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1. Introduction

There has been considerable recent interest in the asymptotic behavior of
solutions of the equation

1) Lu+Fu=0 0<t< o0,

where L, is the general disconjugate operator

1 d 1 1 d -
2 Ly=— oL & > 2),
(2) Pn dt ppoy  py dt po (n22)
with
3) pi>0 and p;eC[0, ©), 0<Li<n,

and F is some functional of u. As examples, we cite [1], [7], [8], [9], [10],
[11], [13], and [17].

Here we are interested in comparing solutions of (1) with those of the un-
perturbed general disconjugate equation

@ Lx=0, t>0.

Willett [19] and the author [14] have observed that special attention should be
paid to the asymptotic theory of equations of the form

Lu + g(t, u, u',..., u(»"D) =0,
where L, is a normal disconjugate operator on [0, o0); that is, the equation
Lx=x™ + P,()x* D +...4 P ()x =0,

with P,,..., P, continuous, is disconjugate on [0, c0). Polya [12] showed that
such an operator can be written as in (2), with (3) replaced by the stronger con-
dition

®) pi>0 and p;eC* 90, 0), 0<i<n.

However, the additional smoothness conditions on p,,..., p,—; Which appear in
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(5) are usually unnecessary, and it is more natural to formulate conditions on the
perturbing functional F in terms of generalized derivatives associated with L,
rather than in terms of ordinary derivatives. By taking this point of view it is
possible to state one of the main results of [14] in a considerably improved form
(Theorem 1, below).

In [14] the author suggested that the asymptotic theory of perturbed dis-
conjugate equations can be based on integral smallness conditions on F which
involve ordinary — rather than absolute — convergence of some of the improper
integrals in question. Except for a result of Hartman and Wintner [3; Theorem
9.1, p. 379] for second order equations, this possibility seems to have been ignored
before that, even in the case where L,u=u™. Since [14], the author has ob-
tained results along these lines for linear homogeneous perturbations of the
equation u(™ =0 (n>2), and of nonoscillatory second order equations [16],
[18]. Theorems 1 and 2 below assume integral smallness on F which, in general
form, do not require absolute convergence. This is not to say that it is unneces-
sary to assume absolute convergence of some integrals in order to obtain specific,
usable, special cases; the point is that not all such integrals need be absolutely
convergent, as has usually been assumed in the past. Theorem 3 illustrates this
point for linear perturbations of L,u=0.

2. Preliminary definitions and lemmas

In connection with the operator L, it is convenient (and customary) to define
the generalized lower order derivatives Ly, L,,..., L,_ by

1
6 Lox= >, Lx= - (L_,x), 1<r<n
(6) 0 e pr( 1X)

Henceforth we assume, in connection with the functional F in (1), that Fu is con-
tinuous on any interval over which L,_,u is continuous.
The following notation of Willett [197] is useful for representing solutions of
L,x=0 and their generalized derivatives.
If q4, q,,... are locally integrable on [0, c0), define
I,=1
and

t
Ij(ta S5 qja"‘s ‘h) = gs qj(}“)Ij—l()', S5 qj—la'“’ ql)dl’ S, t=> 09 .] 21

Willett [19; Lemma 2.2] has established the following identities, which will be
useful below:

) I, 55 qjseens q1) = (= DI, t5 G450y 45) s
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) Xk_o(=DVIit, a; gy Qi j+ D= (S, @5 quseeey Gi—)) = IS, 15 qy5eens G0 -
It is easily verified that if a is in [0, o0), then the functions

© x(1) = Po(DL;-4(t, @3 pryecey py=1)y 1<j<m,

are linearly independent solutions of (4), and that the functions

(10) Y0 = pi(Olu-ft, @5 Puersees Py 1 <j <,

are linearly independent solutions of L¥y =0, where

pr= L d 1 1 d
" po dt py pu-y dt p,’
Moreover,
(1n Lxf)=0, j<r,
and
(12) Lxj®)=1;_,_4(, a; prs1sos Pj=1), r+1<j<mn.

Throughout the rest of the paper, x4,..., x, and y,,..., y, will be as defined in
(9) and (10), with a>0.

The following lemma presents variation of parameters in a form suitable for
treating (1) as a perturbation of (4).

LeEMMA 1. A function u is a solution of (1) if and only if
(13) Lu(t) = X", ()L xt), 0<r<n-—1
(recall (11)), where
(14) (@) = (=D 7"lyOFw®, 1<j<n

Proor. By the usual variation of parameters argument, it can be shown
that if

u®) = X"-; ci(txi(1),
and
(15) Z'}=r+1 c],'(t)erj(t) = 0’ 0 <r< n—2,
then u satisfies (1) if and only if
(16) ex() = — ) (Fu) (1),

(Note that y,=p,, from (10).) Now, (15) and (16) form a system of n equations
in ¢{, ¢35..., C,, With matrix
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V=I[L,_ 1xj]:',j=1 .

Since the right sides of the first n—1 equations (15) of this system vanish, (14)
will follow if it is shown that the last column of V-1 is

col[(—l)"“ 21 (—pymrda - Pam 1]
yn ) y" ,V"

This can be seen by setting t=s in the identities

AT Theras (=0 ZIEL L) = Iy 5 Drasover Paeo)
O S r S n— 19
which follow from (7), (8), (10), and (12).

The following lemma plays a crucial role in simplifying the asymptotic theory
of (1).

LemMma 2. If
(18) Swpi(t)dt=oo, 1<i<n-1,

then

L,x; ) L,x;(1) —
(19) < >0 on (a, ©), and lim,,, L% 0,

r<i<j<n,

and

20 _y_,->’>0 o ,00 d lim_,wy‘(l) =, 1<i<j<n.
(20) 7, n (a,0) an =05 @) jsn

Proor. From (10), (12) and Lemma 3.1 of Willett [19], the derivatives in
(19) and (20) are positive if t>a. The assertions about the limits follow from
(18) and I’Hospital’s rule.

Notice that (18) places no restriction on p, or p,. It is known [15] that (18)
can be assumed without loss of generality; that is, if L, as written in (2) does not
satisfy (18), it can be rewritten as

- L d_ 1  d1.4d

~

Pn dt P, dt p, dt P’

where

gmﬁi(t)dt =0, 1<i<n-1,
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and py, p;,..., P, are unique up to positive multiplicative constants with product
one. Therefore, we assume (18) henceforth, in which case L, is said to be in
canonical form at oo [15]. (For related results on canonical forms for discon-
jugate operators, see Granata [2].)

For normal disconjugate equations, Hartman [4], [5], [6] established the
existence of solutions x,..., x, satisfying (19) with r=0, and Willett [19] showed
that they could be represented in the form (9). The author [15] extended these
results to the general disconjugate equation.

Lemma 3. If q4, q,,..., are continuous and positive on [a, ) and a<b,
then

d (1-(t,b;q-,---,q1)> ;
21 _“ J J >0,t>b,j>1.
( ) dt Ij(t, a, qjy-'-, ql) ]

Proor. The proof is by induction. For convenience, let

fj(t)=lj(t, a; qu--’ ql) and gj(t) =Ij(ta b; qj,-“’ ‘11)-

Then
<_g_,> = Lﬁ (fjgj——1 ‘fj—xgj),
fi 7
and so it suffices to show that
(22 Ji9i-1 —Jj-19;> 0.
Since

110960 = £09,0) = [ a0z - | q. vz > o

if a<b<t, (21) follows for j=1. Now suppose j>2 and (21) holds with j re-
placed by j—1. The left side of (22) can be written as

108,10 = f5-409,0 = 9,40 || 4,0, D

+ [ DU @510 = - 109, (.

The first term on the right is clearly positive, and the second can be rewritten as

1m0 a0 i

which is positive by the inductive assumption if t>b. This establishes (22), and
completes the proof.
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LEmMMA 4. Suppose Q is continuous for t>T>a and the integral

Sw y{H)Q()dt converges for some i, 1 <i<n. Let

["yao0eas| .

p(t) = max,,
Then Sw y;($)Q(s)ds converges if i< j<n, and

23) [ view)as | <200 y,gg t>T>a

PrOOF. Obviously (23) holds with i=j, in which case the two on the right
may be replaced by one. If j>1i, let

(24) o = 10,
and suppose T<t<t,. Then
@) "y eewds = - (L8 ¢ (5)as

i) () i) Y
Ty < T (t)”(’”g (526 s

From (20) and the boundedness of ¢(t), the first term on the right of (25) ap-
proaches zero, and the integral on the right converges absolutely, as t;—0;
hence the integral on the left converges as ¢; — o0, and

_yi@® (i)Y
S yi(8)Q(s)ds= D) c(®) + S, (W> c(s)ds.

This implies (23), again because of (20).
We will use (17) again. In this connection it is convenient to define

(26) gr(ts S) = yn(S)In—r—l(t7 S; pr+ 15°°°> pn—l), 0 S r S n_l-

LeMMA 5. Under the hypotheses of Lemma 4, the integrals
@7 gw 9.t )0()ds, i—1<r<n,
t

converge, and

(28) ‘S:O g,@, $)0(s)ds ! < 2p(t)%’ t>T,i—1<r<n—1.
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Proor. From (17) and (26),

gr(t’ S) = z;!=r+ 1 (_ 1)n—jyj(s)erj(t) ’

so Lemma 4 implies that the integrals (27) converge. Since g,_(t, s)=y,(s)
(see (26)), (23) with j=n implies (28) with r=n—1; hence, we need only consider
(28) with r<n—2. For convenience, define

G0 = | 9.t 90)ds.
From (24), we can rewrite this as
29 60 = - | Bt 9c')ds,
where

Hir t,s) = yn(S)In—r—l(t7 S5 DPrigs--es pn—l)
() 70

which, from (7) and (10), can be rewritten as

30 Hir t, 5) = —1)r—r1 yr+1(s) In r—1(S, t;pn—la'--a Pr+1) .
( ) ( ) ( ) yi(s) In r—l(sa QA Pn—15-++s Pr+1)

If0<r<n-—2, then

31 0 < Ly (85 25 Putsees Prsr) <1, a<t<s,
( ) In ,._.1(S,a Dp-15- ’pr+1)

and H,(t, t)=0; hence, since lim,_, ., ¢(t)=0, integrating (29) by parts yields

(32) G.(f) = St o(s) aH" (t, s)ds,

provided we can show that the integral on the right converges. From (30),

-r— a}Iir (Y (S) > - (S t p seees Drt )
—1)» 1 t, s) = r+1 n—r n—1 r+1
( ) 6s ( ) L(S) n r—l(s a; Dn—15+++» pr+1)

+ (J’r+1(s) _@_( I 1(8, 2 Putseevs Drs1) >
yi(s) In—r—l(s’ Q5 Pn—15--+> Pr+1)

From Lemma 3, the partial derivative in the second term on the right is positive
if s>t>a; moreover, (y,,./y;) <0 since r>i—1. Therefore, from (31),

‘aHir(L S) ‘< _ J’r+1(S)) yr+1(t) a ( n— r—l(S’ z; Pn—15- ,pr+1)
aS - J”i(S) Yi (t) In r—l(s’ a; Pn-1s- ,Pr+1)
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if s>¢t>a. This and (31) imply that the integral in (32) converges, and also that
(28) holds. (We may drop the 2 in (28) if r=i—1, but this is not important.)

3. Main results

Suppose u is a solution of (1) for which the parameter functions c;, c,,..., ¢,
of Lemma 1 converge to finite limits as t— o0 ; say

lim,, , c/(t) = a;,
and let
(33 q(®) = Xh-qa;x(1).

Then clearly there is an asymptotic relationship between the generalized deriva-
tives Lou,..., L, u and Lyg,..., L,_,q: from (13) and (33),

Lu@®) — Lq(t) = Xj=r+1(c()—a)Lx0),
which, from (19), yields the obvious estimate
(34 Lu(t) — L.gq(t) = o(Lx,(t), 0<r<n-—1.
However, this is by no means the best available estimate, as we will now see.

THBOREM 1. Suppose u is a solution of (1) on [T, o) such that the integral
S i) (Fu)(s)ds converges for some i, 1<i<n. Then the parameter functions

Cj5---5 C, associated with u in Lemma 1 converge to finite limits as t—o0:
(35) lim,,c{t)=a; i<j<n.

Moreover, if

p(t) = max.,

[y #w 0as |,

then

G6) | Lu® = Thern aLoxy0 [ <200 220, i1 <r <1,
and, if i>2,

37 Lu(® = X1-;a;Lx(t) + oLx(®), 0<r<i-2.

Proor. By Lemma 4 and our assumption, the integrals Sw y() (Fu)(t)dt

converge for i < j < n; therefore, from (14), the limits in (35) exist and
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eft) = a; + (— 1)y~ g“’ YA (Fu)(s)ds, i<j<n.

Substituting this in (13) and using (17) and (26) yield

51

(%) Lu) = Sjerera L0+ | 0.0 9 Fu)0)ds, 1-1<r<n,

and now Lemma 5 (specifically, (28)) implies (36). This completes the proof if

i=1. Ifi>2, set r=i—1 in (38) to obtain

(39) Li_qu(t) = 3% a,Li- x,(0) + (),
where
(40) o(t) = SW gi-1(t, ) (Fu) (s)ds = o(1).

From (6) and (39), integration yields

41) Liqu(t) =kiy + X%-;a;L;_,x[(t) + I,(t, T; ep;— 1),

where k;_, is a constant. Now lim,_, , L;_,x,(f)= o0, and

L T;ep;_y)

iy L;_x;(2)

I,(¢, a; pi—y)

=1lim,.,., L@t T;epiy) _ 0

(see (12)), where the last limit is zero because of (40). This proves (37) with
r=i—2. If i>3, then (6) and repeated integration, starting from (41), yield

Lu(t) = Y52 k;Lx; () + X0=;a;Lx(t) + L, 1(t, T; Prs1s--s Piz2s €Piz1)

where k,,..., k;_, are constants of integration. Now
Lxj. () = o(Lyx(1), 0<j<i-2,
and

: Liy 1t T Prirse-s Pizs 8P11) _
lim,., Tox,(0) 0,

again because of (12) and (40). This completes the proof.
With i=1, and g as defined in (33), (36) implies that

(42) Lau(t) — Lg(t) = "(y_yﬁt(—)t)) O<r<n-i,

0<r<i-3,
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which is considerably sharper than the obvious estimate (34). The difference
between (34) and (42) is perhaps most striking in the case where L,u=u(", in
which case (34) becomes

u(@) — qO(t) = o(t" 1), 0<r<n-1,
while (42) becomes
uM(@) — g =o(t™), 0<r<n-1.

For the special case where L,u=u(), Theorem 1 was given in [14], which
also contains results for perturbations of more general normal disconjugate
equations; however, those results are not so precise as (36) and (37).

Theorem 1 has the following obvious corollary.

COROLLARY 1. If u is an oscillatory solution of (1) for which the integral
S y{(8) (Fu) (t)dt converges, then
o(L,x;), 0<r<i-2,

Lu =
oVr41/y), i—1<r<n-1.

We now give conditions under which (1) has solutions which behave
asymptotically like a given solution of L,x=0. In this connection the following
definition is useful.

DEerINITION 1. Suppose 1<i<n, and let H(T) be the space of functions h
such that L,_,h is continuous for t>T> a, and

O(L,x;), 0<r<i-2,
L= {

t>T.
0(%), i-1<r<n-—1,
For each such h, let
By — i—2 |Lh()] -1 _yi(® }
43)  N(T; k) = su { iz ILADL | sug 2O 1l
( ) ( ) Pi>1 Z 1] eri(t) Z 1 yr+1(t)| ()I

THEOREM 2. Let
(44) q(t) = X7 a;x(t)

where 1<i<m<n and a,,..., a, are constants. Suppose there is a constant M
and a nonincreasing function o, defined for t>a such that

lim,,, 0,(t) = 0
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and Sw y{t) (Fv)(t)dt exists and satisfies

5) maxiar || 309 (FO)6)ds | < 0,(T)
whenever L,_,v is continuous on [T, o), v—q € H(T), and
N{(T;v—q) < M.

Suppose further that there is a nonincreasing function o, defined for t>a such
that lim,_, , 6,(t)=0 and

@6)  maxer |75 [(Fo) ()= (For) (91ds | < oo(TINKT; 0, =v)

whenever v, and v, both satisfy the above stated conditions on v. Then there is
a solution of (1), defined for sufficiently large t, such that

@7)  |Lu()—Lg®) < zala)y;i—g)‘), i—l<r<n—1,

and, if i>2,
(48) Lau(t) = Lg(t) + o(L,x(?), 0<r<i-2.
ProoF. Choose T so that
(49) 6(T) < M2n and o,T)=7 <1/2n,
and assume henceforth that t>7T. For brevity, let
|kl = N(T; h)

for he H(T). Let H(T) be the subset of H(T) for which ||h| <M.
From (45), (49), and Lemma 5,

50 {7 gt 9F)@ds| < imy el -1 <r <t
t i
whenever v—q e H(T). If i>2, and v—q e H,(T), define

Gi-1(t39) = | 9016, 9 FO) (9)ds
and note that
|Gi-4(t; v)| < M/n,
from (50) with r=i—1. Therefore,



54 William F. TRENCH

(51) 1(t, T; pim 1G5 )| < (M[n)I4(t, a; p;—y) = (M[n)L;_,x;
(see (12)), and, if i>3,
(52) ;== i(t, T5 Prs1seees Pim2s Pim1Gi—1(+ ;5 )|

< (M/n)li—-r—-l(t’ a5 Pritseees pi—l) = (M/n)eri! 0<r< i—3’

(again see (12)).
Now define a sequence {v,} of functions on [7, o), with vy(t)=4(t), and, for
k>1,

(a ifi=l1,
(53) 0(® = 40+ po(® | 90(t, 9)(Fop- ) ()ds;
(b) ifi=2,
(54 u(®) = q() + po(DI4(t, T; p1G (-5 ve—1));
(c) if3<i<n,
(55 v®) = (1) + po(OL;-1(t, T; Py Pi-25 Pi-1Gi-1(-; Uk=1)).

If v,_, —q € H(T), then the integrals in (53), (54), and (55) all exist, and so
v, is defined in each of the cases (a), (b), and (c). Moreover, by calculating
Lovy,..., L,_ v, from whichever of (53), (54), or (55) is applicable and invoking
(50), (51), and (52), it can be seen that

ILoi() — Lg()] < (M[m)Lx(1), 0<r<i-2,

and
_ r+1(2) : -
|L,v()—L,q(?)] < (M/n) yyi(t) , i—1<r<n-1.

Therefore
=gl < M;

that is, v,—qe H(T) if v,_,—qeH(T). Since q—v,€H(T), it follows by
induction that g —v, € H(T) for all k>0.
We will now show that {v,} converges. From (53), (54), and (55),

L (v(t) — v 1(9)) = Sjo g:(t, 8) [(Fug_ 1) (5)—(Fvi—-5) (s)]ds,
i-1<r<n-1.

Therefore, from (46) and Lemma 5,
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(56) L, (0x(t) = 04y ()] < 2]04g — Vu_slloa(®) —y—j—(t()i
< 2904y = Dps] lyi(l_t()ﬂ i—1<r<n—l,

because of (49). If i>2, an argument based on (54) or (55), and similar to that
used in obtaining (51) and (52), implies that

(57 IL(0i(D) = 0= 1 (O] < 29ll0p— 1 —0p—2 | Lpx (1), O <7 <i—2.
Now (56) and (57) imply that
(58) o= ve- 11l < 2nyllop—y —0p—>ll .
If we let
Wy = U, — ¢
so that w, e H(T), then (58) implies that
(59) [We—wi—1ll < 2ny[we—y — wi—a|l -

Since 2ny <1, an elementary argument based on (59) shows that {w,} is a Cauchy
sequence in the Banach space H/(T) under the norm | |, and so {w,} converges
in this norm to a limit function w, which is also in H,(T); in fact, since each w,
is in H(T), so is w. A routine argument now shows that the function u=q+w
is a solution of (1) on [T, ©). Moreover, since u—q e H(T), (45) holds with
v=u, and so Theorem 1 implies (47) and (48).

THEOREM 3. Suppose P,,...,P, and f are continuous on [0, ©). Let
1<i<m<n, and suppose

(60) [“ s P 0Lx it <o, 0<r<i-2

(61) §°° Veer D |Pacildt < 0, i—1<r<n—1,

and that the integrals

©) (" yios@ar
and
(63) (" v, L., 0<r<m-1,

converge. Let q be as in (44). Then the equation
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(64) Lu+ Py(t)L,_qu +---+ P, (t)Lou = f(2)
has a solution u such that
Lru(t) = qu(t) + O(eri(t))9 0 <r< 1_2’

and

Lu(t) =Lq() + o(%tl), i-1<r<n-1.

PrOOF. We can rewrite (64) in the form (1), with
Fu=—f+ ¥"4P,_,Lu.
If v=q+h, then
(65) Fo=—f+ Y72 Py Lyg + 2755 Py Loh;
moreover, if v, =q+h, and v,=q+ h,, then
(66) Fv, — Fv, =3 "2 P, L(h; —h,).
From (60), (61), and (66), the function

0:(0) = £528 | 90 IPu-OILx(0ds + izt | 3ras(9) 1P (o)l

satisfies the requirements of Theorem 2. (To verify (46), recall (43)). From
(19) and Dirichlet’s theorem for convergent improper integrals, the convergence
of (63) implies that the integrals

Sw VOP,_(DLq(H)dt, 0<r<m—1,
converge. This and the convergence of (62) imply that the function
o)) =" 9O ~ T P L)
is defined for t>0. Moreover, from (65), the function
a.(t) = Ma,(t) + max., |c(7)|

satisfies the requirements of Theorem 2, for any constant M >0. Therefore
(64) has a solution u which satisfies (47) and (48), and this completes the proof.

If L,x=x®, then we can take

x(H) =t7(j—1! and yg) =t"J[/(n—j)!, 1<j<n.
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Therefore, Theorem 3 has the following corollary.

COROLLARY 2. Suppose P,..., P, and f are continuous on [0, o) and

gw *-1P (Ot < o, 1<k<n

Let
q(t) = 'j!l=1 Ajtj_la

where 1<i<m<n, and A,,..., A,, are constants. Suppose the integrals

Sw =1 f(f)dt
and

S P ()tetm=D-14dt p—m+1 < k < n,

converge. Then the equation
ym + Py 44 P(f)y = f(2)
has a solution y such that

yO©) = g(t) + o(tir1), 0<r<n—1.
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