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§1. Introduction

Let M be a connected closed smooth manifold and G be a compact connected
Lie group which acts smoothly on M, and consider the following assumption:

(Al) There is an orbit G-x of x € M such that dim G-x=dim M —1.
Then the following is well-known (cf., e.g., [4; IV, Th. 3.12, Th. 8.2]):

(1.1) For a G-action on M with (Al), where M is simply connected, there
is a triple (K, K,, K;) of subgroups of G with KK, n K, such that K is a
principal isotropy subgroup with dim G/K=n—1 (n=dim M), K, and K, are
non-principal ones with ky=n—dim G/K;=2 (s=1, 2), and the G-manifold M
can be decomposed into the union of two mapping cylinders of the projections
G/K—-G/K, (s=1, 2). (See (3.2-6).)

Based on (1.1), such actions are studied by several authors. For example,
H. C. Wang [15] investigated such actions on the spheres S* with even n#4 or
odd n=33, and W. C. Hsiang and W. Y. Hsiang [7] have given some examples
which are not listed in [15].

The purpose of this paper is to classify such actions (G, M) with (AI) for the
case that M is a Z,-cohomology sphere, i.e.,

(AIl) M is simply connected and H*(M ; Z,)= H*(S*; Z,).

Typical examples of such (G, M) are seen among the linear actions (G, S*, {) on
S" via representations Y: G—>SO(n+1). Moreover, we have the following
example due to W. C. Hsiang and W. Y. Hsiang:

ExampLE 1.2 ([7; Example 5.3], cf. [4; Ch. I, § 7 and Ch. V, §9]). For any
odd integer r=1, consider the (2m — 1)-manifold

Wan=1(r) = {(z0, 2) € Cx C™; |zoP+ 22 = 2, 5 +2 -1z = 0}.

Then, this is a Z,-cohomology sphere. Further, for any subgroup G of SO(m) x
S1, the G-action on W2?™~1(r) is defined by
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X, x) (29, 2) = (X229, x"z-'X) for (X, x)eSO(m)x S, (zy, z) € W2m~1(r).
This action (G, W2™~1(r)) satisfies (AI) for the case
G = S0(m) x S', Spin(7) x St (m=8) or G, x S (m=7),
since the principal isotropy subgroup K is isomorphic to SO(m—2)x Z,, SU(3) x
Z, or S®x Z,, respectively; and then K, in (1.1) can be taken so that
Z(G)°n K, =~Z, (the cyclic group of order r) and k, =2,

(Z(G)° denotes the identity component of the center Z(G) of G). We notice that
W2m=1(7) is the sphere S?»~1 if r=1, or m is odd and r=+1mod 8. Moreover,
(G, W2m=1(y)) is linear if and only if r=1.

ExAMPLE 1.3 (see Proposition 9.4.2). Consider the subgroup
Si(, m) = {(z}, z") e S3x S§3; ze S (= CO)}(x=SY)
of S3x S3=Spin(4). Then, for any relatively prime integers I, and m, (s=1, 2)
with
l,mi=1mod4, 0<li—m; =4mod8, I,—m, =0modS,

there is an action (Spin(4), M) with dim M =7, (AI) and (AII) such that K=
Si(l,, mg), where k,=2 and G/K; is non-orientable (s=1, 2). Further, this
action induces an effective one (SO(4), M).

For the condition that M is S7 or the action is linear, we only know that the
action is linear if (I, mq, I, my)=(1, =3, 1, 1).

Our main result is stated in Theorem 6.1, and is summarized as follows:

MAIN THEOREM. Let an effective action (G, M) with (Al) and (AII) be
given, and consider its non-principal orbits G/K; with ks=n—dim G/K =2
(s=1, 2) given in (1.1). Then we have the following five cases (CI)~<(CV):

(Cl) ki+k,isodd, and n=k,+k,—1 or n=2k,+2k,—3;

(CII) k, and k, are even, and n=k,=k, or n=k,+k,—1;

(CUI) ky=2, ky_4is even (s=1 or 2), and n=2k,+2k,—3;

(CIV) (e) ky=k,=2 and n=4, or (0) ky=k,=2 and n=17;

(CV) kyandk, are odd,and n=y(k,+k,—2)[2+1(x=x(G/K,)=x(G/K,)
=1, 2, 3,4 or 6).

Furthermore, (G, M) is the one given in Example 1.3 for the case (CIV) (0),
and is isomorphic to the effective action induced from the action given in Example
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1.2 for the cases (CIII) and (CI) with k, or k,=2 and n=2k,+2k,—3, and is
linear for the other cases.

We prepare some known results on compact Lie groupsin § 2.  After studying
(1.1) more precisely in § 3, we investigate the Poincaré polynomials of orbits of an
action with (AI) and (AII) in § 5, and consider the five cases (CI)-(CV) in Pro-
position 5.10. In §§ 7-10, we prove the main result stated in Theorem 6.1 for
these cases separately. The proof is done by showing some necessary conditions
for G, K and K, (s=1, 2) of an action (G, M) with (AI) and (AIl) in the first half
of each section, and by studying the existence and uniqueness of such actions with
G, K and K| satisfying the necessary conditions in the second half.

We notice that actions (G, M) with (AI) for cohomology real projective spaces
M can be investigated by using the results in this paper. The classification of such
(G, M) for cohomology complex projective spaces M have been done by F.
Uchida [13].

The author wishes to express his hearty thanks to Professor M. Sugawara,
Professor F. Uchida and Dr. K. Fujii for their valuable suggestions and dis-
cussions.

§2. Preliminaries

In this paper, groups are compact Lie groups and subgroups are closed
subgroups, and U° denotes the identity component of a group U.
The following (2.1) is well-known (see [2], [9], [11]).

(2.1) Suppose that a group U is connected, and acts effectively and trans-
itively on the sphere S*"! (k=2). Then the U-action on S*=1 is equivalent to
the following linear action of U on S* 1 via the standard representation ¢:
U—SO(k) with an isotropy subgroup H.

(i) If k is odd, then U is simple and (U, k, ¢, H) is

(SO(k), ka P> SO(k—'l)) or (G2$ 7’ @2, SU(3))

(ii) If k is even, then U contains a simple normal subgroup U’ such that
the restricted U'-action on S*~! is transitive and U|U’ is of rank at most 1, and
(U, k, ¢, H) is

(SO(k), k, py, SO(k—1)) (k#4),  (SU(), 21, (g, SU(I-1)),

(U(l)’ 21’ (”I)Ib U(l_ 1))s (Sp(l), 419 (vl)R5 Sp(l— 1));

(Sp()x S*Z,, 41, (v, ® pt (or vi))r, SP(I—1)x S'/Z5)

(i=1o0r3; Z, is generated by (—E, —1)),

(Spln(9); 16, AQ, Spln(7)) or (Spln(7)9 89 A7a GZ)'
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For a subgroup H of U, denote by N(H, U) (or NH) and Z(H, U) the nor-
malizer and the centralizer of H in U, respectively. Then we see the following
two lemmas by easy calculation.

LEMMA 2.2. Let (U, H) be as in (2.1). Then N(H, U)/H is isomorphic to
S* if U =Sp(D)(k=4128),
St if U = S0Q2), SU(l), U(l)(k=21=6), Sp(l)x SY|Z, (k=4l),
Z, otherwise.

LemMa 2.3. Z(SU(l), 0Q2l) =~ S (1=3), Z(Sp(D), 0(4h)) = SB (1= 1).

LEMMA 2.4. Assume that UJU° is cyclic, and let t,, 1,: U->O0(k) (k=2)
be representations of U. If the actions of U on S*¥ ! via 1, and 1, are both
effective and transitive and their isotropy subgroups are conjugate to each other,
then 1, is equivalent to t,.

PrOOF. U° also acts effectively and transitively on S*~! via the restricted
representations 7, | U° and 7, | U°, which are equivalent by (2.1). Thus we may
assume that 7, | U°=1,|U°=1. Let H(s=1, 2) be the isotropy subgroup of the
U-action on S¥! via 7, at p=(l, 0,...,0)e S¥"1. Then H, is conjugate to H,
by the assumption.

Now, take a e U— U°® such that aU° generates U/U° by the assumption on
U, and set x,=74(a) (s=1, 2). Then we see that

x; € N(= N((U®), O(k)), x3'x;€Z(= Z(x(U°), O(k))),
and x,7(9)p=1(g)p for some g e N(H;, U°). On the other hand,
*) t(N(H;, U%))p = Zp (by the above two lemmas).

Thus t(g)p=yp for some yeZ. Therefore y 'x,yx7p=y !x,yp=p and
y 1x,yx7t € Z, which imply yix,yx7!=1 and x,=yx,y"! since the U°-
action on S*~1 via t is effective and transitive. q.e.d.

LEMMA 2.5 (cf. [10; (5.4)]). Let 7,,7,: U>GL(k; C) be equivalent re-
presentations of U. Assume that t, is irreducible or equivalent to a direct sum
of an irreducible representation and a trivial representation of degree 1. If
7,(U) and t,(U) are contained in U(k) (resp. O(k)), then they are conjugate in
U(k) (resp. O(k)).

The Poincaré polynomial P(X ;)= ,dim H}(X; Q)¢ of a space X will be
denoted simply by P(X). Now the following lemma can be proved by using [3],
[14] and Hirsch’s formula.
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LEMMA 2.6. Let U be a connected simple group and H be its connected
subgroup with same rank. If dim H(U/H;Q)<1 for i20, then P(U/H) is
given as follows, where A,, B;, C,, D, are the classical groups of rank 1, G,, F,
are the exceptional Lie groups, and U,oU, denotes an essentially direct product
of groups U, and U,:

(1) P(AJA;-,o8") = (1-2"*)/(1-2)(121), (2) P(B/D) =1+t (122),
(3) P(BYByoD;_,) = (1+ 221 - 14)/(1—14) (12 4: even),

(4) P(By/B,-°S") = (1-1*)[(1-1*)(122),

(5) P(C/C,-yoCy) = (1=1¥)[(1-14) (123),

(6) P(F4/B,) = 1+18+116, (1) P(G,/A0A)) = 1+t +18,

(8) P(G,/Ay) = 1+1° (9 P(CJCi_yo8") = (1=1*H)/(1 -1)(123),
(10) P(Gy/A;0o8") = (1=t'H)[(1—1?).

In the rest of this section, we prove the following

PrOPOSITION 2.7. Let H be a connected subgroup of a connected group U.
Assume that

(1) H does not contain any positive dimensional normal subgroup of U,
and

2) rnU)=r(H)+1 (“r” denotes the rank).

If dim U/H =3—-2(c(U)—c(H)) (“c’’ denotes the dimension of the center), then U
is an essentially direct product of some copies of S3 and a toral group.

To prove this proposition, we set
U, H) =dim U — dim H — 3(r(U) — r(H)).

LemMA 2.8. Let U be simple and H be its proper subgroup. Then «(U, H)
>0 if n(U)=2.
Proor. Since U is simple, U acts almost effectively on U/H and we see

dimU — dimH — n(U) — r(H) 2 0 (by [4; 1V, Cor. 54)).

If 2r(H)>r(U), then this implies «(U, H)>0.
Suppose that 2r(H) <r(U). By using the classification theorem of Lie groups,
we see that

(*) r(Vy + 2r(V) < dim V < 4r(V)? for any simple group V.

By representing H as an essentially direct product of simple groups and a toral
group, (*) implies dim H <4r(H)?. This and (*) for V="U imply
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(U, H) =2 n(U)? — r(U) — 4r(H)? + 3r(H) > 0,
since 2r(H)<r(U) and r(U)=2. q.e.d.

PROOF OF PrROPOSITION 2.7. By [15;(9.1)] and the assumption (2), any
connected simple normal subgroup with rank > 2 of H is contained in a simple nor-
mal subgroup of U. Thus, by decomposing U and H into essentially direct
products of simple groups and toral groups, we have

U= Ujo--oUpU’, H = Hyo--oHpoH’

where U, is simple with r(U;)=2, H;cU; (1<i=<l), and U’ (resp. H') is an es-
sentially direct product of some copies of S® and a toral group of dimension
c(U) (resp. c(H)). Here H,5U; by the assumption (1). Then we see easily
that

i, (U, H) = dim U/H — 3 + 2(c(U) — c(H)).

Therefore, if the right hand side is zero, then /=0 by Lemma 2.8 as desired.
q.e.d.

§3. Actions with orbit of codimension 1

Any action (G, M) induces the effective action (G/N,, M), where N, is the
maximum subgroup of G acting trivially on M, (No=/\,.,G, and is normal in
G). The action (G, M) is said to be almost effective if N, is finite. Two actions
are said to be essentially isomorphic if their induced effective actions are iso-
morphic. Then we see easily the following

LemMA 3.1. Let (G, M) be a given action and K be its principal isotropy
subgroup.

(i) If N is a normal subgroup of G with N<= K, then N acts trivially on M.

(ii) The G-action on M is almost effective if and only if K does not contain
and positive dimensional normal subgroup of G (i.e., the G-action on G/K is
almost effective).

(iii) In the case (i) the isotropy subgroup (G/N), (x e M) of the induced
G/N-action on M is equal to G,/N, and (G, M) is essentially isomorphic to
(G/N, M).

(iv) Especially, take N=Z(G)°n K. Then Z(G/N)°=Z(G)°/N and the
restricted Z(G/N)°-action on M of (G/N, M) is effective.

Now, we consider an action (G, M) with (AI). We notice that (1.1) can be
restated more precisely as follows:

(3.2) Let M be a G-manifold with (Al) and assume that n,(M) is finite.
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Then there are a principal orbit G/K and two non-principal ones G/K,, G/K,
with dim G/K=n—1 (n=dim M) and K< K, nK,, and M has an equivariant
decomposition

(33) M=Mw=X,U.X;, X,=GxgD  k =n-—dimG/K,

where the attaching map a: 0X,=G/K—>G/K=0X, is given by a(gK)=ga K-
(9 € G) for some ae NK(=N(K, G)). Here K acts on the unit disk D*s via a
slice representation a;: K,—O(k,) so that K acts transitively on the boundary
OD*s with the isotropy subgroup (K;), =K for some base point p,e dD*s, and
the identification 0X ,=G/K is done by the equivariant diffeomorphism sending
[9, ps]€ Gx g 0D*=0X to gKe G/K.

(3.4) In (3.2), the isotropy subgroups K, K and K, can be chosen arbi-
trarily from their conjugate classes under the condition KcKnK,.
Especially, by choosing a~'K,a instead of K,, we have an equivariant decom-
position

(3.5) M=X,UX, X,nX,=GlK,

where X, and X are the mapping cylinders of the projections G/K—G|/K, and
G/K—Gla~1K,a, respectively.

(3.6) If H(M; Z,)=0 in addition, then the non-principal orbits G/K,,
G/K, in (3.2) are singular, i.e., dim G/K;>dim G/K and hence k,=2. (This
is shown by [4; IV, Th. 3.12].)

For M(x) in (3.3), we see immediately the following

LemMA 3.7. Let a,0': 0X,=G/K—>G/K=0X, (o, @’ € NK) be equivariant
diffeomorphisms. Then M(a) is equivariantly diffeomorphic to M(") if the fol-
lowing (1) or (2) is satisfied:

(1) o is G-diffeotopic to o'.

(2) B=o'a’ or a'a”! is extendable to an equivariant diffeomorphism on
X, (s=1o0r2).

LemMMA 3.8. (2) of Lemma 3.7 holds if the following (1) or (2) is satisfied:
(1) B is in the center of G.
(2 Bisin K, and (K,),=K, o(f)p= —p for some p e 0D*.

ProOF. (1) The equivariant diffeomorphism of X =G x x D*s onto itself
sending [g, x] to [f~1g, x] is an extension of f.

(2) Suppose that k,=2. Since (K;),=K and K; acts transitively on dD*s
via o,| K;, there exists y in N(K, K,) N K; satisfying o (y)p,=p, where p, is the
base point in (3.3). Hence o(y) is in N(o(K)°, 6 (K,)°). Therefore, by using
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(*) in the proof of Lemma 2.4, we see that Ap,= p for some A4 € Z(6(K,)°, O(k,)).
Now we may assume that fe N(K, K n K;, since e N(K, K,) and Bk € K; for
some ke K. Then we get

0(B)p; = o(B)A7'p = Ao (f)p = — A”'p = —p,.

When k, =1, this equality o(f)p,= — p, is easily seen.
Therefore the equivariant diffeomorphism of X =G x D* onto itself
sending [g, x] to [g, —x] is an extension of S. g.e.d.

LeMMA 3.9 ([1; Prop. 3.9]). Assume that o(K,)>SO(k,) (s=1,2) and
g, is equivalent to o, for any {,e NK N NK, where c, (k)=¢(kE (ke K).
Then M(a) is equivariantly diffeomorphic to M(a') if and only if there exist
y,€ NK N NK; (s=1, 2) such that y,K and a~'y,0'K are contained in the same
component of NK/K.

§4. Extension of actions

In the first place, we prepare the following lemma due to F. Uchida.

LEMMA 4.1. Let G be a connected group and G be its connected subgroup.
Suppose that the given G-action on M and the restricted G-action on M have
principal orbits of same dimension. Then, for each xe M, G-x=G-x and
G.nG=G,, and G-x is principal if and only if so is G- x.

ProoF. Since the union of all principal orbits is open and dense in M
(cf. [4; 1V, Th. 3.1]), we can choose u € M such that K=G, and K=G, are prin-
cipal. Since K=K n G, the orbit G-u=G/K is a closed submanifold of a con-
nected manifold G - u=G/K, and these have the same dimension by the assumption.
Hence

4.2) G/K = G/K andso G = GK.

Let xe M. Then there exists ge G with KcG,-1,=g"'G,g, and so we see
easily G- x=G - x by using (4.2).

Now suppose that G- x is a principal orbit. Take ve G-x=G-x satisfying
G,oK. Then G,oKnG=K, and hence G,=K. Therefore we see G,=K by
(4.2), which shows that G-x=G-v is a principal orbit. The converse is clear.

q.e.d.

In the rest of this section, let G=G x H for connected groups G and H, and
assume that

(4.3) the given G-action on M in (3.2) can be extended to a G-action on M
with orbit of codimension 1.
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Then by Lemma 4.1 we see that a G-equivariant decomposition M =X, U X,
in (3.3) gives a G-equivariant decomposition
44 M=M@&=2XuX, X,=GxgD+ with Gn K=K,
GnK,=K, X, =X,s=1,2), o =d,

where G/K is a principal orbit, G/K, (s=1, 2) are non-principal ones with K
K, nK,, and K, acts on D*s via G, with §,| K,=0,.

LEMMA 4.5. Under the above situation, there is a homomorphism
(4.6) ¢: H— NK n NK, n NK,/K (NL= N(L, G))

satisfying
K={(g,heGxH=0G;gphy* =K}, K;={@g, WeG; gp(hy ' eKJK}.

Furthermore the kernel of ¢ is finite if the restricted H (< G)-action on M
is almost effective.

ProoF. Fix a point uedX, with G,=K. For any he H, there exists g € G
with h-u=g~!.u by (4.2). Then (g, h)e K and

L>(g, g, hy'=gLg' =G (L=K, Ky, K;).

This implies ge NK N NK; N NK,. Set ¢(h)=gK. Then we see easily that ¢
is a homomorphism.

By considering the isotropy subgroups of the G-action at u€dX, and x,=
[1, 0] € G x g D*s, we have the lemma. g.e.d.

LeMMA 4.7. Let there be given two extended G-actions on M in (4.3), and
(K, K,,K,), (K, K,", K, and ¢, ¢' be the corresponding isotropy subgroups
in (4.4) and the homomorphisms of (4.6); and assume that
(4.8) there holds a commutative diagram

H-%, NKn NK, n NK,/K

! :

H-%, NK n NK, n NK,/K

for some automorphism ¥ and fe NKn NK,; N NK,, where cys(gK)=pgp K.
Then there exists an automorphsim ¥ of G with ¥(K)=K' and ¥(R)=RK,
(s=1, 2).

ProOF. Set ¥W(g, h)=(Bghp~1, ¥(h)) ((g, h)eG). Then ¥ is the desired
automorphism by Lemma 4.5. qg.e.d.
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LeMMA 4.9. Let ¢ be the homomorphism of (4.6). Then N(K, G)/K is iso-
morphic to Z(Im ¢, NK/K).

Proor. For each (g, h)e N(K, G), we see easily that ge N(K, G) and
gop(h~YeZ=Z(Im ¢, NK/K). Consider the homomorphism

¢ NRR, G)—Z, &g, h) =gdh™) (9, HeNK, G)).

Since (g, 1) is in N(K, G) for any g € G with gK € Z, we see that & is an epimor-
phism. Clearly Ker ¢=K. Thus N(K, G)/K=Z. q.e.d.

§5. Orbits of an action with (AI) and (AII)

Now we assume that a G-manifold M =M(a) in (3.3) is a Z,-cohomology
sphere, i.e., M satisfies (AIl). Throughout this section,

(5.1) we write K, instead of a~'K,a for the sake of simplicity.
Thus we consider a Z,-cohomology sphere M with the decomposition
(5.2) M=X;U X,, X; n X, =G/K,

where X, is the mapping cylinder of the projection f,: G/IK—G/K,, k,=
n—dim G/K;=2 (s=1, 2) and dim G/K=n—1 (n=dim M), (cf. (3.5), (3.6)).

The following several results are due to H. C. Wang.

(5.3) ([15; (4.3) and (4.9)]) (i) For the induced homomorphism f:
n(G/K)-n,(G/K)) of f,,

n(G/K) = Ker f - Ker f54, 7(G/Ky) = fx(Kerf3_ ) (s = 1, 2).

(i) Let II,=(K; nK)/K°. Then K/K°=1II1,I1, and (K/K°)/I1,~K,/K; is
cyclic (s=1, 2).

LemMma 54. (i) If ky>2 and k,>2, then G/K and G/K, (s=1,2) are simply
connected, and hence K and K (s=1, 2) are connected.
(i) If k,=2 and k,>2, then G/K, is simply connected and

K, = K7, K = \U;biK° K, = \U;biK; for someb,eK; n K.
(i) If k, = k, = 2, then
K = Ui,jbibgKo, Kl = Uib%Kf, KZ = U,biK; for some bsEK: n K (S = 1, 2).

ProOF. Suppose k,>2. Then, from the homotopy exact sequence of the
fibering S*~!'— G/K_fs, G/K,, it follows that Ker f,, =1 in (5.3). Thus we se
(i) and the first half of (ii). :
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If k,=2, then II,=(K; n K)/K° is a proper subgroup of K;/K°~S! gen-
erated by b,K° (b;e K; n K). By (5.3) (ii), the homomorphism I1,_,SI1,I1,=
K/K°—>K /K is epimorphic. Therefore the rest of the lemma follows im-
mediately. g.e.d.

By using the Mayer-Vietoris exact sequence of the triad (M, X, X,) in
(5.2), we see

(5.5) ([15; (3.4)]) For the cohomology with coefficient in Q or Z,, f*:
H*(G/K,)» H*(G/K) (s=1, 2) are monomorphic, and

fYHY(G/K,)) ®f3(H(G/Ky) = H(G/K) (0<i<n-—1),
P(G/K) = P(G/K,) + P(G/K;) — 1 + =1,

Let 0: G/K°—>G/K, 0;: G/K; —-G/K,; and e;: G/K°—>G/K; be the natural
projections, and consider the induced homomorphisms H*(G/K) -2*, H*(G/K°),

H%G/K,) -5, H*(G/K?) -2, H*(G/K®) of cohomology with coefficient in Q.

(5.6) ([15; § 11]) Suppose that k, or k, is equal to 2. Then

(i) 0* is isomorphic, and hence P(G/K)=P(G|/K").

(i) H*(G/K;)=063(H*(G/K,)@Ker ef (s=1, 2).

(iii)) If G/K is orientable, then 0¥ is isomorphic, and hence P(G/K,)=
P(G/Ky). If GJ/K, is non-orientable, then P(G/K)=(1+**"1)P(G/K,) and
P(G/KJ)=(1+1*)P(G/K)).

(iv) If k, is odd, then G/K| is orientable.

In the followings, let K~ 0 in G mean that K is non-homologous to zero in G.

LeMMA 5.7. (i) If G/K, is orientable and k;_, is even, then K;~0 in G.
(ii) If ky and k, are even, then K°~0 in G.

Proor. Let i: G/K°—»BK"° and i;: G/K; —»BK; be classifying maps, and
r: BK°—BK? be the natural map induced from K°SKJ(s=1, 2). Consider
the commutative diagram

H*(BK?) X, H*(BK®) <L H*(BKY)

bk

H*(G/K?) -5, H*(G/K°) <& H*(G/K3)

I&f z]o* I 0%

H*(G/K) 1L °H*(G/K) L H*G/K),

where Im f* n Im f} = H(G/K) by (5.5).
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(i) By the assumption and (5.6) (iii), 0¥ is isomorphic. Further, r¥_ is
epimorphic since K;5_,/K° is an odd sphere. Then, in the above diagram, we have
Imf¥6¥)~ti*<Imf} ; by using (5.6) (ii). Thus Imi*<cH%G/K;), and so
K2~0in G (cf. [5; § 10]).

(ii) r¥*(s=1,2) are epimorphic since K;/K°(s=1,2) are odd spheres.
Thus we have Im i*<cIm 0*f¥ nIm 6*f%, and Im i*< H%(G/K®°). Then K°~0
in G. q.e.d.

LemMA 5.8. (i) If G/K, and G/K, are orientable, then
(1=tP(G/KJ)=(1+tks-s"1) (1 —t"1) (s=1,2and k = k,+k,—2).
(ii) If G/K, is orientable and G/K, is not so, then k,=2 and
(1=12%2)P(G/K?) = (1+ 2k~ (1 —1t"1), (1—12*2)P(G/K,) = (1+) (1 —1"1).
(iii) If G/K, and G/K, are non-orientable, then k,=k,=2 and
(1=)PG/K) =(1+3)(1—-t"1), (1-B)P(G/K)=1—-t"1(s=1,2).

PrROOF. Suppose that G/K; is orientable. Then, for (M, X,, X,) in (5.2),
we have the isomorphisms Hi(M, X;_)=~H!(X,, 0X))=~H"*(G/K,) by the
excision and the Thom isomorphism. From the cohomology exact sequence
of the pair (M, X;_,), we get

(%) tsP(G/K,) — tP(G|K5_) = t" — t.

By (x) for s=1, 2 and (5.6) (iii), we have (i). If G/K, is non-orientable,
then we have k;_,=2 by Lemma 5.4. Then (ii) and (iii) of the lemma follow
from (5.5), (5.6) (iii) and (*) by easy calculation. g.e.d.

For the polynomial in the above lemma, we see the following
LEMMA 5.9. Let P(t) be an integral polynomial on t satisfying
(1—=t5)P(t) = (1+)(1—t*1) for some positive integers k, | and n(=2).

(i) Assume that | is odd and P(t)=TTm, (1+1t") for some integer m=0
and odd integers u;21 (1<i<m). Then

2(n—1) =k, l=n—-1 and PG =1 if n and k are even,
n—1=2k and P@{) ={A+t)(1+t*) if n and k are odd,
n—1=k and P(t)=1+¢ otherwise.

(ii) Assume that 1, k are even, and the degree of P(t) is less than n—1.
Then
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k=2, n—1=yl and P@{)={—-t"Y)/1-1t) if x is odd,
n—1=(x/2)k and P@{) =d+t)(1—-t1))(1-1% if x is even,
where y=P(1)=P(—1).

ProoF. Put y=P(1). Then the given equality divided by 1—¢ shows
ky=2(n-1).

(i) x=2m by the assumption on P(f). Thus 2"k=2(n—1). If m=0, then
we have the first case. If m=1, then n—1=2""1k and P()=(1+t")(1—t*"1)/
(1—-t9)=A+)TI7=¢ (1+¢¥’%). Thus we have the other cases by the as-
sumption on P(f), because 1+t is a factor of 1+¢* if and only if / is odd, and
because (1 +1¢)? is not a factor of 1+,

(ii) Since kx=2(n—1), the second case is trivial. Assume that y is odd.
By multiplying the given equality by (1 +t""1)/(1—1t¥), we obtain

(*) P(t) + t""1P(t) = (1 + t*) 3 ¥3z4 t*¢, where deg P(f) < n — 1.
Since n— 1 =yk/2 and yx is odd, (*) implies that n —1=ik+ I for some i, and hence
lis an odd multiple of k/2. Thus, (*) implies that deg P(#)=k(y—1)/2and n—1+

deg P(t)=1+(x—1)k. Therefore we have I=k/2 and the first cases. P(—1)=
P(1) is now trivial. g.e.d.

Now we are ready to prove the following proposition, where each (e) holds
if n is even, and each (0) holds if n is odd.

ProposITION 5.10 (cf. [15; (5.2), (8.3), (11.7), (11.9)]).

(Cl) Assume that k, is odd and k, is even. Then G/K, is simply con-
nected, G/K, is orientable, K; ~0 in G, and

(6) n=ky+k,—1, P(G/K3_) =1+t+"1(s=12),

(©) n=2k+1(k=ky+ky—2), P(G/K3_9)=A+ths")(1+t*) (s=1,2).

(CII) Assume that ky, k, are even, and G|K,, G/K, are orientable. Then
K°, K} and K5 ~0 in G, and

() ki=ky=n K;=K,=G,

(0) n=k+k,—1, P(G/K3.) =1+tks"1(s=1,2).

(CIII) Assume that ky, k, are even, G/K, is orientable and G/K, is non-
orientable. Then K° and K; ~0 in G, k,=2, n is odd, and

(0) n=2k,+1, P(G/K7)=1+*"1, P(G/K3) = (1+1)(1+1*2),

P(G/K;) =1+t, P(G/K°) = (1+1)(1+¢*="1),
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(CIV) Assume that k,, k, are even, and G/K,, G/K, are non-orientable.
Then ky,=k,=2, K°+~0 in G, and

(e n=4, P(GIKJ)=1+1¢, PG/K)=1(=1,2), P(GIK)=1+ 1,

(0) n=17, P(GIK)=(1+t3)(1+13), P(GIK)=1+13(s=1,2),

P(G/K°) = (1+13)2.

(CV) Assume that k,, k, are odd. Then K, K, and K, are connected,
the Euler characteristic y=P(G/K; —1) of G/K, is equal to that of G/K;, n—1=
xk/2 (k=k,+k,—2), and

ki = ks P(GIK) =(L—tD(1—t42) (s=1,2) if g is odd,
P(G/K;3_g) = 1+t (1 —t»1)/(1—-1*2) (s = 1,2)  if x is even.
Proor. For a connected subgroup H of G with H~0in G, we have P(G/H)=

m . (141#) for some odd integers u; (cf. [12; Satz VI]). Thus the proposition
follows immediately from (5.6) and Lemmas 5.7-5.9. qg.e.d.

§6. The statement of the main result

Now we state our main result by the following classification theorem, where
the cases (CI)-(CV) are the ones in Proposition 5.10, ¢,: Spin(7)—=SO(7), ¢,:
SU4)—S0(6), ¢4: F,—S0(26) are the irreducible representations, and “~,”’
denotes “locally isomorphic’’.

THEOREM 6.1. Let (G, M) be an effective action with (Al) and (All), and
consider K, and kg in (3.2).

(CI) The case that k, is odd=3 and k, is even>2:
() If n is even, then n=k,+k,—1, M=S" and (G, M) is essentially
isomorphic to one of the linear actions
(Spin(7), S**, @1 @ 47) (ky =17, k, =38),
(Sp()) x $3, 8", (m@v)) @ S?v,) (ks =3,k, =412 4),
(U, xU,, 8" ¢,®¢,) (U, kg, ¢) (s=1, 2) are the ones in (2.1)),

where the G-action on G/K, is almost effective for the first two actions and is
not for the last one.
(0) Ifnisodd, then n=2k,+2k,—3 and (G, M) is so to one of the actions

(Spin(T)x 8, W3(r) (k1 =17, k;=2), (SO(I+1)x S*, W2*1(r))(ky =123, k,=2)

given in Example 1.2, where Z(G)° N K,=Z, (r: odd21), and the linear actions
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(SU(S) (or U(S)), 5%, (A2u5)p) (ky = 5, ky = 6),
(Spin(10) (or Spin(10)x S*), S, (4to)x (or (4%o ® p)p) (ky = 7, k, = 10),
(SUQ+1)x S (or U(+1)x $3), S4+3, (s, @p)p) (ky = 3, ky = 21 2 4),
(SpU+1) x Sp(2), S5+, (4, ®@VE)R) (ky = 5, ky = 41 2 4).

(CII) The case that ki, k, are even=2 and G/K,, G/K, are orientable:

(e) If n is even, then n=k,=k, and (G, M) is essentially isomorphic to
one of the linear actions (U, S*, ¢®0), where (U, n, t) is the one in (2.1).

(0) Let V; be the maximum connected normal subgroup of G acting tri-
vially on G/K{ (s=1,2), and set V=V, xV,. If n is odd, then n=k,+k,—1
and (G, M) is essentially isomorphic to one of the linear actions

(Spin(8), S5, 45® 45) (ki =k, = 8;V=1),

(SU(4)’ S!S, (7} @ (u4)R) (kl = 6! k2 = 8’ V= 1)’

(SU@) x S', 8,0, @ (ua ® uf)r) (ky =6, k; =8; V=15,

(U, x Uy, S", ¢, @ ¢,) (Uy, kg, ¢5) (s = 1, 2) are the ones in (2.1); G ~ ,V),

(Sp(ly) x Sp(ly) x 3, 8", (vi, ® V) @ (v, ® ¥}))
(kl = 411, kz = 412; G NQV X S3),

(Sp(l) x S (or Sp(I) x S* x S), S4+3, v (or v; @ u¥) ® (v, ® v¥))
(ky=4124,k,=4;G~ VxS,

(Q1 x Q; x 8%, 8", (¢4, @ ui™) @ (62 ® uf™)
Qs ks, ) = (Sp(Ly), 4L, v) or (SU(L), 2y, i) (s = 1, 2); G ~,V x SY),
(Sp(l) (or SU(D) x S8, 8, py"t @ (vior py) @ ut™))
(ky =2, k, =4l (or 21); G ~ ,V x SY),
where Z(G)° N K,=Z, (s=1,2) for relatively prime integers r, and r, (with
ri2ry if Q1=0,).

(CIII) The case that ky, k, are even, G/K is orientable and G/K, is not so:
Then, k=2, n=2k,+1, and (G, M) is essentially isomorphic to one of the
actions

(SOQI+1) x S, W¥*i(r)) (ky =21), (G x S, W3(r)) (k, = 6)
given in Example 1.2, where Z(G)° N K, =2Z, (r: odd).

(C1V) The case that k,, k, are even, and G/K;, G/K, are non-orientable:
(¢) If nis even, then n=4, k,=k,=2 and (G, M) is so to the linear action

(50Q3), 5%, $%p3 — 6).
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(0) If nis odd, then n=17, k,=k,=2, G=S0(4), and (G, M) is the action
given in Example 1.3,

(CV) The case that ky, k, are odd:
Then, x(G/K)=x(G/K,) (=x=1,2,3,4 or 6), n—1=y(k,+k,—2)/2, and
(G, M) is essentially isomorphic to one of the linear actions
U,Sce®0) (x=1,k, =k, =n,({U, n, ) is the one in (2.1))),
(SUB3), S7,Ad) (x =3,k =k, =3),
(Sp(3), 13, A%v; — 0) (x=3,k; =k, =5),
(Fa 8%, 00) (x=3,ky =k, =9),
where G/K, (s=1, 2) is a point, P,(C), P,(H), P,(Cay), respectively, and
(S0(5), S°, Ad) (x =4, ky =k, =3), (G,, S3,Ad) (x =6, k, =k, =3),
(U; x Uy, Skatk=1"¢ P ¢,) (x = 2,((U,, kg, ¢5) (s = 1, 2) are the ones in(2.1))),
where (G/K,, G/K;)=(P5(C), SO(5)/SO(2) x SO(3)), (G,/U(2), G,/U(2)) (UQRY

is the subgroup of G, which is isomorphic but not conjugate to U(2)), (Sk271,
Ski=1), respectively.

We shall prove this theorem for the cases (CI)-(CV) separately in the fol-
lowing §§ 7-10.

§7. The case (CI)

In the rest of this paper, we shall classify almost effective actions with (AI)
and (AII) up to essentially isomorphisms for convenience sake. Thus we assume
that an action (G, M) satisfies (Al), (AII) and the following three conditions:

(BI) The G-action on M is almost effective, i.e., K does not contain any
positive dimensional normal subgroup of G (cf. Lemma 3.1).

(BII) The restricted Z(G)°-action on M is effective (cf. Lemma 3.1).

(BII) G is the direct product of some copies of simply connected simple
groups and a toral group, (since there is a finite covering G*—G such that G*
satisfies (BIII)).

7.1. In the first half of this section, we prove the following (7.1.1-2) which
gives necessary conditions for the case (CI).

(7.1.1) For the case (CI) (e), we have the following table:
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n kl k2 G K; Kz K°

(1) 14 7 |8 | Spin(7) G, Spin(6) SUQ3)
() 414226 |3 |41 | Sp(l)xS? | Sp(i—1)oS3 | Sp(l)x S* | Sp(I—1)eS?
B ky+ky—1 | ky | ky | U xU, | UxU, | U/xU, | UixU,

Here, the G-action on G/K; is almost effective in (2), and U JU,xSk~1
(UicUy in (3) (s=1, 2).

(7.1.2) For the case (CI) (o), let G’ be a minimal connected normal sub-
group of G such that the restricted G'-action on G/K° is transitive, i.e., the
restricted G'-action on M satisfies (AI). Then we have G=G'-H for an essentially
direct product H of some copies of S® and a toral group, and the following table:

n ky |k, G’ G'NK)~y | GNKy~y | (G'NK)F~,
a 19 516 SU(5) Sp(2) SUB)x S3 S3x 83
2) 23 5|8 Spin(8) Sp(2) Sp(2) x S3 S3x 83
@3) 31 7110  Spin(10) Spin(7) SU(S) SU@&)
@ 15 712 S1 x Spin(7) G, St xSU®3) SU@B3)
¢ 1 34| S3xSUQ) 53 S3 % S1 st
©6)21+1=27 |1 |2 | S!XSpin(l+1) Spin(l) St x Spin(l —1) Spin(l—1)
(M al+3211 | 3|20 SUU+1xS? | SUU—1)xS3 | SUWQxS! | SU(I—1)xS!
@ 23 518 Sp(2)xSp(3) S3xSp(2) S3xSp(2)x.§3 S3x 83 %83
) 8I+7=215 | 5| 4| SpAd+1DxSp(2) | Sp(I—1)xSp(2) | Sp() x 83 x S3 | Sp(I—1)x 3 x §3

Here, the normal subgroup of (G’ n K,)° locally isomorphic to S3 (resp. Sp(2))
is contained in the normal subgroup SU(3) (resp. Sp(3)) of G’ in (5) (resp. in
(8)), but is not so in any simple normal subgroup of G’ in (7) (resp. in (9)).
Further, G=G' in (4), (6) for k;+#3, and (9).

We prove (7.1.1-2) in the following subsections 7.2-3.

7.2 (PrOOF OF (7.1.1)). It is known that a homogeneous space is a sphere
if it is a Q-cohomology even sphere. Hence G/K,~S*~1 by Proposition 5.10
(CD) (¢). Furthermore K7/K°~ S*:=1 and K,/K°~S*:~!. Then by using (2.1)
we see easily that (1) holds if G is simple and simply connected.

Let N be the maximum connected normal subgroup of G acting trivially on
G/K;. Then, by (BIII) and Proposition 5.10 (CI) (e), we have

(7.2.1) G=UxWxN and K =(USV)x N,

where U is simple (k, =4) or S!(k, =2) acting transitively on G/K;, U’'=(U n K7)°
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and W=V with n(W)<1. Also U contains a subgroup locally isomorphic to
U'x V. (Cf.[8; Proof of Th.I].)

Since K7 /K° is an even sphere, we see that there exists only one simple normal
factor M, of K7 acting non-trivially, hence transitively, on K;/K° by (2.1).
Now we divide our proof into three cases;

(@ M,cU, () M=V and (¢) M,< N,
where we have N=1, 1 and M, respectively, by (BI).

Case (a). In this case, the simple group U acts transitively on G/K°, and
hence (U, U’')=(Spin(7), G,) by the first observation. We see that U does not
contain any subgroup locally isomorphic to U’x S! (cf. [3; p.219] and [14;
Th.II]). Then V=1 and G is simple. Thus we obtain (1).

Case (b). By (7.2.1) and Proposition 5.10 (CI) (e), we get
(*) P(U) =(1 + tk==1)P(U’).

From V=M, and r(V)<1, we see that VW=S3, k,=3 and K°=U"-V’
(S'=V’'cV). Since U contains a subgroup locally isomorphic to U’ x V (by
(7.2.1)), we have k,=0mod 4 by using (*x) and Hirsch’s formula.

If k,=4, then (U, U')=(S3, 1) by (*), and we obtain (2) for k,=4.

Suppose that k,=8. Then r(U)=2 by (x). In G=Ux W, W(=S3) acts
transitively on G/K,~S?, and K,=Ux W’ (S'=W’'<W). Since K,/K°~ Sk2~1
(k, =8), we see easily that U(< K,) acts transitively on K,/K° with isotropy sub-
group U’. Therefore U/U’'~S*:~!, and U contains a subgroup locally
isomorphic to U’xS3. By (2.1) we have (U, U)=(Sp(l), Sp(I—1)) and (2)
for k,=8.

Case (¢). By (7.2.1) and M, =N, we get
G=UxWx N> K] =(U'"V)x N> K°=(U-V) x N,

where N/N'~ S¥~1(N'< N).

If the N(< G)-action on G/K, is trivial, then K,=Qx N (Q<=U x W), and
hence K,/K°~Q[(U’-V)x S¥:~1, This is contrary to K,/K°~S*¥2~1, Therefore
the U x W(< G)-action on G/K,~ S*+~1is trivial,and K,=U x Wx N” for N"<= N.
From S*:~1xK,/K°=(Ux W)/(U'-V)x(N"|N’), it follows that N”"=N’ and
(UxW)|(U'-V)~Sk2~1, By setting U;=N, U,=UxW, Uj=N' and Uj;=
U’-V, we obtain (3).

This completes the proof of (7.1.1).

7.3 (PROOF OF (7.1.2)). To begin with we show the following
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Lemma 7.3.1.  If (ky, k;)=(3, 2), then we obtain (6) of (7.1.2) for k,=3.
PrOOF. By Proposition 5.10 (CI) (o) and the assumption, we get
(*) n=7K;~0inG and P(G)={1+1)(1+)P(K;).

This and K;/K°=xS?, K,/K°~S! imply r(G)=r(K,)+1, c(G)=c(K,)—1
and dim G/K,=5.

Let N be the maximum connected normal subgroup of G acting trivially on
G/K,. Then G=U x Nand K,=H x N (HcU), where N=1 or S! by K,/K°~ S1!
and (BI). By Proposition 2.7, the first observation implies that U is the direct
product of some copies of S3 and a toral group, and so is G.

Now, put

G=U; x--xU,xT, U;=S*A=Z2im.

Since G~,K; x S3x St and K7 ~0 in G by (%), we get
@) Kiy={(t1yee, iy 1,0) €U X+ xU,xS'xT""1=G; u;=u,}, or
(b) K;={(g(), usy..., Uy, 1, v) € G; g(v) e U,} for a homomorphism

g: TH1-U,.
Then the U, x S'-action on G/K; is transitive. Further, from Kj/K°~S? and
(BI), it follows that m=2 or 3 in (a), m=2 in (b), and the restricted G'=U, x
U, x S1(= Spin(4) x SY)-action on G/K?° is transitive, as desired. g.e.d.

Let N(s=1, 2) be the maximum connected normal subgroup of K acting
trivially on KJ/K°~ S*~1, Then by (2.1) we have
(7.3.2) K; = N,oM,, K, = N,oM,oJ and
K®= N;oMj = N,eM3J" (Mg=(M;n K°° (s =1, 2)),
whereJ=J', r(J)<1 and M is simple (k;=3) or S* (ky=2) acting transitively on
K] [K°=~Sk~1.  Also here, M} is simple (k,=6) or trivial (k,=2, 4).

In the rest of this subsection, we use the notations M, N, J and J’ in the
above sense.
One of the following three cases occurs in (7.3.2).

(7.33) (@) k,=6 and M,<=N, (hence Mjc=Ny,oJ'),
B) k=6 and M,oc=M; (hence NycN,oJ'),
() k,=2 or 4 (hence My=1and N,oMi=N,°J").

In the case (f), M; contains the simple normal subgroup M5. Then (2.1)
shows the following table:
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(7.3.4) The case ():

kl kz M1~2 M;~, M’INJZ M'z"’yz
(i) 5 6 Sp(2) SU(3) S3x §3 S3
(ii) 5 8 Sp(2) Sp(2) S3x S3 S3
i) 7 8 G, SU(4) SU(@3) SU(@3)
vy 7 | 10 Spin(7) SU(5) SU(4) SU(4)

LemMma 7.3.5. If G is simple, then we obtain (1), (2) and (3) of (7.1.2).
ProoF. By Proposition 5.10 (CI) (o), we have
(*) P(G) = (1 +t*2~1) (1 4+ tk1**k2=2)P(K?).

This and the assumption show that k,>6 and K7 is simple. Hence, K{ =M,
and the case (f) of (7.3.3) occurs. By using () and (7.3.4), we have the lemma
immediately. Here we note that any simple groups do not satisfy P(G)=(1+t3)-
(1+17) (1 +1211) (1 +£23) (cf,, e.g., [8; Ch. V], [12; Kap. III]). g.e.d.

From now on, we assume that (k,, k,)#(3, 2) and G is not simple, and
prepare several lemmas.
The following result is due to H. C. Wang [15; (8.5)].

(7.3.6) G, K{, K, and K° do not satisfy
G=U;oU,(Ug# 1), K{=0Q:°Q0,, K, =R;oR, and K°= P,°P,
for Q.U R, Uy, Py= 0,0 R, (s =1,2).

LemMma 7.3.7 (cf. [15; (8.6)]). The G-action on G/K; is almost effective if
(kl’ k2)¢(3’ 2)

Proor. Suppose that the G-action on G/K; is not almost effective. Let
U,(#1) be the maximum connected normal subgroup of G acting trivially on
G/K;. By (BI) and K7/K°~S*~1(k,—1: even), we get

(#*) G=UpU, K=U,U, and K°=UlU, for U,c U, (s=1,2),

where M, =U,, N;=Uj and M{=U, in (7.3.2). Then, by (7.3.6), the normal
subgroup M, of K, in (7.3.2) satisfies

(**) M,x U; (s=1,2).

Now we derive a contradiction for each case of («), (8), (y) in (7.3.3).
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In the case («) or (f), M5(#1) is contained in M, n U, (s=1 or 2), which is a
normal subgroup of the simple group M,, and hence M, n U;=M, (s=1 or 2).
This is contrary to (**).

Consider the case (y). In this case, M,~S3 (k,=4) or S! (k,=2), and
J=J'=1if M,~S!. Let g, be the projection of G onto U,=U,/U,nU,~,U;
(s=1 or 2). Thus (x*) shows g,(M,)#1 (s=1, 2).

Now, suppose that M; or M, is semi-simple and N,>Mj(=Uj3). Then
M{-M,cK, and Ker(g,|MjoM,) is finite since g,(M})#1 and g,(M,)#1.
Thus U,(~,U,=M,) contains a subgroup locally isomorphic to M} x M,, and
this contradicts r(M;)=r(M}). Therefore we have

(**x) If M{ or M, is semi-simple, then M} & N,.

Next, suppose that 1#J cUj_(s=1or2). Then M,~S3 and 1#
J' =Ker g, N (M,oJ), which is a normal subgroup of M,oJ. From J'& M, and
J'&J, it follows that Ker g,N(M,oJ)=M,oJ, and this contradicts g (M,)#1.
Thus we have

(#x%%) If J' 1, then J' & N, (= U}) and J' & M} (= U)).

By (2.1), M| is simple with r(M7)=2 (k,=7) or locally isomorphic to S3 x
S3 (k;,=5). Then we have M{cN, or S3~,J'cM) in K°=N;oMj=N,oJ'
when k, =5. This contradicts (*%%) and (#***).

Finally, suppose that (k,, k,)=(3, 4). Then we get

U2=M1~£Ss, U’2= ’lgsl and M2§S3.

Consider the normal subgroup V=(U, n K,)° of K,=N,oM,oJ. Here JxJ' =~
St since S'=M{&N, (by (¥#x)) in K°=N,oM;=N,oJ'. Clearly we have
S3~,U, oV Uj=St. Hence V=U, or U,. If V=U,, then U,=M, or
U,<N,, and this contradicts (*x) and (xxx). If V=Uj, then U< N,oJ, and
M,cZ(U), G)=U,°U;. Thus M,cU,, and this contradicts (#*). Therefore
the proof of the lemma is completed. q.e.d.

Let us set G=U; x:--x U,, (m=2), where U; (1<i<m) is simple, and some
U, is a toral group if G is not semi-simple. Let &: G—U; be the natural pro-
jection, and set

(7.38) Iy=¢(K:), [=Iyx-xIp Li=(U;nK,)° and L=L,x -+ x L,

where Lc K <I'cG, K{~0in I', and L; is a normal subgroup of K3.
Then, by Lemma 7.3.7, we have

(7.3.9) L;~0in U, and L; is simple or trivial 1 Zi<m).
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Since L is a semi-simple normal subgroup of K;, there exists uniquely a
connected normal subgroup V of K; such that Ki=VeL. Let us set V=
VooVyo:--o¥,, where Vj, is a toral group and V; (1< j<1) is simple. Then we get

(7.3.10)  I'i=¢&((V)ol(L)=¢i(Vo)oli(Vy)ow--o&(V)oL;, where fi(Vj)=1 or ~V;
and at least two of (V) are non-trivial for each 1< j<1.

LeMMA 7.3.11. T contains a normal subgroup locally isomorphic to Vx
Vx L.

Proor. From (7.3.10), it follows immediately that I' contains a normal
subgroup locally isomorphic to (V/V,)x(V/Vy)x L. Hence the lemma holds if
V is semi-simple.

Suppose that Vis not semi-simple (V, #1). Since K7 ~0in G, we may assume
that U, is a toral group, and Ker (& |V,) is finite. Thus dim I'y=dim V,=r.
Since L,=1 by (7.3.9), we see easily that Ker (&, x --- x &, | V,) is also finite.
Then the center of I''=TI'/T"; is of dimension ¢(I'")=r. Therefore ¢(I")=2r, and
hence we have the lemma if V' is not semi-simple. q.e.d.

Since r(G)=r(K;)+2 by Proposition 5.10 (CI) (0), we shall divide our
proof into three cases;

@ r(N) = rK3), () r(N)=rK+1 and () (D) = r(K})+2(= rG)).

Case (a). By the assumption and Lemma 7.3.11, we get V=1 and K; =L.
Then Lemma 7.3.7 and Proposition 5.10 (CI) (o) imply m=2 and L;& U; (i=1, 2).
By (7.3.9), we may assume that L, =M, and L,=N, in (7.3.2). Thus we get

(1312) G=U, x U,, K =M, x N, K°=M, x N,
(M,SU,, N, S U,) and P(G) = (1 + t+=1)(1 + t)P(K}) (k = k, + k; — 2).

LemMA 7.3.13. In the case (a), we obtain (4), (5) and (6) of (7.1.2) with
H=1.

PrOOF. By (7.3.6), we have M,&U(s=1, 2). Thus, by [15; (9.1)] and
r(G)=r(K,)+1, we see easily that r(M,)=1, and so k,=4 (M,=~S3) or 2
(M,=S'). Then, by (7.3.9) and (7.3.12), we have

N,=1,K? =M, c U,, K° = M, and P(U,) = (1+*)P(M,), P(U,) = 1 + k-1,

where M, ~,SO0(k,) or G, (k,=7).

Suppose that M, ~,G, (k;=7). Then the above result implies k,=2, U; =
Spin(7), U, =S, and we obtain (4).

Next, suppose that M,;~,SO(k,). Then P(U,)=1+3)1+17)--
(14 t?*21=3) (14 ¢*), and this shows that k,=4, U, =SU(3) if k;=3, and k,=2,
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U,=Spin(k,+1) if k,=5. Therefore we obtain easily (5) and (6). qg.e.d.

Case (b). By (7.3.10), Lemma 7.3.11 and the assumption, we get, for
K?=V-L,

HV) =1, E(V) # 1, T~y VxLi(j=1,2) and &(V) =1, T; = L3S i< m).

Then G/Kj=(U, x U,/VoLoL,) x Us/Ly x---x U,/L,, and m £3 by Pro-
position 5.10 (CI) (o) and Lemma 7.3.7.

LEMMA 7.3.14. In the case (b), m=2 or 3. If m=3, then we obtain (5)
of (7.1.2) with r(H)=1.

ProoF. By Proposition 5.10 (CI) (o) and the assumption, we see that
U,xU,/VeL;°L, and Uj;/L; are Q-cohomology spheres and one of their dim-
ensions is k,—1 and the other is k=k,;+k,—2. Thus we may assume that
L,=1, V=U, and the U -action on U, x U,/VoL, is transitive (cf. [8; Proof
of Th. IJ).

Now we show that V' does not act transitively on K7/K°~S*~1. To see
this, assume the contrary. Then V>U,~S3, k,=3, k,=24 and K°=V"'oL (S'
V'<V). From (7.3.6) it follows that M, U, xU,, M,&U,, and so J'& U, x
U,, XU, if J'#1 (in (7.3.2)). Therefore, in K°=V'cL=N,oM5°J’, we see
that M5oJ' =1, and hence M, =~ S3, k,=4 and K,=K°M,. Then U;oI' ~,V
x L, and U;2&;5(K;)~,M, x L;. By considering the Poincaré polynomials of
U,/I'; and U,;/¢5(K5), Hirsch’s formula shows k; +k,—1=0 mod 4. This leads
a contradiction.

From this observation, the L-action on K7/K° is transitive. Hence the
restricted G'=U, x Us-action on G/K° is also transitive with (G’ n K,)°=L, (this
is the case (a)). Thus the lemma follows from Lemma 7.3.13, since (4), (6) do not
occur by the condition U, o>I'y ~, VX L,. q.e.d.

LemMa 7.3.15. If (b) holds and m=2, then we obtain (1), (2), (3) with
r(H)=1, and (7), (8) with H=1 of (7.1.2).

Proor. First, we recall that
(*)  P(U,/L)P(Uy/Ly) = 1+t (A +)P(V) (k= k;+k,—225)

by Proposition 5.10(CI) (0). Thus we may set r(U,)=r({)+1 and rU,)=
r(I',) since H(G)=r(I)+1.

(I) Suppose that U, is a toral group. Then we have U,xT?, VxS!,
L,=1, L,=M, by (7.3.9) and the above assumption. Moreover (*) implies
k,=2, k, =5, and hence U, must satisfy

P(Uy) = (1+t*)P(Ly), U, >, ~VxL,,
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where L,=M,~,S0(k,) or G, (k,=7). But any simple groups do not satisfy
this condition (cf. [3], [14]). Therefore U, is not a toral group.

(II) Assume that U, is a toral group. Then U,~S!, V~S', L,=1 and
L,=M,. Hence we see easily that U, acts transitively on G/K; and so on
G/K°. By Lemma 7.3.5, we obtain (1), (2), (3) with Hx~S1.

(III)  Finally, assume that G=U, x U, is semi-simple. Then (x) shows that
K? =V-L is semi-simple and it has at most two simple factors. Furthermore we
see that V'~,S3 and L is simple (k,=6) or trivial (k,=4).

(i) If L=1(k,=4), then K;=V (k,=3), rn(U,)=2, (U,)=1, and we
obtain (7) with H=1, k,=4 by (*).

(ii) Suppose L=L, (k,=6). Then V=U,x~S3, and the U,-action on
G/K7 is transitive. In K{=VoL, =N,oM,, we have M, =L, or V (k,=3).

If M, =L,, then the U,-action on G/K° is also transitive. Thus, by Lemma
7.3.5, we obtain (1), (2) and (3) with H=x S3,

If M=V (k;=3), then K°=N,oM}oJ'=V'oL, (S'=V'cV), where M} is
simple by k,=6. Then Mj=L, and U, satisfies P(U)=(1+t*2"1)(1 +tk2+1).
P(M}%) by (¥). Thus, by (2.1), we have U; =SU(I+1) and M5,=SU(I—1) (k,=2I),
and this is the case (7) with H=1.

(iii) Suppose L=L, (k;=6). Then rU,)=2, (U,)=r(L,)+1, and (%)
shows that for {l;, I,}={k,—1, k}(k=k,+k,—2), P(U,)=(1+3)(1 +¢'t) and
U,/L, is a Q-cohomology I,-sphere, where [,=5,7 or 11 according to U, =
SU(3), Sp(2) or G,. Further, by considering the Poincaré polynomial of U,/
I, (I'y~,VxL,), we see that [,+1=0 mod4. By [15; (9.1)], M, is contained
in U, since rn(G)=r(K,;)+1, r(M,)=2(k,=6) and L,=1. In K{=VoL,=
N,°M,, we have M, =V (k,;=3) or L,.

If M=V (k,=3), then K°=N,oM}oJ'=V'oL, (S'=V'<V) and L,=M,.
Thus, by considering the Poincaré polynomial of U,/M,, we have I, +1=0mod k,.
On the other hand, there is no integer k, >0 such that {l,, [,}={k,—1, k,+1},
l,+1=0 modlcm (4, k,), and I, =5, 7 or 11. This leads a contradiction.

If M,=L,, then M;c(U,n K)°=M}, and the case (8) of (7.3.3) occurs.
From {l,, I,}={k,—1, k} and [, + 1 =0 mod 4, only the case (ii) of (7.3.4) occurs.
Thus. by (¥) and U,>I',~,V x L,, we obtain easily (8) with H=1. qg.e.d.

Case (¢). By the assumption and Lemma 7.3.11, we have r(V)=1 or 2 in
K;=VoL. Since r(U)=r(;) and L;~0 in U; (1<i<m), Lemma 7.3.7 implies

(7.3.16) E(V)#1 for the projection &;: G-U; (1=i<m).

LEMMA 7.3.17. In the case (c), we obtain
(I) (9)of (7.1.2) with H=1, if V is simple with r(V)=2,
In (1), 2), (3), (5), (7) and (8) of (7.1.2), otherwise.
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Proor. (I) From the assumption and (7.3.16), it follows that m=2 and
G=U, x U, is semi-simple. We recall that

(*) P(G) = (1 +tk2= )1+ 9)P(V)P(L) (k =k, +k,—2295)

by Proposition 5.10 (CI) (0). This shows that L=L; x L, is simple (k,=6) or
trivial (k,=4). Put L;=1. Then K;=V-L, and

(**) U cl'i~V, UyoTy~VxL,,
where r(U)=nr(I";) (i=1, 2) and V'is simple with r(V)=2. By [3], this implies
(%) U, # SU(l), Spin(2l), and V # G,.

First we show U,=TI;. In fact, if U, %1, then it is known that U, =G,
and I';=SU(3) (cf. [3]). Thus H3(U,; Q)#0 by (*), and hence U,=SU(]).
This contradicts (k*x).

Therefore the U,-action on G/K7 is transitive, and

(*)’ P(U,) = (1+ ") (L+)P(Ly) - (by (%)).

By (**%) and Lemma 7.3.5, we see that the U,-action on G/K° is not transitive.
Hence we have V=M ;=Sp(2), k;=5 and U, =Sp(2).

If k,=4, then (x)’ shows that L,=1 and U,=Sp(2). This is the case (9)
with H=1.

Suppose that k,=6. Then, by the same method as that in the proof (IIT)-
(iii) of Lemma 7.3.15, we have M, U, and M;=(U, n K)°=L,. By using (2.1)
and [3], we see easily that the triple (U,, M,, L, =M}) satisfying (*)" and (xx)
for V=_Sp(2) is given by (Sp(I+1), Sp(l), Sp(l—1)) (k,=4I).

Thus we obtain (9) with H=1.

(IT) It is sufficient to show that there exists a connected semi-simple normal
subgroup G’ of G such that the restricted G’-action on M satisfies (Al), the con-
dition of the case (a) or (b), and G/G'~,S3, S! or T2.

(i) Suppose that U, is a toral group. Then, by (7.3.9) and the assumption,
L,=1 and U,=¢,(V)=S* or T?. Thus the semi-simple normal subgroup
G'=U,x--xU, of G acts transitively on G/K;, and hence so on G/K° since
M,cG'.

(i) Suppose that G is semi-simple. Since K;~0 in G, we see that K7 is
semi-simple, and V' ~;S3 or S3x S3. Then I'~,S3x S3*x K; by r(IN)=r(K7)+2.
By Proposition 5.10 (CI) (o) and Hirsch’s formula, we get P(G/IN)=(1—1t*2) (1—
t*+1) /(1 —t%)?, and this shows k,, k+1=0mod4. Thus k;=1 mod 4, and hence
Lacts transitively on K{/K°~ S*~! (i.e., M= L). Now consider

(»)" [T P(UJL) = (1+ 2" (A +t5)P(V)  (by (*)),
where P(V)=(1+83) (j=1, 2), LU, and L;~0 in U, (cf. (7.3.9)).
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If m=2,then V ~,83x S3by r(I')=r(K;{)+2, and (*)” implies L,=1 (i=1, 2).
This contradicts M,cL=L,xL,. Therefore m=3 and (x)" shows that
P(U;/L)=1+1 for some i, say i=1. Hence L,=1 and S3=U,=¢&,(V) by
(7.3.16). Then the normal subgroup G'=U, x --- x U,, acts transitively on G/K7,
and so on G/K° since M, c LcG'.

Clearly, for each case, the restricted G’-action on M satisfies the condition
of the case (a) or (b). g.e.d.

By Lemmas 7.3.1, 7.3.5, 7.3.13-15 and 7.3.17, the proof of (7.1.2) is com-
pleted.

7.4 (PROOF OF THEOREM 6.1 (CI)). In the last half of this section, we prove
Theorem 6.1 (CI) by studying the existence and uniqueness of actions with (Al),
(AIT) and (7.1.1-2).

For this purpose, we consider the following assertions, where [G, M] denotes
the essential isomorphism class of (G, M), and [G] denotes the local isomorphism
class of G:

(Ry) [G, M] is determined by [G].
(Ry) Z(G)°NK;=Z, and[G, M] is determined by [G] and r;(s=1 or 2).
(R3) Z(G)°’nK,=Z, (s=1,2) and [G, M] is determined by [G] and

rl, '.2-
Then we can show Theorem 6.1 (CI) by proving the following

PROPOSITION 7.4.1. (I) For the case (CI) (e), (Ry) holds.
(I) For the case (CI) (0):

(i) G=G'and (R,) holds in (9) (of (7.1.2)).

(ii) G=G' or G'x S, and (R,) holds in (1), (3), (7).

(ili) G=G’ and (R,) holds in (4), (6).

(iv) (G, M) with (Al), (AII) does not occur in (2), (5), (8).

In fact, we can study the isotropy subgroups of the actions given in Theorem
6.1 (CI) by routine calculations, and we see that these actions realize the desired
unique actions due to (7.1.1-2) and Proposition 7.4.1. Thus Theorem 6.1 (CI)
holds.

We prove Proposition 7.4.1 in the following subsections §§ 7.5-15. In
the proof of Proposition 7.4.1 for (CI) (o), we use G, K, K, G=G-H, K, and K
in place of G’, G'n K,, G' N K, G, K; and K, respectively.

7.5 (PROOF OF PROPOSITION 7.4.1 FOR (1), (2) IN (7.1.1)). First, in the case
(1), we note that a subgroup G, is unique up to conjugation in Spin(7) by using
Lemma 2.5 and the universal covering n: Spin(7)—S0(7).
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Set G=Spin(7) in (1), =Sp(l) x S3 in (2). By Lemma 5.4 all the isotropy
subgroups are connected. Then we see easily that K (resp. K) is unique up to
conjugation in G (resp. K,) (s=1, 2), (except for the case k,=4). Thus we may set

(1) K, = Spin(7) n SO(7) = G,, K, = Spin(6) = n~1(SO(6)) and
K = Spin(7) n SO(6) = SUB3) (= K, n K,),

where G=Spin(7) is naturally imbedded in SO(8),

_(r 0 3G pe S
©) Kl—{((o X),p)eSp(l)xS —G; peS cH},
K, ={(Y,2)eG;zeS' = C} and

z 0
K={(( : X),z )eG;zeSl cC }(: K, 0 Ky).

By easy calculation, we see that N(K, G)/K has two components and ooK
is not in the identity component for (1) a, € SO(8), the diagonal matrix with the

diagonal elements 1, —1,...,1, —1, and (2) a0=<(~(’; g) j). Since aq is in
K, and o3 e K, we see that f=o, satisfies the condition (2) of Lemma 3.8 for
s=1. Hence, by Lemma 3.7 (2), we get M(1)~ M(«y) in (3.3). Thus the as-
sertion (R,) holds for G=Spin(7) and Sp(l) x S3.

7.6 (PROOF OF PROPOSITION 7.4.1 FOR (3) IN (7.1.1)). Now, we may assume
that the G-action on M (hence on G/K) is effective by (BII). Thus the U,-action
on Uy U,x~S*~! is also effective for K=Uj;xU,cG=U,xU,, and such
(U,, UY) is the pair in (2.1) (s=1, 2). This implies that U} is connected, and
K, K are also so.

It is clear that the connected subgroups K, and K, are unique up to auto-
morphisms of G, and K=K, nK,. Clearly we get N(K, G)/K=NU}/Uj x
NU,/U,Y (NU;=N(U,, Uy)), where NU/Ui~Z, and NU,/Uy=Z,, S* or S3
by Lemma 2.2. Here we choose an element a;e NU| with a2=1, a,& U} if NU}/
U,~Z,, and a,=1 if NU,/U3=S! or S3. Set o,=(a;, 1), a,=(1, a,) and
a3=(a,, a,). Sincea,(s=1,2)isin K;and of order two, we see that §=oy satisfies
Lemma 3.8 (2). Then, by Lemma 3.7 (2), we have M(1)~M(x,) for s=1, 2.
Also, by a; =a,0371, we have M(a,)~ M(a3). Thus (Ry) holds for G=U, x U,.

7.7 (PROOF OF PROPOSITION 7.4.1 FOR (1) IN (7.1.2)). All isotropy subgroups
are connected by Lemma 5.4. Set G=SU(5). By considering the representations
Sp(2)—-SU(S5), there are, up to conjugation, just two connected subgroups Sp(2)
and SO(5) of SU(5) locally isomorphic to Sp(2) by Lemma 2.5. Thus K;=Sp(2)
or SO(5). On the other hand, from K,/K~S> it follows that K(~,S3x S3)
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contains a normal subgroup N,(~,S3) of K,(~,SU(3)x S3), and hence Z(N,,
G)°>SUQ) (=K,). This implies K, =Sp(2), and that K, is unique up to con-
jugation in G. Thus we may set

K, = {( (1) g, )eSU(S); X eSp(2) = SU®4) }

1 0
X, eSU(5); X, X,eSU(2)) and
0 X,

=
]

K, = {( g’ 3)esu(5); X e SUQ3), Ye SUQ) }

By easy calculation, we get

(a) NK/K (NK=N(K, G)) has two components, and we can choose
oy € NK—(NK)° with o3=1 and oy € K,

(b) L= NKnNK;nNK,/Kx=S"and Z(L, NK/K)=NK|/K.

By the same method as that of § 7.5, (R,) holds for G=SU(5).

Next, we consider the extension of this SU(5)-action to G=SU(5)xH.
From (b) and Lemma 4.5, we see that H=S! and ¢ of (4.6) is unique up to the
diagram in (4.8) since Z(G)°=H acts effectively on M. Then the isotropy sub-
groups (K, K,, K,) are unique up to automorphisms of G by Lemma 4.7. By
(b) and Lemmas 4.5 and 4.9, NK/K (NK=N(K, G)) has two components, and
Gye NK—(NK)°, 43=1 and dye K, for &,=(ao, 1). Therefore (R,) also holds
for G=SU(5) x S!.

7.8 (PROOF OF PROPOSITION 7.4.1 FOR (2) IN (7.1.2)). Set G=Spin(8), and
consider the commutative diagram

g1:Sp(2) i K,

V] U \
S3x 83— K—— G = Spin(8) -2 SO(8) — SU(8),
n n /
g2: Sp(2Q) x §3 -T2, K,
where K, K,, K, are connected by Lemma 5.4, and #, n, (s=1, 2) are the universal

coverings. From K,/K~S*and K,/K=~S’, we see that S3 x S3 in Sp(2) is unique
up to conjugation, and S3 x S3 in Sp(2) x S? is given by

(a) {((5 (l)),q)eSp(z)xs3} or (b){((z 2),q)esp(2)xs3}.
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Denote by x(g,) the character of the representation g, (s=1,2). For the case (a),
2(g1)=2x(g;) on S3x S* implies g, =(v,)cDO and g,=(v,)c®u, DO, which are
not the complexification of real representations. For the case (b), x(g,)# x(g,) on
S3 x S3 for any representations g, and g,. Thus this case does not occur.

7.9 (PROOF OF PROPOSITION 7.4.1 FOR (3) IN (7.1.2)). Set G=Spin(10).
Then, from K /K=~ S*~!, we see easily that K,=SU(5), K=SU(4)=Spin(6),
K,=Spin(7), and that K is unique up to conjugation in K (s=1, 2). Consider
the commutative diagram

g,:Spin(7) = K,
U\
SU(4) = K —> G = Spin(10) = SO(10) ,
n/

g2: SUS) = K,

where 7 is the universal covering. By the similar argument to that in § 7.8, we
see that the representations g, and g, are equivalent to 4,@®0, and (us)g, respec-
tively. By Lemma 2.5, n(K,) is conjugate to SU(5)< S0O(10), and n(K) is so to
SU4) (=S0(8))=S0(10). Since n(K,)/n(K)~ S, the center of n(K,) contains
an element y with y2=1 and yen(K). Hence n(K,) is in SO(2) x SO(8), and
n(K,) is conjugate to Spin(7) (= SO(8)). Therefore it follows that K=n"1(nK)°
and K,=7n"1(nK,)° (s=1, 2) are unique up to conjugation in G.

The followings are seen by easy calculation:

(a) NK/K has two components, and we can choose o, € NK —(NK)° with
o3=1and apeK;.

(b) L=NKnNK;nNNK,/Kx=S"and Z(L, NK/K)=NK|/K.

Therefore the same discussion as that in § 7.7 shows that G =Spin(10) or
Spin(10) x S1, and (R,) holds for these groups.

77.10 (PROOF OF PROPOSITION 7.4.1 FOR (4) IN (7.1.2)). By § 7.5, we may set
G = S! x Spin(7) = S x SO8), K; = Spin(7) n SO(7) = G, and
K° = Spin(7) n SO(6) = SU(3).

Since K° is a normal subgroup of K,(~,S! x SU(3)), we get

K—{X"’(Xro
2—( L0 Y

)ch St x SO(8); X € S0(2) = St }

for some relatively prime non-negative integers r and m. Here Z(G)° N K,=~Z,,
and we have m=1 because G/K, is simply connected by Lemma 5.4. If K and
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K, are connected, then f¥(H7(G/K,; Z,))Nf¥(H'(G/K,; Z,))#0, and we see
easily that M is not a Z,-cohomology sphere by (5.5). Thus, by Lemma 5.4,
K and K, are not connected, and K=\Ub'K®, K, =\Ub'K7 for some be K, n K.
By using (BII) and b e N(K7, G)=S! x N(G,, Spin(7)), we get

(a) risodd, and K=K°U bK®, K,=K; U bK; for b=(—1, —E),

(b) NKJ/K has two components, and (1, A)K is not in the identity com-
ponent for the diagonal matrix A with the diagonal elements 1, —1,..., 1, —1,

Now the slice representation ¢, : K, —0(7) in (3.3) is unique up to equivalence
by Lemma 2.4. Therefore, by Lemmas 3.7 and 3.8, the assertion (R,) holds for
G=S!x Spin(7), as desired.

7.11 (PROOF OF PROPOSITION 7.4.1 FOR (5) IN (7.1.2)). Set G=S83xSU(3).
Since K,(~,S?) is connected (by Lemma 5.4) and contained in SU(3)<= G, we get
K;=1xSU(2) or 1 xSO(3). For each case, K is conjugate to a circle group in
1xSU(2). Thus Z(K, SU(3)) is a maximal torus of SU(3). On the other hand,
by using (7.3.6) and K< SU(3), we see easily that

52
K2={(X,(zo 0 ))eG;XeSU(2)=S3} and K=K, n SUQ3).
zX

Then U(2Q)= Z(K, SU(3)) and this is contrary to Z(K, SU(3))= S x S!.

7.12 (PROOF OF PROPOSITION 7.4.1 FOR (6) IN (7.1.2)). Set G=S! x Spin(1+1)
(I=k,;=3). When I=3 and G=S'xS3x S3(=S"'x Spin(4)), we see easily that
K7 =83 is not a normal subgroup of G by (7.3.6). Thus K°={(l, z, z) e G;
ze S'}, and we may assume that G=S!xS0(4), K; =S0(3) and K°=S0(2)
by Lemma 3.1. When /=5 and G=S! x Spin(l+ 1), we see that K, is contained
in S x (S! x Spin(l1—1)) by (7.3.6). Then K°=Spin(l—1) is naturally imbedded
in Spin(l+1)= G. Therefore we may assume

G =S'xS0(I+1), K =50(l) and K°=SO(I—1) forlz=3,

where the inclusions SO(/—1)= SO(l)= SO(l+ 1) are the canonical ones.
By the similar method to that of § 7.10, (R,) holds for G=S! x SO(I+1).
When [=3, we can not extend this G-action to any almost effective
G(=G x H)-actions for H#1 by Lemma 4.5.

7.13 (PROOF OF PROPOSITION 7.4.1 FOR (7) IN (7.1.2)). Set G=SU(l+1)x
83 (ky=21=4). We recall the result in the proof of Lemma 7.3.15 that

K, = MjM,, K, =MS' and K = MjM,

for M,=SU(l), M3=SU(l-1), M;=S! and M,(~,S3) is not contained in any
simple normal subgroup of G.
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Suppose I=2. Then M,~S3 and K;,=M,~,;S3. Itiseasy to see that there
are five conjugate classes of connected subgroups of G=SU(3) x S3 locally isomor-
phic to S3. Under the condition M,=S3, M,nNK=1 and (AIl), we conclude
that the isotropy subgroups are unique up to conjugation, and given by

K, ={(( :)Y ?),X )eG=SU(3)xS3;XeSU(2)= s3 }

K={((§ ?),Z)GG;Z=((Z) :)GSU(2)} and

K2={((g g,)((z) 2))GG;X6U(2)},

where M, =S3 is contained in SU(3)=G.
Next suppose /=3. Then, by Lemma 2.5, M, and M} are unique up to
conjugation in SU(I+1) and M, respectively. Thus we may set

M2={((1 g,),l)eG;XeSU(l)} and

0
M;={(( f)’ ;),I)GG;XGSU(I—-I)}.

Since M, = Z(M;, G), Kc K, N(M,, G) and K,=M,K, we get

K1={(((/)Y g),X)eG;XeSU(2)=S3, YeSU(l—l)},

K={((OZ 3),Z)eG;Z=((Z) g)eSU(Z),YeSU(l—l)} and

K2=M2K={(((z) ;)((z) g))eG;XeU(l)}.

Clearly this also holds for /=2 from the first half of this subsection.
By easy calculation, we have

(a) NK/K has two components, and K is not in the identity comopnent
for ag= <<‘3 2‘) , A) (A= (_(_)1 (1))) , whichisin K, n NK and of order two,

(b) L=NKnNK;nNK,/K=S!'and Z(L, NK/K)=NK|/K.

Therefore G=SU(I+1)x S? or SU(I+1)x S?x S! and (R,) holds for these
groups, by the same method as that of § 7.7.

7.14 (PROOF OF PROPOSITION 7.4.1 FOR (8) IN (7.1.2)). Set G=Sp(2) x Sp(3),
and recall the result in the proof of Lemma 7.3.15 that



602 Tohl Ason

K, =VoM,, K, =M,5%S* and K = §%5%S3

for V~,S3, M,~,Sp(2), M,=Sp(2), M,=Sp(3)=G (s=1, 2), and V is not con-
tained in any simple normal subgroup of G. Thus we may set

K1={( go(p),(’(; ;))GG=Sp(2)xSp(3);peS3CH} and

K={( (p(p),((’; ;!))))csG;peS-°'t:H,P=(‘I:)1 1?2)681)(2)}

for some non-trivial homomorphism ¢: S3-Sp(2). Since K,/KxS7, one of
the normal subgroup W= S3 of K is also normal in K,, and K,=WoM,-S3. Then
M, satisfies M,<Z(W, G)n Sp(3) and (M, n K)°~S3. This implies W< Kn

Sp(3). Then we see that K,=M,K is conjugate to Im ¢ x(Sp(2) x S3) in G,
and this contradicts the condition P(G/K,)=(1+1t*)(1+¢'!) in Proposition 5.10
(CI) (0). Therefore this case does not occur.

7.15 (PrROOF OF PrOPOSITION 7.4.1 FOR (9) IN (7.1.2)). By using the similar
method to that of § 7.13, we see that (R,) holds for G=Sp(I+1) x Sp(2).

The proofs of Proposition 7.4.1 and Theorem 6.1 (CI) are now completed.

§8. The case (CII)

8.1. In the first place, we consider the case (CII) (o) of Proposition 5.10,
and prepare the following

(8.1.1) For the case (CII) (0), there exists a minimal connected normal
subgroup G’ of G such that the induced G’-action on G/K° is transitive. Then
G=G'oH for an essentially direct product H of some copies of S* and a toral
group, and we have the following table (if k,<k,):

k, k, G (G'nkK,y)° [(G'nKy)°| (GnK)y
1 8 8 Spin(8) Spin(7) Spin(7) G,
2 6 8 SU@4) SU3) Sp(2) S3
3) (ki k) #(2,2) U;xU, U, xUj Ui xU, Ui x U,
@ 2 2 Stx St St St 1
6 2 k,>2 Qo xSt Q'-St [0) Q'
6) 4 4] Sp()x S3 | Sp(I—1)-83 Sp(D) Sp(l-1)
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Here U (s=1, 2) is a simple group or a circle group with UyJU,~S*™!, and
Q, QN)=(SUW), SU(I-1)) (k,=21) or (Sp(l), Sp(I—1)) (ky=4]). In the cases
(5) and (6), (G'n K,)° is a normal subgroup of G', and the G’-action on G’/
(G' N K,)° is almost effective.

8.2 (PrOOF OF (8.1.1)).
LemMma 8.2.1. For ae N(K, G) in (3.3), we have K°=(K; na~1K,a)°.

Proor. In this proof, we use the notation K, in place of o 1K,a, and the
cohomology with coefficient in Q.

Let us set U=(K; n K,)°, and consider the following commutative diagram
O<i<n—1):

HY(G|K,) ®H(G|K,) 2%, HY(G|K)®H(G/KS)

H'(G|K) —gx— H'(G/|K®) «—5— H'(G/U),

where all the homomorphisms are induced from the natural projections. By
(5.5) and (5.6), (6%, 0%), 6* and f¥ —f* are isomorphic, and so is ef —e¥.

Since K°~0 in U by Proposition 5.10 (CII) (0), U=K"° if (U)=r(K°). To
prove the lemma, it is sufficient to show r(U) #r(K°)+ 1(=r(K})).

Suppose that r(U)=r(K°)+1. Then P(U)=(1+1t"1)P(K°) for some even
integer p=2 since K°+~0 in G. Hence P(K;/U)=(1—t*s)/(1 —t?) (ky=(m,+1)p)
by Hirsch’s formula. By Leray-Hirsch’s theorem for the fibering K;/U—-G/U—
G/K;, we get

P(G/U) = P(GIKJ)P(K{[U) = (1+1t*2-") (1 - tk)/(1 - 7).

This implies m;=m,, k,=k,=k and H*1(G/U)=Q. On the other hand,
H*(G/K])=Q (s=1, 2) by Proposition 5.10 (CII) (0), and this contradicts the
commutativity of the above diagram. g.e.d.

LEMMA 8.2.2. If G is simple, then we obtain (1) and (2) of (8.1.1).

Proor. By Proposition 5.10 (CII) (o) and the assumption, we see easily that
K°, K; and K; are simple, and P(G)=(1+t*~1)(1+4tk2~1)P(K°) (k,, k,=6).
Then the lemma follows immediately from (2.1). g.e.d.

Clearly we obtain (4) if k,=k,=2. From now on, we assume that k; <k,
and k,=4. To prove (8.1.1), we may also assume K°=(K; N K,)° by Lemma
8.2.1.

Let V, (s=1, 2) be the maximum connected normal subgroup of G acting
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trivially on G/K;. Since G/K; is a Q-cohomology (k,—1)-sphere, we have
(cf. [8; Proof of Th. IT)

G=U; x Wy xV, and K; = (UjQ;) x Vy,

where U, is a simple group acting transitively on G/K7, U} =(U, n K,)° is simple
or trivial, W, =~ Q, and r(W,)<1.

Let M, be a connected simple (or a circle) normal subgroup of K{ acting
transitively on K;/K°~S*~1, We divide our proof into three cases;

M M,cU, () M,cV, and (II) M, & U, x V,.

Case (I). In this case, we see easily that the simple group U, acts transitively
on G/K°, and r(W,), r(V;)<1. By setting G'=U,, we obtain (1) and (2) by
Lemma 8.2.2.

Case (II). From the assumption, we have V,=U, x W,, where r(W,)<1
and U, is simple (k, =4) or S! (k, =2) acting transitively on K7/K°~ S¥=1, Then
the normal subgroup G'=U, x U, of G acts transitively on G/K° with (G’ n K,)°=
U;xU, and r(W)=1(s=1,2). To prove (8.1.1), we may assume that G=
U,xU, and Ki=Uj;xU,. Now we have U,&V,(=K3) by (BI) and K°=
(Ky N K5)°.

(i) If U,cV,, then K;=U, x UyU,<=U,), and hence K°=(K, N K,)°=
U} x U} and U, /U,~S*s-s"1 (s=1, 2). Thus we obtain (3).

(ii) Suppose U,&V,. Then V,=1 and r(Uy)=1 (s=1 or 2), since G/K;
is a Q-cohomology (k,; —1)-sphere and U, & V,. By the assumption k, <k, and
k,=4, we get U, =83 (k,=4) or S! (k;=2). Since the G-action on G/K; is almost
effective (V,=1) and P(G/K35_)=1+1t*k"1(s=1, 2), it is easy to see that U,= S>3,
k=4 (s=1,2) and Uj=1. Thus we obtain (6) for k,=k,=4 (by exchanging
K, and K3).

Case (III). In this case, the Q,-action on K7/K° is transitive, and so is the
G'=U, x W,-action on G/K° with (G'nK,)°=U}°Q, and r(V;)<1. Thus we
may assume that G=U, x W, and K7 =U}-Q,.

(i) If Q,=S' (k,>k,;=2), then we see easily that K;=U, and K°=
(K;nK,)°’=U}. Hence U,;/U;~S*>~1 and we obtain (5) by (2.1).

(i) Suppose Q,=~S3 (k,=2k,=4). If k,=4, then U,~S3 U;=1 and
K5 ~S3. Clearly, K3 is a normal subgroup of G(=S3 x S3)since K°=(K, n K,)°.
If k, =6, then U, is simple with r(U,)=2, and hence U, acts trivially on G/K3.
Thus we get K;=U,;, K°=(K,nK,)°=Uj, U,/U;~S*>~!, and we obtain
(6) by (2.1).

This completes the proof of (8.1.1).

8.3 (PrOOF OF THEOREM 6.1 (CII)). By the same argument as that of § 7.4,
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Theorem 6.1 for (CII) is proved by Proposition 5.10 (CII) (e), (8.1.1) and the
following

ProposITION 8.3.1. (I) For the case (CII) (e), (Ry) holds.

(Il) For the case (CII) (0):

(i) In (1), (4) of (8.1.1), G=G' and (R,) holds.

(ii) In (2) of (8.1.1), G=G' or G’ x §1, and (Ry) holds.

(iii) In (3) of (8.1.1), G=U,xU,, Sp(l})xSp(l;)xS3 or Q,xQ,xS!
(see Theorem 6.1); and (R;) holds if G=Q,xQ, xS, and (Ry) holds otherwise.

(iv) In (5) of (8.1.1), G=G’ or G'xS'; and (R;) holds if G=G'.

(v) In (6) of (8.1.1), G=G', G'xS! or G'xS3; and (R,) holds if G=G'
or G' x S,

In the cases (5) G=G' xS! and (6) G=G' x S3, there exists a normal sub-
group G" of G such that the restricted G"-action satisfies (3) of (8.1.1), and hence
these cases are contained in (iii).

This proposition is proved in the following §§ 8.4-10.
In the proof of Proposition 8.3.1 for (CII) (o), we use G, K,, K, G=G-H, K,
and K as in §§ 7.7-14.

8.4 (ProOF OF PrOPOSITION 8.3.1 FOR (CII) (e)). By Proposition 5.10 (CII)
(e), we have G=K; and n=k,(s=1, 2). We may assume that G acts effectively
on M by Lemma 3.1, and hence so on G/K~S""!. Then such pair (G, K) is given
in (2.1), and NK/K=~Z,, St or S® by Lemma 2.2. Thus the assertion (R,) is
shown by the similar method to that of § 7.6.

8.5 (PrOOF OF PrOPOSITION 8.3.1 FOR (1) IN (8.1.1)). Let G be Spin(8) im-
bedded in SO(8) x SO(8) x SO(8) as follows (cf. [16; Chapter I]):

G = Spin(8) = {(x,, x;, x3); x,€SO8) (1 £s5s=3) and

(x1u) (x,0) = (kx3) (uv) for u,veCay},

where (kx)(u)=x(ii) for xeSO(8), ue Cay. Let v be the automorphism of
Spin(8) given by v(x,, x,, x3)=(X;, X3, X;) ((x;, X,, x3)€Spin(8)), and I=
{(x, y, kx) e Spin(8)} = Spin(7). Then, by using the representations Spin(7)—
SO(8), we see that the subgroup Spin(7) of Spin(8) is conjugate to I, vI or v2I.
Thus, up to automorphisms of G, we may set (K,, K;)=(, I) or (I, vI). If
K,=K,=1I, then a~Ia=1 for any a« € NK(=Z(G)K), and hence this contradicts
Lemma 8.2.1. Hence we have K,=I, K,=vI and K=K, nK,=G,. Since
NK=Z(G)K, G=Spin(8) by Lemma 4.5, and (R,) holds by Lemmas 3.7 (2)
and 3.8 (1).

8.6 (PROOF OF PROPOSITION 8.3.1 FOR (2) IN (8.1.1)). Set G=SU(4). Then
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it is clear that K, =SU(3), K,=Sp(2) and K=S?3 are unique up to conjugation
in G. Hence we may set

1 0

Kl={
0 X

)eG;XeSU(a)}, K, =Sp(2)c SU@) and K = K, n K, = S°.

By routine calculation, we get

(a) NK is connected,

(b) L°x~S'and Z(L, NK/K)~S'x S for L=NK n NK,; n NK,/K.

These imply that G=SU(4) or SU(4) x S! by Lemma 4.5, and (R,) holds for
these groups by Lemma 3.7.

8.7 (PROOF OF PrROPOSITION 8.3.1 FOR (3) IN (8.1.1)). Set G=U,x U, for
U,(s=1, 2) in (8.1.1). Now we may assume that G acts effectively on M (hence
on G/K) by Lemma 3.1. Then the pair (U,, U}) (s=1, 2) is given in (2.1). By
the same method as that in § 7.6, we see easily that the assertion (R,) holds for
G=U,xU,.

Consider the extension of this G-action to G(=G x H)-actions. Clearly
NKnNK;nNK,/K=NK/K=N(U4{, U,)/U; x N(Uj, U,)/U,, where N(U., U,)/
U, (s=1,2) =~ S3, St or Z, by Lemma 2.2. Except for the cases (H, NK/K)=
(S, S1x SY), (S1, StxS3), (S, $3xS3) and (S3, S3x S3), ¢ in (4.6) is unique
up to the diagram in (4.8) and (R,) holds by Lemmas 4.9, 3.7 and 3.8.

Now we show that (R3) holds for the case (H, NK/K)=(S!, S! x S!), since
the proofs for the rest three cases are similar. Suppose (H, NK/K)=(S!, St x SY).
Then ¢ is given by ¢(z)=(z"2, z"1) (z € S?) for some relatively prime integers r,
and r, (which means that r, or r,=1 if r,r,=0), and G=Gx S!, G=SU(l,) x
SU(l,) (ks=2Il) by Lemma 2.2. Hence N(K, G)/K=S!'xS! by Lemma 4.9.
Thus [G, M] is determined by the integers (r,, r,). Moreover, by Lemma 4.5,
we have

o zit 0 o z'2 0
Kl—-{(X,(O Y),z)eé} and K2={((0 X),Y,Z)GG}.
By considering the automorphisms of G, we may assume r,=0 (s=1, 2). Thus

Z(G°nK,=2, (s=1, 2), and (R;) holds.

8.8 (PROOF OF PROPOSITION 8.3.1 FOR (4) IN (8.1.1)). Assume that G=G x H
acts effectively on M. Thenitisclearthat H=1and G=S!x S, K;=S8'(s=1, 2),
K=1. Here K=(K; N K,)° by Lemma 8.2.1. Thus we may set

K;=1x8' and K, = {(z"4, z’?) e G; ze S'}

for some relatively prime integers ;>0 and r,=0 (which means that r,=1 if
r,=0). Further we have r;=1 by (5.3) (). By considering the automorphism
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o(z, w)=(z, z"2w) ((z, w)eG) of G, we may set K,=1xS! and K,=S'x1.
Hence (R,) follows immediately from NK/K= S! x S and Lemma 3.7 (1).

8.9 (PrOOF OF PROPOSITION 8.3.1 FOR (5) OF (8.1.1)). Set G=Q x S1. Then
K3;=Qand K°=0Q’ for (Q, Q")=(SU(I), SU(I—1)) or (Sp(}), Sp(I—1)). Since the
G-action on G/Kj is almost effective, we have, up to automorphisms of G,

noQ
K:={(( ZO X),z"’)eG;zeS‘CC}

for some relatively prime integers ;>0 and m=0. Set K,/K;=Z,,. Then,
by Lemma 5.4 (ii), we get m=1 and

Kl = Klo, K = UibliKo, K2 = UlbiKg fOl’ bl = (A, w),

where w=exp (2ni/r,) and A is the diagonal matrix with the diagonal elements
o', @™, 1,..., 1. Further r; and r, are relatively prime integers by (BII), and
Z(G)°’nK,=Z,(s=1,2). By easy calculation, we see that NK is connected.
Thus (R;) holds for G=0Q x S!.

Now we consider the extension of this action to G(=G x H)-actions, where
H=S' or S!x 8! since NKNNK; N NK,/K~S!x S,

If H=S! x S!, then we see that the G-action is not almost effective by Lemma
4.5. If H=S1, then we can take a normal subgroup G”=Q x S* of G such that the
restricted G"-action satisfies (3) of (8.1.1) with U;=Q and U,=S".

8.10 (PrOOF OF ProrosITION 8.3.1 FOR (6) oF (8.1.1)). Set G=Sp(l)x S3.
Then the isotropy subgroups are connected, and we may set

K, =Sp()x1, K =Sp(l-1)x1, K, ={((g ;),p)eG;peS3cH },

since the G-action on G/K; is almost effective. By routine calculation, we have
NK/K=>~83xS3 and NKNNK;nNNK,/K=S3xZ,. Thus we see easily that
G=Sp()xS*x H, H=1, S or S3, and (R,) holds for these groups by the same
method as that of § 7.6. If G=Sp(l)x S3 x S3, then there exists a normal sub-
group G”=Sp(l) x S? of G such that the restricted G”-action satisfies (3) of (8.1.1)
with U, =Sp(l) and U,=S3.

The proofs of Proposition 8.3.1 and Theorem 6.1 (CII) are completed.

§9. The cases (CIII) and (CIV)
9.1. In the first half of this section, we prepare the following (9.1.1-2):



608 Tohl AsoH

(9.1.1) The case (CIII):
(@) If k,=4, then the G-action on G/K, is almost effective, and

n k, G K~ K3~ K°~,

(1) 21+129| 1 | Spin(I+1)xS* | Spin(I—1)x S* | Spin(l) | Spin(I—1)
@ 13 6 G, x St 53 x St SU®3) S3

(b) If ky=2, then there exists a connected normal subgroup G’ =S3-S!
of G such that the induced G'-action on G/K° is transitive and r(G/G)<1.

(9.1.2) For the case (CIV), let G’ be a minimal connected normal sub-
group of G acting transitively on G/K°. Then

(€) G'~,S* if n=4, (0) G =S5%S® if n=1.

9.2 (PrROOF OF (9.1.2)). Let V be the maximum connected normal subgroup
of G acting trivially on G/K7, and set

G=UxV, Ki=U xV (UcUl)),

where V=1 or S* by (BI).

(e) Since U/U’x~S? by Proposition 5.10 (CIV) (e), U~,S3 and U’'xS!.
If the U’-action on K7 /K°~ S! is trivial, then K°=U’x V' for V' V. This con-
tradicts the condition K°~0 in G. Therefore the U’-action on K;/K° is non-
trivial, and hence transitive. By setting G'=U, (9.1.2) (e) holds.

(o) By Proposition 5.10 (CIV) (0), we see that

HU) = rU") + 1, ((U) = «(U') — 1 and dim UJU’ = 5.

Then U is an essentially direct product of some copies of S3 and a toral group by
Proposition 2.7, and so is G. By the same method as that in the proof of Lemma
7.3.1, there exists a normal subgroup G’=S3S3 of G acting transitively on G/K°,
as desired.

9.3 (PrROOF OF (9.1.1)). We recall
(9.3.1) K°and K{~0in G, and
P(G/K?) = 1+2k2~1 P(G/K3) = (1 +1)(1 +1tk2),
P(G/K,) = 1+4+t, P(G/K°) = (1+1)(1+¢2k2"1),
by Proposition 5.10 (CIII).

Let us consider the decomposition of G and its isotropy subgroups as in
(7.2.1) and (7.3.2):
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(932) G=UxWxN, Ki=(U-V)N =S"K® (U <),
K; = NypoMyod, K° = NypoMjyeJ' (My < M,),

where W2V, (W)<1, J=J and n(J)<1. Here we see easily that U is a simple
group by (9.3.1), and N=1 or S! by (BI).

LeEMMA 9.3.3. If k, =6, then M,c U, My=U’ and
(U, M) = (Spin(k,+1), Spin(kz)) or (G,, SUQ3)) (k, = 6).

ProoF. By the assumption, M, and M) are simple and r(M,)=2. Thus
in (9.3.2) we have M,c U, and hence M}=(M,nK)°c(UnK,)°=U'. By
(9.3.1) and (9.3.2), it is easy to see that U’ is simple and M5(#1) is a normal
subgroup of U’. Then M,=U’ and r(M,)=r(U). Therefore by (9.3.1) we see
that (14 2k2~1)P(M,)=(1+t*>"1)P(U), and P(U/M,)=1+1t*> by Hirsch’s
formula. Thus U/M,=~ S*2, and the lemma follows immediately from (2.1).

qg.e.d.

LemMA 9.3.4. (i) If k, =4, then N=1.
(i) If k,=6, then WV =S! and N,oJ' =1.

ProoF. Under the condition k,=4, we note that U’ is simple by (9.3.1),
and K, is connected by Lemma 5.4.

(i) Suppose that N1 (i.e.,, Nx~S'). Then the U x N-action on G/K° is
transitive, so that we may assume G=U x N. Then, K;,=U’'x N and K=U'x N’
for some cyclic group N'(=N). Since K°(=U’) is simple and K;/K°x
Sk2-1 (k,>4), we see that K3 is semi-simple with K; = U. Therefore G/K, is
homeomorphic to G/K; since K,=K;K=K; x N'. This contradicts the as-
sumption that G/K, is non-orientable.

(i) Since N=1 by (i), K;=U’oV acts transitively on K,/K°~S!, where
U’ is simple by Lemma 9.3.3. Thus V=S! and K°=U’. Then Lemma 9.3.3
implies N,oJ'=1 in (9.3.2), as desired. g.e.d.

For the case k,=6, (9.1.1) follows immediately from the above two lemmas.
Assume that k,=4. Thus N=1 by Lemma 9.3.4, and

G=UxW,K, =U"V,K°=U"=N,oJ' and K = NyoM,oJ,

where M, S3, U’ is simple, and hence W=~ V = S! since K;/K°~S!'. This shows
that K3 is semi-simple, and K; cU. Then G/K;=(U/K3;)x W, and U/Kj; ~S*
by (9.3.1). Hence (U, K3;)=(Spin(5), Spin(4)) by (2.1). Further U’'~,S3
since P(U)=(1+t")P(U’) by (9.3.1). Thus we obtain (1) for k, =4.

For the case k,=2, U is simple with P(U)=(1+¢3)P(U’) by (9.3.1). Then
(U, U)=(S3%1). If N=1, then W V=S, and hence G=S3xS!. If N#1,
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then the N(=S')-action on K7/K°x~S! is transitive. Thus the G'=U x N-
action on G/K° is also transitive.
The proof of (9.1.1) is completed.

9.4 (PrOOF OF THEOREM 6.1 (CIII), (CIV)). By the similar discussion to that
of § 7.4, we can prove Theorem 6.1 for (CIII) and (CIV) by (9.1.1), (9.1.2) and the
following

PrOPOSITION 9.4.1.  For the case (CIII), (R,) holds (k,=2).

PROPOSITION 9.4.2. For the case (CIV):

() Ifn=4, then G=S3 and (R,) holds.

(0) If n=7, then G=S3xS3, and [G, M] is determined by K; and K;
where

K; = {(z!, z")e G; ze S} (s=1,2)
for relatively prime integers I, and mg with
I, mi=1mod4, 0<I, —m;=4mod8 and [, — m, =0 modS8.

9.5 (PROOF OF PROPOSITION 9.4.1). By the similar method to that in §§ 7.10
and 7.12, we see that (R,) holds if k, >4.
Consider the case that k, =2, and set G=S3x S!. We recall

(9.5.1) K{~0in G, and
P(G/K;) =1+ 1, P(G/K3)=(1+0)(1+12), P(G/K))=1+1,

by Proposition 5.10 (CIII). Then K;=S8!, K°=1 and Kj;=S!. Consider
Si(l, m)={(z", z")e G; ze S'} for relatively prime integers I and m (which
means that I or m=1 if Im=0). Since G/S'(l, m)~S3|Z,,, (if m#0) or $2x
S1 (if m=0), we see that K7 and K3 are conjugate to S'(I, m) (m+0) and S'(1, 0),
respectively, by (9.5.1). Then, by using (9.5.1) and Lemma 5.4, we may set

K; =S'(,0), K, = UbiK; for b, =(j,y)eK n NKS,

where y4=1 by (BII). Furthermore, by Lemma 5.4, K{ contains an element
conjugate to b,. Thus K7 is conjugate to S'(I, m) for Im#0, and this shows that
K, is abelian since K, = N(K;, G)=S! x S!.

Now consider the slice representation o,: K,—»0(2) in (3.3). Then, up to
equivalence, we have az(b1)=<(l) _01> and o0, | K3 is of degree k(=1). Hence
we get

K =\U;biZ{(wy, 1)y for w, = exp(2ni/k).
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Here, k=1 or 2, since K, is abelian. By (5.3), it is easy to see that k=2 and
y=-—1.

Next, from (ii) of (5.3), it follows that b, e K; N K and K, is connected.
Then we have |m|=1 or 2 by (i) of (5.3), and m is even since K; contains an ele-
ment conjugate to b, =(j, —1). Up to automorphisms of G leaving K, and K
invariant, we may assume I, m>0. Hence we get

Ky = (B, 1)SL,2) (', 1) forsome BeS® with Bif~!=j,

where Z(G)° N K = Z, (I: odd>0).

It is clear that NK/K has two components, and then the assertion (R,)
follows immediately from Lemmas 3.7 (2) and 3.8 (2).

In this case, (NK N NK; n NK,/K)°~S'. By the same method as that in
§ 8.9, this G-action can not be extended to any almost effective G x S!-actions.

The proofs of Proposition 9.4.1 and Theorem 6.1 (CIII) are completed.

9.6 (PROOF OF PROPOSITION 9.4.2 (¢)). Set G=S3. Such G-actions are clas-
sified in [1; Th. 1.5]. It is easy to see that K, is conjugate to N(S!, S3), since
G/K, is non-orientable (s=1,2). Further, under the condition 7;(M(x))=0
(x e NK), the equivariant diffeomorphism class of M(«) is uniquely determined.

This G-action is not extendable to almost effective G x H-actions for r(H)=1
by Lemma 4.5, because NK/K is finite. Thus we have Proposition 9.4.2 (e).

9.7 (PROOF OF PROPOSITION 9.4.2 (0)). Set G=S3xS3, and consider its
subgroups
D*(4h) = {(Z, Z), (Zj, Zj)EG; 22k = 1,zeS! < C} »
S, m) = {(", z") e G; ze S'} (=8"),
u(, m) = S'(l, m) u S'(I, m)(j,j) (I + m: even)
for relatively prime integers | and m (which means that [ or m=1 if Im=0).
Let £,, &, and y be the first Stiefel-Whitney classes of S3/Z,,—S3/D*(8h),
S3/D*(4h)— S3/D*(8h) and G/S'(l, m)->G/U(l, m), respectively. By using the
Gysin sequences of these coverings and G/S(l, m)>G/U(l, m), G/D*(8h)—

G/U(l, m) (for 4h=|l—m]|), we see the following lemma by routine calculation,
where the coefficient of the cohomology is in Z,.

Lemma 9.7.1. (i) H*(G/U(l, m))= A(S)®P[y]/(v?) (deg 6=3).
(ii) G/D*(8h)~ S3x (S3/D*(8h)) and

ZE) @ ZyKEy» for i=1,
HY(S3|D*(8h)) = Z,{&3) @ Z,{&&)  for i=2,
Z,K &3¢ Sfor i=3,
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where £3=E24&,&, if h is odd.

(iii) For the homomorphism g*: H*(S3/D*(8h))— H*(S3/D*(8)) induced
by the projection g,
&, if hisodd,

g*¢€) =< and g*(¢&2) ={ 0 if h is even.

(iv) Let h, m and | satisfy 4h=|l—m| and Im+#0. Then for the homo-
morphism f*: H*(G/U(l, m))— H*(G|/D*(8)) induced by the projection f, and
0#ve H3(S3) < H3(G/D*(8)), we have

(v, &3¢5) if hisodd,

f*@)=¢, and f*©6) = { (v, 0) if his even.

Now we see easily that K;~S!(s=1,2) and K°=1 by Proposition 5.10
(CIV) (0), and

(9.7.2) K = Ui,j bibﬁ, K] = Ui b'zKlo,
a'K,o = \U;bja K5 for b eK;nK and b,ea"'Kjan K,
by Lemma 5.4 (iii).

LemMMA 9.7.3. K; and K are conjugate to S'(l, m;) and U(l,, m,) for
some l, m;=1 mod 4, respectively, (s=1, 2).

ProoF. Since K;=~S!, it is clear that K; is conjugate to S'(l, m,). By
using (9.7.2) and N(S!(l, m), G)= N(S, S3)x S3 (if Im=0) or S'!x Sty S!'x
Si(j, j) (if Im#£0), we see the following since G/K, and G/K, are non-orientable:

(a) If K7 is conjugate to S'(/,, m,) for I;m,#0, then K; is so to S'(l,, m,)
for some odd integers I, and m,.
(b) If K7 is conjugate to S!(1, 0), then K3 is so to S(1, 0).

By using (5.5), it is easy to see that K; and K; are not conjugate to S!(1, 0).
Therefore, from (a) and (b) it follows that KJ(s=1, 2) is conjugate to S(l,, m,)
for some odd integers I, and m,. Further K| is conjugate to U(l, m,) since G/K
is non-orientable. Here we may assume that I, m;=1 mod 4, because I, and m,
are odd integers and U(l,, my) is conjugate to U(e,l,, e,m) (¢4, e=*%1). q.e.d.

First we set K, =U(l,, m,) by Lemma 9.7.3. Then the slice representation
g.: K,—>0(2) is of degree k on K{ and crl(j,j)=<(l) _01>, up to equivalence.
Thus K=Z, UZ(j,j), where Z, is generated by (w', ™) (w=exp(2ni/k)).
Since any element in K,—K; is of order 4, we have k=4 by (9.7.2). From
these observations, we may set
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K = D*8) and K, = U(l,, m,) (s=1,2)

for some relatively prime integers I, and m, with I, m,=1 mod 4.

By the same method as that of [1; Lemma 5.10], Lemma 3.9 shows that for
any ae NK(x0*xZ,) M(a) is equivariantly difffomorphic to M(1) or M(B),
where =8, f') (B'=(1+i+j+k)/2). From Van-Kampen’s theorem it follows
that n,(M(1))~Z, and ©n,(M(8))=0. Further, by (5.5) and Lemma 9.7.1, we see
that M(p) is a Z,-cohomology sphere if and only if (I, —m;+1,—m,)/4 is odd.

This G-action can not be extended to almost effective G x H-actios for
r(H)=1, because NK/K is finite.

Thus the proofs of Proposition 9.4.2 (0) and Theorem 6.1 (CIV) are completed.

§10. The case (CV)
10.1. In the first half of this section, we prepare the following

(10.1.1)(cf. [15; (7.4)]) For the case (CV):

n ky G K, K X
1) n n G G K 1
2 7 3 SU@3) S3.St St x St 3
3 13 5 Sp(3) Sp(2)-S3 S3053.83 3
@ 25 9 F, ~,Spin(9) ~,Spin(8) 3
5) 9 3 Sp(2) S3.St Stx St 4
6) 13 3 G, S3.St Stx St 6
(M ky+ky,—1 | kg U, xU, UxUj_g Ui x U, 2

where Uy is a simple group with U U~ S*~1 (U;c U,).
10.2 (ProoF oF (10.1.1)).

(10.2.1) ([15; (6.2)]) For ae N(K, G) in (3.3), K, and a~1K,a generate
the entire group G.

LemMA 10.2.2. If G is simple and K, G (s=1, 2), then we obtain (2)-(6)
of (10.1.1).
Proor. Since K /K is an even sphere, we see that K, contains a connected

normal subgroup locally isomorphic to SO(k,) or G, (k,=7) (see (2.1)). Compare
the Poincaré polynomials in (1)-(10) of Lemma 2.6 and Proposition 5.10 (CV).
Then we obtain (2)~(6) of (10.1.1) from (1) (I=2), (5) (I=3), (6), (4) (I=2) and
(10) in Lemma 2.6, respectively. qg.e.d.
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To prove (10.1.1), we may assume that G is generated by K; and K, by
(10.2.1). If K, =G, then we have K, =G by Proposition 5.10 (CV), and we obtain
(1) of (10.1.1).

From now on, we assume K, G (s=1,2). From (BI) and r(G)=r(K)), it
follows that G is semi-simple and

G=U1x”'XUm’ K1=le'"me: K2=R1x'"XRms

where U, is simple with Q; U R, U;(1<i<m). Further one of the following two
cases occurs since K /K Sks—1:

(I)  K=0ixQ,xxQ,=R;xR,x-xR, (Q; <0, R; <Ry,
)  K=0ixQ;x~xQ,=RxRyx- xR, (@< Qs R;<R,).

Here m=1 in (I) and m=2 in (II), because G is generated by K, and K,, and the
G-action on G/K is almost effective. In the case (I), G is simple, and hence we
obtain (2)—(6) by Lemma 10.2.2. In the case (II), we get Q,=U,, R,=U, by
K;UK,=Q; XR,, and so (7) of (10.1.1).

These complete the proof of (10.1.1).

10.3 (PROOF OF THEOREM 6.1 (CV)). By the similar argument to that of § 7.4,
Theorem 6.1 for (CV) is proved by the following

ProrosITION 10.3.1.  For the case (CV), (R,) holds.

10.4 (PROOF OF PROPOSITION 10.3.1 FOR (1), (7) IN (10.1.1)). In the case (1)
(resp. (7)), we can show the assertion (R,) by the same method as that of § 8.4
(resp. §§ 7.6 and 8.7).

10.5 (PrOOF OF PrROPOSITION 10.3.1 FOR (2), (3), (4) v (10.1.1)). In these
cases, we see easily the following:

(a) K is unique up to conjugation.

(b) There are just three connected subgroups of G, containing K and being
locally isomorphic to (2) S3x S, (3) Sp(2) x S3 and (4) Spin(9). Further, they
are conjugate to each other by the element of NK.

(c) The factor group NK/K is isomorphic to the symmetric group of three
elements.

From (a) and (b), we may assume that K; =K,, and K and K (s=1, 2) are
naturally imbedded in G. By (c) and Lemmas 3.7 and 3.8, we see that there
are two essential isomorphism classes of M(«), where « varies in NK, and M(1)
is not a Z,-cohomology sphere by (10.2.1). Therefore (Ry) holds for G=SU(3),
Sp(3) and F,. Here we note that G/K (s=1, 2) is (2) P,(C), (3) P,(H) and (4)
P,(Cay), respectively.
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10.6 (PrROOF OF PROPOSITION 10.3.1 FOR (5), (6) IN (10.1.1)). In the case (5),
we can show that (R,) holds by the same method as the proof for (6) given below.
G=G, is the group of linear automorphisms x € SO(8) of Cay satisfying

x(u)x(v) = x(uv) (u, ve Cay).

cos 6 sin 6

—sinf cosf

E, 0
A(6,)

Let A(0)= (feR) and set

10y, 0,, 03) = € G, < SO®B) (0,+6,+60;=0)

A(0)
A(85)

and T(l,, 1,, I3)={t(1,0, 1,0, 1,6)e G,; 0 R}= S (I, +1,+15,=0).
Since K(=S! x S') is the maximal torus of G, we may set
K = {t(el, 02, 93)GG; 91 + 02 + 93 = 0}.

Then, by routine calculation, we have
(a) There are just six connected subgroups H, (1 <s<6)of G, which contain
K and are locally isomorphic to S3 x St;

H, = Z(T(, 1, —1), G), H, =2Z(T(1,0, —1), G),

H, =2Z(T{1, -1, 0), G), H,=2Z(T(-2,1,1), G),

Hs = Z(T(1, -2, 1), G), H¢ = Z(T(, 1, =2), G).
Here H,, H,,, and Hy,, (s=1,4) are conjugate to each other, but H, and H,
are not so.

(b) NK/K=N(K, SUQ))/KxZ,{AK) for SUB)=G,n SO(6) and the
diagonal matrix 4 with the diagonal elements 1, —1,..., 1, —1.

If K, is conjugate to K,, then we see easily that the G-manifolds M(«) are not
Z,-cohomology spheres by (10.2.1) and [15; (7.5)]. Thus we may set K, =H,
and K,=H,. Then by (b) and Lemma 3.9, there are two essential isomorphism
classes of M(«) where « varies in NK, and M(1) is not a Z,-cohomology sphere
by (10.2.1). Thus the assertion (R,) holds.

The proof of Proposition 10.3.1 is now completed. Thus Theorem 6.1 is
proved completely.
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