)), (SXO, 4/, (v,)Λ, Sp(l - 1)) ,

(Sp(l) x S'/Z2, 41, (v, ® μ? (or v*))Λ, Sp(l- 1) x S'/Z2)

(i = 1 or 3; Z2 is generated by ( — E, —1)),

(Spin(9), 16, Δ9, Spin(7)) or (Spin(T), 8, ΔΊ, G2).
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For a subgroup H of 17, denote by N(H, U) (or NH) and Z(H, 17) the nor-
malizer and the centralizer of H in 17, respectively. Then we see the following
two lemmas by easy calculation.

LEMMA 2.2. Let (17, H) be as in (2.1). Then N(H, U)/H is isomorphic to

S3 ifU = Sp(l)(k

S1 ifU = S0(2),

Z2 otherwise.

LEMMA 2.3. Z(Sl/(ί), 0(20) £ S1 (/£3), Z(5X/), O(40) S S3 (ί£ 1).

LEMMA 2.4. Assume that U/U° is cyclic, and let τ l 9 τ2: l/->O(fc) (fc^2)
fee representations of U. If the actions of U on Sk~l via τ t and τ2 are both
effective and transitive and their isotropy subgroups are conjugate to each other,
then TJ is equivalent to τ2.

PROOF. E7° also acts effectively and transitively on Sk~1 via the restricted
representations τί \ U° and τ2 | C/°, which are equivalent by (2.1). Thus we may
assume that τί\U° = τ2\ U° = τ. Let Hs(s = l, 2) be the isotropy subgroup of the
(/-action on S*"1 via τs at p = (l, 0,..., 0)eSfc~1. Then fί2 is conjugate to Hl

by the assumption.
Now, take aeU—U0 such that άU° generates 17/17° by the assumption on

17, and set xs=τs(α) (s = 1, 2). Then we see that

x2eN(= AΓ(τ(L7°), 0(/c)), xj^ e Z(= Z(τ(l/°

and X2τ(9)p = τ(g)p for some g eN(Hl, U°). On the other hand,

(*) τ(N(#? , C7°))/? c Zp (by the above two lemmas) .

Thus τ(g)p = yp for some yeZ. Therefore y
y~1x2yxΐleZ9 which imply j;~1x2jx5[1 = l and x2 = ̂ x1>'~1 since the U°-
action on 5k~1 via τ is effective and transitive. q. e. d.

LEMMA 2.5 (cf. [10; (5.4)]). Lei τ l 9 τ2: ί7->GL(/c; C) be equivalent re-
presentations of U. Assume that τ± is irreducible or equivalent to a direct sum
of an irreducible representation and a trivial representation of degree 1. //
τ^U) and τ2(U) are contained in U(k) (resp. O(fc)), then they are conjugate in
U(k) (resp. 0(fc)).

The Poincare polynomial P(X\ ί) = ΣidimHί(A'; Q)tl of a space X will be
denoted simply by PPQ. Now the following lemma can be proved by using [3],

[14] and Hirsch's formula,
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LEMMA 2.6. Let U be a connected simple group and H be its connected
subgroup with same rank. If dimH^U/H Q)^! for i^O, then P(U/H) is
given as follows, where Ah Bh Ch Dl are the classical groups of rank /, G2, F4

are the exceptional Lie groups, and U^lJ2 denotes an essentially direct product

of groups U^ and U2

(1) P(AJA^loSί) = (1 -ί2/+2)/(l-ί2)(/^l), (2)

(3) P(WA-ι) = (J + f*-*χi -**')/(! -**)(/ £4: even)9

(4)

(5)

(6) P(F4/B4)=l + f8 + ί16, (7)

(8) P(G2μ2) = 1 + 1«, (9)

(10) P(G2M1o51) = (l-ί12)/(l-ί2).

In the rest of this section, we prove the following

PROPOSITION 2.7. Let H be a connected subgroup of a connected group U.

Assume that
(1) H does not contain any positive dimensional normal subgroup of U,

and

(2) r(l7) = r(H) + l O" denotes the rank).
If aim U/H = 3-2(c(U)-c(HJ) ("c" denotes the dimension of the center), then U
is an essentially direct product of some copies of S3 and a toral group.

To prove this proposition, we set

α(L7, H) = dim U - dim H - 3(r(U) - r(HJ) .

LEMMA 2.8. Let U be simple and H be its proper subgroup. Then α(L7, H)

PROOF. Since U is simple, U acts almost effectively on U/H and we see

dim U - dim H - r(U) - r(H) ^ 0 (by [4; IV, Cor. 5.4]) .

If2r(H)>r(U), then this implies α(t7,

Suppose that 2r(H) ^ r(U). By using the classification theorem of Lie groups,
we see that

(*) r(V)2 + 2r(V) ^ dim V< 4r(V)2 for any simple group V.

By representing H as an essentially direct product of simple groups and a toral

group, (*) implies dim H^4r(H)2. This and (*) for V= U imply
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α(C7, H) ^ r(U)2 - r(U) - 4r(H)2 + 3r(H) > 0,

since 2r(H) ^ r(U) and r((7) ̂ 2. 4. e. d.

PROOF OF PROPOSITION 2.7. By [15; (9.1)] and the assumption (2), any
connected simple normal subgroup with rank ̂  2 of H is contained in a simple nor-
mal subgroup of U. Thus, by decomposing U and H into essentially direct
products of simple groups and toral groups, we have

17 = V^'-oUfU', H = H- oHH'

where Ut is simple with r(Ut)^29 J^c £/. (1<;/^/), and U' (resp. H') is an es-
sentially direct product of some copies of S3 and a toral group of dimension
c(U) (resp. c(H)). Here H^Ui by the assumption (1). Then we see easily
that

Σί=ι α(t/p #f) = dim U/H - 3 + 2(c(l7) - c(//)) .

Therefore, if the right hand side is zero, then /=0 by Lemma 2.8 as desired.
q. e. d.

§ 3. Actions with orbit of codimension 1

Any action (G, M) induces the effective action (G/JV0, M), where N0 is the
maximum subgroup of G acting trivially on M, (N0 = Γ\xeMGx and is normal in
G). The action (G, M) is said to be almost effective if N0 is finite. Two actions
are said to be essentially isomorphic if their induced effective actions are iso-
morphic. Then we see easily the following

LEMMA 3.1. Let (G, M) be a given action and K be its principal isotropy
subgroup.

( i ) If N is a normal subgroup of G with NaK, then N acts trivially on M.
(ii) The G-action on M is almost effective if and only if K does not contain

and positive dimensional normal subgroup of G (i.e., the G-action on GjK is
almost effective).

(iii) In the case (i) the isotropy subgroup (G/N)X (xeM) of the induced
G/N-action on M is equal to GX/N, and (G, M) is essentially isomorphic to
(G/N, M).

(iv) Especially, take N = Z(G)°nK. Then Z(G/N)° = Z(G)°/N and the
restricted Z(G I N)° -action on M of (G/N, M) is effective.

Now, we consider an action (G, M) with (AI). We notice that (1.1) can be
restated more precisely as follows :

(3.2) Let M be a G-manifold with (AI) and assume that πx(M) is finite.
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Then there are a principal orbit GjK and two non-principal ones G/Kί9 G/K2

with dimG/K = n—l (n = dimM) and KcKί Π K2, and M has an equiυariant

decomposition

(3.3) M = M(α) = X1V ΛX2, Xs = Gx KsD
k*, ks = n - dim G/KS,

where the attaching map α: dXl = G/K-+G/K = dX2 is given by
(geG)for some aeNK( = N(K, G)). Here Ks acts on the unit disk Dks via a
slice representation σs\ Ks-+O(ks) so that Ks acts transitively on the boundary
dDks with the isotropy subgroup (Ks)ps = K for some base point psedDks

9 and
the identification dXs=G/K is done by the equivariant dίffeomorphism sending

[0M> J s G x κβDk* = 6XS to gK e G/K.

(3.4) In (3.2), the isotropy subgroups K, K^ and K2 can be chosen arbi-
trarily from their conjugate classes under the condition KaKiΓ\K2.
Especially, by choosing α~1X2α instead of K2, we have an equivariant decom-

position

(3.5) M = Xl U X2, X1 Π X2 = G/K,

where Xt and X2 are the mapping cylinders of the projections GjK-^GfK^ and

GIK-*G/u-1K2a9 respectively.

(3.6) // #χ(M; Z2) = 0 in addition, then the non-principal orbits G/Kl9

G/K2 in (3.2) are singular, i.e., dimG/Ks>άimG/K and hence ks^2. (This
is shown by [4; IV, Th. 3.12].)

For M(α) in (3.3), we see immediately the following

LEMMA 3.7. Let α, α': dX1 = G/K-^G/K = dX2 (α, α'eNK) be equivariant
diffeomorphisms. Then M(α) is equivariantly diffeomorphic to M(α') if the fol-
lowing (1) or (2) is satisfied:

(1) α is G-diffeotopic to α'.

(2) /? = α~V or α'or1 is extendable to an equivariant diffeomorphism on
Xs(s = ΐor2).

LEMMA 3.8. (2) of Lemma 3.7 holds if the following (1) or (2) is satisfied:
(1) β is in the center of G.
(2) β is in KS9 and (Ks)p = K, σs(β)p =-pfor some p e dDk*.

PROOF. (1) The equivariant diffeomorphism of Xs = GxKsD
ks onto itself

sending [0, x] to \_β~lg, x] is an extension of β.
(2) Suppose that ks^2. Since (Ks)p = K and Ks° acts transitively on dDk*

via σs\K°, there exists γ in N(K, Ks) Π K° satisfying σs(γ)ps = p, where ps is the

base point in (3.3). Hence σs(y) is in N(σs(K)°, σs(Ks)°). Therefore, by using
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(*) in the proof of Lemma 2.4, we see that Aps = p for some A e Z(σs(Ks)°, 0(ks)).
Now we may assume that β e N(K9 Ks) n Ks°, since β E N(K, Ks) and βk e K°s for
some k e K. Then we get

When /c s=l, this equality σs(β)ps = —ps is easily seen.
Therefore the equivariant diίfeomorphism of Xs = Gxκ^Dks onto itself

sending [#, x] to [#, — x] is an extension of /?. q.e.d.

LEMMA 3.9 ([1; Prop. 3.9]). Assume that σs(Ks)^SO(ks) (s = l, 2)
σs is equivalent to σscξs for any ξseNKf}NKs, where cξs(k) — ξskξ~l (kεKs\
Then M(α) is equivariantly diffeomorphic to M(α') if and only if there exist
yseNK Π NKS (5 = 1, 2) such that γίK and or*γ2<z'K are contained in the same
component of NK/K.

§ 4. Extension of actions

In the first place, we prepare the following lemma due to F. Uchida.

LEMMA 4.1. Let G be a connected group and G be its connected subgroup.
Suppose that the given G-action on M and the restricted G-action on M have
principal orbits of same dimension. Then, for each xeM, δ x = G x and
Gxft G = GX, and G x is principal if and only if so is G x.

PROOF. Since the union of all principal orbits is open and dense in M
(cf. [4; IV, Th. 3.1]), we can choose u eM such that K = GU and K = GU are prin-
cipal. Since K = K n G, the orbit G u = G/K is a closed submanifold of a con-
nected manifold G u = G/K, and these have the same dimension by the assumption.

Hence

(4.2) G/K = G/K and so G = GK.

Let xeM. Then there exists geG with KcGg-ίχ = g~1Gxg9 and so we see
easily G x = G x by using (4.2).

Now suppose that G x is a principal orbit. Take veG x = G x satisfying

GV^K. Then GV^>K{] G = K, and hence GV = K. Therefore we see GV = K by
(4.2), which shows that G x = G v is a principal orbit. The converse is clear.

q.e.d.

In the rest of this section, let G = GxH for connected groups G and H9 and
assume that

(4.3) the given G-action on M in (3.2) can be extended to a (/-action on M
with orbit of codimension 1.
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Then by Lemma 4.1 we see that a G-equivariant decomposition M = Xί U aX2

in (3.3) gives a δ-equivariant decomposition

(4.4) M = M(α) = Xl U aJ?2, %s = G x ^.D*- with G n £ = K,

G Π Ks = Xs, Xs = Xs (s = 1, 2), α = α,

where G/K is a principal orbit, G/KS (s = 1 , 2) are non-principal ones with K c
X j Π K2,

 and ŝ acts on D*s via σs with σ s | Ks — σs.

LEMMA 4.5. Under the above situation, there is a homomorphism

(4.6) φ: H - > NK Π JVX t n NK2/X (NL= N(L9 G))

X = {(0, ft) 6 G x H = δ; ^^(/ir1 = X}, Xs = {(flf, ft) 6 δ;

Furthermore the kernel of φ is finite if the restricted H (c G)-actίon on M
is almost effective.

PROOF. Fix a point u e dX^ with GU = K. For any h e H9 there exists g e G
with h u=g~l u by (4.2). Then (0, h)eK and

)"1 = 0L0-1 c G (L= X, X f X ) .

This implies geNK n NKt n NX2 Set φ(h)=gK. Then we see easily that $
is a homomorphism.

By considering the isotropy subgroups of the δ-action at uedXί and λ*s =
[1, 0] e δ x RsD

ks, we have the lemma. q.e.d.

LEMMA 4.7. Let there be given two extended G-actions on M in (4.3), and
(K9 Kί9 K2), (Kf, K/, K2') and φ9 φ' be the corresponding isotropy subgroups
in (4.4) and the homomorphisms of (4.6) and assume that
(4.8) there holds a commutative diagram

H-£-> NK n NKί n NK2jK

H--> NK n ΛΓAΊ Π NK2/K

for some automorphism ψ and βeNK Π NKt n NK29 where cβ(gK) =
Then there exists an automorphsim Ψ of G with Ψ(K) = K' and Ψ(KS)

PROOF. Set Ψ(g9 h)=(βgβ-ι, ψ(h)) ((g9h)eG). Then Ψ is the desired
automorphism by Lemma 4.5. q. e. d.
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LEMMA 4.9. Let φ be the homomorphίsm of (4.6). Then N(K, G)/K is iso-
morphic to Z(Im φ, NK/K).

PROOF. For each (g, h) e N(K, <3), we see easily that g e N(K, G) and
gφ(h~1)eZ = Z(Imφ, NK/K). Consider the homomorphism

ξ : N(K, G) - > Z, ξ(g, Λ) = gφ(h~i) ((g, h) e N(K, G)) .

Since (g, 1) is in N(K, G) for any g e G with gK e Z, we see that ξ is an epimor-
phism. Clearly Ker£ = K. Thus N(K9 G)/K^Z. q.e.d.

§ 5. Orbits of an action with (AI) and (All)

Now we assume that a G-manifold M = M(α) in (3.3) is a Z2-cohomology
sphere, i.e., M satisfies (All). Throughout this section,

(5.1) we write K2 instead of vΓlK2u for the sake of simplicity.

Thus we consider a Z2-cohomology sphere M with the decomposition

(5.2) M = Xl U X2, X, Π X2 = G/K,

where Xs is the mapping cylinder of the projection fs: G/K->G/KS, ks =

s^2 (s = l, 2) and dim G/K = n-1 (n = dimM), (cf. (3.5), (3.6)).

The following several results are due to H. C. Wang.

(5.3) ([15; (4.3) and (4.9)]) (i) For the induced homomorphism /s4c:
J offs9

π,(GIK) = Ker/1#.Ker/2Hί, π^G/XJ =/s*(Ker/3_5Hί)(s = 1, 2).

(ii) Let ΠS = (K° f}K)/K°. Then K/K° = Π1Π2 and (K/K°)/ΠS^KJK* is
cyclic (5 = 1, 2).

LEMMA 5.4. (i) Ifkl>2 and k2>2, then G/K and G/KS (s = 1, 2) are simply
connected, and hence K and Ks (s = l, 2) are connected.

(ii) If kl=2 and /c2>2, then G/K1 is simply connected and

K} = Xί, K = \Jib\K°, K2 = \Jib[K2 for some b^K^ n K.

(in) If k1 = fc2 = 2, then

K « Wijfei^X0, ^x = WifciX?, K2 = WifeίXa >^ 5ome b seX s° n K(s = 1, 2).

PROOF. Suppose fcs>2. Then, from the homotopy exact sequence of the
fibering S^^^G/K^l^G/K,, it follows that Ker/sHc = l in (5.3). Thus we see

(i) and the first half of (ii).
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If ks = 29 then ΠS = (K°S n K)/K° is a proper subgroup of K'/K^S1 gen-
erated by bsK° (bseK° Π K). By (5.3) (ii), the homomorphism Π3,S^Π1Π2 =
K/K°-+KJK° is epimorphic. Therefore the rest of the lemma follows im-
mediately. q.e.d.

By using the Mayer- Vietoris exact sequence of the triad (M, Xl9 X2) in
(5.2), we see

(5.5) ([15; (3.4)]) For the cohomology with coefficient in Q or Z2, /*:
H*(G/KS)-*H*(G/K) (s = l, 2) are monomorphic, and

(0 < i < n - 1),

P(G/K) = P(G/K1) + P(G/K2) - 1 + ί"'1.

Let Θ:GIK°-*G/K,ΘS:G/K°->G/KS and es: G/K°^G/K°S be the natural
projections, and consider the induced homomorphisms H*(G/K) -̂  H*(G/K°)9

H*(G/KS) -*L> H*(G/K°) -fL> H*(G/K°) of cohomology with coefficient in ρ.

(5.6) ([15; § 11]) Suppose that /ct or A:2 is ^wα/ to 2. T/zen
( i ) 0* is isomorphic, and hence P(G/K) = P(G/K0).

(ii) H*(GIK;) = θ*(H*(GIKJ)QKeτ e* (s = l9 2).
(iii) // G/KS is orientable, then θ* is isomorphic, and hence P(G/KS) =

P(G/K°). If G/KS is non-orientable9 then P(G/K) = (l + t2k^ί)P(G/Ks) and

(iv) If ks is odd, then G/KS is orientable.

In the followings, let K^O in G mean that K is non-homologous to zero in G.

LEMMA 5.7. (i) // G/KS is orientable and /c3_ s is even, then K5°~Ό in G.
(ii) If k± and k2 are even, then K°^0 in G.

PROOF. Let i: G/K°-^BK° and is: G/K°^>BK° be classifying maps, and
rs:BK°-*BK° be the natural map induced from K°^>K°s(s = l9 2). Consider
the commutative diagram

H*(BKl) -^ H*(BK°) Λ- H*(BK°2)

h h
-*L+ H*(G/K°) <*L H*(G/K2)

- * H*(G/K) - H*(GIK2) ,

where Im/f n Im/f c H°(G/K) by (5.5).
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( i ) By the assumption and (5.6) (iii), Θ* is isomorphic. Further, r$.s is
epimorphic since K^-JK0 is an odd sphere. Then, in the above diagram, we have
Imff(Θ*)-lifc:Imfξ_s by using (5.6) (ii). Thus ImifaH^G/K*), and so
X s

0~0in G(cf. [5;§ 10]).
(ii) r*(s = l,2) are epimorphic since K°/K°(s = l92) are odd spheres.

Thus we have Im /*dm0*/* n Imfl*/J, and Im i* c #°(G/K°). Then K°~0
in G. q.e.d.

LEMMA 5.8. (i) // GjK^ and G/K2 are orientable, then

(l-tk)P(G/K°s) = (l + tk*-*-ί)(].-t»-1) (s = 1, 2 and k = Jk1 + fc2-2).

(ii) // G/KI is orientable and G/K2 is not so, then kί=2 and

(iii) IfG/Kί and G/K2 are non-orient able, then kί = k2 = 2 and

(1 - f3)P(G/K) = (1 + f3) (1 - ί»-i), (1 - *3)P(G/KS) = 1 - ί--1 (5=1,2) .

PROOF. Suppose that G/£5 is orientable. Then, for (M, X,, X2) in (5.2),
we have the isomorphisms H*(M, X3-J*Hi(Xg9dXJ*Hi-k (GIK8) by the
excision and the Thorn isomorphism. From the cohomology exact sequence
of the pair (M, X3-s), we get

(*) t^P(G/Ks) - tP(G/K3.s) = ί» - ί.

By (*) for 5 = 1, 2 and (5.6) (iii), we have (i). If G/KS is non-orientable,
then we have /c3_ s = 2 by Lemma 5.4. Then (ii) and (iii) of the lemma follow
from (5.5), (5.6) (iii) and (*) by easy calculation. q. e. d.

For the polynomial in the above lemma, we see the following

LEMMA 5.9. Let P(t) be an integral polynomial on t satisfying

(l-fk)P(0 = (l + fO(l — ί""1) for some positive integers k, I and n( = 2).

(i) Assume that I is odd and P(0 = Π?l=ι (lH-ίM <) for some integer m^O
and odd integers u^l (1 ̂  / ̂  m). Then

2(n — 1) = /c, / = n — 1 and P(f) = 1 if n and k are even,

n-l=2k and P(t) = (1 + ί1) (1 + tk) if n and k are odd,

n — 1 = k and P(f) = l + tl otherwise.

(ii) Assume that /, k are even, and the degree of P(t) is less than n — 1.
Then
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k = 21, n -1 = χl and P(0 = (1 - ί""1)/^ -11) if χ is odd,

n -1 = (χ/2)k and P(t) = (1 +1 1 ) (1 - tn~l}l(\ - tk) if χ is even,

PROOF. Put χ = P(l). Then the given equality divided by 1 — ί shows

/cχ=2(n-l).
( i ) χ = 2m by the assumption on P(ί). Thus 2mk = 2(n - \ ). If m = 0, then

we have the first case. If m^l, then n-l=2m~lk and P(f) = (l + f ί)(l-f11'"1)/

(l-f f c) = (l + ίOΓΊ7=o(l + ί2'/fc) x^us we ^ve the other cases by the as-
sumption on P(f), because 1 -f- 1 is a factor of 1+ th if and only if h is odd, and

because (1 -f t)2 is not a factor of 1 -f f Λ .
(ii) Since kχ = 2(n — 1), the second case is trivial. Assume that χ is odd.

By multiplying the given equality by (l + ί""1)^! — tk), we obtain

(*) P(ί) + t»-iP(t) = (1 + ί<) Σ^o1 ίfcί, where degP(ί) < n - 1.

Since n — 1 = χ/c/2 and χ is odd, (*) implies that n — 1 = ik 4- / for some ΐ, and hence
/ is an odd multiple of k/2. Thus, (*) implies that deg P(t) = k(χ— 1)/2 and n — 1 -f

degP(0 = / + (χ-l)/c. Therefore we have l = k/2 and the first cases. P(-l) =
P(l) is now trivial. q. e. d.

Now we are ready to prove the following proposition, where each (e) holds
if n is even, and each (o) holds if n is odd.

PROPOSITION 5.10 (cf. [15; (5.2), (8.3), (11.7), (11.9)]).

(Cl) Assume that ki is odd and k2 is even. Then G/K2 is simply con-
nected, G/Kί is orientable, K^ΰ in G, and

(e) n = ̂  + /c2-l, PίG/Xa0..) = 1 + **--! (s = 1,2),

(o) n = 2fc + l ( f c = fc1 + fc2-2), P(G/K3°_s) = (H-^-1)(l-i-ίfc)(s= 1,2).

(CΠ) Assume that kί9 k2 are even, and G/Kί9 G/K2 are orientable. Then
K0,Kl andK2~Qin G, and

(e) k, = k2 = n, Kl=K2 = G9

(o) n = kl + k2-l, P(G/K0

3_s) = l + tk*-i(s = l,2).

(CIΠ) Assume that kί9 k2 are even, G/Kί is orientable and G/K2 is non-
orientable. Then K° and Kl~Q in G, ki=2,n is odd, and

(o) n = 2k2 + l,

P(G/K2) = 1 + t, P(G/K°) =
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(CIV) Assume that kl9 k2 are even, and G/Kl9 G/K2 are non-orientable.
Then k1 = k2 = 29K°~Q in G, and

(e) n = 4, P(G/K°S) = 1 + t2, P(G/KS) = 1 (s = 1, 2), P(G/K°) = 1 + t\

(o) n = 7 , P(G/K°s) = (l + t*)(l + n P(G/KS) = 1 + f3 (s = 1, 2),

(CV) Assume that kl9 k2 are odd. Then K, K1 and K2 are connected,
the Euler characteristic χ = P(G/K{ - 1) ofG/Kί is equal to that of G/K29 n - 1 =

= kl+k2-2),and

k, = fc2, P(G/JQ = (1 - f-i)/(l - f*/2) (s = 1, 2) (f χ is

P(G/£3_S) = (l + ̂ -i)(l-f -i)/(l -ί*/2) (S = 1, 2) ifχ is even.

PROOF. For a connected subgroup HofG with H * 0 in G, we have P(G/H) =
YlT=ι (1 -H"1) for some odd integers M,- (cf. [12; Satz VI]). Thus the proposition
follows immediately from (5.6) and Lemmas 5.7-5.9. q. e. d.

§ 6. The statement of the main result

Now we state our main result by the following classification theorem, where
the cases (CI)-(CV) are the ones in Proposition 5.10, φ1: Spin(l)-^SO(Ί\ φ4:
SU(4)-*SO(6)9 φ4: F4-+SO(26) are the irreducible representations, and "~β"
denotes "locally isomorphic".

THEOREM 6.1. Let (G, M) be an effective action with (AI) and (All), and
consider Ks and ks in (3.2).

(CI) The case that kί is odd^3 and k2 is even^2:
(e) // n is even, then n = /c1 + /c2~l, M = Sn and (G, M) is essentially

isomorphic to one of the linear actions

(Spin(Ί\ S14, Ψl φ ΔΊ) (k, = 7, k2 = 8),

(SXO x S3, S", (v,®vί) Φ S2v,) (fc, = 3, k2 = 41 ^ 4),

([/! x C/2, S", ί,θί2) ((̂ ., ks, cs) (s = l, 2) are the ones in (2.1)),

the G-action on G/K2 is almost effective for the first two actions and is
not for the last one.

(o) If n is odd, then n=2k1+2k2 — 3 and (G, M) is so to one of the actions

(Spin(Ί)xS1, JF15(r))(fc, = 7, fc2 = 2), (SO(l+l)xS\ W^^^k^l^, k2=2)

given in Example 1.2, where Z(G)° (]K2 = Zr (r: odd^V), and the linear actions
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(SU(S) (or £7(5)), S19, (A^5)R) (k, = 5, k2 = 6),

(Spίn(lO) (or Spin(10)xS*)9 S31, WO)K (̂  Wo ® 0ι)a)) (*ι = 7, fe2 = 10),

xS3 (or t/(/ + l)xS3), S4/+3, (μ/+1®μ2)Λ) (/Cj = 3, /c2 = 21 ^ 4),

q = 5, fc2 = 4/ ^ 4).

(CΠ) ΓΛe case f fc f l f fel9 k2 are even^2 and G/Kl9 G/K2 are orientable:
(e) If n is even, then n = kί = k2 and (G, M) is essentially isomorphic to

one of the linear actions (17, Sn, cξ&θ), where (U, n, c) is the one in (2.1).
(o) Let Vs be the maximum connected normal subgroup of G acting tri-

vially on GjK°s (s=l, 2), and set V=Vί x V2. If n is odd, then n = kί + k2-l
and (G, M) is essentially isomorphic to one of the linear actions

(Spin(S), S15, A%® Δl) (k, = k2 = 8; V= 1),

(Sί/(4), S13, φ4 ® (μ4)Λ) (fei = 6, fc2 = 8 V = 1) ,

S1, S13, φ4 0 (μ4 ® μf)Λ) (/c, = 6, k2 = 8; F= S1),

/! x 1/2, Sπ, ̂  θ ^2) ((Ug, ks, cs) (s = 1, 2) are ί/ie ones in (2.1); G ~ £F) ,

x SX/2) x 53, S-, (V/1 ® vf ) ® (vh ® vf))

(^=4^, fc2=4/2;G~£FxS3),
x S3 (or Sp(l) x S3 x S1), -S4/+3, v^or vί ® μ*) θ (v, ® vf ))

(61 x 62 x S1, S", (^ ® μΓ2) θ (ί2 ® μf1))

((6s, fc., O = (SP(1S\ 4/s, vj or (St/(ϋ, 2/s, μj (s = 1, 2); G ~£F x S1),

(Sp(l) (or SU(tj) x S1, S", μ^ 0 (v,(or μ,) ® μf2))

(jfc! = 2, fc2 = 4/ (or 20; G - £F x 51),

w/iere Z(G)°nKs = ZΓs (5 = 1,2) /or relatively prime integers rί and r2 (with

(CIΠ) The case that kί9 k2 are even, G/Kί is orientable and G/K2 is not so:
Then, kl=29 n = 2/c2 + l, and (G, M) is essentially isomorphic to one of the

actions

x S1, JF4'+1(r)) (k2 = 2/), (G2 x S1, JF13(r)) (k2 = 6)

given in Example 1.2, where Z(G)° ft K1=Zr(r: odd).

(CIV) The case that kl9 k2 are even, and G/Kί9 G/K2 are non-orient able:
(e) If n is even, then n = 4, kί = k2 = 2 and (G, M) is so to the linear action
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(o) If n is odd, then n = 7,k1 = k2 = 2, G = SO(4), and (G, M) is the action
given in Example 1.3.

(CY) The case that kί9 k2 are odd:
Then, χ(G/Kί) = χ(GIK2) ( = χ=l, 2, 3, 4 or 6), n-l=χ(/c1+fc2-2)/2,

(G, M) is essentially isomorphic to one of the linear actions

(17, S\ c®θ) (χ = l,k1=k2 = n, ((17, n, 0 is the one in (2.1))) ,

(S17(3), S7, Ad) (χ = 3, k, = fc2 = 3),

(SX3), S", 4*v3 - 0) (χ = 3,^ = ̂  = 5),

w/iere G/Ks(s = l, 2) is α ^oinί, P2(Q, P2(H), P2(Cay), respectively, and

(S0(5), 59, Ad) (χ = 4, ̂  = k2 = 3), (G2, 5
13, Ad) (χ = 6, fcx = k2 = 3),

x t/2, S*!̂ -1, q Θ C2) (χ = 2,((C7If fc., CM)(S = 1, 2)αr^ ί/ie ones in (2.1))),

= (P3(C), S0(5)/S0(2) x S0(3)), (G2/17(2), G2/17(2)') (17(2)'
is ί/iβ subgroup of G2 which is isomorphic but not conjugate to 17(2)), (S*2"1,
S*1"1), respectively.

We shall prove this theorem for the cases (CI)-(CV) separately in the fol-
lowing §§7-10.

§7. The case (CI)

In the rest of this paper, we shall classify almost effective actions with (AT)
and (All) up to essentially isomorphisms for convenience sake. Thus we assume
that an action (G, M) satisfies (AI), (All) and the following three conditions :

(BI) The G-action on M is almost effective, i.e., K does not contain any
positive dimensional normal subgroup of G (cf. Lemma 3.1).

(BΠ) The restricted Z(G)°-action on M is effective (cf. Lemma 3.1).
(Bill) G is the direct product of some copies of simply connected simple

groups and a toral group, (since there is a finite covering G*->G such that G*
satisfies (Bill)).

7.1. In the first half of this section, we prove the following (7.1.1-2) which
gives necessary conditions for the case (CI).

(7.1.1) For the case (CI) (e), we have the following table:
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n

(1)14

(2)4/+2^6

(3)fc, + fc2-l

k,

7

3

*ι

k2

8

4/

fc2

G

Spin(7)

Sp(/) x S3

C / j X l / a

Xί

G2

Sp(l-l)°S3

U^U'z

K2

Spin(6)

Sp(l) x S1

l/Ί x U2

K°

S17(3)

SXί-^oS1

U [ x U ' 2

Here, the G-action on G/K^ is almost effective in (2), and

(7.1.2) For the case (CI) (o), let G' be a minimal connected normal sub-
group of G such that the restricted G'-action on G/K° is transitive, i.e., the
restricted G' -action on M satisfies (AI). Then we have G = G'°Hfor an essentially
direct product H of some copies of S3 and a toral group, and the following table:

n

(1) 19

(2) 23

(3) 31

(4) 15

(5) 11
(6)2/4-1^7

(7)47+3^11

(8) 23

(9)8/+7^15

*1

5

5

7

7

3

/

3

5

5

k2

6

8

10

2

4

2

21

8

41

G'

SU(5)

Spin(8)

Spin(lG)

SixSpinV)

S3xSU(3)

SlxSpm(l+l)

SU(l+\)xS3

Sp(2)xSp(3)

Sp(l+l)xSp(2)

(G'n#1)°~fi

Sp(2)

Sp(2)

Spin(l)

G2

S3

Spin(l)

SU(l-l)xS*

S3xSp(2)

Sp(l-l)xSp(2)

G'nK2~t

St/(3)xS3

Sp(2)xS3

SU(5)

SlxSU(3)

S*xSi

S1xSpin(l-l)

SU(l)xSl

S3xSp(2)xS3

Sp(t)xS3xS3

(G'n#)0~£

^x S3

53x53

SU(4)

SU(3)

S1

Spin(l-l)

SUV-^xS1

S3xS3xS3

Sp(l-l)xS3xS3

Here, the normal subgroup of (Gf n K^0 locally ίsomorphic to S3 (resp. Sp(2))
is contained in the normal subgroup Sl/(3) (resp. Sp(3)) of G' in (5) (resp. in
(8)), but is not so in any simple normal subgroup of G' in (7) (resp. in (9)).
Further, G = G' in (4), (6) for /c^3, and (9).

We prove (7.1.1-2) in the following subsections 7.2-3.

7.2 (PROOF OF (7.1.1)). It is known that a homogeneous space is a sphere
if it is a β-cohomology even sphere. Hence G/K2^Skl~1 by Proposition 5.10
(CI) (e). Furthermore K^/K^S^1 and KJK'aS**-1. Then by using (2.1)
we see easily that (1) holds if G is simple and simply connected.

Let N be the maximum connected normal subgroup of G acting trivially on
G/XJ. Then, by (Bill) and Proposition 5.10 (CI) (e), we have

(7.2.1) G = U x W x N and Kl = (l/ΌF) x N,

where U is simple (k2 ^4) or Sl(k2 = 2) acting transitively on G/JCJ, U' = (17 n K?)°
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and W^V with r(W)^l. Also 17 contains a subgroup locally isomorphic to
Ur x V. (Cf. [8; Proof of Th.I].)

Since K^/K° is an even sphere, we see that there exists only one simple normal
factor M1 of Kl acting non-trivially, hence transitively, on K^/K0 by (2.1).
Now we divide our proof into three cases

(a) M! c 17', (b) M1 = V and (c) Mt c JV,

where we have N=l, 1 and M l5 respectively, by (BI).

Case (a). In this case, the simple group U acts transitively on G/K°, and
hence (U, U') = (Spin(7), G2) by the first observation. We see that U does not
contain any subgroup locally isomorphic to U'xS1 (cf. [3; p. 219] and [14;
Th.II]). Then F=l and G is simple. Thus we obtain (1).

Case (b). By (7.2.1) and Proposition 5.10 (CI) (e), we get

From F=M! and r(F)gl, we see that V^W^S3, /q=3 and K°=UΌV
(S^F'cF). Since U contains a subgroup locally isomorphic to U'xV(by
(7.2.1)), we have /c2 = 0mod4 by using (*) and Hirsch's formula.

If fe2 = 4, then ([/, l//) = (S3, 1) by (*), and we obtain (2) for fe2 = 4.
Suppose that /c2^8. Then r(C7)^2 by (*). In G=UxW, W(^S3) acts

transitively on G/K2 w S2, and K2 = UxW (S1 ^W'a W\ Since K2/X° « 5^-ι
(A:2^8), we see easily that {/(c^) acts transitively on K2/K° with isotropy sub-
group U'. Therefore U/U'ttS*2'1, and U contains a subgroup locally
isomorphic to t/'xS3. By (2.1) we have (17, l/') = (SX/), SX/-1)) and (2)
for/c2^8.

Case (c). By (7.2.1) and Mί=N9 we get

G=UxWxN=>Kl= (U'°V) x N => K° = (U'°V) x N',

where N/N' « S*1"1 '̂ c Λτ).
If the ,/V(c:G)-action on G/1C2 is trivial, then K2 = QxN (Qc 17 x P )̂, and

hence K2/K°πQ/(UΌV) x S*^1. This is contrary to K2IK°πSk*-1. Therefore
the 17 x W^( c G)-action on G/JC2 w S*^1 is trivial, and X2 = [7 x fFx N" for W" c AT.
From Sk2-1^K2/K° = (UxW)/(UfoV)x(Nff/Nf)9 it follows that N" = N' and
(l/xWO/ίt/'^^S*2-1. By setting U±=N, U2 = Ux W, U[ = Nf and t/2 =
I/Ό7, we obtain (3).

This completes the proof of (7.1.1).

7.3 (PROOF OF (7.1.2)). To begin with we show the following
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LEMMA 7.3.1. I f ( k l 9 k2) = (3, 2), then we obtain (6) of (7.1.2) for fc1 = 3.

PROOF. By Proposition 5.10 (CI) (o) and the assumption, we get

(*) n = 7, Kl <*< 0 in G and P(G) = (1 + ί) (1

This and KJ/K°«S2, K2/K°^S1 imply r(G) = r(K2)+l, c(G) = c(X2) - 1
anddimG/X 2 = 5.

Let AT be the maximum connected normal subgroup of G acting trivially on
G/K2. Then G=UxN and K2 = HxN (He 17), where N= 1 or S1 by K2IK°^S^
and (BI). By Proposition 2.7, the first observation implies that U is the direct
product of some copies of S3 and a toral group, and so is G.

Now, put

G=U1x-"XUmx T1

9 Ui ^ S3 (1 g i ^ m).

Since G~£KJ x S3 x S1 and K^O in G by (*), we get

(a) XΓ = {(«!,..., ιιw, 1, v)GU,x - x t/mxS 1 x T'-^G; W l=t/ 2}, or

(b) K?={(0(ιO, W2? » wm» I* ϋ)e^5 ^(u)e (7J for a homomorphism

Then the Ut x S1 -action on G/KJ is transitive. Further, from KJ/K°«S2 and
(BI), it follows that m = 2 or 3 in (a), m = 2 in (b), and the restricted Gf = Uί x
Um x Sί(^Spin(4) x S^-action on G/K° is transitive, as desired. q. e. d.

Let Ns(s = l, 2) be the maximum connected normal subgroup of K° acting

trivially on K°/K° w Sk ~l. Then by (2.1) we have

(7.3.2) Kl = N^M!, K2 = N2oM2oJ and

κ° = N^M; = Jv2oM2oj' (M; = (MS n κ°)° (s = i, 2)) ,

where J^ J'9 r(J)^l αnJ Ms is simple (ks^3) or S1 (ks = 2) acting transitively on

X /X^S*--1. Also here, M2 is simple (fe2^6) or ίrΐi iέi/ (fc2 = 2, 4).

In the rest of this subsection, we use the notations Ms, ΛΓS, J and J' in the

above sense.
One of the following three cases occurs in (7.3.2).

(7.3.3) (α) fc2^6 and Mf

2aN1 (hence M(c:N2°J')9

(β) fc2g6 and M'2<=:M( (hence N1 c N2o Jr) ,
(y) fc2 = 2 or 4 (hence M'2 = l and N^M{ = N2oJf).

In the case (j5), Mi contains the simple normal subgroup M2. Then (2.1)

shows the following table:
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(7.3.4) The case (β):

*t
(i) 5

(ii) 5

(iii) 7

(iv) 7

k2

6

8

8

10

Λίj~ί

Sp(2)

SX2)

G2

Spin(7)

M2~t

Sϋ(3)

Sp(2)

St/(4)

5C7(5)

Mi~t

S3xS3

S3xS3

SC/(3)

S[/(4)

Mi~«

S3

S3

Sl/(3)

St/(4)

LEMMA 7.3.5. 7/G is simple, then we obtain (1), (2) and (3) o/(7.1.2).

PROOF. By Proposition 5.10 (CI) (o), we have

P(G) = (1 + f*'-i) (1 + ί*i+*>-2)P(K J) .

This and the assumption show that /c2^6 and Kl is simple. Hence, Kl=Mί

and the case (β) of (7.3.3) occurs. By using (*) and (7.3.4), we have the lemma
immediately. Here we note that any simple groups do not satisfy P(G)=(1 + f3)-
(l + O (1 + *11) (1 + ί13) (cf., e.g., [8; Ch. V], [12; Kap. III]). q.e.d.

From now on, we assume that (ki9 fe2)^(^» 2) and G is not simple, and
prepare several lemmas.

The following result is due to H. C. Wang [15; (8.5)].

(7.3.6) G, K°ί9 K2 and K° do not satisfy

G = U,oU2 (17, Φ 1), K\ = Qι°Q2, K2 = RloR2 and K° = P,op2

for Qs U Rs c 17., Ps c ρs n Λ, (s = 1, 2).

LEMMA 7.3.7 (cf. [15; (8.6)]). 77z<? G-action on GfKl is almost effective if

PROOF. Suppose that the G-action on GjKl is not almost effective. Let
^l) be the maximum connected normal subgroup of G acting trivially on
Ϊ . By (BI) and K^/K0 « S^'^k^ - 1 : even), we get

(*) G = 17^17* JKJ = I7iot72 and K° = C7ioL72 for U'M c Us (s = 1, 2),

where Mί = L72, Nx = 17; and Mi = U'2 in (7.3.2). Then, by (7.3.6), the normal
subgroup M2 of K2 in (7.3.2) satisfies

(**) M 2<X17, (s = l,2).

Now we derive a contradiction for each case of (α), (β), (y) in (7.3.3).
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In the case (α) or (β), M2(^ 1) is contained in M2 Π Us (s = 1 or 2), which is a
normal subgroup of the simple group M2, and hence M2 Π US = M2 (s = l or 2).
This is contrary to (**).

Consider the case (y). In this case, M2 = 53 (&2 = 4) or S1 (fc2 = 2), and
J^J' = l if M2^S1. Let #s be the projection of G onto US=USIU^ n U2^SLUS

(s = l or 2). Thus (**) shows gs(M2)^l (s = l, 2).
Now, suppose that Mi or M2 is semi-simple and JV2:DMi(=£/2). Then

MίoM2c:K2 and Ker(#2 |MioM2) is finite since #2(Mi)^l and 02(M2)=£l.
Thus ΪJ2(^ίiU2 = Mλ) contains a subgroup locally isomorphic to M( xM2, and
this contradicts r(M1) = r(M/

1). Therefore we have

(***) If Mi or M2 is semi-simple, then Mi (X N2.

Next, suppose that 1 Φ J' c U'^s(s = 1 or 2). Then M2 ̂  S3 and 1 Φ
J'cKergr^n (M2oJ), which is a normal subgroup of M2oJ. From J'cχM2 and
J'cXJ, it follows that Ker#s n (M2oJ) = M2oJ, and this contradicts
Thus we have

(****) If J' ^ l, then J' <χ N± (= C/i) and J' cX Mi (= t/2) .

By (2.1), Mi is simple with r(M()^2 (k^Ί) or locally isomorphic to S3 x
S3 (fe1==5). Then we have M(^N2 or S3~μ'cMi in K° = NίoMf

ί=N2oJ'
when ̂  ̂ 5. This contradicts (***) and (****).

Finally, suppose that (kl9 fc2) = (3, 4). Then we get

U2 = M! -£S
3, 1/2 = Mi s S1 and M2 s S3.

Consider the normal subgroup V=(U2 n K2)° of K2 = N2oM2°J. Here J^J'^
S1 since S^Miά Λ^ (by (***)) in K° = NίoMf

ί = N2oJ'. Clearly we have
S3-£ί/2iDFiDl/^51. Hence 7=C72 or C72. If 7= C72, then 172 = M2 or
C/2c:JV2, and this contradicts (**) and (***). If F=£72, then U2^N2

0J9 and
M2c=Z(L/2, G)=(71ol/2. Thus M2c=ί/1, and this contradicts (**). Therefore
the proof of the lemma is completed. q. e. d.

Let us set G— Ui x ••• x Um (m^2), where C/f (l^ί^m) is simple, and some
Uι is a toral group if G is not semi-simple. Let ξ f: G-^L^ be the natural pro-
jection, and set

(7.3.8) Γ^ftKΪ), Γ = /\ x - xΓm, ̂  = (17, n KJ* and L = LX x - xLm,

where Lc KJ cΓc G, X^ ̂ 0 in Γ, and Lf is a normal subgroup of Kl .
Then, by Lemma 7.3.7, we have

(7.3.9) L|^0 in Uί9 and Lt is simple or trivial (l^i^m).
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Since L is a semi-simple normal subgroup of ϋCJ, there exists uniquely a
connected normal subgroup V of K{ such that Kl = V°L. Let us set V—
FooFiO oFj, where F0 is a toral group and Vj ( l^ j rg/) is simple. Then we get

(7.3.10) Γi = ξi(V)oξί(L) = ξi(V0)oξi(Vί)o...oξi(Vl)oLh where «Ky) = l or
and at least two of ξ^Vj) are non-trivial for each l^j^l.

LEMMA 7.3.11. Γ contains a normal subgroup locally isomorphic to Vx
VxL.

PROOF. From (7.3.10), it follows immediately that Γ contains a normal
subgroup locally isomorphic to (F/F0)x(F/F0)xL. Hence the lemma holds if
Fis semi-simple.

Suppose that Fis not semi-simple (F0 Φ 1). Since K^ * 0 in G, we may assume
that 17 ! is a toral group, and K Q ΐ ( ξ i \ V 0 ) is finite. Thus dim Γ1 = dim F0 = r.
Since Lί = l by (7.3.9), we see easily that Ker(ξ2 x ••• x ζm\ F0) is also finite.
Then the center of Γf = Γ/Γl is of dimension c(Γ')^r. Therefore c(Γ)Ξ>2r, and
hence we have the lemma if Fis not semi-simple. q.e.d.

Since r(G) = r(Kl) + 2 by Proposition 5.10 (CI) (o), we shall divide our
proof into three cases;

(a) r(Γ) = r(Kl\ (b) r(Γ) = r(Xι)+l and (c) r(Γ) = r(K J) + 2(= r(G)).

Case (a). By the assumption and Lemma 7.3.11, we get F=l and K^=L.
Then Lemma 7.3.7 and Proposition 5.10 (CI) (o) imply m = 2 and Lf§i Ut (ί= 1, 2).
By (7.3.9), we may assume that Lί=Mί and L2 = Nί in (7.3.2). Thus we get

(7.3.12) G=Uί x U2, Kl = Af ! x Ni9 K° = M( x Ni

(M^U19 N, ξ l/2) and P(G) = (1 + ί**-i)(l + ί*)P(Xί) (fc = fct + fe2 - 2).

LEMMA 7.3.13. /n the case (a), we obtain (4), (5) and (6) o/ (7.1.2) with
H=\.

PROOF. By (7.3.6), we have M2ξI7s(s = l, 2). Thus, by [15; (9.1)] and

r(G) = r(K2)+l, we see easily that r(M2) = l, and so k2 = 4 (M2^S3) or 2
S1). Then, by (7.3.9) and (7.3.12), we have

I = 1, XJ = M! c 1719 K° = Mi and PίLΓj) = (ί + tk)P(Ml)9 P(U2) =

where Mί ̂  5O(fcx) or G2 (fei = 7).
Suppose that M1^J(,G2 (/cx=7). Then the above result implies fe2 = 2, ί/! =

Spin(l\ U2 = S1> and we obtain (4).
Next, suppose that Mx ̂ SOί/q). Then P((71) = (l + i3)(l-Hi7)-"

(l + ί2fcl-3)(l + ίfe), and this shows that fc2=4, Ul = SU(3) if fcx = 3, and fc2 = 2,
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Uί = Spin(kι -f 1) if /ct ̂  5. Therefore we obtain easily (5) and (6). q.e.d.

Case (b). By (7.3.10), Lemma 7.3.11 and the assumption, we get, for
Kl = VoL9

r(7) = 1, ξj(V) Φ 1, Γj^VxLj(j = 1, 2) and <^(F) = 1, Γ, = L, (3 ̂  / g m).

Then G/Kΐ=(UlxU2/VoLίoL2) x 173/L3 x x t/JLm, and m ^ 3 by Pro-
position 5.10 (CI) (o) and Lemma 7.3.7.

LEMMA 7.3.14. In the case (b), m = 2 or 3. // m = 3, ίfoeπ we obtain (5)
.1.2) withr(H)=i.

PROOF. By Proposition 5.10 (CI) (o) and the assumption, we see that
U1 x U2/V°Lί°L2 and 173/L3 are Q-cohomology spheres and one of their dim-
ensions is fc2 — 1 and the other is k = kί + k2 — 2. Thus we may assume that
L2 = l, V^U2 and the l/j-action on UίxU2/VoLί is transitive (cf. [8; Proof
of Th. I]).

Now we show that Fdoes not act transitively on Kΐ/K°ttSkl~l. To see
this, assume the contrary. Then V^ U2 ̂  S3, fet = 3, k2 ̂  4 and K° = V'°L (S1 ̂
V'cV). From (7.3.6) it follows that M2<χ U1 x U2, M2cχ l/3, and so J'^Uj.x
1/2, J'<X173 if JV1 (in (7.3.2)). Therefore, in K° = V'°L = N2oM'2°J'9 we see
that M2oJ' = l, and hence M2^S3, /c2 = 4 and K2 = K°oM2. Then l/^r^jjK
x L x and t/3=>£3OK2)~4M2 xL3. By considering the Poincare polynomials of
UJΓi and U3lξ3(K2)9 Hirsch's formula shows fcj + fc2 - 1 =0 mod 4. This leads
a contradiction.

From this observation, the L-action on Kl/K° is transitive. Hence the
restricted G' = 17 1 x Inaction on G/K° is also transitive with (G' n K1)° = L9 (this
is the case (a)). Thus the lemma follows from Lemma 7.3.13, since (4), (6) do not
occur by the condition U1iDΓ1 ~ f iFx L l β q. e. d.

LEMMA 7.3. 15. // (b) holds and m = 2, then we obtain (1), (2), (3) with
= l, and (7), (8) with H=\ o/ (7.1.2).

PROOF. First, we recall that

P(U1/L1)P(U2IL2) = (1 +ί*a-i)(i +ί*)p(j^ (/c = ^1 + ̂ 2-2 ̂  5)

by Proposition 5.10 (CI)(o). Thus we may set r(L71) = K^ι)+l and r(U2) =
r(Γ2) since r(G) = r(Γ) + l.

(I) Suppose that C/j is a toral group. Then we have ί/^Γ2, K^S1,
L! = I, L2 = MX by (7.3.9) and the above assumption. Moreover (*) implies
k2 = 2, kί^59 and hence U2 must satisfy

P(£72) = (1 -f t**)P(L2), U2=>Γ2~ιVx L2,
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where L2 = Mι~SίSO(kί) or G2 (kl = 7). But any simple groups do not satisfy
this condition (cf. [3], [14]). Therefore 17 j is not a toral group.

(II) Assume that U2 is a toral group. Then U2 = S1, V^S1, L2 = l and
L1=M1. Hence we see easily that 17j acts transitively on GjKl and so on
G/K°. By Lemma 7.3.5, we obtain (1), (2), (3) with H^S1.

(III) Finally, assume that G— Uί x U2 is semi-simple. Then (*) shows that
Kl = V°L is semi-simple and it has at most two simple factors. Furthermore we
see that V~&S3 and L is simple (k2^6) or trivial (/c2 = 4).

(i) If L = l ( f c 2 = 4), then jq = J/(/q = 3), ^(70 = 2, r(t72)=l, and we
obtain (7) with H = 1, fe2 =4 by (*).

(ii) Suppose L = Ll(k2^6). Then F^L72^S3, and the I71-action on
G/K° is transitive. In K° = V^L^N^M^ we have Ml=Ll or F (/q = 3).

If Mj =L1? then the Ul -action on G/K° is also transitive. Thus, by Lemma
7.3.5, we obtain (1), (2) and (3) with H^S3.

If M1 = F(k 1 = 3), then K° = N2°M'2<>J'=VΌLί (S*^Vc F), where M2 is
simple by /c2^6. Then M'2 = Lί and 17! satisfies P(Uί) = (] +tk*-l)(l + tk*+l)
P(M2) by (*). Thus, by (2.1), we have Uί =SU(l+1) and M'2 = SU(l- 1) (/c2 = 2/),
and this is the case (7) with // = 1.

(iii) Suppose L = L2(k2^6). Then r(^ι) = 2, r(U2) = r(L2)+l9 and (*)
shows that for {/19 /2} = {/c2-l, k}(k = k1 + k2-2), P((71) = (l + ί3)(l f ί'O and
L72/L2 is a β-cohomology /2-sphere, where /! = 5, 7 or 11 according to (7̂  =
S(7(3), 5X2) or G2. Further, by considering the Poincare polynomial of 172/

^2 (^2^ι^XjL2)> we see that / 2 + l = 0 mod4. By [15; (9.1)], M2 is contained
in ί72 since r(G) = r(K2)+l9 r(M2)^2 (/c2^6) and L1 = l. In K1° = FoL2 =
N^Mi, we have Mί = V (kt=3) or L2.

If M1 = K(/c1=3), then K0 = N2°M'2oJ' = VΌL2 (S
1^ K'c: F) and L2 = M2.

Thus, by considering the Poincare polynomial of 172/M2, we have /2 4-1 = 0 mod k2.

On the other hand, there is no integer /c2Ξ>0 such that {/15 /2} = {/c2 — 1, k2 + l},
/2 +1 =0 mod 1cm(4, A:2), and / j =5, 7 or 11. This leads a contradiction.

If M 1=L 2, then M2a(U2 n X)° = M'1, and the case (β) of (7.3.3) occurs.
From {/!, /2}= :{fc2 — 1, /c] and /2+ 1=0 mod 4, only the case (ii) of (7.3.4) occurs.
Thus, by (*) and U2 => Γ2 ̂ £ F x L2, we obtain easily (8) with H = 1. q.e.d.

Case (c). By the assumption and Lemma 7.3.11, we have r(F)=l or 2 in
Kl = V°L. Since r(l7f) = r(/V) and L^O in ^(l^ίgm), Lemma 7.3.7 implies

(7.3.16) ξ£V)ϊ\for the projection ££: G->L/f

LEMMA 7.3.17. /n ί/i^ case (c), we obtain

(I) (9) o/(7.1.2) wiίfc H = l, i/ F/s simp/e wiίΛ
(II) (1), (2), (3), (5), (7) and (8) of (7.1.2), otherwise.
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PROOF. (I) From the assumption and (7.3.16), it follows that m = 2 and

G = C/j x 1/2 is semi-simple. We recall that

(*) p(G) = (l + ̂ -i)(i + ,fc)p(j/)p(L) (k = k1 + k2-2^5)

by Proposition 5.10 (CI) (o). This shows that L = Lj xL 2 is simple (/c2^6) or
trivial (k2 = 4). Put L! = 1 . Then X j = V°L2 and

(**) l/i c Γl ~£ V, U2 ^ Γ2 ~t V x L2,

where r(Ό^ = r(Γ^ (ι = l, 2) and Vis simple with r(K) = 2. By [3], this implies

(***) U2*SU(l),Spin(2l), and VΦ G2.

First we show Uί=Γ1. In fact, if Uί^Γl9 then it is known that U1 = G2

and Γ!=S17(3) (cf. [3]). Thus //5(C/2; β)^0 by (*), and hence U2 = SU(l).
This contradicts (***).

Therefore the t/2-action on GfKl is transitive, and

(*)' P(U2) = (l + f**-i)(l+f*)P(L2) (by (*)).

By (***) and Lemma 7.3.5, we see that the l/2-action on G/K° is not transitive.
Hence we have V=Mί=Sp(2), kt = 5 and Uί = Sp(2).

If /c2=4, then (*)' shows that L2 = l and l/2 = Sp(2). This is the case (9)

Suppose that k2 ̂  6. Then, by the same method as that in the proof (III)-
(iii) of Lemma 7.3.15, we have M2c U2 and M2 = (U2 n K)° = L2. By using (2.1)

and [3], we see easily that the triple (C72> ^2> L2 = M2) satisfying (*)' and (**)
for V=Sp(2) is given by (SX/ + 1), Sp(/), SX/-1)) (fc2 = 4/).

Thus we obtain (9) with H=l.
(II) It is sufficient to show that there exists a connected semi-simple normal

subgroup G' of G such that the restricted G'-action on M satisfies (AI), the con-
dition of the case (a) or (b), and G/G'~£S

3, Sl or T2.
(i) Suppose that 17 x is a toral group. Then, by (7.3.9) and the assumption,

Ll = \ and U1 =ξί(V)~S1 or T2. Thus the semi-simple normal subgroup
Gr —U2 x ••• x Um of G acts transitively on G/KJ, and hence so on G/X° since
M tc:G'.

(ii) Suppose that G is semi-simple. Since Kl^Q in G, we see that X[ is
semi-simple, and F~βS

3 or S3 x S3. Then Γ-fi5
3 x S3 x XJ by r(Γ) = r(Kί) + 2.

By Proposition 5.10 (CI) (o) and Hirsch's formula, we get P(G/Γ) = (l~ί fc2) (1-
tk+ί)/(\ - ί4)2, and this shows k2, fe+ 1 =0 mod 4. Thus fct = 1 mod 4, and hence
Lacts transitively on Kl/K°&Ski~l (i.e., M1cL). Now consider

(*)w ΠΓ-i Pd/i/L,) = (i + r*a-i)(i + i*)p(K) (by (*)),

where P(V) = (l + ί3y O' = l, 2), L^.C/,, and L^O in t/, (cf. (7.3.9)).
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Ifm = 2,then K~£S 3xS 3by r(Γ) = r(Kl) + 2, and (*)" implies L £ =l (i = l, 2).

This contradicts M 1dL = L 1 xL 2 . Therefore m^3 and (*)" shows that
P(L/ί/Lί) = l+ί3 for some /, say i=l . Hence L1 = l and S3^ t/! =^(7) by

(7.3.16). Then the normal subgroup G' = U2x ••• x C/m acts transitively on G/K°,
and so on G/K° since Mj ciLc G'.

Clearly, for each case, the restricted G'-action on M satisfies the condition
of the case (a) or (b). q.e.d.

By Lemmas 7.3.1, 7.3.5, 7.3.13-15 and 7.3.17, the proof of (7.1.2) is com-

pleted.

7.4 (PROOF OF THEOREM 6.1 (CI)). In the last half of this section, we prove
Theorem 6.1 (CI) by studying the existence and uniqueness of actions with (AI),
(All) and (7.1.1-2).

For this purpose, we consider the following assertions, where [G, M ] denotes
the essential isomorphism class of (G, M), and [G] denotes the local isomorphism
class of G:

(#o) [G, M] is determined by [G].
(Rs) Z(G)° Π Ks^Zrs and [G, M] is determined by [G] and rs(s=i or 2).
(#3) Z(G)°nKs^ZΓs (s = l, 2) and [G, M] is determined by [G] and

7*1, Γ2.

Then we can show Theorem 6.1 (CI) by proving the following

PROPOSITION 7.4.1. (I) For the case (CI) (e), (Λ0) holds.
(II) For the case (CI) (o):
( i ) G = G' and (R0) holds in (9) (o/(7.1.2)).

(ii) G = G' or G' x S1, and (Λ0) /">Ws ^ (1), (3), (7).
(iii) G = G' and (R2) holds in (4), (6).
(iv) (G, M) w/ίΛ (AI), (All) does noί occwr in (2), (5), (8).

In fact, we can study the isotropy subgroups of the actions given in Theorem
6.1 (CI) by routine calculations, and we see that these actions realize the desired
unique actions due to (7.1.1-2) and Proposition 7.4.1. Thus Theorem 6.1 (CI)

holds.

We prove Proposition 7.4.1 in the following subsections §§ 7.5-15. In
the proof of Proposition 7.4.1 for (CI) (o), we use G, Ks, K, G = G<>H9 Ks and K
in place of G', G' n Ks, G' n K, G, Ks and K, respectively.

7.5 (PROOF OF PROPOSITION 7.4.1 FOR (1), (2) IN (7.1.1)). First, in the case
(1), we note that a subgroup G2 is unique up to conjugation in Spin(l) by using

Lemma 2.5 and the universal covering π: Spin(7)-*SO(Ί).
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Set G = Spin(Ί) in (1), =Sp(l)xS3 in (2). By Lemma 5.4 all the isotropy
subgroups are connected. Then we see easily that Ks (resp. K) is unique up to
conjugation in G (resp. Ks) (5 = !, 2), (except for the case k2 = 4). Thus we may set

(1) K, = Spίn(Ί) n 50(7) = G2, K2 = Sj?ίw(6) = TrKSO^)) and

X = Spίn(7) Π 50(6) = 517(3) (= K, ΓΊ X2),

where G = Spίn(l) is naturally imbedded in 5O(8),

(2) Kι

K2 = {(y z)eG zeS1 c Q and

By easy calculation, we see that N(K, G)/K has two components and

is not in the identity component for (1) α0 e 50(8), the diagonal matrix with the

diagonal elements 1, — !,...,!, — 1, and (2) α0 = ί(/ F / ' Ό * Since αo *s in

Xx and αgeK, we see that β = α0 satisfies the condition (2) of Lemma 3.8 for
ιs = l. Hence, by Lemma 3.7 (2), we get M(l)»M(α0) in (3.3). Thus the as-
sertion (R0) holds for G = Spin(T) and 5p(/) x 53.

7.6 (PROOF OF PROPOSITION 7.4.1 FOR (3) IN (7.1.1)). Now, we may assume
that the G-action on M (hence on G/K) is effective by (BΠ). Thus the £/s-action

on Us/Uf

s^Sks~ί is also effective for K=U( x 1}'2^G—U^ x U2, and such
(Us, U's) is the pair in (2.1) (s = l, 2). This implies that U's is connected, and
Ki9 K are also so.

It is clear that the connected subgroups Kί and K2 are unique up to auto-
morphisms of G, and K = KίnK2. Clearly we get N(K, G)/K = NU'JU'lx
NU'2/U'2 (NU'S = N(U'S9 17,)), where NU'1/U[^Z2 and NU2/U'2^Z2, 51 or 53

by Lemma 2.2. Here we choose an element aseNU's with αj = 1, as^ U's if NU'J
U'S^Z2, and α2 = l if NU^U^S1 or 53. Set ^=(al9 1), α2 = (l, a2) and
α3 = (a 1 , α2) Since αs (s = 1 , 2) is in Xs and of order two, we see that β = αs satisfies
Lemma 3.8 (2). Then, by Lemma 3.7 (2), we have M(l)«M(αs) for s = l, 2.
Also, by α1=α2α3~

1, we have M(α2)«M(α3). Thus (,R0) holds for G=(71 x L/2.

7.7 (PROOF OF PROPOSITION 7.4.1 FOR (1) IN (7.1.2)). All isotropy subgroups
are connected by Lemma 5.4. Set G = 517(5). By considering the representations
5X2)-»517(5), there are, up to conjugation, just two connected subgroups 5p(2)
and 50(5) of 517(5) locally isomorphic to Sp(2) by Lemma 2.5. Thus Kl = Sp(2)
or 5O(5). On the other hand, from K2/K&S5 it follows that K(~£5

3x53)
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contains a normal subgroup N2(~£5
3) of JK2(~£Sl/(3)xS3), and hence Z(N2,

G)0:=>5l/(3) (c.K2). This implies K1 = Sp(2), and that K2 is unique up to con-
jugation in G. Thus we may set

1

Q °
e 517(5); X e Sp(2) c 517(4) |,

1 0

X, I E 5C7(5); X19 X2 e 517(2) } and

0 X2t

KI = {( o γ}Esc/(5);xEsu(3}' Yesu(2)}'

By easy calculation, we get

(a) NK/K (NK = N(K, G)) has two components, and we can choose
α0 6 NK-(NK)° with αg = 1 and <*0eKi9

(b) L = NK n NKi n NK2/K ^ 51 and Z(L, NK/K) = JVX/X.
By the same method as that of § 7.5, CR0) holds for G = 517(5).
Next, we consider the extension of this 5t7(5)-action to G = SU(5)xH.

From (b) and Lemma 4.5, we see that H = 5X and φ of (4.6) is unique up to the
diagram in (4.8) since Z(G)° = // acts effectively on M. Then the isotropy sub-
groups (K, Kl9 K2) are unique up to automorphisms of G by Lemma 4.7. By
(b) and Lemmas 4.5 and 4.9, NK/K (NK = N(K, G)) has two components, and

αg = l and α0

e^ι f°r α0 = (α0, 1). Therefore (R0) also holds

7.8 (PROOF OF PROPOSITION 7.4.1 FOR (2) IN (7.1.2)). Set G = Spin(8\ and
consider the commutative diagram

U U ^
S* x S3 - > K - > G = 5/w'ιι(8) -ΐ-> 50(8) - > 5C/(8) ,

n n /

where K, Kl9 K2 are connected by Lemma 5.4, and π, πs (s = 1, 2) are the universal
coverings. From K^jK^S^ and K2/K&SΊ, we see that 53 x 53 in Sp(2) is unique
up to conjugation, and 53 x 53 in Sp(2) x 53 is given by

(a) , ίeSp(2)xS^ or (b)
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Denote by χ(gs) the character of the representation gs (s = 1,2). For the case (a),

l(9ι) = l(9ι) on S 3xS 3 implies gΐ=(v2)c®θ and #2 = (v2)c0μ2θ0, which are
not the complexification of real representations. For the case (b), χ(g ι)^χ(g2)

 on

S3 x S3 for any representations gl and g2. Thus this case does not occur.

7.9 (PROOF OF PROPOSITION 7.4.1 FOR (3) IN (7.1.2)). Set G = S/nn(10).
Then, from KJKπS**-1, we see easily that K2 = SU(5), K = SU(4) = Spίn(6)9

K1=^Spίn(l)9 and that K is unique up to conjugation in Ks (5 = 1, 2). Consider
the commutative diagram

g,:Spin(l) = K,

"\
517(4) = K - > G = S/7/X10) -JL> 50(10) ,

where π is the universal covering. By the similar argument to that in § 7.8, we

see that the representations gl and g2 are equivalent to AΊ®Θ2 and (μ5)Λ, respec-
tively. By Lemma 2.5, π(K2) is conjugate to S 17(5) c: 50(10), and π(K) is so to
St/(4) (c 50(8)) c= 50(10). Since π(K^π(K)^S6, the center of <Xj) contains
an element 7 with y2 = l and yeπ(K). Hence π(Xj) is in S0(2) x 5O(8), and
π(Xi) is conjugate to Spin(l) (c=5O(8)). Therefore it follows that X = π~1(πX)°
and Ks = π~1(πKs)° (s = l, 2) are unique up to conjugation in G.

The followings are seen by easy calculation :
(a) NK/K has two components, and we can choose α0 eNK-(NK)0 with

αg = l and cc0eKl.
(b) L = NK n NX, Π NK2/K^Sl and Z(L, NK/K) = NK/K.
Therefore the same discussion as that in § 7.7 shows that G = Spin(lG) or

Spin(W) x S1, and CR0) holds for these groups.

7.10 (PROOF OF PROPOSITION 7.4.1 FOR (4) IN (7.1.2)). By § 7.5, we may set

G = S1 x Spin(l) a S1 x SO(8), K? = Spίn(l) n S0(7) = G2 and

K° = Spin(l) n S0(6) = 517(3).

Since K° is a normal subgroup of K^^^S1 x S£/(3)), we get

K2 = {( X«, ( ̂  ° )) e G ci S1 x S0(8); X e SO(2) = S1 }

for some relatively prime non-negative integers r and m. Here Z(G)° n X2 = ̂ r»
and we have m = l because G/X2 is simply connected by Lemma 5.4. If K and
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K1 are connected, then f*(HΊ(G/Kι; Z2)) n/?(H7(G/K2; Z2))^0, and we see
easily that M is not a Z2-cohomology sphere by (5.5). Thus, by Lemma 5.4,
K and K! are not connected, and K = \jbίK°, Kl = \jblKl for some beK2Γ(K.
By using (BII) and beN(Kl, G) = S1 x N(G2, Spin(7)), we get

(a) r is odd, and K = K°(jbK°, X1=K1° U bK? for & = (-!, -£),
(b) NK/K has two components, and (1, A)K is not in the identity com-

ponent for the diagonal matrix A with the diagonal elements 1, —!,...,!, —1,
Now the slice representation σ^ : Kί-^0(Ί) in (3.3) is unique up to equivalence

by Lemma 2.4. Therefore, by Lemmas 3.7 and 3.8, the assertion (R2) holds for
G = 5J x Spin(7), as desired.

7.11 (PROOF OF PROPOSITION 7.4.1 FOR (5) IN (7.1.2)). Set G = 53x 5(7(3).
Since A^ί^S3) is connected (by Lemma 5.4) and contained in 5(7(3) c= G, we get
Ki = 1 x 5(7(2) or 1 x 50(3). For each case, K is conjugate to a circle group in
1 x 5(7(2). Thus Z(X, 5(7(3)) is a maximal torus of 5(7(3). On the other hand,
by using (7.3.6) and Ka 5(7(3), we see easily that

and K = K2 n 5(7(3) .

Then U(2)cZ(K, 5(7(3)) and this is contrary to Z(K, 5(7(3)) ̂ S1 x 51.

7.12 (PROOF OF PROPOSITION 7.4.1 FOR (6) IN (7.1.2)). Set G = 5X x Spίn(l + 1)
(/ = kl ̂  3). When / = 3 and G = 51 x 53 x 53( = 51 x Spin(4)), we see easily that
Xί=53 is not a normal subgroup of G by (7.3.6). Thus K° = {(1, z, z)eG;
ZG51}, and we may assume that G = 5X x5O(4), Xι=5O(3) and K° = SO(2)

by Lemma 3.1. When /^5 and G = 5X x Spin(l+ 1), we see that K2 is contained
in 51 x (51 x Spin(l-l)) by (7.3.6). Then K° = Spin(l-l) is naturally imbedded
in Spin(l+ !)<= G. Therefore we may assume

G = 51 x50(/ + l), Kl = 5O(/) and K° = 5O(/-1) for / ̂  3,

where the inclusions 5O(/~ l)c=5O(/)c:5O(/H-l) are the canonical ones.
By the similar method to that of § 7.10, (R2) holds for G = Slx 5O(/ + 1).
When / = 3, we can not extend this G-action to any almost effective

G( = G x /^-actions for H^ 1 by Lemma 4.5.

7.13 (PROOF OF PROPOSITION 7.4.1 FOR (7) IN (7.1.2)). Set G = 5(/(/+l)x
53 (/c2 = 2/^4). We recall the result in the proof of Lemma 7.3.15 that

Kl = M'2°M19 K2 = M2o5J and K = M^M;

for M2 = 5(7(/), M^ = 5(7(/-l), M'̂ 51 and M^-^S3) is not contained in any

simple normal subgroup of G.
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Suppose / = 2. Then M2 = S3 and Kl=Ml~ίS
3. It is easy to see that there

are five conjugate classes of connected subgroups of G = S(7(3) x S3 locally isomor-
phic to S3. Under the condition M2 = S3, M2Γ\K=l and (All), we conclude
that the isotropy subgroups are unique up to conjugation, and given by

r o

o ' Z ; Z = es^) and

where M2 = S3 is contained in Sί/(3)cG.
Next suppose /^3. Then, by Lemma 2.5, M2 and M'2 are unique up to

conjugation in SC/(/ + l) and M2, respectively. Thus we may set

and

Since M^ZίM^, G), K<=K2<=zN(M2, G) and K2=M2K, we get

and

Clearly this also holds for / = 2 from the first half of this subsection.
By easy calculation, we have
(a) NK/K has two components, and a0K is not in the identity comopnent

for α0 = ((Q E)>A)(ASS(-I o)) ' which is in χι n NK and of order two'

(b) L = NKΓ(NK1Π NK2/K ^ S1 and Z(L, NK/K) = JVK/X.
Therefore δ = 5l/(/+l)x53 or SUU+tyxS^xS1 and (R0) holds for these

groups, by the same method as that of § 7.7.

7.14 (PROOF OF PROPOSITION 7.4.1 FOR (8) IN (7.1.2)). Set G = Sp(2) x
and recall the result in the proof of Lemma 7.3.15 that
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K = and K = S3oS3oS3

for F~fiS
3, M1-1Sp(2), M2 = Sp(2), Mβc:Sχ3)czG (s = l, 2), and Fis not con-

tained in any simple normal subgroup of G. Thus we may set

(P (M)eG = SX2)xSX3);peS 3crfll and
\ υ Λ. /I )

P 0
0 P

for some non-trivial homomorphism φ: S3-+Sp(2). Since K2/KttS7, one of
the normal subgroup JF^ S3 of K is also normal in K2, and K2 = WoM2°S

3. Then
M2 satisfies M2aZ(W, G)Π Sp(3) and (M2Γ)K)°^S3. This implies ^cKn
Sp(3). Then we see that K2 = M2K is conjugate to Im φ x (Sp(2) x S3) in G,
and this contradicts the condition P(G/^2) = (l + ί4)(l + ίn) in Proposition 5.10
(CI) (o). Therefore this case does not occur.

7.15 (PROOF OF PROPOSITION 7.4.1 FOR (9) IN (7.1.2)). By using the similar
method to that of § 7.13, we see that CR0) holds for G = Sp(l+1) x Sp(2).

The proofs of Proposition 7.4.1 and Theorem 6.1 (CI) are now completed.

§8. The case (CΠ)

8.1. In the first place, we consider the case (CΠ) (o) of Proposition 5.10,
and prepare the following

(8.1.1) For the case (CΠ) (o), there exists a minimal connected normal
subgroup G' of G such that the induced G'-action on G/K° is transitive. Then
G = G'°H for an essentially direct product H of some copies of S3 and a toral
group, and we have the following table (if k^k^'.

fci

(1) 8

(2) 6

k2

8

8

(3) (fc l f fc2)*(2,2)

(4) 2

(5) 2

(6) 4

2

k2>2

41

G'

Spin(&)

SU(4)

Vι*U2

S^S1

βxS1

sχo x s3

(Gr n Kj0

Spin(Ί)

SC7(3)

UixV't

S1

QΌS1

Sp(f-l)°S3

(G' n K2)°

Spin(7)

SX2)

c/Ί x u2

S1

Q
SXO

(G' n κ)°

G2

S3

ί/i x U'2
1

β'
SX/-1)
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Here Us(s=l, 2) is a simple group or a circle group with Us/U's&Sks~l, and
(Q, β') = (Sl/(/), Sl/(/-l)) (/c2 = 2/) or (Sp(t), Sχ/-l)) (k2 = 4I). Λi the cases
(5) and (6), (G' Π ΛΓ2)° is a normal subgroup of G', and the G' -action on G'/
(Gf Π KJ0 is almost effective.

8.2 (PROOF OF (8.1.1)).

LEMMA 8.2.1. For ae N(K9 G) in (3.3), we have XO = (K! n or^a)0.

PROOF. In this proof, we use the notation K2 in place of arlK2<x>9

 and the
cohomology with coefficient in Q.

Let us set V = (KV n £2)°,
 and consider the following commutative diagram

Hi(G/K1)@Hi(G/K2)

where all the homomorphisms are induced from the natural projections. By

(5.5) and (5.6), (θf, 0f), θ* and/? — /f are isomorphic, and so is ef — eξ.
Since £°~0 in 17 by Proposition 5.10 (CII) (o), U = K° if r(l/) = r(K°). To

prove the lemma, it is sufficient to show r(U)^r(K0) + l( = r(K^)).
Suppose that r(U) = r(K°)+l. Then P((7) = (l + ̂ -1)P(X°) for some even

integer p^2 since X°^0 in G. Hence P(K;/U) = (l-tk )l(l-t') (/cs = (ms+l)p)
by Hirsch's formula. By Leray-Hirsch's theorem for the fibering K°/U-*G/U-+
G/X s°,weget

P(G/U) = P(G/K°S)P(K°S/U) = (l + ί*3- -1)(l-ίk )/(l-ί|>).

This implies m1 = m2, fc1==fc2 = fc and Hk~l(GIV)^Q. On the other hand,

Hk'\GIK°s)^Q (s=l, 2) by Proposition 5.10 (CII) (o), and this contradicts the
commutativity of the above diagram. q.e.d.

LEMMA 8.2.2. // G is simple, then we obtain (1) and (2) o/(8.1.1).

PROOF. By Proposition 5.10 (CII) (o) and the assumption, we see easily that

K\ Kl and K°2 are simple, and P(G) = (l + ̂ -1)(l + ifc2-1)^(^°) (kl9 k2^6).
Then the lemma follows immediately from (2.1). q.e.d.

Clearly we obtain (4) if k1 = k2 = 2. From now on, we assume that kί^k2

and fc2^4. To prove (8.1.1), we may also assume K° = (Kl Γ[K2)° by Lemma
8.2.1.

Let Vs(s = l, 2) be the maximum connected normal subgroup of G acting
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trivially on G/X°. Since G/X? is a Q-cohomology (k2 — l)-sphere, we have
(cf. [8; Proof of Th. I])

G = ί/i x W^ x Vl and K{ = (l/ioβj x Vl9

where I/! is a simple group acting transitively on G/XJ, C/i = (C/ι Π XJ0 is simple
or trivial, W1^Q1 and K^)^!.

Let M ! be a connected simple (or a circle) normal subgroup of X? acting

transitively on XJ/X^S*1"1. We divide our proof into three cases;

(I) M! c l/i, (II) Mj c: ^ and (III) Mx (X l/i x 7le

Case (I). In this case, we see easily that the simple group U λ acts transitively

on G/X°, and K^iλ K*Ί)^1 BY setting G' = Uί9 we obtain (1) and (2) by
Lemma 8.2.2.

Case (II). From the assumption, we have V1 = U2xW2, where
and U2 is simple^ ̂ 4) or S1 (k± =2) acting transitively on XJ/X'wS*1"1. Then
the normal subgroup G' = ί/i x U2 of G acts transitively on G/X° with (G' n Xι)° =
L/ix ί/ 2 and r(Ws)^l (s = l,2). To prove (8.1.1), we may assume that G =
UlxU2 and Xί = ί7ixl/2. Now we have C/2<χF2(c:X°) by (BI) and X° =

(XιΠX2)0.
(i) If ί/i c F2, then X^ = C/! x t/i(l/2 c ί/2), and hence K° ̂ (^ n X2)° =

t/i x l/i and 1/,/l/ wS**--1 (s = l, 2). Thus we obtain (3).
(ii) Suppose l/^Fi. Then F2 = l and r(i7s) = l (s = l or 2), since G/X2

is a Q-cohomology (fei — l)-sphere and U2<$.V2. By the assumption /c, g/c2 and
fc2 ^ 4, we get U2 = S3(kί= 4) or S1 (/q = 2). Since the G-action on G/X2 is almost

effective (F2 = l) and P(G/X|.β) = l + ί* -1(s = l, 2), it is easy to see that ί/s = S3,
/cs = 4 (s = l,2) and l/i = l. Thus we obtain (6) for k1 = k2 = 4 (by exchanging

Xx and X2).

Case (III). In this case, the (^-action on K^/K0 is transitive, and so is the
G^L/iXPf i -action on G/X° with (G' n Kί)° = U[oQί and riVJ^l. Thus we

may assume that G= U^ x Wί and Kl = U'^Q^

(i) If Qi^S1 (fc2>fc!=2), then we see easily that K2 = Uί and X° =
(Xx n X2)° = C/;. Hence l/JC/i « S*2'1 and we obtain (5) by (2.1).

(ii) Suppose β^S3 (fe2^fcι=4). If fe2 = 4, then l/^S3, l/i = l and
K2^S3. Clearly, X^ is a normal subgroup of G( = S3 x S3) since X° = (Xt n X2)°.
If /c2^6, then L/i is simple with r((7i)^2, and hence Ul acts trivially on G/X2.
Thus we get K2 = Uί9 K° = (K1 n X2)°=l/i, l/Jl/i^S^-i, and we obtain
(6) by (2.1).

This completes the proof of (8.1.1).

8.3 (PROOF OF THEOREM 6.1 (CΠ)). By the same argument as that of § 7.4,



Compact transformation groups on Z2-cohomology spheres 605

Theorem 6.1 for (CΠ) is proved by Proposition 5.10 (CΠ) (e), (8.1.1) and the
following

PROPOSITION 8.3.1. (I) For the case (CII) (e), (Λ0) holds.
(II) For the case (CII) (o):

( i ) In (1), (4) of (8.1.1), G = G' and (Λ0) holds.
(ii) In (2) of (8.1.1), G = G' or G'xS 1, and (Λ0) ΛoWs.
(iii) /Λ (3) o/ (8.1.1), G=[/ 1 xt/ 2 , SX/0 x Sp(/2) x S3 or β j X ζ ^ x S 1

(see Theorem 6.1); and (jR3) /zo/ds i/ G = βj x β2 x S1, art^ C^o) ΛoWs otherwise.
(iv) 7n (5) o/ (8.1.1), G = G' or G'xS 1 ; and (R3) holds if G = G'.
(v) In (6) of (8.1.1), G = G', G'xS 1 or G'xS 3; and (R0) holds if G = G'

or G'xS1.
In the cases (5) G = G'xS1 and (6) G = G'xS3, there exists a normal sub-

group G" of G such that the restricted G"-action satisfies (3) o/(8.1.1), and hence
these cases are contained in (iii).

This proposition is proved in the following §§ 8.4-10.
In the proof of Proposition 8.3.1 for (CΠ)(o), we use G, Ks, K, G = G°H, Ks

and K as in §§ 7.7-14.

8.4 (PROOF OF PROPOSITION 8.3.1 FOR (CII) (e)). By Proposition 5.10 (CII)
(e), we have G = KS and n = ks (s = l, 2). We may assume that G acts effectively
on M by Lemma 3.1, and hence so on G/K « S""1 . Then such pair (G, K) is given
in (2.1), and NK/K^Z2, S1 or S3 by Lemma 2.2. Thus the assertion (#0) is
shown by the similar method to that of § 7.6.

8.5 (PROOF OF PROPOSITION 8.3.1 FOR (1) IN (8.1.1)). Let G be Spίn(8) im-
bedded in S0(8) x SO(8) x S0(8) as follows (cf. [16; Chapter I]):

G = Sj?m(8) = {( q, x2, x3); xseSO(8) (1 ̂  s ^ 3) and

(x2v) = (κx$) (uυ) for w, v e Cay} ,

where (KJC)(M) = X(W) for x e S0(8), u e Ca y. Let v be the automorphism of
Spm(8) given by v(x l 9 x2, x3) = (x2, x3, X j ) ((xl5 x2, x3)eSpm(8)), and / =
{(x, y, κx)eSjpw(8)}^S/?/n(7). Then, by using the representations Spin(l)-+

SO(8), we see that the subgroup Spin(l) of Spin($) is conjugate to /, vl or v2/.
Thus, up to automorphisms of G, we may set (Kί9 K2) = (/, I) or (I, v/). If
X 1 =X 2 = /5 then α~1/α = 7 for any ueNK( = Z(G)K), and hence this contradicts

Lemma 8.2.1. Hence we have K!=/, K2 = vl and K = K 1 n K 2 = G2. Since

NK = Z(G)K,G = Spin(8) by Lemma 4.5, and (R0) holds by Lemmas 3.7 (2)
and 3.8 (1).

8.6 (PROOF OF PROPOSITION 8.3.1 FOR (2) IN (8.1.1)). Set G=Sί/(4). Then



606 Tohl ASOH

it is clear that Kί= 517(3), K2 = Sp(2) and K — S3 are unique up to conjugation
in G. Hence we may set

K1 = {( l ° I G G; X e 517(3) 1 , K2 = 5p(2) c 517(4) and K = JR^ n K2 = 53.
I \ U Λ / )

By routine calculation, we get
(a) NK is connected,
(b) L°^Sl and Z(L, NK/K)^Sl x S1 for L = NKn NK{ n
These imply that 6 = 517(4) or 517(4) x 51 by Lemma 4.5, and (JR0) holds for

these groups by Lemma 3.7.

8.7 (PROOF OF PROPOSITION 8.3.1 FOR (3) IN (8.1.1)). Set G=t7 1 xl7 2 for
17S (s= 1, 2) in (8.1 .1). Now we may assume that G acts effectively on M (hence
on G/K) by Lemma 3.1. Then the pair (Us, 17;) (s = l, 2) is given in (2.1). By
the same method as that in § 7.6, we see easily that the assertion (jR0) holds for
G=UlxU2.

Consider the extension of this G-action to (ϊ( = Gx /fractions. Clearly
NK n NK! n NK2/K = NK/K = N(U'1, C/J/I/i x N(U'29 U2)IU'2, where N(U'B9 Us)/
U's (s=l, 2) s 53, 51 or Z2 by Lemma 2.2. Except for the cases (H, NK/K) =
(51, S^S1), (51, 5!χ53), (S1, 53x53) and (53, 53x53), φ in (4.6) is unique
up to the diagram in (4.8) and CR0) holds by Lemmas 4.9, 3.7 and 3.8.

Now we show that (R3) holds for the case (#, NK/K) = (Sί, 51 x 51), since
the proofs for the rest three cases are similar. Suppose (//, NK/K) = (51 , 51 x 5l).
Then φ is given by 0(z) = (zr2, zrι) (zeS1) for some relatively prime integers rx

and r2 (which means that r± or r2 = l if r1r2 = 0), and δ = Gx5 1 , G = 5(7(/!)x
SU(12) (ks = 2ls) by Lemma 2.2. Hence N(K, (5)/K^51 X5 1 by Lemma 4.9.
Thus [G, M] is determined by the integers (r1? r2). Moreover, by Lemma 4.5,
we have

By considering the automorphisms of G, we may assume rs^0 (s = l, 2). Thus
Z(G)° n ̂ s=Zrs (s = 1, 2), and (K3) holds.

8.8 (PROOF OF PROPOSITION 8.3.1 FOR (4) IN (8.1.1)). Assume that G = GxH
acts effectively on M. Then it is clear that H = 1 and G = 51 x 51 , Ks = 51 (5 = 1 , 2),
K = 1. Here X=(Kχ n K2)° by Lemma 8.2.1. Thus we may set

K! = 1 x S1 and K2 = {(z", zr») e G; z e 51}

for some relatively prime integers r^O and r2^0 (which means that r t = l if
r2=0). Further we have Γj = l by (5.3) (i). By considering the automorphism
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φ(z, w) = (z, zΓ2w) ((z, w)eG) of G, we may set Ki = lxS1 and K2 = S1xl.
Hence (R0) follows immediately from NK/K^S1 x S1 and Lemma 3.7 (1).

8.9 (PROOF OF PROPOSITION 8.3.1 FOR (5) OF (8.1.1)). Set G = Qx S1. Then
K2 =g and K° = Q' for (Q, Q') = (SU(ΐ)9 Sl/(/-1)) or (Sp(ί), Sp(/-1)). Since the
G-action on G/K[ is almost effective, we have, up to automorphisms of G,

for some relatively prime integers r x >0 and m^O. Set K2/K2=Zr2. Then,
by Lemma 5.4 (ii), we get m = 1 and

where ω = exp(2πi/r2) and ^4 is the diagonal matrix with the diagonal elements
ωrι, ωrι, 1,..., 1. Further rx and r2 are relatively prime integers by (BΠ), and
Z(G)° n Ks=ZΓβ(s = l, 2). By easy calculation, we see that NK is connected.
Thus OR3) holds for G = β x S1.

Now we consider the extension of this action to G( = Gx /fractions, where
H = Sl or Sl x S1 since JVK n JV^ n NK2/K^S1 x S1.

If H^S1 x S1, then we see that the (j-action is not almost effective by Lemma
4.5. If H = S1 , then we can take a normal subgroup G" = Q x Sl of G such that the
restricted G"-action satisfies (3) of (8.1.1) with Ui = Q and U2 = S1.

8.10 (PROOF OF PROPOSITION 8.3.1 FOR (6) OF (8.1.1)). Set G = Sp(l)xS3.
Then the isotropy subgroups are connected, and we may set

K2 = SKOx 1, K = SX/-l)x 1, K, = {(( p ° } , p } eG; peS3 <= H },
(\\ (J A I I )

since the G-action on G/Kί is almost effective. By routine calculation, we have
NK/K^S3xS3 and NK n N^ n NK2/K^S3 xZ2. Thus we see easily that
G = Sp(l) x S3 x H, H= 1, 51 or S3, and CR0) holds for these groups by the same
method as that of § 7.6. If G = Sp(l) xS3x S3, then there exists a normal sub-
group G" = Sp(l) xS3ofG such that the restricted G"-action satisfies (3) of (8.1.1)
with 1/^SX/) and ί/2 = S3.

The proofs of Proposition 8.3.1 and Theorem 6.1 (CΠ) are completed.

§9. The cases (CIΠ) and (CIV)

9.1. In the first half of this section, we prepare the following (9.1.1-2):
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(9.1.1) The case (CUT):
(a) ///c2^4, then the G-action on G/K^ is almost effective, and

n

(1)2/+1^9

(2) 13

k2

I

6

G

Spin(/ + l)xS1

G 2 xS!

Kι~ί

SpiXί-^xS1

S3xS!

K o
2 ~fi

Spin(0

SE7(3)

£°~*

Spin(ί-l)

S3

(b) // /c2 = 2, ί/zen ί/zere exists α connected normal subgroup G' = S3°Sl

of G such that the induced G'-action on G/K° is transitive and r(G/G')^ l

(9.1.2) For the case (CIV), let G' be a minimal connected normal sub-
group of G acting transitively on G/K°. Then

(e) G'~£S
3 if n = 4, (o) G' = S3°S3 if n = 7.

9.2 (PROOF OF (9.1.2)). Let V be the maximum connected normal subgroup
of G acting trivially on G/JCJ, and set

G = (7 x V9 Kl = V x V (Uf c 17),

where V= 1 or S1 by (BI).
(e) Since U/U'ttS2 by Proposition 5.10 (CIV) (e), ί/~fiS

3 and l/'^S1.
If the I/'-action on Kl /K°« S1 is trivial, then K°=U'x V for K' c K This con-
tradicts the condition K°*Q in G. Therefore the l/'-action on K^/K0 is non-
trivial, and hence transitive. By setting G'= (7, (9.1.2) (e) holds.

(o) By Proposition 5.10 (CIV) (o), we see that

r(U) = r(U') + 1, c(U) = c(Ur) - 1 and dim C//17' = 5.

Then U is an essentially direct product of some copies of S3 and a toral group by
Proposition 2.7, and so is G. By the same method as that in the proof of Lemma
7.3.1, there exists a normal subgroup G' = S3oS3 of G acting transitively on G/X°,
as desired.

9.3 (PROOF OF (9.1.1)). We recall

(9.3.1) K° and K^ ~0 in G, and

P(G/Xί) = 1 + f2*'-1, P(G/K°2) =

P(G/K2) = 1 + ί, P(G/K°) = (1 + 0(1

by Proposition 5.10 (CΠI).

Let us consider the decomposition of G and its isotropy subgroups as in
(7.2.1) and (7.3.2):
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(9.3.2) G = 17 x W x N9 K^ = (U'°V)<>N = S^K0 (V c 17) ,

K° = N2oM2oJ, K° = N2oM'2oJ' (Mf

2 c M2),

where JF = V, r(W)=s 1, J ̂  J' and r(J):g 1. Here we see easily that 17 is a simple
group by (9.3.1), and N= 1 or S1 by (BI).

LEMMA 9.3.3. // k2 ̂  6, then M2 c £7, M2 = V and

(17, M2) = (Spin(fc2 + 1), Spin(k2)) or (G2, Sl/(3)) (fe2 = 6) .

PROOF. By the assumption, M2 and M2 are simple and r(M2)^2. Thus

in (9.3.2) we have M2aU, and hence M'2 = (M2nK)°c(U ΠKJ^U'. By
(9.3.1) and (9.3.2), it is easy to see that 17' is simple and M2(^l) is a normal

subgroup of U f . Then M2=Ur and r(M2) = r(L7). Therefore by (9.3.1) we see

that (l + t2k*-i)P(M2) = (l + tk*-1)P(Ul and P(U/M2) = l + tk* by Hirsch's

formula. Thus U/M2&Sk2

9 and the lemma follows immediately from (2.1).

q.e.d.

LEMMA 9.3.4. (i) ///c2^4, then N = l.

(ii) J//c2^6, ίAen fT^F^S1 andN2°J' = l.

PROOF. Under the condition /c2^4, we note that 17' is simple by (9.3.1),

and K^ is connected by Lemma 5.4.

(i) Suppose that N^l (i.e., ΛΓ^S1). Then the U x N-action on G/K° is

transitive, so that we may assume G= U x N. Then, Kί = Uf xN and K—U'xNf

for some cyclic group JV'(cιΛΓ). Since K°(=C7') is simple and K2IK°&

S*2'1 (fe2^4), we see that K2 is semi-simple with K2c:U. Therefore G/K2 is
homeomorphic to G/K2 since K2 = K2K = K2x N'. This contradicts the as-

sumption that G/K2 is non-orientable.

(ii) Since N = l by (i), X1 = C/Ό Facts transitively on XJ^wS1, where
17' is simple by Lemma 9.3.3. Thus F^S1 and X° = C//. Then Lemma 9.3.3

implies N2o J' = 1 in (9.3.2), as desired. q. e. d.

For the case /c2^6, (9.1.1) follows immediately from the above two lemmas.

Assume that k2 = 4. Thus N=l by Lemma 9.3.4, and

G = U x W9 Kl = t/ΌK, K° = t/' = N2ojf and K^ = N2oM2oJ,

where M2 s 53, U' is simple, and hence W^V^S1 since KJK'ΉS1. This shows
that X^ is semi-simple, and K2 c (7. Then G/K2 =(17/X°) x ̂  and 17/K2 «54

by (9.3.1). Hence (C7, K$) = (Spin(5)9 Spίn(4)) by (2.1). Further l/'^S3

since P(l/) = (l + f7)P(£7') by (9.3.1). Thus we obtain (1) for fc2 = 4.

For the case fc2 = 2, 17 is simple with P(lO = (l + ί3)P(L7') by (9.3.1). Then

(17, 17') = (S3, 1). If N = l, then W*V*S1

9 and hence G = S3xS1. If
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then the N(^S^-action on K^/K^S1 is transitive. Thus the G' = UxN-
action on G/K° is also transitive.

The proof of (9.1.1) is completed.

9.4 (PROOF OF THEOREM 6.1 (CIΠ), (CIV)). By the similar discussion to that
of § 7.4, we can prove Theorem 6.1 for (CIΠ) and (CIV) by (9.1.1), (9.1.2) and the
following

PROPOSITION 9.4.1. For the case (CIΠ), (R^ holds (kί=2).

PROPOSITION 9.4.2. For the case (CIV):
(e) //n = 4, then G = S3 and (R0) holds.
(o) If n = l, then G = S3xS3, and [G, M] is determined by K° and K2

where

K°s = {(z's z^eG zeS1} (5 = 1,2)

for relatively prime integers ls and ms with

1S9 ms ΞΞ 1 mod 4, 0 < l± — m^ = 4 mod 8 and 12 — m2 = 0 mod 8.

9.5 (PROOF OF PROPOSITION 9.4.1). By the similar method to that in §§ 7.10
and 7.12, we see that (R0) holds if k2 ̂ 4.

Consider the case that k2 = 2, and set G = S3 x S1. We recall

(9.5.1) K Ϊ ^ O i n G , and

P(G/K°ί) = 1 + ί3, P(G/K°2) = (1 + 0(1 + ί2), P(G/K2) = 1 + t,

by Proposition 5.10 (CIΠ). Then X^S1, X° = l and K2=S^ Consider
Sl(l, m) = {(z', zm)eG; zeS1} for relatively prime integers / and m (which
means that / or m = l if /m = 0). Since G/5X(/, m)«53/Z)m| (if m^O) or S2x
S1 (if m = 0), we see that K^ and K2 are conjugate to £*(/, m) (m^O) and Sl(l, 0),
respectively, by (9.5.1). Then, by using (9.5.1) and Lemma 5.4, we may set

K°2 = SJ(1, 0), K2 = \Jsb\K°2 for bl = (j, y)eK n NK2°5

where y 4=l by (BΠ). Furthermore, by Lemma 5.4, K°λ contains an element
conjugate to b^. Thus K{ is conjugate to Sl(l, m) for /m^O, and this shows that
K1 is abelian since K{ c N(K°, G)^S1 x S1.

Now consider the slice representation σ2: K2^^(2) in (3.3). Then, up to

equivalence, we have ^2(bi)=(r\ _ i ) and σ2 | K2 is of degree fe(_ 1). Hence

we get

K = W f b\Zk((ωk, 1)> for ωfc = exp(2πί/fc).
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Here, k=i or 2, since Kt is abelian. By (5.3), it is easy to see that /c = 2 and
y=-l.

Next, from (ii) of (5.3), it follows that b1eK^ ΠK and Kl is connected.
Then we have |w| = l or 2 by (i) of (5.3), and m is even since Kl contains an ele-
ment conjugate to bί=(j9 — 1). Up to automorphisms of G leaving K2 and K
invariant, we may assume /, w>0. Hence we get

K! = (β, 1)5H/, 2) OT1, 1) for some β e S3 with βiβ~l = j,

where Z(G)° n X^Z, (/: odd>0).
It is clear that NK/K has two components, and then the assertion (JRJ

follows immediately from Lemmas 3.7 (2) and 3.8 (2).
In this case, (NK n Λ^ n NK2/K)°^Sl. By the same method as that in

§ 8.9, this G-action can not be extended to any almost effective Gx S^-actions.

The proofs of Proposition 9.4.1 and Theorem 6.1 (GUI) are completed.

9.6 (PROOF OF PROPOSITION 9.4.2 (e)). Set G = S3. Such G-actions are clas-
sified in [1; Th. 1.5]. It is easy to see that Ks is conjugate to N(S1

9 S3), since
G/KS is non-orientable (s = l,2). Further, under the condition πι(M(oi)) = Q
(α e NK)9 the equivariant diffeomorphism class of M(α) is uniquely determined.

This G-action is not extendable to almost effective G x //-actions for r(//) ̂  1
by Lemma 4.5, because NK/K is finite. Thus we have Proposition 9.4.2 (e).

9.7 (PROOF OF PROPOSITION 9.4.2 (o)). Set G = S3xS3, and consider its
subgroups

D*(4Λ) = {(z, z), (zj, zj) e G; z2h = 1, z e S1 c= C} ,

l/(/, m) = Si(/, m) U 5H/, m)(j,j) (I + m: even)

for relatively prime integers / and m (which means that / or ra = 1 if ίm = 0).
Let ξl9 ξ2 and γ be the first Stiefel-Whitney classes of S3/Z4/J-»S3/D*(8/ι),

S3//)*(4/ι)-»S3/D*(8/ι) and G/SJ(/, m)->G/l/(/, m), respectively. By using the
Gysin sequences of these coverings and G/SX(/, m)->G/L/(/, m), G/D*(8/t)-»
G/U(l, m) (for 4/ι = |/ — m|), we see the following lemma by routine calculation,
where the coefficient of the cohomology is in Z2.

LEMMA 9.7.1. (i) //*(G/l/(/, m)) = Λ((5)®P[>]/(y3) (deg<5 = 3).
(ii)

//ί(S3//)*(8/ι)) =

/or i = l,

?> Θ Za^iίa) /or i = 2,
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where ζ\ = ζ\ + ζ\ζ2 if h ί5 °dd.
(iiϊ) For the homomorphism g*: /f*(S3/D*(8/ι))->H*(S3/D*(8)) induced

by the projection g,

'2 if h is odd,
and „ ^,, , _ .

// h is even.

(iv) Let h, m and I satisfy 4h = \l — m\ and /m^O. Then for the homo-
morphism /*: //*(G/(7(/, m))->H*(G//)*(8)) induced by the projection /, and
0^ve#3(S3)c:#3(G/D*(8)), we have

(v> £1^2) '/ Λ /s fldd,
(v, 0) (/ h is even.

Now we see easily that K° ^Sl(s= 1, 2) and K°=l by Proposition 5.10
(CIV) (o), and

(9.7.2) K = \jifj b\bl KI = VΛ bl

2Kl,

α-JX2α = \jjb{arlKl<x. for 6 t e X ί n K and ί? 2Gα~ 1K 2α n K,

by Lemma 5.4 (iii).

LEMMA 9.7.3. K° and Ks are conjugate to 5^(1^ ms) and U(1S9 ms) for
some 1S9 m s=l mod 4, respectively, (s = l, 2).

PROOF. Since K°^Sl, it is clear that K° is conjugate to S1^, ms). By
using (9.7.2) and NφV, m\ G)^N(S^ S3)x S3 (if Iw = 0) or S1 x S1 U S1 x

j,y) (if /m^O), we see the following since G/Kj and G/K2 are non-orientable:

(a) If Kl is conjugate to S1^, mj) for /1m1^0, then K2 is so to S1^, w2)
for some odd integers 12 and m2.

(b) If Kl is conjugate to 5^1, 0), then K2 is so to 5^1, 0).

By using (5.5), it is easy to see that Kl and K2 are not conjugate to SJ(1, 0).
Therefore, from (a) and (b) it follows that K°(s=\, 2) is conjugate to SJ(/S, ms)
for some odd integers ls and ms. Further Ks is conjugate to U(ls, ms) since G/KS

is non-orientable. Here we may assume that 1S9 ms=l mod 4, because /s and ms

are odd integers and l/(/s, ms) is conjugate to l/(εt/s, ε2ms) (βl9 ε2= ± 1). ζ?. e. d.

First we set A^ = U(ll9 m t) by Lemma 9.7.3. Then the slice representation

σ t : Xi->O(2) is of degree k on K[ and σ ί ( j 9 j ) = (^ _ , J , up to equivalence.

Thus K = Z k Ό Z k ( j 9 j ) , where Zk is generated by (ω's ω"") (ω = exρ(2πi/fc)).
Since any element in K2 — K2 is of order 4, we have fc=4 by (9.7.2). From
these observations, we may set
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K = D*(8) and Ks = 17(1., ms) (s = l,2)

for some relatively prime integers ls and ms with /s, m s=l mod 4.
By the same method as that of [1; Lemma 5.10], Lemma 3.9 shows that for

any αeNK(^0*xZ 2) M(α) is equivariantly diffeomorphic to M(l) or M(β),
where β = (βf, β') (β' = (l +i+j +&)/2). From Van-Kampen's theorem it follows
that π1(M(l))^Z2 and π1(M(j?)) = 0. Further, by (5.5) and Lemma 9.7.1, we see
that M(β) is a Z2-cohomology sphere if and only if (/1 — m1 + /2 —m2)/4 is odd.

This G-action can not be extended to almost effective Gx//-actios for
)^ 1, because NK/K is finite.
Thus the proofs of Proposition 9.4.2 (o) and Theorem 6.1 (CIV) are completed.

§ 10. The case (CV)

10.1. In the first half of this section, we prepare the following

(10.1.1)(cf. [15; (7.4)]) For the case (CV):

n

(1) n

(2) 7

(3) 13

(4) 25

(5) 9

(6) 13

(7)/c1 + k2-l

ks

n

3

5

9

3

3

fcs

G

G

Sl/(3)

Sp(3)

^4
Sp(2)

G2

UίxU2

κs

G

S3°Sl

Sp(2)°S3

~tSpin(9)

s^s1

S3°Sl

UsxU'3_s

K

K

S^xS1

S3°S3°S3

-tSpintf)

S'xS1

SixS1

υ\ x u'2

X

1

3

3

3

4

6

2

l/s is a simple group wiί/i UJU'sttS
ks~l (U'5c: U5).

10.2 (PROOF OF (10.1.1)).

(10.2.1) ([15; (6.2)]) For αeN(K, G) in (3.3), ̂  αnc? α-^2α generate
the entire group G.

LEMMA 10.2.2. // G is simple and Ksξ^G (s=l, 2), then we obtain (2)-(6)

PROOF. Since KJK is an even sphere, we see that Ks contains a connected
normal subgroup locally isomorphic to S0(ks) or G2 (ks = Ί) (see (2.1)). Compare
the Poincare polynomials in (1)-(10) of Lemma 2.6 and Proposition 5.10 (CV).
Then we obtain (2)-(6) of (10.1.1) from (1) (/ = 2), (5) (/ = 3), (6), (4) (1 = 2) and
(10) in Lemma 2.6, respectively. q. e. d.



614 Tohl ASOH

To prove (10.1.1), we may assume that G is generated by Kί and K2 by
(10.2.1). If Kί = G, then we have K2 = G by Proposition 5.10 (CV), and we obtain
(1) of (10.1.1).

From now on, we assume KS^G (5 = 1, 2). From (BI) and r(G) = r(Ks), it
follows that G is semi-simple and

G=V1x xUm, Ki = QιX ~xQm, J^ΛiX xΛ,,,,

where l/, is simple with Qt\j Rtc: Ui (1 ̂  i ̂  m). Further one of the following two
cases occurs since Ks/K&Sk ~l:

(I) K = Q\xQ2x xQm = R'1xR2x xRm (Q\ a Qi9 R( a RJ9

(II) K = Qf

ίxQ2x xQm**R1xR'2x xRm (Q\ c β l f ΛJ c= Λ2).

Here m — 1 in (I) and m = 2 in (II), because G is generated by A^ and K2, and the
G-action on G/K is almost effective. In the case (I), G is simple, and hence we
obtain (2)-(6) by Lemma 10.2.2. In the case (II), we get β1 = l/1, R2=U2 by
Ki U K2 c βi x fl2, and so (7) of (10.1.1).

These complete the proof of (10.1.1).

10.3 (PROOF OF THEOREM 6.1 (CV)). By the similar argument to that of § 7.4,
Theorem 6.1 for (CV) is proved by the following

PROPOSITION 10.3.1. For the case (CV), (R0) holds.

10.4 (PROOF OF PROPOSITION 10.3.1 FOR (1), (7) IN (10.1.1)). In the case (1)
(resp. (7)), we can show the assertion (R0) by the same method as that of § 8.4
(resp. §§ 7.6 and 8.7).

10.5 (PROOF OF PROPOSITION 10.3.1 FOR (2), (3), (4) IN (10.1.1)). In these
cases, we see easily the following:

(a) K is unique up to conjugation.
(b) There are just three connected subgroups of G, containing K and being

locally isomorphic to (2) S3xS1, (3) Sp(2)xS3 and (4) Spin(9). Further, they
are conjugate to each other by the element of NK.

(c) The factor group NK/K is isomorphic to the symmetric group of three
elements.

From (a) and (b), we may assume that K1=K29 and K and Ks (s= 1, 2) are
naturally imbedded in G. By (c) and Lemmas 3.7 and 3.8, we see that there
are two essential isomorphism classes of M(α), where α varies in NK, and M(l)
is not a Z2-cohomology sphere by (10.2.1). Therefore CR0) holds for G = SC7(3),
5p(3) and F4. Here we note that G/KS (s = l, 2) is (2) P2(C), (3) P2(H) and (4)
P2(Cay), respectively.
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10.6 (PROOF OF PROPOSITION 10.3.1 FOR (5), (6) IN (10.1.1)). In the case (5),
we can show that (#0) holds by the same method as the proof for (6) given below.

G — G2 is the group of linear automorphisms x E S0(8) of Cay satisfying

Let A(θ)=

x(u)x(υ) = x(uv)

cos 0 sin 0

— sin 0 cos 0

IE2

A(θι)

o A(θ>}

(u,veCay).

(θeR) and set

\

6 G2 C > + 03=0)

and T(lί9 12, /3) = {ί(/!0, 12Θ, /3θ)eG2;

Since K^S1 x S1) is the maximal torus of G, we may set

K = «019 02, 03) e G; 0! + 02 + 03 = 0} .

Then, by routine calculation, we have
(a) There are just six connected subgroups Hs (1 g s :g 6) of G, which contain

K and are locally isomorphic to S3 x S1

H, = Z(Γ(0, 1, -1), G), H2 = Z(T(1, 0, -1), G),

H3 = Z(T(1, - 1, 0), G), H4 = Z(Γ(-2, 1, 1), G),

H5 = Z(Γ(1, -2, 1), G), H6 = Z(Γ(1, 1, -2), G).

2 (5 = 1, 4) are conjugate to each other, butHere Hs, Hs+1 and H
are not so.

(b) NK/K^N(K,SU(3>WKxZ2(AKy for SU(3) =
diagonal matrix ,4 with the diagonal elements 1, — 1,..., 1, -1.

and H4

n SO(6) and the

If ICj is conjugate to K2, then we see easily that the G-manifolds M(α) are not
Z2-cohomology spheres by (10.2.1) and [15; (7.5)]. Thus we may set Kί=Hί

and K2 = H4. Then by (b) and Lemma 3.9, there are two essential isomorphism
classes of M(α) where α varies in NK, and M(l) is not a Z2-cohomology sphere
by (10.2.1). Thus the assertion (£0) holds.

The proof of Proposition 10.3.1 is now completed. Thus Theorem 6.1 is
proved completely.
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