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Let w be in the class A,, of Muckenhoupt and O<p, g<oc0. Our aim is to
give a study of weighted Besov and Triebel spaces By, and F5% with an emphasis
on interpolation properties of these spaces. This study is partially motivated by
the recent interest shown in the theory of weighted Hardy spaces where many
results for H? are seen to be true also for HE. Though the investigation of Besov
and Triebel spaces in the case w=1 is rather extensive, and, as far as general
theory is concerned, exhaustive (see e.g., [19], [20], [24], [25], [26]), there is no
comprehensive treatment for the case w#1; there is a note of Kokilasvili [15]
where maximal inequalities and Fourier multipliers are observed for weighted
homogeneous Triebel spaces. As for other types of weight functions, there are
results of Lofstrom [16] and Triebel [24] for weighted Besov spaces in the case
1<p, q<oo. While their methods are based on some Fourier multipliers for
weighted Lr-spaces, our study relies heavily on the technique of maximal functions
developed by Fefferman-Stein [9], and Peetre [19]; other main sources of reference
are [20], [25] and [26].

The plan of the paper is as follows.  §1 is used to fix notation and to recall
results on weight functions needed later; we also give in this section a summary of
results on weighted vector-valued Hardy spaces. §2 is devoted to the study of
fundamental properties of weighted Besov and Triebel spaces, and these include
maximal inequalities, Fourier multipliers, embedding theorems, etc. §3 can be
considered as the main part of our paper where we give interpolation formulas
for weighted vector-valued Hardy spaces, and then use these to duduce inter-
polation theorems for weighted Besov and Triebel spaces. Finally, in the Appen-
dix (§4), a reproduction of [5], we prove results on weighted Hardy spaces used
in previous sections. In particular, we show that weighted Hardy spaces in the
present context are special cases of weighted Triebel spaces (Littlewood-Paley
characterization); thus, this section, besides being of self-interest, also serves as
one of the bases for our study.

The author is grateful to Professor H. Triebel for a helpful comment.
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§1. Notation and preliminaries

All functions and distributions are assumed to be defined on the n-dimensional
Euclidean space R*; & is the Schwartz class of rapidly decreasing functions and
&', its dual, is the space of tempered distributions. The Fourier transform is
defined by

F160 =) = e S0y, e

Z is extended to &’ by duality.
Hereafter, we shall always assume that w is in the class A, of Muckenhoupt,
i.e., w is a locally integrable function, w(x)>0 for almost every x and

4y) |E| < A|I] implies w(E) < CAYrw(I)
for any cube I (with sides parallel to axes) and any (Lebesgue) measurable subset
E of I, with constants C>0, r>1, independent of I and E. Here |E| denotes the
Lebesgue measure of E and w(E) =S w(x)dx. In the rest of this paper, unimpor-
tant constants are denoted by C, CE:‘,, ¢,...; they might be different from one
occurrence to the next. It is known that if we 4, then Sw(x)dx=oo, and we
A, for some p, 1<p<co, ie.,

1/p’

(4,) {l—}l Slw(x)dx}l/p {I—Iﬂglw(x)‘”(r‘)dx} <c

for all cubes I, where 1/p+1/p’=1. The (4,)-condition then implies the following
(B,)-condition :

(8,) g(t+|x—y|)‘"1’w(y)dy < ct"'l’glx _ w()dy, xeR1>0,

=y|

For these properties of weight functions and related facts, we refer to the paper
of Coifman and Fefferman [7] and references given there. We also let

L8 = {15 1l = (170G ) < 0}, 0 < p < o0,
L3 =L and [flum= 11l

where LP, 0< p< o0, are the Lebesgue spaces. For a locally integrable function g,
let Mg denote the Hardy maximal function of g, i.e.,

= 1 n
Mg(x) - Supr>0 |B(x, ")l SB(x,r) |g(y)'dy9 XGR )
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B(x, r) = {y; [x—yl <r}.

The following weighted version of an inequality of Fefferman and Stein is useful
for our purpose.

Lemma 1.1 ([1; Theorem 3.1], [15; Theorem 1]). If 1<p,q<oo,weA4,
and {f;} is a sequence in L%, then

IO IMF DY 0 < CHEE 1LA1D Y p,we

Let  be a non-negative function in & such that supp y={1/2<|x| <2},
Y(x)>0 for 1/2<|x| <2 and X F-_ o, ¥(277x)=1for |x| #0. The existence of such
a function ¥ is well-known; see, e.g., [2; Lemma 6.1.7]. Let y;, j=0, +1, +2,..,,
and ¥ be functions in & given by

Pi(x) =9Q27x), P =1- T ¥,(x).
We define weighted Besov and Triebel spaces as follows.
By =S s 1S Isswipe = 1¥* o + IV 4/ 3511l 530,
= [|¥*f 15w + (51 QPN 4,15, V4< 0},
By = {feZ 1/ lssimipar =V }F=mcoll powia,s < 0},
where —o<s<oo and 0<p, g<oo. Here (X; (275 f |l ,,,)9)!/4 is interpreted
as sup; (255 j* /| ,.,) if g=c0.
v = e N e wimn = 1P o + 1% 3 o1l g im0
=[5 1lp,w + 1(XF=1 @71 xf (x)NDV,,, < 0},
Fou={f e i 1 fle@mwpa = ¥ 4} Fmwollg,s3p,w < 0,

where —o0<s< 00, 0<p<oo and 0<g<oo. We notice that when dealing with
homogeneous spaces (spaces denoted with a dot) we shall make calculus modulo
polynomials. It is useful in our study to introduce vector-valued Hardy spaces.
Let 0<p<oo and 1<g< 0. Define

Hyly) =Hy = {f={/i} =5 | flaw

=[IsuPo<r<w (X, 10* F1(X)ND 4| 0y < 0},
hily) = bl = {f={/3 =" 1/ lhpwia

= [supo<s<i (X 19/, (X)DV4||p,,, <0},

where ¢ € & with S¢(x)dx=1, and ¢(x)=t""¢p(x/t). Similarly, we can define
H?(Is) and hE(I5), — oo <s<oo; we consider here the case s=0 for the sake of
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simplicity and observe that all results stated for [ -valued spaces are also valid for
Is-valued spaces. We write H%, and h% for scalar-valued Hardy spaces (cf. [3],
[10]). An important fact in the real variable theory of Hardy spaces is that the
definitions of H¥, , and hf , are independent of the particular function ¢ e
entering in their definitions, and this is given by the following theorem:

THEOREM 1.2 (cf. [3], [9], [11]). Let O0<h<oo, 0<p<oo and 1<g< .
Then the following statements (A), (B) and (C) and equivalent for an f={f;} c&".

(A) N*f(x)=supo<,<s (X, |Pfi(x)|9)/? € LY, for some ¢ € & with g d(x)dx
=1.

(B)  Nf(x)=5UDjxeyi<piepn (X5 16,1 LE for some f>0 and some
¢ as above.

(©)  N*(x)=SUP|x—y|<pe<phoean (X, 1P *f(¥)9)1/? € LE for some f>0 and
a sufficiently large N, where

Ay = {P = {®/} < F;sup,, j ja1<v (LHIXDY¥[D*P/(x)| < 1}.

Furthermore, the L2-quasi-norms of the functions N*f, Nf and N*f are
equivalent to each other.

Proor. The proof of the equivalence between (B) and (C) can be done by
an argument similar to that in the scalar-valued case ([9]), [11], [3]); note that it
is not a corollary of the result in the latter case.

To prove the implication (A)=>(B), it suffices, on account of monotone

convergence theorem, to show
(6)) INfllpw < CIN*fll

for some constant C (depending on ¢, n, p, q, h and f) and for all f such that
f;=0 except for a finite number of j’s. This last assumption on f implies that Nfe
L}, since Nf <3 ; Nf; (finite sum), and each Nf; € L}, by the corresponding result
in the scalar-valued case. Observing that u(x, )=(X;|¢*f;(x)[9)*/2 is con-
tinuous on R%*1, we see that

()] IN*ull g < CINSll gy
where
N*u(x) = supyo<i<nt(y, D{t/(t + [x — yD}*,
A > nry/p, ro = inf {r; we 4,} (< ©)
(cf. [3; Lemma 4.1]). Letting ¢;=0¢/0x;=D;¢p, i=1,..., n, and

Nyu(x) = supr, o (X190, MIDVe, p > B,
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where I',(x)={(y, t); |y —x|<ut<ph}, we derive from the equivalence between
(B) and (C) ({c,P/} € oy, P =¢, for all j), and (2) that

(3) ”Nuuiup,w < C¢“Nf“p,w'

(Note that ¢; ,=(D,¢),=tD(¢,).) Let (y, t) be an arbitrary point in I'p(x), fixed
for a moment. Then, there exists >0 (depending on f and p) such that {(z, t);
|z—y|<ét}=I'(x). The mean-value theorem of calculus (for mappings between
normed vector spaces) implies for such y and z,

u(y, 1y < {u(z, t) + 0SUpP|p —y1<oe (X i1 (X | *f (2D DD}
SN*f(zy + 6" 3, [N u(x)7T,

where 0<r<1 and p/r>r,. Integrating both sides of the above inequality over
|z— y| <8t with respect to the z-variable, and then taking the supremum over all
(v, t) e I'y(x), we obtain

Nf(x)" < (A+1/8)"M((N*f)) (x) + 6" Zi=y [N, ulx)]"

Next, taking the LE/"-norm of both sides of the above, and using (3) and the
weighted estimate for the Hardy maximal function (cf. Lemma 1.1), we see that

INflI5,w < CA+1/O)"|NT I}, + 40 NS5,

Since |[Nf|,,.< o0, we obtain (1) by choosing é so small that c3é"<1/2. Since
the implication (B)=>(A) is trivial, the proof of the theorem is complete.

ReMARK 1.3. (i) We note that the equivalence between (B) and (C) is also
true for 0<g<1. The difficulty with the implication (A)=>(B) is that we have used
a mean-value theorem for mappings between normed vector spaces, and
(k-4 |x;|9)"/2 is not a norm on R¥ if 0<g<1.

(i) The spaces H, , and hf, , are non-decreasing in q.

(iii) Notice that we take h=1 (resp. h=00) when we deal with hf, , (resp.
HE ).

We summarize properties of Hardy spaces, which will be needed later, in the
next theorem. Let (30 denote the subset of functions in &% whose Fourier trans-
forms have compact supports not containing the origin. Let &, be the space
of f={f;}=&’ equipped with the following topology: f#={f%}—-0 in &5 if
f%(¢)—0 for any €& and any j; & is then a Hausdorff topological vector
space.

TueoreM 1.4. (i) HY , and hi, , are quasi-Banach spaces with quasi-

norms |- | gpwsay @14 || - lhip,wsq) TeSPectively. Moreover, we have the following
continuous embeddings:
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Hi < hi , <P
(The symbol “<’’ will denote continuous embedding hereafter).

(i) Let ¥e be such that S'I’(x)dx=1 ande“T(x)dx=O for 0<la| <k,
and f={f;}ehs . If k is sufficiently large, then g={f;—¥xf;}eH} , and
191t pwia) < CUf ncpwsa) -

. (iii)y The set of all f={f;}ehs , (resp. HY ) such that {f;}<% (resp.
0Oy) is dense in h}, , (resp. H, ).

(vi) F9¥=H? (modulo polynomials),
Fp3=h.

Proor. The assertion (i) follows easily from Theorem 1.2, while (ii) can be
proved as in the scalar-valued case (cf. [11], [3]). The assertion (iii) is derived
from the corresponding result in the scalar-valued case; the proofs of the latter
fact and (iv) are given in [5] and will be reproduced in Appendix §4 for reader’s
convenience.

Before going to the main part of our paper, we make the following conventions
on the range of the parameters: — o0 <s, sg, §; <00, 0<p, Po, P15 4> 9o, 91 < ©.
When considering Hardy and Triebel spaces, we also assume 0<p, py, p; <o0.
We also let ro=inf {r; we 4,} (<o0). Furthermore, since we shall explicitly
deal only with non-homogeneous spaces, we let ¥, denote the function ¥ used in
the definitions of Besov and Triebel spaces; ¥/;, j=1, 2,..., are the same as before.
Thus, we now have > 7., ¥ j(x)=1 for all x. We shall retain these conventions
and notation in the rest of this paper.

§2. Fundamental properties

Hereafter, we shall state results for non-homogeneous spaces and make
remarks in the homogeneous case only if there are differences either in the results
or proofs; thus, without remarks, it will mean that the results, after appropriately
rephrasing, are valid also for homogeneous spaces. Since the proofs of the results
in §2 are modelled after those given by Peetre ([19]), [20]) and Triebel ([25],
[26]) in the case w=1, we shall not go into details but only indicate when there
are simplifications or some technical difficulties.

2.1. Maximal inequalities

The following simple lemma is useful in proving maximal inequalities for
Besov and Triebel spaces.
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LeMMA 2.1. Ifge S’ is a function in L?, and supp § is compact, then

lgXllpm < Cligllpm»

where

A>nro/p  and gF(x) = sup, |g(x—y)I(1+]y)4,

and C is a constant that might depend on the diameter of the support of §.
Consequently, for all such g, g¥(x)< oo for almost every x.

PROOF. Let @ be a function in & such that =1 on a neighbourhood of
supp §. Then, by using the relation g =®*g and an argument similar to the one
given by Peetre [19; pp. 125-127], we obtain

©) gx(x) < 67" (M(IgID) (N7 + cdgF(x),

where 0<r<1 satisfies p/r>ry, and 0<d<1 will be chosen later. Since the
lemma is obvious if p=o0, we consider only the case p<oco. Assume first that
g¥eL?, so that g¥(x)<oo for almost every x. Choose § so small that ¢ <1/2.
Then, the desired result in this case follows from (4) and the weighted estimate
for the Hardy maximal function (note that we 4,,). To prove the lemma for
arbitrary g, let ¢ € & be such that ¢(0)=1 and supp ¢ = {|x|<1}. It is obvious
that for any x and z,

lg(x = 2)I(1+|z)7* = lim,o |$(8(x — 2))g(x — 2)|(1 +]z)~*
< lim inf,, (¢(2-)9)#(x).-

Since g is a C*-function of polynomial growth, ¢(t-)g € & for each t>0 and thus,
(¢p(t-)g)¥ e LE. Hence, the lemma follows from Fatou’s lemma and the result
just proved in the case g¥ € L. The proof of the lemma is now complete.

Let ¢;, j=0, 1, 2,..., be functions in & satisfying the following assumptions:
supp do = {|x| <2}, supp §;={2/7F<|x| <2/}, j=1,2,..., and  |D*$,(x)|<
C277lel j=0, 1, 2,..., where k is a positive integer. Define

$1f(x) = sup, |¢#f(x— PI(L+2/|y))~*, fe &', 2 > 0.
THEOREM 2.2. The following inequalities hold:

'I{q&?}.f}”p,w;q,s < cc(¢)||f“8(s,w;p,q)’ A’ > nrO/Pa
”{¢f).f} “q,s;p,w < cc(d’)"f")“(s,w;p,q)’ /’{ > max (nrO/p’ n/‘]),

where C(¢)=max, <y C,, N being sufficiently large, and ¢ might depend on n,
D, 4, s and k.
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PrOOF. The arguments of Peetre [19; pp. 126-127] and Triebel [25; 2.3.1]
give
”{qu*lf}”q,s;p,w S CC((P)”{V/’;A]{} “q,s;p,w5
{2/} pwsas < ¢TI T H pwsas

and also
YE () < cd "M fI7) )T 4 coprt; f(x)

for all j and x, where r=n/Aand 0<6<1. Now, Lemma 2.1 implies that y¥, f(x)
< oo for almost every x, and thus, by choosing 6 so small that c6<1/2 in the
above, we obtain

(% Y () < MW *f17) ()7

for all j and for almost every x. If 0<p, g <oo, then, by noting that r <min(p, q)
and we 4,,,, we derive the result for the F-space case by using (5) and Lemma 1.1.
The case g = oo for F-space and the B-space case can be similarly deduced from (5)
and the weighted estimate for the maximal function (we need not use the vector-
valued version in the last two cases). We note that the pointwise estimate (5)
helps us to simplify a limit argument used by both Peetre [19] and Triebel [25].

COROLLARY 2.3. If p<oo, then we can replace the I5(L%)-quasi-norm
(resp. Li(I5)-quasi-norm, 1 <q< o) by the I5(h8)-quasi-norm (resp. hi(l5)-
quasi-norm) in the definition of B (resp. F5%).

PrOOF. Let ¢p €& be such that S(,b(x)dx:l and supp pc={|x|<1}. We
observe that for each j=1, 2,..., ¢ ;*f=0 unless t<2'~J. Thus,
|pexp jxf(X)] < C!//’}‘zf(X)S I +IyDdy < CY% f(x),  j=1,2,...
Since the above inequality obviously holds for 0<¢<1 and j=0, we see that
SUPo<r<1 l¢t*¢j*f(x)| < Cl//}‘;_f(X),j =0,12,..,
SUPg <, <1 (X ; (29| % f(X)NDV1 < (X (27Y i f(x)DVe,
and hence the corollary follows from Theorem 2.2.

We are now ready to list elementary properties of weighted Besov and
Triebel spaces. They are consequences of either obvious computations or
Theorem 2.2.

THEOREM 2.4. (i) B§Y% (resp. F5%) is a quasi-Banach space with quasi-norm
I+ I Bes,wspoay (€SP |+ | pes,wipig))-  Furthermore, we have the following continuous
embeddings:
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S B, SFshcS.

(i) & is dense in both BS% and F3% if p, g <oo.
(iii) If o is a tempered distribution such that

C, = sup, fluraI(1+271y1ydy < oo,
then

”a*f”B(s,w;p,q) < cco"f“B(s,w;p,q)’ )' > nrO/p’
Ila*f"F(s,w;p,q) S cca”f"l"(s,w;p,q)a )' > max (nrO/p’ n/q) .

(It is well-known that C,< C(max, C,) if |D*6(x)|<C,(1+|x)~!*! for all |a|<
A+n/2+1 (Bernstein’s theorem).)

Before going to the next subsection, let us remark that Theorem 2.2 gives us
much flexibility in choosing the sequence {y/;} entering in the definitions of Besov
and Triebel spaces. We refer to Peetre ([19], [20]) for many choices of {y/;}
satisfying rather weak conditions (cf. also [25], [26]).

2.2. Embedding theorems

First, we give a weighted version of Plancherel-Polya’s inequality for entire
functions of exponential type.

LEMMA 2.5. Let fe LEn %' (0<p< o) be such that supp f = {|x|<t}, t>0.
Assume that w(B(x, 1/t))>ct™¢ for some d>0 and all x. Then

1SNl pyw < CLAQIPHEO| £l L, 0 < p < py < 00.

Proor. It suffices to prove the lemma only in the case p,=oc0. Assume
first that fe L®=L>*. Let 0<g<1 be such that r=p/qg>r, (thus, weA4,).
Take ¢ € & such that ¢=1 on {|x|<1}. Then @,=1 on {|x|<t}, s=1/t. This
property of ¢,, (B,) and (4,) imply

G < [16.0= 2 LFOI 70 () rw(y) iy

1/r

< CUAIES 1 o () 7G5 s+ 12—y D)™ d )

< ClfILaf ll;’,,w<§ <sw(y)dy)"‘”p <Crale| £ £]9. ..

|x=y]

Since we know a priori that || f|,, < oo, we obtain the desired result in this case.
For arbitrary f, use a limit argument similar to the proof of Lemma 2.1. We
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note that if w=1, then we can take d=n, and the lemma is just the already known
Plancherel-Polya’s inequality (cf. [20], [25]).

We say that the weight function w is in the class .#; (d>0) if w(B(x, t))>
ctd for all x and 0<t<1.
THEOREM 2.6. (i) If —oo<s;<so<00, then
By = By, FRy < FRly

(i) Byy < Fy%w < ByY, p<oo,r=min(p,q),t=max (p, q).

(iii) If0<gy<q, <0, then

Bs,w c Bs;w FSyw c Fs;w

Ps90 p,4q1° ps4o pPsq1°

@iv) If wedy, d>0, —0<s5;<50<0, 0<po<p;<0c0 and so—d[po=s,
—d|p,, then

'S0, W S1, W
Byyi < By

V) If wed;,d>0, —0<s;<50<0, 0<py<p;<o0 and so—d|/p,=5,
—d|p,, then

Fso,w c Fs;,w Fso,w c le,w

Ppo,® pP1,9° Po,® P1spo’

ProofF. The proofs of (i), (ii) and (iii) are obvious by the monotone character
of I ,-spaces and Minkowski’s inequality. The assertion (iv) follows immediately
from Lemma 2.5, while the first assertion of (v) is derived from Lemma 2.5 and
an argument similar to the one given in the case w=1 [26; pp. 101-103]. As
for the second assertion of (v), we observe from the first and (ii) that F% c
Bsi:w. The result then follows from Theorem 3.3(i) and Theorem 3.5(i)

p1,®*

(cf. [13] for the case w=1).

ReMARK 2.7. We note that (i) is not true for homogeneous spaces. As for
(iv) and (v), we must assume w € .#,, i.e., w(B(x, 1))>ct? for all x and ¢>0.

2.3. Lifting properties, potential spaces, and dual spaces

In the rest of this section, we shall list some other properties of Besov and
Triebel spaces; again, their proof are quite similar to those for the case w=1
by using results from previous subsections, and we do not go into details here

(cf. [26]). We let Pyw=F5%. Since F):y=hi (see §4), we see that P)-*=h.

THeorReM 2.8. (i) Let J,(x)=(1+4n2|x|?)~°/2, —co<o<o0. Then J, is
an isomorphism of B3 (resp. Fy%) onto Byf2™ (resp. Fyia-™).
(ii) If0<p<oo and m=1,2,..., then
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PZ"W = W'S’w = {fe 'Sp’; “f”W(m;p,w) =Z|a|$m ”Daf“h(p,w) < OO}
={feZ"; Iflnpw + Zi=1 ID7flnpwy < ©}.

We just note that the proof of the above theorem is done by considering
certain Fourier multipliers and using Theorem 2.4 (iii).

REMARK 2.9. For homogeneous spaces one should replace J, by I,, where
I,()=(2nlx|)~.

In order to describe dual spaces, we need some terminologies. We let %
denote the set of all sequences {¢;} =& satisfying the following properties:
supp @, < {|x| <2}, supp $jc{2f‘1g [x| <21}, j=1,2,..., and X ; <$j(x)=1 for
all x. In the rest of this section (only), we use the following notation: q'=p’= o0
if p, g<1, w(x)=w(x)"?" if p’' < oo, w'(x)=w(x) if p'= o0,

” {f}} llw,‘w’;q',s = (Z] (2js"fj/w'“w)q')1/q”
I £} g 530, = (X 5 @I1f5/w DYV || o

We denote by #5¥, (resp. F5v,) the space of those tempered distributions
f for which there exist {¢;} e, {f;}el5(LE) (resp. LE(I5,)) such that f=
Y idf;in #'. We define

"f”a(s,w’;p’,q’) = lnf ” {fj}“p',w’;q’,s,

where the infimum is taken over all possible representations of f; similarly, we de-
fine || fllgswip.g) If 1<p<oco and we A4, (hence w’ € A,), then it follows from
a weighted estimate for singlular integrals [7] that &5, =B$..; as for the
F-space, we see that F5v, =Fs»,. if in addition, 1<q'<oo (in this later
case we must use a weighted estimate for vector-valued singluar integrals in [1]).

THEOREM 2.10. If 1<p< o0, then
(Bsw)' = %2, 0<g< o,
(Fgw) = F=r, 1<g< o0,

where E' is the space of continuous linear functionals on the quasi-nomed vector
space E.

In concluding this section, we should remark that there are important prop-
erties such as traces, dual spaces for p<1, etc., that we are not able yet to establish
in the weighted case. This is mainly due to our inability in finding a good sub-
stitute for Lemma 8 in [20; Chap. 11].
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§3. Interpolation theorems

3.1. Retracts and coretracts

We first give a quick review of interpolation theory for the sake of easy
reference. Let A, and A, be two quasi-Banach spaces which are linear subspaces
of a Hausdorff topological vector space E, and such that the corresponding in-
clusions are continuous; we call (4,5, A;) a compatible couple. We denote by
Ao+ A, the vector sum of A, and 4,. For ae Ay+ A4, and t>0, we let

K(t’ a; AO’ Al) = infa=ao+al,aieA,~,i=0,1 (”a0”0+t”a1 “1)9

where ||-]|o and | -||; are the quasi-norm on A4, and A,, respectively. By (4,,
Ap)ga=Ag,4 Where 0<0<1, 0<g< o0 (0or =0, g=c0 or §=1, g=0), we mean
the space of all a e Ay+ A, for which

(e 1/q
[0, = lallog = (] (K, a5 Ao, ayertar )™ < co.

We notice that 4, , is then a quasi-Banach space with respect to the quasi-norm
|- 1lg, The following theorem is useful in computing interpolation spaces.

REITERATION THEOREM. If O0=(1—1)0,+10,, 0<i<l and 0<0,#6,<]1,
then

(Aoo,qo’ Aol,m)i.,q = Ao,qa
(Aoo,qcp Al)l,q = Ao,q’ 01 =1

for any q,, q, and q.
For these results and related facts, we refer to [2] and [21]. Another fact

on interpolation theory that we shall use is the following:

Let A=(Ay, A;) and B=(B,, B,) be two compatible couples of quasi-
Banach spaces. Assume that there exist linear mappings R and S, R: Ay+
A;—>By+By, S: By+B;—>Ay+A,, such that R,=R|, (resp.S;=S|g) is a
continuous linear map from A; (resp. B;) into B; (resp. A;), and R;°S; is an identity
map, i=0, 1. Then

151l 5g,, = 11D 44,

Here “~’’ means the equivalence. When the above assumptions hold, we say
that (B, B,) is a retract of (4,, A,), and (A4,, 4,) is a coretract of (By, B,)
(we also say that B, is a retract of A;, and A, is a coretract of B;).

In the rest, let @ be a function in & such that supp @<= {1/3<|x|<3}, &=1
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on {1/2<|x|<2}. Let &y, ®,, &,,... be functions in & satisfying the following
properties: #,=1 on supp Yo, supp $o={|x]<4}, and P (x)=dQ2 Ix), j=1,
2,.... We let Sf={y;*f}%, and R({f;})=2X%, P;#f; whenever the latter
has a meaning in &'.

Lemma 3.1. R is a bounded linear operator from I5(h%) (resp. hi(l3),
1<g< ) into ByY (resp. F$%), and S is a bounded linear operator from

Byw (resp. F3%, 1<q<oo) into I3(hE) (resp. hi(l5)). Furthermore, RoS is the

identity map.

ProoF. The conclusion on S is just Corollary 2.3. As for the proof of the
assertion on R, we assume s=0 for the sake of simplicity. It can be seen from
maximal inequality for weighted Hardy spaces that 3 ; ®;+f; exists in &’ for
{f;} € l,(h%) (which contains [ (h%) and hi(l,)for any q). Now, a consideration
of the supports of §, and ®; implies that

‘//k*R({fj D= Z|j—k|s3 ‘pk*¢j*fj> k=0,1,2,..

Hence the result for the B-space case follows easily from multiplier criterion for
Hardy spaces (see §4). As for the F-space case, we see that for any m,

[k W RASIIDY Y sy < I k123 Vi@ 45300l (o wsa)-

The last term is dominated by a constant multiple of a finite sum of h% ,-quasi-
norms of elements of the form {y*®,_*f,_;}, |jI<3, j<k. Since for such
Js

©) [ Pi— i Y ilnipwsay < CIF it nip,wsa

by an [ -valued analogue of multiplier results in §4, we obtain the desired result
by letting m—oco (monotone convergence theorem). Here, we must assume
1 <g < oo since in the proof of (6) we use the inequality

Ik Wi D 4 = 1D V0 < CHCE k£l 0
for we 4,, l<r<oo. To prove this last inequality, we observe that
(Zk Wix @y jx fr— ;| DY < CE W (M f - )9 Ve
and then appeal to Lemma 1.1 if 1 <g <o0; for g= o0, just note that

sup, Mfy,—; < M(supy f-;)-
The proof of Lemma 3.1 is thus complete.

3.2, Imterpolation of weighted vector-valued Hardy spaces

Our aim in this subsection is to prove the following theorem:
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THEOREM 3.2. If O0<py<o0, 0<6<1, 1/p=(1-0)/p, and 1<q< 0, then
©) (HEo ), L), = HE),
(3) (B3 (1), L=(I9)e,p, = hy(13).
Consequently, if 0<p,, p; <0, 0<0<1, 1/p=(1—-06)/py+6/p,, then
® (Hp (), Hix(19)o,, = HY(5),
(10) (Be(3), b3 (13))e,, = RE(I5)
by Reiteration theorem.

PROOF. As before, we assume s=0 for the sake of simplicity. The proof of
the HY, ,-case can be done by adopting the arguments in the scalar-valued case
given in [8] for w=1. We just note that the assumption 1<g< oo is used in
an essential way to interchange the order of summation and integration
(Minkowski’s inequality); in the course of the proof, we also use Theorem 1.4
(iii) and the (B,)-condition, r>r,.

Next, we turn to the proof of the hf -case. Fix a non-negative function
¢ e & with Sq&(x)dx:l and supp ¢ is contained in the unit cube with center at

the origin. One direction is easy. Consider the map: f={f}>N*f=
SUPo<s<1 (L |P#f;(-)|99. Then N* is a sublinear operator and maps hj?2,
into LPo(u), du=wdx. On the other hand, since

(Zlperf ()01 < (Tl f519(x)) e < | Z1f519014

by Holder’s inequality (g >1), N* maps L*(l,) into L*(u)=L®. Thus, we con-
clude from a general version of Marcinkiewicz interpolation theorem that
N+ maps (h(L), L), into (LP(u), L)), =LA =L, icc., (h22(l,),
L*(1))e,, <%, ,=hk(l). We note that even in this easy direction, we have used
the assumption g¢>1. To prove the converse, let f={f;} ehf ,, and ¥ be as
in Theorem 1.4 (ii). Then, it follows from this theorem and (7) that f — Pxf
e HE ,=(h%,, L*(l)))s,,- Thus, it suffices to show that Yxfe (hy2,, L*(1))s,p-
For any y>0, we assert that there exists a decomposition ¥Y+f=g+ b into “good
part’”’ and ““bad part’’ satisfying the following:

(1) 9llL=aqy < ¥s

(12) 16120 i) < CS NGO (x)

{N*f>cy
For this purpose, let {I,} be a decomposition of R" into half-closed (disjoint)
unit cubes, and let f*={f*}, f%=(¥+f)xr,, x1, being the characteristic function
of I;,. Then, for each j,
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fi=2cf%in & (infactin hf).

We define g=73 g, ¥ where Ey={k; [(X;|f5|0"],<7}. Since {I,} is a
disjoint family, we see that

IgllL=ay < 75

and obtain the estimate on the good part. Denote by I} the closed cube with
the same center as I, and with length of sides 2, and let E,={k; k&E,}, i.e.,
keE, if and only if [{f%};l =u, >7. By writing ¥xf; as n,,,*f;, and noting
that cnewty and I, x{1/2}cTy(x)={(y, 1); [x—y|<pt<p} for some B>0
and for any x e I¥, we see that

(13) N*f > e|{f 5} lcoap = ¢v on If, keE,.

The estimate (12) on the hj? -quasi-norm of b would follow from (13) if we can
show that

(14) ”b“'lz?po,w;q) <C ZkeEz [l {fl;} | io“(lq)W(Ik)-
We observe that
Gexb(x) = ke, ¢:*f’f'(x) =0

for x¢ U g, I¥ =Q* and 0<t<1. Thus, we obtain
16080 mi0= §_ 50P0<<s (5, 184(Ser, 7DD I50 () dx
< Ther, |, GUPo<i<1 £5 (BH| Sers, o S 71 @)/ (x)dx

< CBhets |, TmetsesuPo<r<s (Bx(S, 17719) (30w (x) i
<C Zke}zz ZmeEz,k “{f',"} ”io""(lq)w(lr’:) <C ZkeEZ ||{f';} “i%(l.,)w(lk)-

Here, we let E, ,={meE,; I} n I} #0}; note that w(I})<Cw(I,) for meE,,,
and #(E, ;) <y,(y, depending only on the dimension n). We have thus obtained
(14), and completed the proofs of (11) and (12). The proof of (8) is then finished
in the same way as in [8]; we only write it down here for the sake of easy reference.
Let y=f*(t?) in the above decomposition, where f* denotes the non-increasing
rearrangement of N*f with respect to the measure wdx. Putting u=tP°, we obtain

Y+f = b, + g, 1gel L=y < S*(w),

181200509 < C N*f(x)Pow(x)dx < C\ f*(s)rds.
0

g{N"IZc‘f‘(u)}
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Since
K(ts q’*fa hg:?q’ Loo(lq)) S "bt”h(po,w;q) + t"gtllL""(lq»

we see that
S: EOK(t, Wrf; hig g, L2(1,)))"t " dt
<c{{Tror([ rrmas) " rar+ 7 @0 () arf

by Hardy’s inequality. The proof of the theorem is thus complete.

3.3. Imterpolation of weighted Besov and Triebel spaces

Before proceeding on, we recall that by our definition B$*, =B ,. We
note also that B§Y% (resp. F§%, 1<q<oo) is a retract of I§(h%) (resp. hi(l))
for 0<p<oo (Lemma 3.1), while it is known that B, , is a retract of [5(L®)

(see e.g., [2]). Welet Pev=Ps, ={f; J-sfe L*}.

THEOREM 3.3. If 0<0<1, s=(1—0)sq+0sy, sq5#s;, 1/p=(1—-0)/po+6/p;,
1/g=(1-0)/q0+06/q,, then the following interpolation formulas hold:

(i) (Bgss Byidle,r = By
(ii) (B39 B34)0.0 = BYY:
(iii) (Byior Byii)op = Byy P =4
(iv) (Psow, Psow), = BSY, p < oo.
(v) (Psy, Ps¥),p = PSV, p < o0.

Proor. We first notice the following well-known result: Let A be a quasi-
Banach space and (Agy, A;) be a couple of compatible quasi-Banach spaces.
Then, we have

(lzg(AO)s l;i(Al))O,q = 12((A0,A1)0,q);
(lfm(A)’ lfn(A))a,q = l;;(A)9
(IR(A), I3:(A)) o, = (),

where the parameters are the same as in Theorem 3.3 (cf. [2], [20]). The as-
sertions (i), (ii) and (iii) then follow from this, the result on retracts given in 3.1, the
observation before Theorem 3.3 and interpolation formulas for weighted Hardy
spaces proved in 3.2 (cf. also [2], [20] for the case w=1).
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The proofs of (iv) and (v), which are also routine, are given here for the sake
of easy reference. We need the following result in interpolation theory: If
a=3%_,a;in Ag+A,, a;e AgN A, for each j, 1#1>0 and

lally = (Xe-w (A7 max (la;llo, Alla;ll D))" < oo,
then ae(Ay, Ay, and |ally,<Clal, (cf. [2], [21]). Let {®,} be the sequence
given in 3.1. Since for each k=0, 1, 2,... and fe %', we have
J(ixf) = (JP)*(Yi*f)
[D=F (J5®,) (x)| < C27*s(1+]|x[) !,
we see that
175 N apwy < C27¥ W *%f |l nipomy

by a multiplier result on weighted Hardy spaces (see §4). Hence, it follows that

2k(s—so) max (”lpk*f“l’(so;p,w), 2k(so—s1)" ll’k*.f “ P(sl;P,W))
& 286750 max (|70 ) lngpmpr 27D NT 7 W) np,m))
< C255|[Yrie S |l o, wy-

Thus, it follows from Corollary 2.3 that if fe B$Y, then fe(Psv, Pst:¥),,,
provided we can show that f=3, Y, *f in Ps>*+ Ps-*.  This latter fact can be
easily seen by observing from maximal inequality that f=3,y,*f in BS%.
For the other direction of (iv), let fe(Ps*, P5*),,. For f;e P5* such that
f=fo+f1 (as elements of &’), we see that, for k=0, 1, 2,...,

1i* S o, wy < CRTEY foll pisospswy T 2755 f1ll isespow)) -
Thus,
I ixf nip,wy < C27H0K(2k(s0ms0), £ Psow, Psiow),

and the converse inclusion follows. The proof of (v) can be done in the same
spirit by using J~* to lift P§™ to h% and then applying the results on weighted
Hardy spaces obtained in 3.2.

ReMARK 3.4. (i) We note that (iii) and (v) give interpolation relations
between some weighted and non-weighted spaces.

(i) If one introduces Besov and Hardy spaces based on Lorentz spaces with
respect to the measure wdx, then interpolation formulas can be derived also for

other values of g and r.

THEOREM 3.5. If0<pg, py<o0, 0<0<1, 1/p=(1—0)/po+06/py, s=(1—06)s,
+0s,, so#5,, then the following interpolation formulas hold:



598 Bur Huy Qui

(i) Froras F3ldo,p = Fplos q>1.
(ii) (F3ao Foridor=F3} (= ByY), pi<q:.
(iii) (Fe Fpiddor = ByY.

ProOF. The assertion (i) follows from results on retracts and Theorem 3.2.
For the proof of (i), let fe(Fso% , Fsi% ), ,. For any A>0 (fixed for a

Po>40° © p1,91
moment), there exist decompositions f=f+fi, fie F5i% =A4;, k=0, +1, £2,...,

such that
(R0 @7 f R Esomipoaor T 2K1S &l EcsiwipraoDDV? < 1 f lto,a00,, + 4
Since for each x, j and k,
Yif(x) = YfRx) + ¥ k(X))

and [5=(I$, I5)y ,, we derive from a result of Holmstedt [12; p. 193] that

¥ %/} 11p,5) < CLUEimm00 R7FON{Y 1% ()}l 1(g,500) 7)1~ /P
X (Zieew FOULY 2 f 1()} gy, 50)7) 71}
for almost every x. Hence, it follows from Hélder’s inequality and the simple

inequality a"b'""<a+b (a, b>0 and 0<n<1) that

”f”F(s,w;p,p)

= 1 Hpspon < € | LT B0 @ 2 ) ) 0070

X (Zfame QRO 18 L i) ) PP D)6}

:](1—9)p/po

< of (S U 7 E o)W (D

x [ (S @01 2 i@ x|

< (e (2_ko||f2"F(so,w;po,‘lo) +2"(1"0)||fllc”F(sl,w;m,qx))p)l/p
< CUS o, aryo, » +2)-

Since A is arbitrary, we obtain one direction of (ii); note that we do not use the
assumption p;<g; in the proof of this direction. For the other direction, we ob-
serve from the assumption p;<gq; that BSi:% < Fs5i-% by Theorem 2.6 (ii). Thus,
the converse inclusion follows from Theorem 3.3 (iii). The last assertion (iii)
is derived again from Theorem 3.3 (i) by observing that B§i»cF5i» < By,

where u;=min (p, ¢;) and v;=max (p, q;).
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3.4. Remarks

In concluding this section, we make a number of remarks.

(a) We note that if 1<p; <00, 0<g;< o0 (resp. 1 <q; < 0), A<min (pg, p1),
and wo, w, € 4,, then BSi%: (resp. FSi:%i)is a retract of I5i(L2:) (resp. LEL(I51)).
Thus, one can extend many interpolation formulas given in [24] to (B3,
Bsiowt)e, and (Fso%o, F5iit),,. It remains, however, the problem of describing
interpolation spaces when either p,, q; or w; does not satisfy the above
assumptions.

(b) While real interpolation results for weighted Besov spaces are parallel
to the case w=1, those for Triebel spaces are still incomplete; we note that some
parts of Theorem 3.5 (i) and (ii) seem new even for the case w=1. Further, we
have not given any results on interpolation by the complex method. For the case
w=1, there are results of Triebel [27] for both Besov and Triebel spaces (cf. also
[17]), and of Calderén-Torchinsky [6; II] for parabolic HP-spaces; moreover,
in the announcement of Stromberg-Torchinsky [23], they indicated that complex
interpolation for HE (p>1) can be carried out by using atoms. We hope to return
to these subjects as well as others, such as traces,..., at a later occasion.

(c) Lastly, we state a result on pseudo-differential operators which is of
interest.

Let o(x, &) be a continuous and bounded function defined on R"x R" which
is infinitely differentiable with respect to . Let a(D)=o0o(x, D) be the pseudo-
differential operator whose symbol is . Then, the following two propositions
hold:

(i) If p>py=max(s, nrolp—s) and [DEo(-, E)llagpemmy< Co(L+IEN 121,
then o(D) is bounded on BS;.

(i) If p>pr=max (s, max (nro/p, n/q)—s) and | D2o(-, &)l p(ps0,m)< Coll +
|ED)1P1, then o(D) is bounded on F$.

In particular, if ¢ is a classical symbol in the class S9 , then o(D) is
bounded on B3 and F3,.

The proof of the above result can be done in a way similar to the case w=1
given in the proof of Theorem 3 in [4]. In contrast to the case w=1 where we can
also prove (i) without using interpolation theorem, our proof of the weighted
case relies on Theorem 3.3 in an essential way. We notice that the above result
immediately implies a regularity theorem for elliptic partial differential equations
in terms of weighted spaces; we refer to [20; Appendix D] for a discussion in the
case w=1.

In connection with (ii), we notice that in the announcement [23] there is a
result which states that pseudo-differential operators map HE boundedly into
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L?, p>1. We can see from (ii) and the relation h;=F%y (see §4) that if o
satisfies the assumptions of (ii) with s=0 and g=2 (in particular, if o €S9 ),
then o(D) can be interpreted as a bounded operator from hE (> HpP) into LE.

§4. Appendix

Our aim is to prove the following identities:

(15) F%% = HE (mod. polynomials),

(16) Fp% = ki,
The proofis a reproduction of [5] which we give here for reader’s convenience.
LEMMA 4.1. The Schwartz class & is dense in hE.

PROOF. Let feh? and ¥ e be such that $=1 on a neighbourhood of
the origin. Then g=f—¥«feH? (cf. Theorem 1.4 (ii)). Since §=0 on a
neighbourhood of the origin, the Poisson integral u = K,*g is well-defined on R}, ,,
and it can be proved that [g|um™ ISUDj—y< 140V, Dl o | SUPo<r<cn
[u(x, Ol ll,,w (Here K(x)=K(x, t)=I((n+1)/2)n~ "+ DI2¢(t2 4 |x|2)~(»*1/2)) The
desired result then follows by an argument similar to the case w=1 ([11; pp.
35-36], [9; Corollary to Theorem 10]) by observing that

us=u(-,0)—> g in HE as 6 —0.
This last assertion is derived from the following two facts:
[u(x, )] < Ct Pl gllgepwd+I1x])?, xeR",t>0
for some >0, y>0, by a “sub-mean-value’’ property of |u|?, and
lim, o u(x, t) exists for almost every x
by a well-known result of Calderdn.

REMARK 4.2. It can be seen from the above lemma and the embedding & < h?,
that the space of functions in & whose Fourier transforms have compact supports
is dense in hZ,.

LeEMMA 4.3. Let fe HE, and n be a function in & such that supp fj is compact.
Then

nxf — 0 in H?, as t— oo.

ProoF. Take another function ¥ in & withS ¥(x)dx=1. Then
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|24 (O < supy {nsf I+ o= 311 (12.Ge= DI+ 1x = yljiydy
= N3G (512 (=) 91+ =y |[£)dy < CpN}f(x) for s <.

Similarly, we see that
[Panxf(x)] < C,N§ f(x) for s>t
Thus,
SUPo <s<ao | P¥nexf (x)| < C max (N§f(x), N7 f(x).

Since N¢ f and N7 f are in LE, for A>nry/p, to complete the proof of the lemma,
we need only show that

(17) SUPg<s<w |'Ps*'1:*f(x)| —0 as t—

for almost every x. For this purpose, take a function ¢ € & such that ¢(0)=1
and supp ¢ ={|y|<1}. Then

supp F(¢(- /1) (¥ nxf)) = {Iy| < cft}.

Let x e R" be fixed. The observation on the support just given and Plancherel-
Polya’s inequality for entire functions of exponential type [20; Chapter 11,
Lemma 1] (cf. also Lemma 2.5) imply that

19010 (Pxn) (9] < 19010 (P
< corta( IO N Dw)my)wrdy) ",

where 0<g <p be such that r=p/g>r,. Hence, it follows that

19G1) (240 ) (] < CE8lgef L] O 481+ 3Dy

—-1/qr

I . 1/qr’
<Clflugandr™ §_ wo) 7y} < Clflugand | w2y}

The last two inequalities are consequences of the (B,.)-condition and (A4,)-condition,
respectively. Noting that the last term, being independent of s, tends to 0 as ¢
tends to oo (since w(R")=00), and |¢p(x/f)| >1/2 for large t, we obtain (17). The
proof of the lemma is hence complete.

LeMMA 4.4. The space @0 is dense in HE,

ProOF. Let fe H?. Then, it follows from Lemma 4.1 (Remark 4.2) that
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there exists a sequence {f;} =& such that each f ; has compact support and f;—f
in h as jooo. Consequently, f;—¥xf;—f—¥+f in HY by Theorem 1.4 (ii),
where ¥ €% be such that ¥ =1 in a neighbourhood of the origin and supp ¥
is compact. The desired result is then deduced from Lemma 4.3.

REMARK 4.5. (i) If 1<p<oo and weAd,, then Hj=hj=L}. In fact,
the inclusion hZ < L? follows easily from Lemma 4.1. For the inclusion Lf,c HE,
we note that for fe L? and ¢ € &,

SUPg<r<w [D*f(X)] < C¢Mf(x),

and then use the weighted estimate for the Hardy maximal function.
(i) It can be seen from Lemma 4.2 (resp. Lemma 4.4) that if fe hE, (resp.

HP), and ¥ e & with S?’(x)dx= 1, then ¥ f—f in hZ (resp. HZ) as 10,
LEMMA 4.6. Let K be a tempered distribution such that K is a bounded
function, K is of class CN outside the origin and
ID*K(x)] < C,lx|71elI=", Jaf < N
for a sufficiently large N. Then
|K*f g < CIF Loy S 0o

And thus, the operator Tf=Kxf, initially defined on 50, can be extended to a
bounded operator on HE,.

PrOOF. The proof is similar to that given for the case w=1 in [9], so that
we only sketch necessary modifications. Notation in [9] is retained. The
first modification we need is the estimate for f.

w({sup,>o | Koy*f 1> 2}) < A7) sup,so @+ Ky f 114w
S Kt g < €71 1F()Iw()dy + Cw(®),
where max(p, rq)<qg<oo. Note here that we have used the identity H% =L

(Remark 4.5 (i)) and the boundedness of the operator g—K,*g on L% ([7]).
Secondly, the weighted estimate for the Marcinkiewicz integral ([1]), [14]) gives

W({sup,so Koy x(f= )| > 4}) <Cw(Q).
Remaining detailed arguments are similar to [9].

REMARK 4.7. By using the technique in [9], one can see that Tf=1im,_¢ p -,
K, p*f for any fe HP,.
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LeMMA 4.8. Let m be an infinitely differentiable function such that
[D*m(x)| < C1+|xD71*!  for any multi-index «,
and R=m. Then f—K=+f defines a bounded operator on hZ.

ProOOF. We need only show that

”K*f”h(p,w) < C”f”h(p,w)’ fe &.

Let ¥ €% such that ¥ =1 in a neighbourhood of the origin. Then g=f—¥xfe
HE. Since K satisfies the assumptions of Lemma 4.6 by the well-known technique
of estimating a kernel from its symbol (Bernstein’s theorem), we see that

“K*g”H(p,w) < C”g”H(p,w) < C”f”h(p,w)-
Thus, it remains only to show that
“K*T*f“h(p,w) S C”f”h(p,w)’

which is obvious since Kx¥ e (see the proof of Lemma 4.3). Note that
the various constants C appearing in the proof depend on {C,}, p, w and Y.

ProOOFs OF (15) AND (16) (cf. [18], [26]). With all the hard preparations
having been done, we are now ready to prove our results. We only give a proof
for (16) since the other assertion can be similarly verified. By Theorem 2.4 (ii)
and Remark 4.2, it suffices to show that

(18) ”f“h(p,w) ~ ”f”F(O,w;p,Z)

for any fe & such that supp f is compact. Let r;, j=0, 1, 2,..., be Rademacher
functions ([22)]. Noting that for any such f,  #f=0 except for a finite number
of j’s, and using an inequality in [22; Appendix D], we see that

[ wrmrvmas < cf{( 1, r0upr@iraweas

< € ICE 7OV ) it < 1A 1Ry

The last inequality follows from the fact that 3-%_, r(t){; satisfies the assumptions
of Lemma 4.8 with constants {C,} independent of k and t. Thus, we obtain one
direction of (18). For the other direction, let {®;} be the sequence given in 3.1.
Then, by an [,-valued analogue of Lemma 4.8 (or 4.7), we obtain

I fllapwy = 1225 @xW % fllnpwy < CIY % Hinep,ws2)
< CI(Z;suPo<s<t | %192 5
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where ¢ € &, Sgb(x)dx =1and supp d={|x|<1}. The last term is then dominated

by Cllfllr,w;p,2y by an argument similar to the proof of Corollary 2.3. We
note that in the proof of the first inequality in the above, we have used the in-
equality

125 Ki*gllew < CICE 19,120

for we 4,, 1<r<oco, and for a suitable sequence of kernels {K;}. This last in-
equality is well-known for w=1 (cf. e.g., [24]). For the case w € A4,, just modify
the arguments given by Coifman-Fefferman [7] in the scalar-valued case (cf.
also [1]). The proof of (16) is thus complete.
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