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Introduction

In the paper [2], we introduced the notion of weakly ascendant subgroups
which is weaker than that of ascendant subgroups, and mainly investigated the
relationship of these notions in generalized solvable groups. Recently in the
papers [1, 3], ascendancy has been studied in locally solvable, ideally finite Lie
algebras.

In this paper, following the line of the papers [1, 3] we shall investigate as-
cendancy and weak ascendancy in locally finite groups, especially in groups which
correspond to locally solvable, ideally finite Lie algebras.

Let G be a group and H be a subgroup of G. In Section 2 we shall show that
when G e L(H), H is weakly ascendant in G if and only if H is w-step weakly
ascendant in G (Theorem 1). In Section 3 we shall show as the main result of the
paper that when GeL(<)(EU N ), H is weakly ascendant in G if and only if H
is ascendant in G and if and only if H is w-step ascendant in G (Theorem 3).
In Section 4 we shall study the cases where G belongs to L(sn)E and L(asc)EQ.
In Section 5 we shall present some characterizations of the class of groups
L(<) (AN §) (Theorem 5).

1.

Let G be a group. If X, Y are non-empty subsets of G, we denote by [X, Y]
the set of all [x, y]=x"1y~ixy with xe X and ye Y and we write [X, ,Y]=X,
[X, ,+1Y]=[[X, ,Y], Y] for an integer n>0.

If H is respectively an ascendant subgroup, a o-step ascendant subgroup
and a subnormal subgroup of G, we as usual write

HascG, H<°G and HsnG,

where o is an ordinal.

Let H<G. Asin [2], we call H a o-step weakly ascendant subgroup of G,
if there is an ascending series (S,),<, of subsets of G satisfying the following con-
ditions:

(@ So=Hand S,=G.

(b) If o is any ordinal < o, then u"*Hu<S, for any ue S, ;.
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(©) S,=\U,<;S, for any limit ordinal A < o.

We then write H<°G. We call H a weakly ascendant subgroup of G if H<°G
for some ordinal o, and write H wasc G. When A<, we call H a weakly sub-
normal subgroup of G and write H wsn G.

For a class X of groups, we write G e L(H)X if for any finite subset X of G
there is an H-invariant X-subgroup of G containing X. For A=<, sn and asc,
we write G € L(4)X if for any finite subset X of G there is an X-subgroup H of G
containing X such that HAG.

As usual, §, G, A, N, € and WA(=PA) are respectively the classes of finite,
finitely generated, abelian, nilpotent, Engel and solvable groups. EX (=I,’X)
and E(<)X (=15,,£) (resp. E,(<a)X) are respectively the classes of groups having
ascending X-series of subgroups and ascending X-series (resp. w-length ascending
X-series) of normal subgroups. sX is the class of subgroups of X-groups. LX
and RX are respectively the classes of locally and residually X-groups.

2.

In this section we study weak ascendancy in locally finite groups. We begin
with the following

THEOREM 1. Let G be a group and H<G. Assume that GeL(H)§. Then
the following conditions are equivalent:

(1) HwascG.

2) H<“G.

PrOOF. Assume that H<°G. Then by Lemma 1 in [2] there is a weakly
ascending series (S,),<, from H to G such that HS,H=S, for any a<o. Let
x€G. Then x is contained in an H-invariant -subgroup A(x) of G. For any
neN, let u(n) be the least ordinal such that

[A(x), ,H] S S,ny-

Since [A(x), ,H] is a finite set, u(n) is not a limit ordinal. Observing that

[S,+1, HISS, for any a<g, we have u(n+1)<u(n) unless u(n)=0. Since the

ordinals <o are well-ordered, u(n)=0 for some n=n(x) e N. It follows that
[A(x), ,H]l = So = H.

Especially, [x, ,H]=H. We now use Theorem 4 (b) in [2] to conclude that

H<*G.

COROLLARY. Let G be a group and H<G. Assume that G e L(H)E n Min.
Then the following conditions are equivalent:
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(1) HascG.
(2) H wascG.

Proor. By Theorem 1, if H wasc G then H<® G. By Corollary to Theorem
4 in [2], if H<® G then H asc G.

THEOREM 2. Let G be a group and H<G. Assume that Ge L(H)E. Then
the following conditions are equivalent:

(1) H<*G.

(2) H <®K for any subgroup K of G containing H.

(3 H<*°{(H,x) forany xegG.

(4) H <°{H,[x,H]) forany x€egG.

(5) For any x€G, there is an n=n(x)eN such that H<® {(H, [x, ,H]).

Proor. It is clear that (1)=(2)=(3)=(4)=(5). To show that (5)=(1),
we assume (5). Then there is a weakly ascending series (S,(x)),<, from H to
{H, [x, ,H]> such that HS (x)H =S, (x) for any « <w. We put

Sa)+i(x) = H(Sw(x) U [X, n—lH] u---u [x5 n—iH])H for 1 <i< n,
Sp(x) = Spp4a(x) for w+n < f < w2.

Then for any f<w2, if ue Sg,1(x) then u=tHu=Sy(x). Infact, if ue S, ;4,(x)
(i<n), then we may assume that

u = hyah, with hy, heH and aelx, ,.;-.H].
It follows that for any he H
u™thu = h3'a thi'hh,ah,
= h3[a, hi*h~th ]hyithh h,
€ H[x, ,_;H]H
S Spix).
We define
Sp = Uszec Sp(x) for any f < w2,
Sz = \Up<w2Sp-

Then So=H. Wehave S,,, =G, since x €S, 5x)(X). Forany f<w2,ifueSz,,
then u € Sy, ;(x) for some x € G and therefore

u™lHu = Sy(x) = Sg.

Hence we see that H<“2G. By Theorem 1 we conclude that H<® G.
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3.

In this section we consider the case where G belongs to L(<a)(EUNF).
First we show

LemMa 1. (1) L(=)E¥U < K<)
2) L@EANFTH <H<)ANF).

PROOF. Assume that GeL(<)EU (resp. L(<)(EAN F)). We have to con-
struct an A (resp. A N F)-series (G,),<, of normal subgroups of G. We put Gy=1.
Suppose that we have constructed (Gg)s<, for «>0. If a is a limit ordinal, put
G,=\Up<a Gg. If ais not a limit ordinal and G,_, #G, take xe G~G,_;. Then
there is a solvable (resp. solvable finite) normal subgroup K of G containing x.
Since K&G,_,, we choose the largest integer i such that K(W£G,_;. Here K¥
is as usual the i-th commutator subgroup of K, e.g. K(V=([K, K]). Put G,=
G,_K®». Then G,<«G and

G,/Gy 1 = KWD|(Gm i NKD) e A (resp. AN F),

since KG*DeG,_, n K®. By set-theoretical consideration, we see that there is
an ordinal ¢ such that G=G,.

Lemma 1 tells us that we can now use Theorem 3 (a) in [2] to assert that when
G eL(<)E, H wasc G if and only if HascG. For GeL(<)(EA N F) we deduce
the following stronger result, which is the main result in this paper.

THEOREM 3. Let GeL(<)(EANE) and HLG. Then the following con-
ditions are equivalent:

(1) HascG.

2) H<“G.

(3) HwascG.

(4 H<?G.

ProoF. (2)=>(1)=(3) is clear. Theorem 1 assures that (3)=>(4). Hence it
suffices to show that (4)=>(2).

Assume (4) and let (S,),<, be a weakly ascending series from H to G. By
Lemma 1 in [2] we may assume that HS,H=S, and S;!=S, for any a <w. Since
GeL(<=)(EAUNF),

G = U4 A4 with A(A))<G and AL eeU n §.
Let
1=A4, 0% A4, 1) & & A4, n(2) = A1)
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be a sequence of normal subgroups of G such that each A(4, i)/A(4, i—1) is a
simple subgroup of G/A(4, i—1). Since A(4, 1) and A(u, 1) are minimal normal
subgroups of G, if [A(4, 1), A(u, 1)]#1 then {[A(4, 1), A(u, D> =4, 1)=
A(u, 1), which contradicts the solvability of A(4, 1). Hence

LA(4, 1), A(u, D] = 1.

We put T=A(4, j—1)A(u, k—1). Then T<G. Since A(4, j)T/T and A(u, k)T|T
are minimal or trivial in G/T, it follows that [A(4, j)T, A(u, k)T]=T. Hence

We define Q(0)=1 and construct (1) as follows. In the case where A(A)ZH,
let (1) be the least integer such that A(4, r(A))Z H and define

WA, 1) ={ze A4, r(A))|z7'Hz = H} .

Then W(A, 1)<G. We assert that W(A, )&ZH. In fact, since A(4, r())e g,
there is some n € N such that A(4, r(1))=S,. Hence HA(A, r(A))<S,. It follows
that H <" HA(A, r(4)) with a weakly ascending series

(Si n HA(A’ r(A)))iSn .

Take the least i such that S;n HA(4, r(A))ZH. Then S;n A4, r(A))ZH. Hence
we can choose z €(S; N A(4, r(4)))~H. Then z~! belongs to the same set. It
is immediate that

z71Hz, zHz" ' = S;_, n HA(J, r()) € H.

Hence z7'Hz=H and therefore z e W(A, 1)~H.
In the other case where A(X)< H, let r(1)=n(A) and define W(A, 1) as above.
In any case, W(4, 1)< A(4, r(A)) and A(A, r(A)—1)=H. Hence
[W(4, 1), W(u, 1)] = [A4, r(2), A, r(w)]
S AQ@, r(A)— DA, r(w)—-1)
< H.
Now define
Q) =W, D]led).

Since each element of (1) normalizes H, we have HQ(1)<G and H<HQ(1).
Furthermore [Q(1), Q(1)]=H, which can be seen by observing that for z;e
W, 1), z,e W(u, 1) and z,e W(, 1)

[z:2, 2,] = [23 2,17%[2,, 2,] € H.
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It follows that
[HQ(1), HQ(1)] = H.

Next let k>1 and assume that we have constructed the ascending series
(Q());<x of subgroups of G such that for i <k

HQG) <G and [HQG), HQ>)] < HQ(i—1).

We shall construct Q(k+1) as follows. In the case where A(A)ZHQ(k), let r(1)
be the least integer such that A(4, r(1))Z HQ(k) and define

W, k+1) = {ze A(, r(A))| z-'Hz, zHz"! = HQ(K)} .

Then W(A, k+1)ZHQ(k). In fact, since A(4, r(A)eq, A4, r(A))<=S,, and
therefore HA(Z, r(2))<S,, for some meN. It follows that H<™HA(A, r(1))
with a weakly ascending series

(Si N HAQ, r(A)igm -

Take the least i such that S;n HA(4, r(A)ZHQ(k). Then S;n A4, r(A)E
HQ(k). Hence we can choose z e (S; N A(4, r(2)))~HQ(k). Then z~! belongs
to the same set and

z"'Hz, zHz '<S,_, n HA(, r())) < HQ(K).

Hence z € W(4, k+1)~HQ(k).

In the other case where A(1)< HQ(k), let r(A)=n(1) and define W(4, k+1)
as above.

In any case, W(A, k) W(4, k+1). In fact, since HQ(k—1)= HQ(k), de-
noting r(4) defined above by r, (1) we have r,_,(2)<r(4). Hence A(4, r,_(4))
Z A4, r(A), from which it follows that W(A, k)= W(4, k+1). Especially in
the first case W(A, k+1)Z W(A, k) and therefore W(A, k)& W(4, k+1).

Since W(4, k+1)= A(4, (1)) and A(4, r(A)— 1)< HQ(k), we have

(W@, k+1), W(u, k+1)] = [A4, r(A), A(u, r(w)]
S A(, r()—DAW, r(w—1)
c HQ(k).

Especially [W(4, k+1), W(u, k)] < HQ(k) and therefore
[WQ, k+1), Qk)] < HQ(k).

We see that W(4, k+1)<G. In fact, for z,, z,€ W(4, k+1) and he H we have
zithz, = hyu with hyeH and ueQ(k),
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and therefore
(z122)7'h(z,2,) = z7'(hyu)z,
= (23'hyz;5) [z5, u™ ]u
e HQ(k).

Similarly (z,z,)h(z,z,) ' e HQ(k). Hence z,z,eW(4, k+1). Since zile
W, k+1), WA, k+1)<G. Now we define

Qk+1) =W, k+1)|Aed).

Each element of Q(k+1) transforms both H and Q(k) into HQ(k) and therefore
normalizes HQ(k). Hence HQ(k+1)=HQ(k)Q(k+1)<G and HQ(k)<s HQ(k + 1).
Furthermore [Q(k+1), Q(k+1)]c HQ(k). It follows that

[HQ(k+1), HQ(k+1)] < HQ(k).
Since W(A, DEW(4, )& ---ESW(4, k)& W(4, k+1) if A(D)ZLHQ(k), we have
A(}) € HQ(i)  for i = |A(A)|.
Hence G=\U®R; HQ(i). Thus we conclude that H<1® G.
As a consequence of Theorem 3, we have

THEOREM 4. Let GeL(<)(EUNF) and HLG. Then the following con-
ditions are equivalent:

(1) H<“G.

(2) H<t® K for any subgroup K of G containing H.

(3) H<®{(H,x) forany xeG.

4 H<=*{H,[x, H]) forany xegG.

(5) For any x € G, there is an n=n(x) e N such that H<® {H, [x, ,H]).

Proor. Since L(<)(EUNF) is s-closed, by Theorem 3 w-step weak as-
cendancy can be replaced by w-step ascendancy in Theorem 2.

As another consequence of Theorem 3, we have

PROPOSITION 1. Let G be a group and H<G. Assume that G e U (L(<)
(EANF)) and HeeN. If Hwsn G, then H<® G.

PrRoOOF. There is a solvable normal subgroup K of G such that G/Ke
(<)(EANF). If H wsn G, then H wsn HK. Since HK € e, H sn HK
by Theorem 3 (c) in [2]. On the other hand, HK/K wsn G/K. By Theorem 3,
HK/K<a1® G/K and therefore HK<1® G. Thus H<®G.
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4.

In this section we consider the cases where G belongs to L(sn)&, L(sn)EU
and L(asc)E.

PROPOSITION 2. Let G be a group and H<G. Assume that GeL(sn)F
and He®. Then the following conditions are equivalent:

(1) HascG.

(2) HsnG.

(3) HwascG.

(4 HwsngG.

Proor. It suffices to show that (3)=>(2). By assumption, there is a sub-
group K of G such that

H<KsnG and Ke{.

If HwascG, then HwascK. Since Ke @, it follows that Hwsn K. Hence
H sn K by Corollary to Theorem 4 in [2]. Thus H sn G.

PrOPOSITION 3. Let G be a group and H<G. Assume that G e L(sn)EU
and He ®. Then the following conditions are equivalent:

(1) HsnG.

(2) HwsnG.

ProoOF. By assumption, there is a subgroup K of G such that
H<KsnG and Ke©re.

If H wsn G, then H wsn K and hence H sn K by Theorem 3 (c) in [2]. Therefore
HsnG.

PROPOSITION 4. Let G be a group and H<G. Assume that one of the
following conditions is satisfied:

(@) GeL(asc)(B(<)A) and He 6.

(b) GeL(asc)tW and He .
Then the following conditions are equivalent:

(1) HascG.

(2) HwascG.

ProOF. Assume (a) (resp. (b)). Then there is a subgroup K of G such that
H<KascG and Ke E(<)U (resp. EA).

If Hwasc G, then H wasc K and hence H asc K by Theorem 3 (a) (resp. (b)) in
[2]. Therefore H asc G.
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5.

In this section we shall study the class L(<1) (E2 n &) and present some of its
characterizations.

LemMa 2. L(<)(EU N F) < E, (<)
ProOF. In the proof of Theorem 3, we put H=1. Then we see that

Q)<= G and Q3I+1)/Q>G)eA for any i < w,
G = Uj<e, Q).
Hence G e £, (<)U.

We denote by X, the class of groups in which every non-trivial finite sub-
group H satisfies the condition H# HY (=<{[H, H])).

Lemma 3. (1) {s, L, & R}X, = X,.
2) B<)(UAUNF <X, and £ ()AL X,.

Proor. (1) Assume that G € £X, and let (G,),<, be an X,-series of G. For
any non-trivial finite subgroup H of G, let a be the least ordinal such that H <G,
Then « is not a limit ordinal. Since G,/G,_,€ X, and HG,_,/G,_ is a non-
trivial finite subgroup of G,/G,_ ;, we have HVG,_,/G,_, #HG,_,/G,_, whence
HM£H, Therefore GeX,. Thus we have £X,=X,.

Assume that N;<1G and G/N,; e X, for any Ae A. Let H/N\, N, be a finite
non-trivial subgroup of G/, N,. If (H/N,N,)YM=H/N,; N,, then H)(N\, N,)
=H. Choose 4 such that HZN,;. Then HMON,=HN, from which it follows
that (HN,/N,)®»=HN,/N,. This contradicts the assumption that G/N, e X,.
Hence (H/N\; N,)M#H/N,; N, and G/"\, N,eX,. Thus we have RX,=X%,.

It is immediate that sX,=X, and LX,=X,.

(2) Both E(<)(UAUN F) and £,(<)WU are contained in EA. But by (1) we
have

EQ[ S E’xO = xo .
THEOREM 5. For any class X of groups such that

<)@ NP NnE(DULX <X,
we have
¥nu=)F=u<=<)EAUNF).

ProOF. Assume that Ge ¥, N L(<)F and let X be any finite subset of G.
Then X is contained in a finite normal subgroup H of G. We use induction on
n=|H| to show that H e, It clearly holds for n=1. Let n>2 and assume
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the case n—1. Since GeX,, H#H®. By induction hypothesis we have
H®W egA. Hence HeeW. It follows that GeL(<)(EWN F). Therefore

X nNL=)F<L=)EANF).
Now let X be any class of groups such that
<)UNTF NE()U<SXLX,.
Then by Lemmas 1 and 2 we have
L(=)(EAN F) < E<)(A N F) nE(<)A N L(<)F
<X nu<)¥
<%, nLU<)F
<U(<=)EAN F).
Therefore we have X N L(<)F=L(<) (EAN §).
COROLLARY. If X is one of the classes
B2, B(<), E(<) (A N §F), ELEA, RLEWU, REE and EC,
then ¥ N L(<)F=L(<)EAN F).
ProoF. Since LEA< X, by Lemma 3 we see that
B<)(UN F < B(<)A < A < eV < X, = X, and
E,(<)U < LEA < RLEA < RX, = X,.

Since €N F<N, we have E<X,. Hence by Lemma 3 we see that
E<)(UA n §) < £€ < REE < REX, = X,.

Thus by Theorem 5 we have the assertion.
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