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§1. Introduction

In this paper, we generalize the concept of total absolute curvatures of
submanifolds immersed in a Riemannian manifold and study the properties in
relation to conformal mappings. In § 2, generalized total curvatures are defined.
We construct certain conformal invariants in § 3, using generalized total cur-
vatures. These invariants contain that of C.C. Hsiung and L. R. Mugridge
[4] and T. J. Willmore [7].

§2. Generalized total curvatures

Let N be an (n+g)-dimensional Riemannian manifold with the metric g
and M an n-dimensional submanifold immersed in N. For a normal vector
field ¢ and a tangent vector field X on M, the second fundamental form A of M
is defined to be

AX): = = (7597,

where F is the Levi-Civita connection of N and ( )T denotes the tangential com-
ponent.

Let GL, be the real general linear group, gl, its Lie algebra and s,(<gl,) the
subspace which consists of all symmetric matrices. An algebra I is defined to be

I: = {peC%s,) | p(gBg~')=¢(B) forany Bes,, geO(n)},

where C%(s,) is the algebra of all real-valued continuous functions on s, and
O(n) is the orthogonal group. For a positive real number r, we define the fol-
lowing subspace

I': ={pel|o(B) = b"p(B) forany Bes, b>0}.

Let TH+(M) be the normal unit sphere bundle. A linear mapping ul;: I'—
CO%(M) is defined to be

@) = U0 | | o4do,@) for ger, peM,

T (M)
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where do, is the volume element of the fibre T1(M), and
Wgir-1: = 2002 (g +7)[2),

which coincides with the volume of the (g + r— 1)-dimensional unit sphere when
r is an integer.

LEmMA 1. If N is a totally geodesic submanifold of N, then we have

(@) = h(p)  for o@el.

This fact is due to the factor w,,_, in the definition. From now on we will
denote ul; by uy, for simplicity if there will be no ambiguity.

Let I(GL,) be the algebra of all invariant polynomials on gl,. It is clear
that elements of I(GL,) restricted to s, belong to I. The generators ¢, € I(GL,)
(0 k< n) are defined to be

> t"(Z)ck(B): = det (I, +tB) for Begl,.

For pe M and ¢ e T{(M),, ¢,(A4}) is called the k-th mean curvature of M at
p with respect to ¢ and K¥(p): = pp(lc|?’*)(p) the k-th total absolute curvature
at p. The k-th total absolute curvature of M is defined to be

TKEM): = | KEp)Va(p),

where dV,,; denotes the standard measure on M. Especially TK¥(M) is the usual
total absolute curvature of M. These curvatures have been studied by many
geometers. For example, see [2].

§3. Conformal invariants

It is well-known that TK#(M) is invariant under homotheties of N. Noting
that |c,|*/* € I", we can clearly generalize this fact as follows. Let N be another
Riemannian manifold with the metric § and f: N>N a diffeomorphism. If
g and f*g are homothetically equivalent, then we have

(D) f *(l-‘l}(M)((P)de(M)) = u(@)dVy

for any ¢ eI". In the case where g and f*§ are conformally equivalent, the
formula (1) does not hold for all of ¢ € I" in general. An example of the elements,
for which the formula (1) holds, is (¢} —c,)"?eI":

THeOREM (C. C. Hsiung and L. R. Mugridge [4]). Let M be a submanifold
immersed in a Euclidean space E"*% and f a conformal mapping of E"*9,
Then we have
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S*ron (et =) DAV i) = pu((c3—c)"2)dVy,

(in our notation).

This theorem is due to B.-Y. Chen [1] for n=2 and a general ¢ and due to
T. J. Willmore [7] for a general ambient space with g=1. In the case where M
is a surface, we have the following conformal invariant.

THEOREM (B.-Y. Chen [1], J. H. White [6]). Let M be an orientable closed
surface in E**1 and f a conformal mapping of E**4. Then we have

g Iﬁldef(M) = S lledVM’
f(M) M

where H (resp. H) is the mean curvature vector field of M (resp. f(M)) in E**4,
We will generalize the above theorems as follows.

THEOREM 1. Let M be a submanifold immersed in a Riemannian manifold
N with the metric g and f: N—N a diffeomorphism into a Riemannian manifold
N with the metric g. If g and f*g are conformally equivalent, then we have

f*(ﬂg(M)(léka)de(M)) = pf(18]"*)d V) for k=2,
where ¢, € I* is defined to be
8t = oo (§) (= Dite e
Note that &,=c, —c3(£0). The proof of Theorem 1 will be given in § 4.

REMARK. If the mean curvature vector of M vanishes at pe M, then
ium((2d"®) (p) = K3 (p)-

COROLLARY. In the theorem, let M be an orientable closed surface and N
(resp. N) a space of constant sectional curvature ¢ (resp. ¢). Then we have

S |H|2dVy + ¢ Vol (M) = g |H|12dV; ) + & Vol (f(M)),
M S (M)

where H (resp. H) denotes the mean curvature vector field of M (resp. f(M))
in N (resp. N) and Vol () is the volume.

ProoOF. Carry out the integration over the normal unit sphere, and we obtain

() = -5 1HP and  py(ey) = -2 (K—0),



206 Naoto ABE
where K is the Gaussian curvature of M. By applying the Gauss-Bonnet formula
to Theorem 1, we obtain the formula.

The formula in the Corollary coincides with that of M. Maeda [5] in the case
where N (resp. N) is the hyperbolic space H2?*4(c) (resp. the Euclidean space
E2*49) and f is the inclusion mapping from the Poincare disc model into E2*4.

§4. Proof of Theorem 1
Let 6: 5,—s, be a homomorphism defined to be
o(B): = B — ¢,(B)I, for Bes,

and o*: I -1 the induced homomorphism.
A straightforward calculation gives

LEMMA 2. o*c=¢,.
Therefore, in order to get the formula in Theorem 1, it is sufficient to prove
THEOREM 2. If g and f*g are conformally equivalent, then we have

F* Yo @dVean) = 1(@)dVy  for ¢@ea*(I").

At first we prove the following lemmas. Let p be a smooth function on N
such as f*g=e?rg.

LEMMA 3. For peM, { € TH(M), and X € T(M),, we have
(F*ADp(X) = A4(X) — (Ep)X,
where A is the second fundamental form of f(M) in N.

Proor. It is clear that f*4 is the second fundamental form of M relative to
the induced metric f*g. Then we get

(DX = — (F*7)xO)",

where ¥ is the Levi-Civita connection of N and f*7 is the induced connection.
Since g and f*g are conformally equivalent, we have

(f*P)xY = PxY = (Xp)Y + (Yp)X — g(X, Y)grad p
for vector fields X, Yon N. This formula implies
2 (f*P)xé — P& = (Xp)¢ + (¢€p)X

for X e T(M),, (e T*(M),. By taking the tangential parts of the both sides
of (2), we have the lemma.
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REMARK. Let wf (resp. @?) be the normal connection form relative to a
local orthonormal frame field &£, (resp. e~?f,&,). By taking the normal part of
the both sides of the formula (2), we see that f*@?=w’. Thus we find that
transgression forms with respect to the normal connection are invariant under
changes of metrics on the ambient space (cf. [3]).

LEMMA 4. For ¢€l" and pe M, we have

Brao@ ) = e | odi =l @),

where 1, is the identity transformation of T(M),,.

PrROOF. For (eT{(M),, take &eT{(f(M))s, such that E=eP®f L
From Lemma 3, we see

P ) = Q(f*A)g*®%) = e @((f*A)f) = er P (45— (Ep)],).
Since the corresponding ¢ —¢& is an isometry, we get the required formula.
LEMMA 5. f*(usmf@)=e€"uu(p)  for @eo*(").
Since (45— (ép),)=0(A5), Lemma 5 follows from Lemma 4.

Now, Theorem 2 is an immediate consequence of Lemma 5, since

f*(de(M)) = e""d VM'
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