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§ 1. Introduction

In this paper, we generalize the concept of total absolute curvatures oί

submanifolds immersed in a Riemannian manifold and study the properties in

relation to conformal mappings. In § 2, generalized total curvatures are defined.

We construct certain conformal invariants in § 3, using generalized total cur-

vatures. These invariants contain that of C. C. Hsiung and L. R. Mugridge

[4] andT. J. Willmore [7].

§ 2. Generalized total curvatures

Let N be an (n + <?)-dimensional Riemannian manifold with the metric g

and M an n-dimensional submanifold immersed in N. For a normal vector

field ξ and a tangent vector field X on M, the second fundamental form A of M

is defined to be

where V is the Levi-Civita connection of N and ( ) Γ denotes the tangential com-

ponent.

Let GLn be the real general linear group, glπ its Lie algebra and sn(c:gin) the

subspace which consists of all symmetric matrices. An algebra J is defined to be

/: = {φ e C°(O I φ(gBg-1) = φ{B) for any Besn,ge O{n)},

where C°(sn) is the algebra of all real-valued continuous functions on sn and

0{ή) is the orthogonal group. For a positive real number r, we define the fol-

lowing subspace

Ir: = {φeI\φ(bB) = brφ(B) for any Besn, b > 0} .

Let T{{M) be the normal unit sphere bundle. A linear mapping μ^: Ir-+

C°(M) is defined to be

( (ξ) for
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where dσp is the volume element of the fibre T\{M)p and

which coincides with the volume of the (q + r— l)-dimensional unit sphere when

r is an integer.

LEMMA 1. If N is a totally geodesic submanifold of N, then we have

for φeir

This fact is due to the factor ωq+r^ί in the definition. From now on we will

denote μ^ by μM for simplicity if there will be no ambiguity.

Let I(GLn) be the algebra of all invariant polynomials on gln. It is clear

that elements of I(GLn) restricted to $„ belong to /. The generators ck e I(GLn)

(0 ̂  k ̂  ή) are defined to be

for

For peM and ξ e T{(M)p, ck(Aξ

p) is called the fc-th mean curvature of M at

p with respect to ξ and K%(p): =μM(\ck\n/k)(p) t n e ^ " t n t o t a ' absolute curvature

at p. The fc-th total absolute curvature of M is defined to be

TKt(M): =\ Kt(p)dVM(p)9
JM

where dVM denotes the standard measure on M. Especially TK*(M) is the usual

total absolute curvature of M. These curvatures have been studied by many

geometers. For example, see [2].

§ 3. Conformal invariants

It is well-known that TKf(M) is invariant under homotheties of N. Noting

that \ck\
n/k e/Π, we can clearly generalize this fact as follows. Let ΪV be another

Riemannian manifold with the metric g and f\N-+N a diffeomorphism. If

g and f*g are homothetically equivalent, then we have

(1) / ί μ W φ ) d * W = M(<P)dVM

for any φeln. In the case where g and f*g are conformally equivalent, the

formula (1) does not hold for all of φ e In in general. An example of the elements,

for which the formula (1) holds, is (cf — c2)
n/2 eln:

THEOREM (C. C. Hsiung and L. R. Mugridge [4]). Let M be a submanifold

immersed in a Euclidean space En+q and f a conformal mapping of En+q,

Then we have
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= μM((c2-c2yi2)dVM,

(in our notation).

This theorem is due to B.-Y. Chen [1] for n = 2 and a general q and due to

T. J. Willmore [7] for a general ambient space with q = l. In the case where M

is a surface, we have the following conformal invariant.

THEOREM (B.-Y. Chen [1], J. H. White [6]). Let M be an orientable closed

surface in E2+q and f a conformal mapping of E2+q. Then we have

\H\2dVf(M) = \ \H\2dVM,
Jf(M) JM

where H (resp. H) is the mean curvature vector field of M (resp. f(M)) in E2+q.

We will generalize the above theorems as follows.

THEOREM 1. Let M be a submanifold immersed in a Riemannίan manifold

N with the metric g andf: N-+N a dijfeomorphism into a Riemannian manifold

N with the metric g. If g and f*g are conformally equivalent, then we have

) for k ^ 2,

where tk e Ik is defined to be

Note that £2

 = c 2 ~ c i ( = 0) The proof of Theorem 1 will be given in § 4.

REMARK. If the mean curvature vector of M vanishes at peM, then

COROLLARY. In the theorem, let M be an orientable closed surface and N

(resp. N) a space of constant sectional curvature c (resp. c). Then we have

\ \ M ( ) [ | | / ( M ) c V o l ( / ( M ) ) ,
M Jf(M)

where H (resp. H) denotes the mean curvature vector field of M (resp. f(M))

in N (resp. N) and Vol( ) is the volume.

PROOF. Carry out the integration over the normal unit sphere, and we obtain

^ and ^
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where K is the Gaussian curvature of M. By applying the Gauss-Bonnet formula

to Theorem 1, we obtain the formula.

The formula in the Corollary coincides with that of M. Maeda [5] in the case

where N (resp. N) is the hyperbolic space H2+q(c) (resp. the Euclidean space

E2+q) a n d / i s the inclusion mapping from the Poincare disc model into E2+q.

% 4. Proof of Theorem 1

Let σ: sπ->sπ be a homomorphism defined to be

σ(B): =B-Cl(B)In for Be*H9

and σ*: /-*/ the induced homomorphism.

A straightforward calculation gives

LEMMA 2. σ*ck = ck.

Therefore, in order to get the formula in Theorem 1, it is sufficient to prove

THEOREM 2. If g and f*g are conformally equivalent, then we have

f*(μNf(M)(φ)dVf(M)) = μN

M(<P)dVM for φ e σ*(P).

At first we prove the following lemmas. Let p be a smooth function on N

such as f*g=e2pg.

LEMMA 3. For peM,ξe T±(M)p and X e T(M)p, we have

(f*A)t(X) = A%X) - (ζp)X,

where A is the second fundamental form off(M) in N.

PROOF. It is clear t h a t / * ; ! is the second fundamental form of M relative to

the induced metric/*<?. Then we get

(f*A)l(X) = - {{f*V)xξ)\

where V is the Levi-Civita connection of N and f*F is the induced connection.

Since g and/**? are conformally equivalent, we have

(f*r)xY- FXY= (Xp)Y+ (Yp)X - g(X, 7)grad p

for vector fields X, Yon N. This formula implies

(2) σ*Γ)xξ - Fxξ = (Xp)ξ + (ξp)X

for X G T(M)p, ξ e TL(M)p. By taking the tangential parts of the both sides

of (2), we have the lemma.
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REMARK. Let ωβ

a (resμ. ώβ

a) be the normal connection form relative to a

local orthonormal frame field ξΛ (resp. e~pf*ξa). By taking the normal part of

the both sides of the formula (2), we see that f*ωβ

a = coβ. Thus we find that

transgression forms with respect to the normal connection are invariant under

changes of metrics on the ambient space (cf. [3]).

LEMMA 4. For φe Ir and p e M, we have

l - (ξp)Ip)dσp(ξ),
JTi {M)p

where Ip is the identity transformation of T(M)p.

PROOF. For ξ e Γ*(M),, take ξ e T | ( / ( M ) ) / ( P ) such that ξ =

From Lemma 3, we see

Since the corresponding ξ-*ξ is an isometry, we get the required formula.

LEMMA 5. f*(μKM){φ)) = erpμM(φ) for φeσ*(In).

Since σ(Aξ

p — (ξρ)Ip) = σ(Aρ

ι), Lemma 5 follows from Lemma 4.

Now, Theorem 2 is an immediate consequence of Lemma 5, since

f*(dVfiM)) = e»dVM.
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