Modified Rosenbrock methods with approximate Jacobian matrices

Hisayoshi Shintani (Received April 23, 1982)

1. Introduction

Consider the initial value problem for a stiff system

$$(1.1) y' = f(y), y(x_0) = y_0,$$

where y is an m-vector and the vector function f(y) is assumed to be sufficiently smooth. Let y(x) be the solution of this problem,

$$(1.2) x_n = x_0 + nh (n = 1, 2, ..., h > 0)$$

and let J(y) be the Jacobian matrix of f(y). We are concerned with the case where the approximations y_j (j=1, 2,...) of $y(x_j)$ are obtained by the modified Rosenbrock methods of the form

$$(1.3) y_{n+1} = y_n + \sum_{i=1}^q p_i k_i (n = 0, 1, ...)$$

which require per step one evaluation of J, k evaluations of f and the solution of a system of m linear equations for q different right hand sides, where

(1.4)
$$Mk_i = hf(y_n + \sum_{i=1}^{i-1} a_{ii}k_i) + hJ\sum_{i=1}^{i-1} d_{ii}k_i$$
 $(i = 1, 2, ..., q),$

the matrix M=I-ahJ is nonsingular, $J=J(y_n)$ and a_{ij} , d_{ij} (j=1, 2,..., i-1; i=1, 2,..., q) and a (a>0) are constants.

Nørsett and Wolfbrandt [3] obtained an A-stable method of order k+1 for k=q=2, 3. For inexact Jacobian matrices, however, these methods are reduced to methods of lower orders. Steihaug and Wolfbrandt [4] tried to avoid the use of exact Jacobian matrix and considered methods of the form (1.3), called the W-methods, where

(1.5)
$$Wk_i = hf(y_n + \sum_{j=1}^{i-1} a_{ij}k_j) + hA \sum_{j=1}^{i-1} d_{ij}k_j \qquad (i = 1, 2, ..., q),$$

W=I-ahA is nonsingular and A is a matrix approximating J. They have shown that for $q=2^{k-1}$ (k=2, 3) there exists a W-method of order k and that the method of order 2 is A(0)-stable under certain conditions.

The first object of this paper is to show that each A-stable modified Rosen-brock method remains A-stable if the Jacobian matrix is approximated with

sufficient accuracy. The second object of this paper is to prove that for $q=2^{k-1}(k=1, 2, 3)$ there exists a W-method of order k which is A-stable if A is a sufficiently close approximation to J and that the method of order p(p=2, 3) embeds a method or order p-1. Methods of order 4 are also studied.

2. Preliminaries

Let

$$(2.1) y_{n+1} = y_n + \Phi(x_n, y_n; h) (n = 0, 1,...),$$

(2.2)
$$\Phi(x_n, y_n; h) = \sum_{i=1}^k p_i k_i + \sum_{i=1}^{k-1} q_i l_i + r_1 m_1 \qquad (k = 1, 2, 3),$$

$$(2.3) t_{n+1} = t(x_n, y_n; h) = \sum_{i=1}^k p_i^* k_i + \sum_{i=1}^{k-1} q_i^* l_i + r_1^* m_1,$$

$$(2.4) T(x; h) = y(x) + \Phi(x, y(x); h) - y(x + h),$$

$$(2.5) t(x; h) = t(x, y(x); h),$$

where

(2.6)
$$k_i = Cf_i (i = 1, 2, 3), l_i = CAk_i (j = 1, 2), m_1 = CAl_1,$$

$$(2.7) f_1 = f(y_n), f_2 = f(y_n + c_2 k_1), f_3 = f(y_n + c_{31} k_1 + c_{32} k_2 + d_3 l_1),$$

(2.8)
$$C = hW^{-1}, W = I - ahA.$$

Then in Butcher's notation [1] $T(x_n; h)$ can be expanded into power series in h as follows:

(2.9)
$$T(x_n; h) = hA_1 f + h^2(B_1[f] + B_2 A f) + h^3(C_1[_2 f]_2 + C_2[A f] + C_3 A[f]$$

$$+ C_4 A^2 f + C_5[f^2]) + h^4(D_1[_3 f]_3 + D_2[A[f]] + D_3[_2 A f]_2 + D_4[A^2 f]$$

$$+ D_5 A[_2 f]_2 + D_6 A[A f] + D_7 A^2[f] + D_8 A^3 f + D_9[_2 f^2]_2 + D_{10} A[f^2]$$

$$+ D_{11}[f[f]] + D_{12}[fA f] + D_{13}[f^3]) + O(h^5),$$

where

(2.10)
$$A_1 = \sum_{i=1}^k p_i - 1$$
, $B_1 = \sum_{j=2}^k c_j p_j - 1/2$, $B_2 = a + aA_1 + \sum_{i=1}^{k-1} q_i$,

(2.11)
$$C_1 = c_{32}c_2p_3 - 1/6$$
, $C_2 = a/2 + aB_1 + d_3p_3$, $C_3 = a/2 + aB_1 + c_2q_2$, $C_4 = 2aB_2 - a^2A_1 - a^2 + r_1$, $2C_5 = \sum_{j=2}^{k} c_j^2 - 1/3$, $c_3 = c_{31} + c_{32}$,

$$\begin{split} (2.12) \quad D_1 &= -1/24, \quad D_2 = D_3 = D_5 = aC_1 + a/6, \quad D_4 = aC_2 + ad_3p_3, \\ D_6 &= aC_2 + ac_2q_2, \quad D_7 = aC_3 + ac_2q_2, \quad 2D_9 = c_2C_1 + c_2/6 - 1/12, \\ D_8 &= 3a^2B_2 - 2a^3A_1 + 3ar_1 - 2a^3, \quad 2D_{10} = a/3 + 2aC_5 + c_2^2q_2, \\ D_{11} &= c_3/6 - 1/8 + c_3C_1, \quad D_{12} = a/3 + 2aC_5 + c_3d_3p_3, \\ 6D_{13} &= \sum_{j=2}^k c_j^3p_j - 1/4. \end{split}$$

Similarly $t(x_n; h)$ is expanded as follows:

$$(2.13) t(x_n; h) = A_1^* h f + h^2 (B_1^* \lceil f \rceil + B_2^* A f) + \cdots,$$

where

$$(2.14) \quad A_1^* = \sum_{i=1}^k p_i^*, \quad B_1^* = \sum_{i=2}^k c_i p_i^*, \quad B_2^* = \sum_{i=1}^k a p_i^* + \sum_{i=1}^{k-1} q_i^*, \cdots.$$

To study the stability of (2.1), we apply (2.1) to the scalar test equation $y' = \lambda y$, where λ is a complex number with negative real part. Then hA and (2.1) are reduced to a scalar w and

$$(2.15) v_{n+1} = R(z, w) y_n (n = 0, 1, \dots)$$

respectively, where $z = \lambda h$,

$$(2.16) \quad R(z, w) = 1 + (p_1 + p_2 + p_3)zY + (c_2p_2 + c_3p_3)z^2Y^2 + (q_1 + q_2)wzY^2 + c_2c_{32}p_3z^3Y^3 + (d_3p_3 + c_2q_2)wz^2Y^3 + r_1w^2zY^3,$$

$$(2.17) Y = 1/(1-aw).$$

Let

(2.18)
$$R(z, w) = P(z, w)/Q(w),$$

where P(z, w) is a polynomial in z and w, Q(w) is a power of 1-aw, and P(z, w) and Q(w) have no factor in common. Put

$$(2.19) z = x + iy (x < 0), y = tx, r = |z|,$$

where x and y are real numbers and i is the imaginary unit. Let α and β be the z- and iz- component of the vector w-z respectively, that is,

$$(2.20) w - z = (\alpha + i\beta)z,$$

where α and β are real numbers. Let

$$arg(-z) = \theta$$
, $arg(-w) = \phi$ $(-\pi/2 < \theta, \phi < \pi/2)$.

Then $\beta t > 0$ if and only if $\theta \phi > 0$ and $|\theta| < |\phi|$.

Let

(2.21)
$$aw = (u + iv)z, \quad E(x, y, \alpha, \beta) = |Q(w)|^2 - |P(z, w)|^2.$$

Then |R(z, w)| < 1 if and only if $E(x, y, \alpha, \beta) > 0$. In the sequel $E(x, y, \alpha, \beta)$ is written simply as $E(x, y, \alpha, \beta) > 0$. In the sequel $E(x, y, \alpha, \beta) > 0$ is written simply as $E(x, y, \alpha, \beta) > 0$ for sufficiently small $|\alpha|$ and $|\beta|$ if E(x, y, 0, 0) > 0. On the other hand E(x, y, 0, 0) > 0 for all y and all x < 0 if and only if the method (2.1) with

A = J is A-stable. Thus we have the following

THEOREM 1. The A-stable modified Rosenbrock method remains A-stable if the Jacobian matrix is approximated with sufficient accuracy. The W-method which is A-stable for A = J is A-stable if A is a sufficiently close approximation to J.

3. Construction of the methods

We shall show the following

THEOREM 2. For $q = 2^{k-1}$ (k=1, 2, 3) there exists a W-method of order k which is A-stable if A is a sufficiently close approximation to J. For k=2, 3 there exists also a formula (2.3) such that $t(x; h) = O(h^k)$.

3.1. Case k = 1

The condition $r_1 = A_1 = 0$ yields

$$(3.1) \quad y_{n+1} = y_n + k_1,$$

(3.2)
$$T(x_n; h) = h^2(-[f]/2 + aAf) + O(h^3),$$

(3.3)
$$R(z, w) = 1 + zY$$
, $E = -2x + (2u - 1)r^2$.

Hence the method (3.1) is A-stable if and only if $u \ge 1/2$, that is,

$$\alpha \ge -1 + 1/2a.$$

For instance, when a=2/3, it is A-stable if and only if $\alpha \ge -1/4$.

3.2. Case k = 2

The condition $r_1 = A_1 = B_1 = B_2 = 0$ yields

$$(3.5) \quad p_1 = 1 - p_2, \quad 2c_2p_2 = 1, \quad q_1 = -a,$$

(3.6)
$$C_1 = -1/6$$
, $C_2 = C_3 = a/2$, $C_4 = -a^2$, $C_5 = (3c_2 - 2)/12$,

(3.7)
$$R(z, w) = 1 + zY + z^2Y^2/2 - awzY^2$$
,

$$(3.8) \quad E = -2x + b_2 x^2 - b_3 r^2 x + b_4 r^4,$$

where

(3.9)
$$b_2 = 2(4u - 1 - 4vt)$$
, $b_3 = 10u^2 - 6u + 1 + 6v^2 - 2(2u - 1)vt$, $b_4 = (4u - 3)v^2 + (4u - 1)(2u - 1)^2/4$.

Hence, for instance, if

$$(3.10) u \ge 61/100, |v| \le 33\sqrt{14/700}, vt \le 9/25,$$

the method (2.1) is A-stable because $b_2 \ge 0$, $b_3 \ge 4513/5000$, $b_4 \ge 0$. When w = z, that is, u = a and v = 0, it is A-stable if and only if

$$(3.11) a \ge 1/4.$$

Choosing $r_1^* = A_1^* = 0$ and $q_1^* = (q_1/p_2)p_2^*$, we have

$$(3.12) \quad p_1^* = -p_2^*, \quad q_1^* = -2ac_2p_2^*,$$

(3.13)
$$B_1^* = c_2 p_2^*$$
, $B_2^* = q_1^*$, $C_1^* = 0$, $C_2^* = C_3^* = a B_1^*$, $C_4^* = 2a q_1^*$, $C_5^* = c_2 B_1^*/2$.

The choice $C_5 = 0$ yields $c_2 = 2/3$ and

$$(3.14) y_{n+1} = y_n + (k_1 + 3k_2)/4 - al_1.$$

When A=J, $T(x_n, h)$ is reduced to $-(6a^2-6a+1)h^3[_3f]_3/6+O(h^4)$, so that in view of (3.11) we choose

$$(3.15) a = (3 + \sqrt{3})/6.$$

Then the method (3.12) is A-stable if

(3.16)
$$\alpha \ge (83 - 61\sqrt{3})/100 = -0.2265, |\beta| \le 33\sqrt{14(3 - \sqrt{3})/700} = 0.2236,$$

 $\beta t \le 9(3 - \sqrt{3})/25 = 0.4564$

and it becomes a method of order 3 when A = J.

The choice

$$(3.17) p_2^* = -3d/4, d = 2-\sqrt{3}$$

yields

$$(3.18) t_{n+1} = 3d(k_1 - k_2)/4 + adl_1,$$

where

(3.19)
$$B_1^* = -d/2$$
, $B_2^* = ad$, $C_2^* = C_3^* = -ad/2$, $C_4^* = 2a^2d$, $C_5^* = -d/6$.
Put

$$(3.20) g_2 = 3k_2/4 - al_1.$$

Then (3.13) and (3.14) can be rewritten as follows:

$$(3.21) y_{n+1} = y_n + 3k_1/4 + g_2, t_{n+1} = d(3k_1/4 - g_2),$$

where k_1 and g_2 are obtained from the formulas

$$(3.22) Wk_1 = hf_1, W(g_2 - k_1) = 3hf_2/4 - k_1.$$

Thus we have q = 2.

3.3. Case k = 3

The conditions $A_1 = B_1 = B_2 = 0$ and $C_i = 0$ (i = 1, 2, 3, 4, 5) yield

(3.23)
$$p_1 + p_2 + p_3 = 1$$
, $q_1 + q_2 = -a$, $r_1 = a^2$, $d_3 p_3 = c_2 q_2 = -a/2$, $c_2 p_2 + c_3 p_3 = 1/2$, $c_3 (c_3 - c_2) p_3 = (2 - 3c_2)/6$, $c_{32} c_2 p_3 = 1/6$,

(3.24)
$$D_1 = -1/24$$
, $D_2 = D_3 = D_5 = a/6$, $D_4 = D_6 = D_7 = -a^2/2$, $D_8 = a^3$, $D_9 = (2c_2 - 1)/24$, $D_{10} = a(2 - 3c_2)/12$, $D_{11} = (4c_3 - 3)/24$, $D_{12} = a(2 - 3c_3)/6$, $D_{13} = [-3 + 4(c_2 + c_3) - 6c_2c_3]/72$,

$$(3.25) \quad R(z, w) = 1 + zY + z^2Y^2/2 - awzY^2 + z^3Y^3/6 - awz^2Y^3 + a^2w^2zY^3,$$

$$(3.26) \quad E = -2x + b_2 x^2 - b_3 x^3 + b_4 r^2 x^2 - b_5 r^4 x + b_6 r^6,$$

where

$$(3.27) \quad b_2 = 2(6u - 1 - 6vt), \quad b_3 = 6(4u - 1 - 5vt)^2/5 + 2(9u - 1)^2/15 + 6(v^2 + u^2t^2),$$

$$b_4 = 3(2u - 1)v^2t^2 - 4(12u^2 - 6u + 1)vt + 38u^3 - 27u^2 + 7u - 7/12$$

$$-t^2(2u^3 - 3u^2 + u - 1/12) + v^2[3(10u - 3) - 32vt],$$

$$b_5 = 12v^4 + (36u^2 - 24u + 5)v^2 + 24u^4 - 28u^3 + 13u^2 - 5u/2 + 1/6$$

$$-[12u^3 - 12u^2 + 4u - 1/2 + 4(3u - 2)v^2]vt,$$

$$b_6 = 6(u - 1)v^4 + (12u^3 - 18u^2 + 8u - 5/4)v^2 + (3u - 1)(6u - 1)(12u^3 - 18u^2 + 9u - 1)/36.$$

Hence, for instance, if

(3.28)
$$3/8 \le u \le 1$$
, $|v| \le \sqrt{5g/120} = v_0$, $-17/56 \le vt \le 9/128$, $g = 4\sqrt{489 - 57}$,

then the method (2.1) is A-stable because

$$b_2 \ge 53/32$$
, $b_3 \ge 0$, $b_4 \ge 23975/199608$, $b_5 \ge 119/3072$, $b_6 \ge 0$.

For w = z it is A-stable if and only if

$$(3.29) 1/3 \le a \le a_1, \quad a_1 = 1.0686 \cdots,$$

where a_1 is the largest root of the equation $2a^3 - 3a^2 + a - 1/12 = 0$.

The conditions $A_1^* = B_1^* = B_2^* = 0$, $q_2^* = (q_2/p_3)p_3^*$ and $r_1^* = (r_1/p_3)p_3^*$ lead to

(3.30)
$$p_1^* + p_2^* + p_3^* = 0$$
, $c_2 p_2^* + c_3 p_3^* = 0$, $q_1^* = -q_2^*$, $q_2^* = d_3 p_3^*/c_2$, $r_1^* = -2ad_3 p_3^*$,

$$(3.31) \quad C_1^* = c_{32}c_2p_3^*, \quad C_2^* = C_3^* = d_3p_3^*, \quad C_4^* = -2ad_3p_3^*, \quad 2C_5^* = c_3(c_3 - c_2)p_3^*,$$

(3.32)
$$D_1^* = 0$$
, $D_2^* = D_3^* = D_5^* = aC_1^*$, $D_4^* = D_6^* = D_7^* = 2ad_3p_3^*$, $D_8^* = 3ar_1^*$, $D_9^* = c_2C_1^*/2$, $D_{10}^* = aC_5^* + c_2d_3p_3^*/2$, $D_{11}^* = c_3C_1^*$, $D_{12}^* = 2aC_5^* + c_3d_3p_3^*$, $3D_{13}^* = (c_2 + c_2)C_5^*$.

The choice $D_{13} = D_{11} + D_{12} = D_9 + D_{10} = 0$ yields

(3.33)
$$a=1/2$$
, $c_2=1$, $c_{31}=c_{32}=1/4$, $d_3=-3/8$,

$$(3.34) \quad y_{n+1} = y_n + (k_1 + k_2 + 4k_3)/6 - (l_1 + l_2)/4 + m_1/4,$$

(3.35)
$$D_2 = D_3 = D_5 = 1/12$$
, $D_4 = D_6 = D_7 = -1/8$, $D_8 = 1/8$, $D_9 = -D_{10} = -D_{11} = D_{12} = 1/24$.

The method (3.34) is A-stable if

$$(3.36)$$
 $-1/4 \le \alpha \le 1$, $|\beta| \le 2v_0 = 0.2090$, $-17/28 \le \beta t \le 9/64$.

In the case A=J, $T(x_n; h)$ becomes $-h^4[_3f]_3/24 + O(h^5)$. For the choice $p_3^* = -1/6$ we have

$$(3.37) \quad t_{n+1} = (k_1 + k_2 - 2k_3)/12 - (l_1 - l_2)/16 - m_1/16,$$

(3.38)
$$C_1^* = -1/24$$
, $C_2^* = C_3^* = -C_4^* = 1/16$, $C_5^* = 1/48$,

(3.39)
$$D_1^* = 0$$
, $D_i^* = -1/48$ ($i = 2, 3, 5, 9, 11$), $D_4^* = D_6^* = D_7^* = 1/16$, $D_8^* = -3/32$, $D_{10}^* = 1/24$, $D_{12}^* = 5/96$, $D_{13}^* = 1/96$.

Let

$$(3.40) g_3 = 4k_3/3 - (l_2 - m_1)/2.$$

Then (3.34) and (3.37) can be rewritten as follows:

$$(3.41) y_{n+1} = y_n + (k_1 + k_2)/6 - l_1/4 + g_3/2,$$

$$(3.42) t_{n+1} = (k_1 + k_2)/12 - l_1/16 - g_3/8,$$

where k_1 , k_2 , l_1 and g_3 are obtained from the formulas

(3.43)
$$Wk_1 = hf_1$$
, $Wk_2 = hf_2$, $W(l_1 + 2k_1) = 2k_1$, $W(g_3 - k_2 + l_1) = 4hf_3/3 - k_2 + l_1$,

(3.44)
$$f_3 = f(\hat{y}), \quad \hat{y} = y_n + (k_1 + k_2)/4 - 3l_1/8.$$

Thus we have q = 4.

4. Methods of order 4

Let

$$(4.1) \quad y_{n+1} = y_n + \sum_{i=1}^4 (p_i k_i + q_i l_i) + r_1 m_1 + r_2 m_2 + s_1 n_1,$$

$$(4.2) \quad t_{n+1} = \sum_{i=1}^4 p_i^* k_i + p^* h f^* + q_1^* l_1 + q_2^* l_2 + r_1^* m_1,$$

where

$$(4.3) k_4 = Cf_4, l_4 = CAk_4, m_2 = CAl_2, n_1 = CAm_1,$$

(4.4)
$$f_4 = f(y_n + \sum_{i=1}^3 c_{4i}k_i + \sum_{j=1}^2 d_{4j}l_j + e_4m_1), \quad f^* = f(y_{n+1}).$$

The conditions $A_1 = B_1 = B_2 = 0$, $C_j = 0$ (j = 1, 2, 3, 4, 5) and $D_k = 0$ (k = 1, 2, ..., 13) yield

(4.5)
$$\sum_{i=1}^{4} p_i = 1$$
, $\sum_{j=2}^{4} c_j p_j = 1/2$, $\sum_{k=3}^{4} g_k p_k = 1/6$, $24u p_4 = 1$, $q_i = -a p_i \ (i = 1, 2, 3, 4)$, $r_1 + r_2 = a^2$, $2c_2 r_2 = a^2$, $s_1 = -a^3$,

$$(4.6) \quad c_4 = 1, \quad d_3 = -4ag_3, \quad c_2d_{43} = c_{43}d_3, \quad e_4p_4 = a^2/2,$$

$$c_3(c_3 - c_2) = 2(1 - 2c_2)g_3, \quad (1 - c_3)g_4 = (3 - 4c_3)u, \quad (1 - c_3)d_4 = 4a(3c_3 - 2)u,$$

$$(1 - c_2)(1 - c_3) = 2[3 - 4(c_2 + c_3) + 6c_2c_3]u,$$

(4.7)
$$E(0, y, 0, 0) = y^{6}(a^{2}b_{3}b_{2}y^{4} + b_{1}y^{2} + b_{0}),$$

where

(4.8)
$$u = c_{43}g_3$$
, $c_4 = \sum_{i=1}^3 c_{4i}$, $d_4 = \sum_{i=1}^2 d_{4i}$, $g_i = \sum_{i=2}^{i-1} c_{ii}c_i$ (i = 3, 4),

$$(4.9) \quad b_0 = -8a^5 + 12a^4 - 19a^3/3 + 7a^2/4 - a/4 + 1/72,$$

$$b_1 = 5a^6 - 2a^5 - 19a^4/12 + 4a^3/3 - 13a^2/36 + a/24 - 1/576,$$

$$b_2 = 2a^4 - 4a^3 + 7a^2/2 - a + 1/12, \quad b_3 = 4a^3 - 7a^2/2 + a - 1/12.$$

The method (4.1) with A=J is A-stable if and only if $E(0, y, 0, 0) \ge 0$ for all y [2], that is,

$$(4.10) a_2 \le a \le a_3, \quad a_2 = 0.267766, \quad a_3 = 0.788675,$$

where a_2 and a_3 are zeros of b_2 and b_0 respectively.

Choosing $A_1^* = B_1^* = B_2^* = 0$ and $C_i^* = 0$ (i = 1, 2, 3, 4, 5), we have

(4.11)
$$\sum_{i=1}^{4} p_i^* + p^* = 0$$
, $\sum_{j=2}^{4} c_j p_j^* + p^* = 0$, $\sum_{i=3}^{4} g_i p_i^* = -p^*/2$, $4up_4^* = -p^*$, $q_1^* + q_2^* = ap^*$, $c_2 q_2^* = ap^*$, $r_1^* = -a^2 p^*$,

$$(4.12) \quad D_1^* = -p^*/12, \quad D_2^* = D_3^* = -D_5^* = ap^*/2, \quad D_4^* = -2a^2p^*, \quad D_6^* = D_7^* = a^2p^*,$$

$$D_8^* = -a^3 p^*, \quad D_9^* = (3c_2 - 1)p^*/12, \quad D_{10}^* = a(c_2 - 1)p^*/2,$$

 $D_{11}^* = (2c_3 - 1)p^*/4, \quad D_{12}^* = a(1 - 2c_3)p^*, \quad D_{13}^* = (2c_2 - 1)(1 - 2c_3)p^*/2.$

The choice $c_2 = 2/5$ and $c_3 = 3/5$ yields

(4.13)
$$p_1 = p_4 = 11/72$$
, $p_2 = p_3 = 25/72$, $r_1 = -a^2/4$, $r_2 = 5a^2/4$,

(4.14)
$$c_{31} = -3/20$$
, $c_{32} = 3/4$, $d_3 = -6a/11$, $c_{41} = 19/44$, $c_{42} = -15/44$, $c_{43} = 10/11$, $d_{41} = 24a/11$, $d_{42} = -30a/11$, $e_4 = 36a^2/11$,

(4.15)
$$p_1^* = p_2^* = p^*/6$$
, $p_3^* = -5p^*/12$, $p_4^* = -11p^*/12$, $q_1^* = -3ap^*/2$, $q_2^* = 5ap^*/2$, $r_1^* = -a^2p^*$.

When A = J, $T(x_n; h)$ becomes

$$(h^{5}/5!) \{(-120a^{4} + 180a^{3} - 80a^{2} + 15a - 1) [_{4}f]_{4} + a[_{3}f^{2}]_{3} - 2a[_{2}[f]f]_{2}$$

$$-2[_{2}f^{3}]_{2}/15 + (20a^{2} - 5a + 1) [[_{2}f]_{2}f] + (2800a^{2} + 200a + 9)[[f^{2}]]/220$$

$$+a[[f]f^{2}] + [f^{4}]/30\} + O(h^{6})$$

and t(x; h) is reduced to

$$(h^4/4!) \{ (-24a^2 + 12a - 2) \begin{bmatrix} 3 f \end{bmatrix}_3 + 2(1 - 18a) \begin{bmatrix} 2 f^2 \end{bmatrix}_2 / 5 + 6(1 - 4a) \begin{bmatrix} [f] f \end{bmatrix} / 5 + 12 \begin{bmatrix} f^3 \end{bmatrix} / 25 \} p^* + O(h^5) .$$

Let

(4.16)
$$v_3 = C(f_3 - 3ak_2 + 18a^2l_1/5), v_4 = C(f_4 - 15ak_2/11 - 18a^2l_1/11),$$

 $v = CA(q_3v_3 + q_4v_4 + 65ak_2/72 - 5a^2l_1/4).$

Then (4.1), (4.2) and (4.4) can be rewritten as follows:

$$(4.17) \quad y_{n+1} = y_n + p_1 k_1 + p_2 k_2 + p_3 v_3 + p_4 v_4 + q_1 l_1,$$

$$(4.18) \quad t_{n+1} = p_1^* k_1 + p_2^* k_2 + p_3^* v_3 + p_4^* v_4 + p^* h f^* + q_1^* l_1 - a^2 p^* m_1,$$

$$(4.19) \quad f_4 = f(y_n + c_{41}k_1 + c_{42}k_2 + c_{43}v_3 + d_{41}l_1).$$

Hence we have q = 7 and we have shown the following

THEOREM 3. For k=4 and q=7 there exist a formula (4.2) such that $t_{n+1}=O(h^4)$ and a W-method (4.1) of order 4 which is A-stable if A is a sufficiently close approximation to J.

References

- [1] J. C. Butcher, Coefficients for the study of Runge-Kutta integration processes, J. Austral. Math. Soc. 3 (1963), 185-201.
- [2] S. P. Nørsett, C-polynomials for rational approximation to the exponential function, Numer. Math. 25 (1975), 39-56.
- [3] S. P. Nørsett and A. Wolfbrandt, Order conditions for Rosenbrock-type methods, Numer. Math. 32 (1979), 1-16.
- [4] T. Seihaug and A. Wolfbrandt, An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff differential equations, Math. Comp. 33 (1979), 521-534.

Department of Mathematics, Faculty of School Education, Hiroshima University