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1. Introduction

The space M of non-zero cotangent vectors to the unit sphere S* is an
SO(n+1, 2)-homogeneous symplectic manifold. The geometry of the
SO(n+1, 2)-action is studied by several authors. (See Akyildiz [1], Onofri
[10], [11], Rawnsley [14], Souriau [19] and Wolf [24], [25].) The present note
is motivated by Wolf [24], [25]. We consider the problem of ‘“‘quantizing”
this SO(n+1, 2)-action. The standard procedure of geometric quantization
does not work because there are no SO(n+1, 2)-invariant polarizations. (See
Elhadad [2], Ozeki and Wakimoto [12], Wakimoto [22] and Wolf [24].) We
will work in the framework of Lie algebras rather than groups. The Lie algebra
so(n+1, 2) is realized as a Poisson subalgebra &. By integration of the Hami-
Itonian vector fields associated with elements of &, we get the symplectic action
of SO(n+1,2) on M. To construct a representation of so(n+1, 2), we use a
pair of transversal polarizations: one is the vertical polarization Q and the other
is a partially complex polarization P invariant under the geodesic flow. The
space I'p(L®L?) of smooth Q-horizontal sections of a complex line bundle
L®L? over M is naturally identified with C*(S"). While there exist no smooth
P-horizontal sections in I'(L&® LP) except for zero-section, so we must consider
“singular’’ sections. The supports of singular P-horizontal sections are in a
disjoint union of hypersurfaces M,,(m=0, 1, 2,...) in M. Each M,, is identified
with the Stiefel manifold SO(n+1)/SO(n— 1), which is an SO(2)-principal bundle
over the Grassmann manifold SO(n+1)/(SO(2)x SO(n—1)). The Grassmann
manifold is an SO(n+1)-homogeneous complex manifold. Let L, be the
SO(n+ 1, C)-homogeneous holomorphic line bundle over the Grassmann manifold
given in Kowata and Okamoto [8]. Holomorphic sections of L,, are identified
with functions on SO(n+1)/SO(n—1). If we identify M,, with this Stiefel mani-
fold, then holomorphic sections of L,, are identified with functions on M,,. Since
L®L? is a trivial bundle over M, these functions are identified with singular
sections of LQLP with supports in M,,. These sections are P-horizontal. The
correspondence: a holomorphic section of L,—a P-horizontal section of LQL?
with support in M,,, is bijective. Thus, the consideration of the P-horizontal
sections is equivalent to that of all the holomorphic sections of L, (m=0, 1, 2,...)
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simultaneously. In Section 6, we construct, using the formalism of Gawedzki
[3], a Fourier-like transformation (or a pairing) & from a space of P-horizontal
sections to a space of Q-horizontal sections. (Cf. Rawnsley [14].) The restri-
ction of & to the space of P-horizontal sections with supports in M,,, which is
identified with the space of holomorphic sections of L,, coincides, up to constant
multiple, with the “modified Poisson integral’’ defined in Kowata and Okamoto
[8]. By means of this intertwining operator &, we get, after some modifications,
an irreducible representation of so(n+ 1, 2) by skew-Hermitian operators on S".
It seems to the author that the choice of a suitable inner product in the
representation space is interesting. (Cf. Takahashi [21].) The quantization
obtained here is also the one in the sence of Omori [9], that is, the quantization
of a function ¢ is a pseudo-differential operator ¢ (of order one) with principal
symbol ¢. (See also Akyildiz [1], Guillemin and Sternberg [5] and Rawnsley
[14].)

For symplectic geometry and geometric quantization, see Gawedzki [3],
Guillemin and Sternberg [4], Kostant [7], Simms and Woodhouse [15], éniatycki
[16], Souriau [18], Weinstein [23] and Woodhouse [26].

The author expresses his hearty thanks to Professor K. Okamoto for his kind
advice and useful discussions. '

The author thanks J. H. Rawnsley, who kindly sent to the author his reprints
[13], [14]; he had studied the half-form pairing of two polaraizations of the
Kepler manifold. Instead of using the partially complex polarization P, he used
a totally complex one, which is excellent for some purposes.

2. Preliminaries

Let R"*! and T*R"*! be the (n+1)-space and its cotangent bundle with
coordinates x=(Xy,..., X,4+1) and (X, Y)=(X1,... Xyt 1> V1s--» Yn+1)» TESpeECtively.
Let us denote y=(yy,..., Vus1) [XI?=2x%, |y|2=X y2, xy=3 x;y;, X;=0/0x;
and Y;=0/0y;. The bundle of non-zero cotangent vectors to the unit n-sphere
Str={xeR"*'||x|=1} is written by M=T*S"— {0-section} = {(x, y)e T*R"*!
|x|=1, x-y=0, |y|>0} with the projection n: M—S"; n(x, y)=x. The action
form, the symplectic form and the Liouville form on M are given by =3 y;dx;,
Q=—-do=3Ydx;ndy; and O =(—1)"""D/2(n!)=1Qn"  respectively. Let
C®(M; R) be the space of all real-valued smooth functions on M. For each
¢ e C*(M; R), a vector field {, on M is defined by &, 1 Q2=d¢, which is called
the Hamiltonian vector field associated with ¢. The space C*(M; R) is a Lie alge-
bra over R under the Poisson bracket operation given by {@, Y} =& = — Q({,,
¢y). It is called the Poisson algebra of the symplectic manifold (M, Q). Let
du=¢p(x, y) (1=j<k=n+3) denote the functions on M defined by ¢;=
Xiyk=%y; (1S j<ks=n+1), ¢jpi2=y; (1Sjsn+1), ¢;,3=1ylx; (1SjSn+1)
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and ¢, 4, ,+3=|y|. The linear subspace ® spanned by the functions {¢;} is a
Poisson subalgebra. It is isomorphic to so(n+1, 2) under the correspondence:
Gu—Ep—E ;(1sj<ks=n+lor n+2<j<ks=n+3)and ¢ —Eu+E,; (1Sj=s
n+1 and n+2<k=n+3), where Ej is the (n+3)x(n+3)-matrix which is 1 in
the (j, k)-th position and O elsewhere. The Hamiltonian vector fields ¢ jk as-
sociated with ¢, are given as follows:

Cik = 20X —0;x)X; + (0yi—0iy0)Y (1=j<k=n+1),
Cjmrz = 2 AGij—xx)X; + (x;yi—xy)Y} (1=j<n+1),
Cimes = Z (™0 Xi—y16,;Y) (1 £j=n+1),

Cnr2mrs = 27X —yIxY).

Note that £, , .3 generates the geodesic flow on the unit sphere S

The linear map ¢;,—¢;, is a Lie algebra isomorphism of & into the Lie
algebra of vector fields on M. Since {¢;} are complete vector fields, they generate,
by integration, a symplectic action of SO(n+1, 2) on M. It is well-known that
this action preserves no polarizations on M. So, we cannot use the standard
method of geometric quantization to construct a representation of the Poisson
subalgebra &. (See Wolf [24], [25].)

In the following sections, we shall employ mainly notions and notations
from Gawedzki [3].

3. Polarization P and half-forms

Let U be an open set in M and u®=(u4,...,u%,,) (1=<a=<n) be R**!-valued
smooth functions on U such that u!(x, y)=|y|~'y and the matrix *(x, u'(x, y),
..., u(x, y)) is in SO(n+ 1) for each (x, y)e U. If (V, v) is another such a pair,
then a map gyy: U N V—>SO(n) is defined by (vi,..., v")=(ul,..., u")gyy. For
each (x, y)e U, let P(x, y) denote the complex subspace spanned by the tangent
vectors {&,iz 43, U2 Z,...,u"-Z} to M at (x,y), where us-Z=3 u4Z; with
Z;=X;—(—1)"2|y]Y;. Then we have a polarization P on M, which is invariant
under the integral flows of ¢; (1Sj<k=n+1 or n+2<j<k=n+3), ie,
invariant under the action of SO(n+1)x SO(2). (See [6].) The frame bundle
np: B(M; P)—»M of P is a right principal GL(n, C)-bundle over M. Coordinate
functions are given by ¢y: U xGL(n, C)-np'(U); @u((%, ¥); 9)=(En+2,n+3
u?.Z,...,u"- Z)g together with transition functions g,,. The complex metalinear
group is weritten by

ML(n, C)={g~ =<g w)eGL(n+1, C)lgeGL(n, C), weC¥, det g=w2}

with the double covering map ¢: ML(n, C)-»GL(n, C); 6(§)=g and with a
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holomorphic square root y: ML(n, C)-»C*; x(§)=w. If we define transition
functions §yy: U N V->ML(n, C) by §yu(x, y)=<g i 1), then we have a metali-

near frame bundle #,: B(M; P)»M of P with coordinate functions @,: U x
ML(n, C)>#3'(U) compatible with ¢,. It is a right principal ML(n, C)-bundle
over M.

Note that, up to isomorphism, such a bundle is unique for n=3. (See
Gawedzki [3, I11. 16].)

Let LP(x, y) denote the one-dimensional complex vector space of all
complex-valued functions f on #z!(x, y) such that f(F§)=x(g~')f(F) for any
Fe#p'(x, y) and e ML(n, C). Then LP= U LP(x, y) is called the complex
line bundle of half-P-forms on M. It has a non-vanishing section v: M—LP
defined by W(@y((x, y), e))=1 for (x, y) e U, where e denotes the unit element in
ML(n, C).

Let A™(M; P) be the bundle of complex n-covectors tangent to M, vanishing
after contraction with any vector from P. Then LP®LP is naturally isomorphic
to A"(M; P). The isomorphism LFQLF— A"(M; P) is given by vQv—vQv=
Cprzmes IDAW-Z_ID A ANu"-Z_1Q). Let A2 (M; PnP) be the
bundle of complex (2n— 1)-covectors tangent to M, vanishing after contraction
with any vector from PnP. It is a complex line bundle with a non-vanishing
section &, 5,+31@. According to Gawedzki [3, (44)], we then have a pairing
of C*(M)-modules (-, >p: (LF)x I['(LP)-I(|A2"~Y(M; P n P)|), where I'(-)
denotes the space of all smooth sections. For the notation |-|, see Gawedzki
[3, Ch. I1].

Note that

Cfv, gvye = faQIyD" 12804 2043 1O

for any f, g e C*(M).

4. Hilbert space 5#° and its inner product (-, - )p

A “quantum bundle’’ L for (M, Q) together with a connection is given in
[6]. Since L is a trivial bundle, there is a non-vanishing section 1e I'(L). The
connection v and a v-invariant Hermitian structure (-|-) on L are given re-
spectively by v.1=—(—1)"3(¢ Jw)l and (f1|gl)=fg for any tangent vector
¢ to M and f, g e C*(M).

For each non-negative integer m, let r,=m+(n+1)/2 and M, denote a
hypersurface of M given by M,,={(x, y)e M ||y|=r,} together with the inclusion
im: M,»M. Lety,: M- R be the characteristic function of M,, and s#F denote
the space of sections of L& L? spanned by the singular sections

{T‘l =szi|“.ziml®vlléia§n+lal§a§m}9

Lovvim
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where z;=x;— (= 1)!/2|y|"1y,e C*(M).

Note that @ 3,50 o) is the space of all *“P-horizontal’’ sections. (See
Gawedzki [3, Ch. I11.D] and [6].)

According to Gawedzki [3, (53)], we define a pairing

K Yp: IML®LP)y x I'(L® LP)— I''(| A2""Y(M; P n P)))

by <f1®v, gl®vYp=(f1|g1){v, vD>p, where I''(-) denotes the space of not
necessarily continuous sections.
Note that

KTy Tjpojudp = Qrp) D12y, 2 o2y 2502 v ans3 1O

Since we consider singular sections of LQLP, whose supports are in M,
we must modify the pairing as follows: Let A2""2(M; {¢,2.,+3, n}) be the
bundle of complex (2n—2)-covectors tangent to M, vanishing after contraction
with &,,,,+3 and n=|y|7' ¥ y;Y;. It is a complex line bundle with a non-
vanishing section 5 _J&,,,,+31@. Let ¢: A2""Y(M; P nP)—>A2"2(M;
{&4+2.0+3> 1}) be a bundle isomorphism given by ¢(f)=n_Jp. Then ¢ induces a
bundle isomorphism

lel: | A2=YM; PNP)| — | A2"2M ;5 {&,san43 1)

defined by |¢| (|])=1¢(p)| for any non-zero f. Let A2"~2(M,,; {&,4,.+3)) be the
bundle of complex (2n —2)-covectors tangent to M,,, vanishing after contraction
with the tangent vector &,,,,.3 to M,,. It is a complex line bundle over M,
with a non-vanishing section # _J¢&,,,,+3160. The pull-back

i:‘l: AZ"_Z(M; {én+2,n+37 ’1}) — /\ZIl—Z(Mm; {én+2,n+3})

induces a map [i%]: | A2 AM; {&ys s 30 1D = A 272 M, L zme 3},

Now, M,, is S'-fibered by the orbits of &,,,,+3. Let M,/S' denote the
orbit space together with the projection x,,: M,,—»M,/S!. Then there exists a
unique symplectic structure @, on M, /S! such that ntQ,=i¥Q. Let O,=
(= D)=Hn=2/2((n—1)!)~1Q1-1 be the Liouville form on M,,/S'. Then the volume
of (M,/S', Q,) is given by |M,/S'|=ri"1|S"1||S"||S!|~!, where |S¢] denotes
the volume of the unit sphere of dimension d. The bundle A2"~%(M,,/S!) of
complex (2n—2)-covectors tangent to M, /S! is a complex line bundle over
M,/S' with a non-vanishing section @,,. The pull-back n¥: A2""2(M,/S")—
A2 M, {Cys2n+3}) induces a map |mp|: [A2"H(M, /S| > [ A2THM,,;
{€n+2,n+3})|~

Note that | A 27=2(M,,/S?)| is the bundle of densities on M,,/S!.

LeMMA 1 (cf. Gawedzki [3, Prop. lIl. 17]). For any ,, I, €5k, there
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exists a unique smooth density T, T 1y on M,,[S such that |\nk| Ty T =
linlel KTy T mdp-

For the proof, it is enough to note that the function (z;,---Z;, z;,---2, )0l 18
constant along the orbits of ¢,,;,,.3 and & ., (W 1E 2,43 10)=00n M,
where %, denotes the Lie derivation with respect to a vector field £.

Note that

<<T;.l"‘im’ T‘ll.lm>> = (2r,,,)("_' )/zfin'“imjl'“jmleml ,

€ Cm(Mm/Sl) is deﬁned by fi;---i...jl---j.nonm=(2i1"'2i,,.zj."'Zj,,.)°im'

\Vhere -fil'"im.il"'j»t
Similarily as Gawedzki [3, (76)], we define an inner product on sF by

(T s T )p =6m S KT m» T Y, Where a positive constant g,, will be determined
M, /St

in Section 6. We say that a section T =3 ,50T,, Tn€H#}h, of LQL? is of
finite norm if (7, T )p=3(T, T,)p is finite. Let #P={T =Y 7,,]| of finite
norm}. Then 5P is a Hilbert space together with the inner product (-, -)p.

Note that for m=m’, the subspaces s#F and s#F. are orthogonal to each
other.

5. Vertical polarization Q

Let (U, u®) be as in Section 3. The vertical polarization Q is spanned at
each point (x, y)e U by the tangent vectors {u®-Y=3 u%Y;|1<a=<n} to M.
It is invariant under the intgeral flows of & (I1=j<k=n+2), ie., invariant
under the action of SO(n+1,1). Coordinate functions Y, and transition
functions g, for the frame bundle ny: B(M; Q)—M of Q are given similarily
as in Section 3. The metalinear frame bundle 7,: B(M; Q)—M is defined simi-
larily as in Section 3 together with coordinate functions Y, and transition
functions §,,. Up to isomorphism, such a bundle is unique for n=3. The
bundle L2 of half-Q-forms has a non-vanishing section u: M— L2 defined by
u(Pu((x, y), e))=1 for (x, y)e U. Le®L2 is naturally isomorphic to A "(M; Q).
The isomorphism is given by u@u—uu=@u'-YJQA--A(u"-Y_1Q)=
(= D"n*dSn, where dS"=(X x;X;) _1(dx, A--- Adx,,) is the volume form on
S». According to Gawedzki [3, (44)], we have a pairing (-, ->o: I'(L9)x
L(Lo)—I(|A"(M; Q).

Note that {u, upo=|n*dS"|.

Let I'o(L®L?) denote the space of all smooth ‘“‘Q-horizontal™ sections of
L®L2. Then I'o(LQLY)={fo-nl®@pu|feC*(S")}. (See[6]) According to
Gawedzki [3, (76)], an inner product is given by (fonrl®uy, gonl@u)9=gsn fgdsn.

The completion . of the pre-Hilbert space (I'o(L®L9), (-, -)g) is denoted by
(o£2, (-, -)g)- It may be identified with L2(S") under the correspondence
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foml@u—f.
Let h;,.., be a spherical harmonic of degree m given by k.. =
(=™(n=1)(n+1)---Cm+n=3))"'X; ---X; (Ix|'""")|sn, and #¢ the subspace

of #¢ spanned by the sections {H; . ; =h;.; -nl@u|l1<Zi,Sn+1,1Zasm}.

LEMMA 2. (l) (H,-I...,'m» l—ljl"'jln)Q
=(2m +n— ])_l 2':-_1 5,-"1""(H,-l...§a...,'m, Hjl"'jm—l)Q
—(@m4+n—-1)Cm+n=3)"13 ., ., (H
(2) Zjl-"'v.im (Hil"'i:n’ Hjl"'.jvn)QHjl"'jrn
=((n+1)(n+3)--2m+n—-1))"Y(m!)|S"|H;

PN . c s
iyia i bt imim® HJ]“'_Im-l)Q :

LEMMA 3. We have
(Tt T p = EmOm(Hiyois Hjoooj ) s
where
O = 2rp)»=0/122m(n+ 1) (n+3)---2m+n—3)
(n(n+1)---(m+n=2))"'\M, /S| |S"~".

PrROOF. The actions of SO(n+1) on #F and on #2 are naturally defined,
which are transitive and leave the inner products (-, -)p and. (-, -)q invariant.
The isomorphism s#p—s#2 given by T;.; —H, .. is well-defined and com-
mutes with the actions of SO(n+1). It follows that (T;,...., Tj,..;.)p=
const. (H;,..; , H;,..;.)o- The constant is determined by calculating (T;..,,
Ty...)pand (H,..;, Hy..\)g-

Since P and Q are transversal, (Lf ® L2)®(LP®L?) is naturally isomorphic
to the bundle A 2#(M) of complex 2n-covectors tangent to M. The isomorphism
is given by (v@uR(v@u—~(vRV)A(uQu)=0. We shall choose v®u as an
adjustment of L? and L2. For the adjustment, see Gawedzki [3, Def. IV.4].

6. Fourier-like transformation

Let L* be the dual bundle of L with a dual connection yv*. It has a non-
vanishing section 1*=(1|-). Let p;: Mx M—>M, i=1, 2, be the projection onto
the i-th factor. Let W=p}LQL?)® p¥(L*®L2). Then W has a non-vanishing
section Z: ((x, y), (x', y)—1(x, »)@v(x, y)@1*(x’, y)@u(x’, y'). For each sec-
tion A =4Z, 4£: Mx M—>C, of W, and for each (x, y)e M, sections of LQL?
and L*®L? are defined by X(-, (x, ¥))=4(-, (x, y))1®v and Hy((x, y), -)=
4((x, »), )1*®u, respectively. By . we shall denote a section of LP®L?
given by '){‘A(x’ y)='é((x9 Y), (xa ,V))V(X, y)®ﬂ(X, y)
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DEFINITION. A not necessarily continuous section ¢ of W will be called a
distinguished kernel for the pair (P, Q) of polarizations if’:

(i) for each (x, y)e M, (-, (x, y)) is P-horizontal,

(ii) for each (x, y)e M, A p((x, ), -) is Q-horizontal, and

(ili) AAr=v®uon UM,,.

(Cf. Gawedzki [3, Def. IV.5].)

From the definition, it follows that the support of a distinguished kernel ¢
is(UM,)x M.

Note that UM,, and M is the ““Bohr-Sommerfeld sets’’ for P and Q, re-
spectively. (See Sniatycki and Toporowski [17, §2].)

LEMMA 4. There exists a unique distinguished kernel A" =#4E for (P, Q).
£ is given by

’é((xa ,V), (xl’ J"))= ngo Zil,-“,im [szil'"zim] (X, Y)h.'yni,,.“ﬂ(x', y,) .
ProofF. For the existence, it is enough to show that £,=1 on M,,, where
Aa(x, Y)=4((x, y), (x, ¥)). For1<j<k=<n+1, we have
éjk(zi,"'zi,")= 2n= (5i1kzi|"'fia'"Zi,,.zj_5i..jzi1"'fiu"'zimzk)

and

It follows that &;(#.)=0. Since SO(n+1) acts on M,, transitively, we have
#,=const.on M,. Calculating £.(x, y) for x=(1,0,...,0) and y=(0, —r,,
0,...,0), we have #,=1 on M,,. The uniqueness follows from the fact that for
each fixed xeS", ¥ ¢;...,z;, -z, =0 for all y such that (x, y)e M, implies
c =0, where ¢; .., €C are totally symmetric in all indices and with all pair

il"'im i1 im

traces zero.
LEmMMA 5. For each (x, y)e M, we have
(Tipevi()s e, (%, )
=g,0,(n+1)(n+3)--Cm+n—1))"'(m")|S"|h;,..;, °n(x, y).
The lemma follows from Lemma 2 and Lemma 3.

Let 6: L*®@L2—>L®L? be the bundle anti-isomorphism defined by
(c1*@u)=cl®u for ce C. Now, following Gawedzki [3, (176)], let us define
a linear isomorphism &,,: #F— #2 by

Fu(T)(x, y) =6((F (), Hp(-, (x, Y))pA*@u) (x, ¥))
=(Ap(-, (x, ¥)), T()p(A®p)(x, y).
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LeEMMA 6 (cf. Kowata and Okamoto [8]). £, is a unitary transformation
if and only if

€0 = (M+1)(n+3)---2m+n—1))2(m!|S"|)~2.

In this case, #,, induces a unitary transformation & : s#¥—#2, which gives a
unitary equivalence between #? and #°9.

We call & a Fourier-like transformation associated with the transversal
polarizations P and Q.
Note that

F(T,... ) = (n+1)(n+3)-2m+n—1)(m!|S")"1H,

1ovim reeoim ®

7. Representation of the Poisson subalgebra 6

By means of the polarization P, any function in the Poisson subalgebra
spanned by {¢;|1=j<k=n+1 or n+2= j<k=n+3} is geometrically quan-
tized. (See [6].) The Hermitian operator J)j-’,‘ on P corresponding to ¢;
is given as follows:

&fk(’l}w-i,.,): —(=D2ym, (5i,k7},---i,.-~~r,,.j_5.',,;7}‘---3,.---,',,.:‘)

for1<j<k=n+1and

Phizms 3(Thpo,) = (M+(=D/DT; 5,0

On the other hand, by means of the polarization Q, any function in the Poisson
subalgebra spanned by {¢; | 1 £ j <k =<n+2} is geometrically quantized as follows:
For any vector field £ on M, whose integral flow preserves Q, a ¢-derivation
£1/2 on I'(L?) is defined by 2(2}2u)@u=L(u®u). (See Gawedzki [3, Prop.
1I. 6].)

LEMMA 7. We have £12u=0 for 1< j<k=<n+1,and L2  u=—(n/Dxu
for 1ZjSn+1.

Now, according to the usual method of geometric quantization, the Hermitian
operators 43‘},‘ (1£j<k=n+2)on s#? corresponding to ¢ are given by 43‘},‘ =
—(—=1) YV3{(v, +(—1)V2¢,)®2L/2}. They span a Lie algebra isomorphic
to so(n+1, 1).

Note that for any fe C*(S"),

PG(forl@w) = —(— D'2{(x; X, — x,X ) f }oml@pu
for 1I£j<k=n+1, and

32 1 a(ferl@u) = — (= 1)V2{(T 12 (8;;— xx ) X;— (n[2)x)) f }oml @p
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for1£j<n+1. (See, for example, Sniatycki [16, (7.82)].)
LEMMA 8. We have FophoF1=¢9 for IS j<k=n+1.

In the following, ¢% is written simply by @, for 1<j<k<n+1. Now,
let us define

Onizmss = FoPrig przoF L.
Then we have

But 2mi3(forl@p) = (A+(n—1)2/4)112 flonl@u,

where A is the Laplace-Beltrami operator on the unit sphere S”. (Cf. Rawnsley
[14].) d;,,“,,ﬁ 3 is a Hermitian, pseudo-differential operator of order one with
principal symbol ¢,,,,.3;. Since ® is generated by {¢;|1=<j<k=<n+2 or
n+2< j<k=<n+3}, we expect that the Lie algebra generated by {(—1)‘/2<j3jk|
1Sj<ksn+lorn+2<j<k<n+3}u{(—1)"V2¢2,,,|1<j<n+1} is naturally
isomorphic to ®. But we have the following:

PROPOSITION 9. For each fixed .€C and 1< j<n+1, define
D’},n+2(f°7f1®/1) = —(=D2{(Xr} (6ij_xixj)Xi+)~xj)f}°7t1®#
for any fe C*(S"), and

Dj’,n+3 = (“ l)l/Z[D_;f,rH-Zs J’n+2,n+3] .

Then we have
(_])llz[D_}i,n+2’ Dﬁ,n+3] = 6jkd;n+2,n+3
if and only if 2= —(n+1)/2.

So, we shall modify 43?‘”2 (1=£j<n+1) to define an operator (f)j,,,“ on
I'o(L®L2) by

@y 2(forl®p) = —(= DVH(Z 12} (85— xx )X, — (= 1)[2)x ) f}onl®p

for any fe C*(S"). Then, by analogy with ¢;,.3={®;,+2, Gns2,n+3}, We shall
define @ ,e3=(—1"2[};ns2, Pus2ns+3] for 1Sj<n+1. It is a pseudo-
differential operator of order one with principal symbol ¢; ,. ;.

LemMA 10. For 1L j<n+1, we have

B jni2(Hipi) = (= DV{(m+ (n=1)[2)H,,.i,, ;=271 Ty 83y i Hipotaein

and
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G onrs(Hips,) = (m+(n—=1)[2)H; .y ;4270 20, 8, H,

2~ .
iaim

Let 6 (resp. ®) denote the linear space over R spanned by the operators
d3jk (resp. (— l)l/zquk) (1=j<k=n+3), and p: %—® be the linear map given by
¢jk""(_1)l/2¢jk‘

LemMA 11. & is a Lie algebra under the bracket operation. p is an
isomorphism of ® onto 6.

As operators on the Hilbert space #2, ¢, (I<j<n+1and n+2<k<n+3)
are not Hermitian. To make them Hermitian, we shall modify (52, (-, -)o) as
follows: Let (-, -) denote the inner product on I'o(L® L?) defined by

(for1 @t gomIOKY = (fTL@M: Py 2me s(g°T1®MNg = | T(Ag)dS™,
where A=(A+(n—1)2/4)1/2, We assume here n=2. Note that

<Hi1"‘fm’ Hjl"'jm> = (m+(n— 1)/2)(Hi1~'~im’ Hljm)Q .

J

Let H,,,(S") be the Sobolev space on S" with the inner product (-, -)
given by
9> = HAg)ds"
Then the completion of the pre-Hilbert space (I'p(L®L2), <-, -)) is identified
with (H,,,(S"), -, ->) under the correspondence fonl@u—f.

LEMMA 12. Each element of ® is a Hermitian operator on H,(S").

The lemma follows easily from Lemma 2.

THEOREM. p: 6-6 provides an irreducible representation of the Lie
algebra so(n+1, 2) on the Sobolev space H,,,(S") by skew-Hermitian, pseudo-
differential operators of order one.

The irreducibility follows from the fact that the restriction of p to a subalgebra
isomorphic to so(n+1, 1) is irreducible. (See Akyildiz [1] and Takahashi [21,
§51)

By integration, p gives rise to a ‘“Fourier integral representation’ of
SO(n+1,2) or its covering group. (Cf. Guillemin and Sternberg [5].) Note
that the period of the geodesic flow generated by &, ,.3 is 27, while the period
of the one-parameter group of unitary transformations generated by
(=1)'2$, 42,43 is 2n for odd n and 4n for even n. (Compare with Souriau
[20, §10].)
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