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Introduction

The research of submanifolds in Kaehlerian and almost complex manifolds
is a wide and interesting branch of differential geometry and many differential
geometers have concerned themselves with it.

In 1955, J. A. Schouten and K. Yano [15, 16, 17] introduced the notion of
invariant (or holomorphic) submanifolds in an almost complex manifold and
proved that an invariant submanifold in a Kaehlerian manifold is itself Kaehlerian
and minimal. In 1963, Y. Tashiro [19] showed that a real hypersurface in an
almost complex manifold has an almost contact structure, and later [20] intro-
duced the notion of semi-invariant submanifolds.

D. E. Blair, G. D. Ludden and K. Yano [4] first studied, in 1970, the struc-
ture induced on certain submanifolds of codimension 2 in almost Hermitian mani-
folds or certain hypersurfaces in almost contact metric manifolds, which is
nowaday called an (f, g, u, v, A)-structure. The structure have been researched in
the papers [3, 5, 6, 9, 10, 12, 25, 26, 30] of them and S. S. Eum, S. Goldberg,
S. Ishihara, U.-H. Ki and M. Okumura. K. Yano and U.-H. Ki [29] have
recently studied the (f, g, u, v, w, A, u, v)-structure induced on submanifolds of
codimension 3 in almost Hermitian manifolds. Submanifolds of other kinds in
almost Hermitian manifolds are anti-invariant (see K. Yano and M. Kon [27]),
generic (see K. Yano and M. Kon [28]) and CR-submanifolds (see A. Bejancu
[1], D. E. Blair and B. Y. Chen [2]).

In order to see the above-mentioned submanifolds from an integrated view-
point, Y. Tashiro and the present author [23] introduced the notion of metric
compound structure (f, g, v, f*) on a Riemannian manifold, which is an abstrac-
tion of the structure induced on submanifolds in almost Hermitian manifolds.
Each of the structures is characterized by the rank r of the matrix v, or the dimen-
sion of the normal distribution D" defined by v. In the previous paper, we proved
that, if r=1, the structure defines an almost contact metric one on the manifold,
and studied in details properties of submanifolds with such a structure in an even-
dimensional Euclidean space.

In the present paper, we shall see that some scalar fields are associated with a
metric compound structure of rank r and these scalar fields are used to classify
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invariant, anti-invariant, CR- and other submanifolds in almost Hermitian
manifolds. In the case of r=2, we shall define the structure (f, g, D2, 1), which
is equivalent to the (f, g, u, v, A)-structure if 1# +1 almost everywhere. The
main purpose is to investigate geometric structures of Riemannian manifolds and
submanifolds of Kaehlerian manifolds with (f, g, D?, A)-structure satisfying some
additional properties. Conditions for such a manifold to be a warped product
having a contact metric or Sasakian part and to be a space of constant curvature
will be obtained in explicit ways using an adapted coordinate system.

We shall recall the notion of metric compound structures from [23] in Para-
graph 1. After giving a brief survey of metric compound structures of rank r
on Riemannian manifolds, we discuss conditions for the structures to induce (f,
g, D2, 2)-structures in Paragraph 2. In Paragraph 3, we shall treat A-curves and
A-hypersurfaces of Riemannian manifolds admitting a general concircular scalar
field . In Paragraph 4, a Riemannian manifold with (f, g, D2, A)-structure will
be dealt with and it will be shown that, under certain conditions, the manifold is a
space of constant curvature or a sphere. In Paragraph 5, we shall obtain funda-
mental formulas on submanifolds with (f, g, D2, A)-structure in Kaehlerian
manifolds and investigate properties of pseudo-umbilical, minimal and CR-
submanifolds. In Paragraph 6, we shall prove that any A-hypersurface of a sub-
manifold with (f, g, D?, A)-structure is AS-homothetic to Sasakian manifolds if
there is an umbilical 2-section and that under additional assumptions such a
submanifold is a warped product having a Sasakian part, a space of constant
curvature or a sphere. Paragraph 7 will be devoted to researches of properties
of submanifolds with normal (f, g, D?, 1)-structure.

Throughout this paper we assume that manifolds and quantities are differ-
entiable of class C*. Unless otherwise stated, indices run over the following
ranges

Ky Ay fy Voot = 1,2, 3,00t ,m,
h, i, j, k,...=1,2,3,...,n,
Psqst, S,... = n+1,n+2,..,m,
a,b,c,d,...= 2,3,..,n

respectively and summation convention is applied to repeated indices on their own
ranges.

The author would like to express his deep appreciation to Professor Y.
Tashiro who gave him extremely valuable suggestions and personal support during
his studies of these problems, and to Professor K. Okamoto who gave him con-
tinuous encouragements and advices to improve this paper.
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1. Metric compound structures

Let M be an almost Hermitian manifold of dimension m with structure
(G, J), where G is the almost Hermitian metric tensor and J the almost complex
structure. The structure (G, J) satisfies the equation

I being the identity tensor field of M, and

(1.1 GUX, IV =G61ZX, Y,
GUX, )+ GX,JV)=0
for any vector fields X and Y on M.
Let M be a differentiable manifold of dimension n and ¢ an immersion of

M into M. In terms of local coordinates (x*) of M and (y*) of M, the immersion
¢ is locally expressed by the parametric equations

yE = ye(xh).
If we put
Bi* = g,y*, 0; = 0[ox*,
then B;=(B;*) are n local vector fields on M spanning the tangent space T (M)

at every point x of M. A Riemannian metric tensor g=(g;;) of M is naturally
induced from G of M:

9;i = G, BB/~
We can choose m—n mutually orthogonal unit normal vector fields C,=(C,*)

to M. Then the vectors B; and C, span the tangent space T(¥M) of M at every
point x of M and the matrix

B = (Bix, Cpx)
is regular. We have
gji O
'BGB = ,
0 I,

and 8,,=G,,C,*C,* form the induced metric of the normal space N (M) of M at
each point x. We put

fih _Uqh
(1.2) F=B"'JB =( )

Upi fqp
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Then the map f=(f;*) is an endomorphism of the tangent bundle of M and
ft=(f,p) is that of the normal bundle of M. The matrix v=(v,"*) is 2 map of the
normal bundle into the tangent bundle of M, that is, v,*N, for any vector N=(N,)
normal to M are tangent components of JN. Since J,, is skew-symmetric, we
have the relations v,;=v,"g;, and the tensor fields

(13) fji = G(JBJ’ Bz) = Jleleix’ fqp = G(cha Cp) = Jlxcqlcpx

are skew-symmetric in their indices.
The transforms of the tangent vectors B; and the normal vectors C, of M by
J are expressed in the form

(1.4) JAKBi;' =fihBhK + vpiCp"
and
1.5) J¥Ci = — v,"By* + f,,C.*

respectively. The matrix (1.2) satisfies F2= —1I, and consequently the quantities
fi* v, and f,, do the relations

(1.6) fifit = =0 + vy,
1.7 Jitvpi = = 04ifap = foaais
(1.8) v it = = fo"

(1.9) Jrafap = — Orp + 00y,

where 6% and J,, are components of I. The equation (1.1) is equivalent to

(1.10) IS " = 9ji — vp0pi

We shall denote by N(M) the normal bundle of M and note here that the
components v,* of v are regarded as components of m—n tangent vector fields or
those of n vector fields with respect to C, in N(M) whether g or h is fixed. The
(m—n)(m—n—1)/2 scalar fields f,, on M are regarded as components of a tensor
field of type (0, 2) associated with the normal bundle N(M).

Now, removing the ambient manifold M, we consider a Riemannian manifold
M of dimension n admitting a metric tensor g, a tensor field f=(f;*) of type (1, 1),
a set v=(v,") of m—n vector fields and a set f+=(f,,) of (m—n)(m—n—1)/2
scalar fields. If they satisfy the relations (1.6) to (1.10), then we say that M has
a metric compound structure and the totality (f, g, v, f*) a metric compound
structure on M. If we put
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Fit -t gii 0
(1.11) F= , G=
vpi fqp 0 5‘1?

then the set (G, F) defines an almost Hermitian structure on the product manifold
M x R of the manifold M and an (m—n)-dimensional Euclidean space R™".

The Nijenhuis tensor S=[F, F] of a metric compound structure (f, g, v, f+)
is written as

(1.12) Sjih =fjk(akfih—aifkh) '—fik(akfjh_ajfkh) + vpjaivph - vpiajuph’
(1.13) Sjip = J*(Opi— 00p) — fi*(010p;—0j0p0) — 0g;0:fap + 040 S5
(1.14) S;* = = [0 + 0,20k f;* = 0;£i") + £,,0;0,",

(1.15) Squ =f J'kakf w T vqk(akvpj—ajvpk) +J qsajfsp’

(1.16) S, = vfowt — vko,h,

1.17 Seap = — 00 fpp + 050 S g

see [23].

2. Metric compound structures of rank r

Let M be a Riemannian manifold of dimension n having a metric compound
structure (f, g, v, f1). We assume that the rank of v=(v,*) is equal to r (0<r<
min {n, m—n}) almost everywhere on M, and call it a metric compound structure
of rank r. 'The phrase “almost everywhere on M’ means “on the whole manifold
M except a border subset of M’’. There exist linearly independent non-vanishing
vector fields Vi, =(vf,)) on M and N, =(N,,) in R*™" such that

2.1 0" = Nyygbleys

where a=1, 2,..., 7. Moreover we may normalize the vector fields N, in R™"
such as

22 NweN g = Oup-

If we put

(2.3) Aep = faoN@aN 80>

then these are r(r—1)/2 scalar fields on M, and we have the relations
24 Jitfit = = ;" + v vla)s

(2.5) S V@i = Aagpj>
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(2.6) Vi fi' = — Aytly),
2.7 Jrafap = = Srp + NN (p)p¥iayVipyi

by virtue of (1.6) to (1.9), (2.1) and (2.2).
We define the distributions D" and D"~ of the tangent bundle T(M) of M by

Dr = span {V(l)’ V(z),..., V(,.)},
D ={XeT(M)|g(X, Vi) =0},

which are orthogonal complementary to one another. The complex structure
F defined by (1.11) on the product manifold M x R™" is written as

< Sfit = Nayley )

F= R

NaypV(ayi Sap

and hence the transform of any vector field X of M by F is expressed in the form
FX =fX + U(a)(X)N(a),

where v, is the associated 1-form of V,, for each . For any vector field X €
D»r, we see that FX e D*. Therefore D"~ is a holomorphic distribution and
of even-dimension. Thus we have

THEOREM 2.1. If a Riemannian manifold M has a metric compound struc-
ture of rank r, then M is of even- or odd-dimension according as r is even or odd.

In the sequel we consider the case where r=2. For convenience sake, we
shall denote the vector fields V,,), V(3), N(;) and N,y by U=(u"), V=(v"), a=(x,)
and f=(B,) respectively. Then the equation (2.4) is reduced to

(2.8) fitfit = — 0" + uut + vt
J J J J

or equivalently

2.9 IS F i = gji — uju; — vju;.
If we denote
(2.10) A= 21z = fop2Bps

then the equation (2.5) is reduced to

(2.11) fitu; = Avj,  filvy = — Ju;.
If 2#0, then it follows from (2.11) that

2.12) upt =0,
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(2.13) uut = vt

because f;; are skew-symmetric in i and j. Moreover, by means of (2.8) and
(2.13), we have

(2.19) uut =vpt =1-— A2
If A=0, then it follows from (2.8) and (2.11) that
uiui = U,-Ui = 1.

If a tensor field f of type (1, 1), a metric g, two vector fields U and V and a
function 1 on M satisfy the relations (2.8), (2.9), (2.11), (2.12) and (2.14), then the
totality of them is called an (f, g, u, v, A)-structure by K. Yano and M. Okumura
[30] (see, also [4]). The rank of fis equal to n or n—2 whether the function
1—22 vanishes or not. We can see that two vector fields U and V in D? given by

(2.15) U=Ucosf — Vsinh, V = Usinf + Vcosb,

0 being a function, constitute the above-mentioned structure together with f, g
and A. Therefore the structure is essentially concerned with the distribution D?
and the function A, and we shall call it an (f, g, D?, A)-structure. Two vector
fields having the same properties as U and V will be called a canonical pair of
the structure.

The relation (1.7) is rewritten as

fiiuian +fiiviﬂp = “ifqpaq + vijpﬂq'

By use of (2.11), (2.12) and (2.14), it follows from this equation that

(2.16) Jato = — Moy [Py = Aoy,
and from (2.7) that

(2.17) Jrafop = — 0np + (1 =22) (0,0, + B,B,) -
We now put

(2.18) uzy = (1=)128,, vy = (1-212)"2q,,

and define a 2-plane section D} in the product M x R™" by
D% = span {a, B} .

Then we see from the relations (2.16), (2.17) and (2.18) that the tensor field f+,
the metric g+ =(4,,) and the vectors U* and V* define an (f*, g*, D%, A)-structure
in R™~" at every point of M.
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Conversely we can prove that, if a metric compound structure (f, g, v, f1)
defines an (f+, g+, D%, A)-structure in R™" at every point of M, then the metric
compound structure introduces an (f, g, D?, A)-structure on M. Thus we have
the following

THEOREM 2.2. Let M be a Riemannian manifold of dimension n>2 having
a metric compound structure (f, g, v, f+). Then the following statements are
equivalent:

(1) M has a metric compound structure of rank 2,

(2) M admits an (f, g, D2, A)-structure,

(3) The Euclidean space R™" admits an (f+, g+, D%, A)-structure.

In the case of a metric compound structure of rank 2, the equation (1.12) is
rewritten as

(2-19) Sjih = fjk(akfih—aifkh) —fik(akfjh—ajfkh)
+ u;0;u* — u;0;u* + v;0;0" — v,;0,v"
+ (2,0:8,) (u ;0" —v;u®) — (2,0;B,) (u;v* —v;u*)

by a simple computation. Corresponding to the two vector fields U and V of
D? given by (2.15), the vectors of the metric compound structure in R™* are
expressed by

&=acosf — Bsinf, B =asinf + Bcosb.

We can prove that the tensor defined by (2.19) with respect to the vector fields
U,V, & and B is identical with S;;». If S;;*=0 identically, then the (f, g, D?, A)-
structure on M is said to be normal. If we consider the metric compound struc-
ture of rank 2 on the product manifold M x R? of the manifold M and a 2-dimen-
sional Euclidean space R2, and choose the vectors a and § such as

«=(1,0) and B=(0,1),

then our definition of the normality is the same due to K. Yano and M. Okumura
[30].

ReMARK 2.3. Let M be a Riemannian manifold with metric compound
structure of rank r. If r=0, then the tensor field f itself is a complex structure
on M. Y. Tashiro and the author [23] have studied the case of r=1. In this
case, the function 1, vanishes identically and M admits an almost contact metric
structure. In the case where r=3, by putting V(;,=U, V3,=V, Vi5,=W, d3,=4,
Ayz=p and A,,=v, we see that M admits the so-called (f, g, u, v, w, 4, u, v)-
structure introduced by K. Yano and U. -H. Ki [29].
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3. A-curves and A-hypersurfaces

For the sake of discussions in the later paragraphes, we consider here a
scalar field A on a Riemannian manifold (M, g) such that the gradient vector field
of 1 is a general concircular one and investigate properties of the scalar field A
and the manifold M. The Riemannian connection of M will be denoted by /.

Let A be the gradient vector field of a scalar field A. A point of M will be
called a stationary or ordinary point of A whether A vanishes at the point or not.
If the vector field A satisfies the equation

v, A= ad

with a scalar field « on M, then the trajectories of A are geodesic arcs in a neighbor-
hood of an ordinary point of .. The connected component of a regular hyper-
surface defined by A=constant will be called a A-hypersurface and the geodesic
containing a trajectory of the vector field A a A-curve.

Let W be a neighborhood of an ordinary point x of the scalar field A
in M. Then we can choose a local coordinate system (x*) in W such that the
hypersurfaces defined by x! =constant are A-hypersurfaces and the curves defined
by the equations x®=constant are A-curves. With respect to such a coordinate
system (x*), we first have

(3.1 9p1 = 91a =0,

because A-curves are orthogonal to A-hypersurfaces. Since the A-curves are ge-
odesics, we have the equations

d dx* +{4 dx’ dxt dx*h

dxt dxt - Ydxt

dx! dxt

along the first coordinate curves, where {/} indicates the Christoffel symbol
formed with the metric tensor g;;. It follows from this equation and dx*/dx'=
6% that

)= ook,
which is reduced to
g"01911 — (1/2)g" 0,91, = adh.

Putting h=a in this equation, we see that g,, depends on x! only. Therefore,
by a suitable choice of the first coordinate x!, we may suppose that

(3.2 g1 =1
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in W. Hence we have a=0 and x! may be regarded as the arc length of A-curves
in W. We shall call such a local coordinate system (x!, x%) an adapted one for
the scalar field A, and denote by prime the ordinary differentiation with respect
to the arc length x!.

A scalar field 1 is said to be general concircular if the gradient vector field
A of A satisfies the equation

3.3) PxAd = ¢X + yg(X, NHA

for any vector field X and some functions ¢ and ¥ on M ([14]). If the function
¥ in (3.3) vanishes identically, then A is said to be concircular. Moreover, if the
equation (3.3) is expressed in the form

VxA = - k/lX,

k being a constant, then A is said to be special concircular with characteristic
constant k ([22], see also [11]).

Since the gradient vector field A4 of a general concircular scalar field 4 on
M satisfies the equation

Vsl = (¢+Yg(4, M4,

the trajectories of A are geodesic arcs. We shall prove

ProPOSITION 3.1. Let (M, g) be a Riemannian manifold of dimension n>2.
If M admits a general concircular scalar field 1, then the underlying manifold
of M is locally the product Rx M of a 1-dimensional Euclidean space R and
an (n—1)-dimensional Riemannian manifold M, and the metric form of M is
written as

(34) gjidxidx! = (dx')?* + 02§ 4dxcdx®

with respect to an adapted coordinate system (x!, x%) in a neighborhood of
an ordinary point of A, where §.,dx°dx® is the metric form of M and the func-
tion o is given by

3.5) G =N exp< - Sl///l'dx1>.

ProOF. We put A;=F;A and A*=gi*};, the components of the gradient
vector field A of 1. The equation (3.3) is then expressed as

(3.6) ij’i = ¢gﬁ + lpljli

with respect to a local coordinate system (x*). Let E=(e”*) be the unit vector
field in the direction of A and denote by u the length of A. Then we have
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3.7 Ab = peh.

Differentiating this equation covariantly, putting pu;=F;z and making use of
(3.6), we obtain

we; + plie; = ¢g ;i + Yulese;
and, contracting this equation with e’
(3.8) i = (p+yu?e;.
From these equations, we have the equation
(3.9) Ve = — h(gji“‘ejei),

where h= —¢/u. A unit vector field E satisfying the equation (3.9) is called a

locally symmetric vector field of the first order by A. G. Walker ([24]) if dim M >
4.

Let M(x) be the A-hypersurface through an ordinary point x of A in a
neighborhood W of M. Then the A-hypersurface M(x) is regular in W and E
is the unit normal vector field of M(x) through any point of M(x). We take a
local coordinate system (x?) in M(x) such that M(x) is expressed by the paramet-
ric equations

xh = xh(x9)
in W. Then the induced metric tensor g*, on M(x) is given by
g5 = gjchiji,
where B, =0,x. The second fundamental tensor h, of M(x) is defined by
(3.10) hey = (P.By')e; = _BchbiVjeis
and the equation of Gauss is written as
3.11) V.By* = 0.By* + {j"i}Bchbi — {&}*B," = heet,

where F indicates the covariant differentiation of van der Waerden-Bortolotti
in M(x) and {&}* is the Christoffel symbol formed with the induced metric tensor
g¥,. It follows from (3.9) and (3.10) that the second fundamental tensor h, is
equal to

3.12) hep, = hg#,.

Therefore each A-hypersurface M(x) is totally umbilical and the mean curvature
is equal to hf(n—1).
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Now, for the general concircular scalar field A, we choose an adapted coordi-
nate system (x!, x%) in a neighborhood W of an ordinary point. The scalar
fields A and u are differentiable functions of the first coordinate x! only. ~ Since
the last n—1 coordinates (x¢) of (x*) is a local coordinate system of each A-
hypersurface in W, it is clear that

Bi=06p, e" =0t and g% =g
on the A-hypersurface M(x), and hence the equation (3.11) is reduced to
(3.13) {5} — {5)*08 = hgedt.
The equation (3.13) for h=1 leads to

{cs} = hgep,

which is also reduced to
(3.19) 0190 = — 2hg .
Therefore, putting
(3.15) o= exp(— Shdx‘),
we see that the components g, are written as

(3 16) gep = ozgcb,

where g, are independent of x! and form a metric tensor of an (n—1)-dimensional
manifold.

Since the length u of the gradient vector field A of A is constant on each A-
hypersurface through an ordinary point, all points of a A-hypersurface are ordinary,
that is, a A-hypersurface is a closed submanifold. Let M be an (n —1)-dimensional
Riemannian manifold diffeomorphic to the A-hypersurface M(x) and having g,
as metric tensor. The manifold M is therefore locally diffeomorphic to the pro-
duct R x M of an open interval R with M, and the metric form of M is given by
(3.9).

It follows from the equations (3.6) and (3.7) that

N=p M=+ yin,
and hence we obtain the relation
h=—@Q"1A) + yl.

Substituting this relation into (3.15), we can.derive .the expression (3.5). . This
completes the proof of Proposition 3.1.
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We notice that the function ¢ is dependent on all coordinates x* in general.
If the function ¥ is dependent on the first coordinate x! only, so is 6. Then the
manifold M and A-hypersurfaces are homothetic to each other. Moreover, by a
_ suitable choice of the arc length x! such that A'>0, we may consider that ¢ is
a positive valued function on R. Therefore M is locally a warped product Rx ,M
of a 1-dimensional Euclidean space R and the (n—1)-dimensional Riemannian
manifold M, to which each A-hypersurface M(x) is homothetic.

Now we shall denote by {3} the Christoffel symbol formed with §. Since
the metric form of M is given by (3.4), where the function ¢ depends on all coordi-
nates x# in general, we have the relations

{i} ={a} ={4} =0,
(3.17) {a} = (a1/0)02, {%} = —0061Gch
{&} = {8} + (1/0) (005 + 0,02~ 0°7.,),
where 6, =0,0, 0,=0,0 and ¢°=g*¢0,.
Components of the curvature tensors of M and M will be denoted by R, ;"

and R, respectively, and the Riemannian connection of M with respect to § by
7. Then the curvature tensor of M has non-trivial components

Ryc1® = (041/0)82, Ryp' = — 6011Gchs
(3.18) Ryt = (_0'10'4“0'540'1).‘7cb — (010,—060,61)F ap>
Ricy® = Rycy® — (1/0)(830 .5 — 02045+ 04°G .o — G ab)
— (01+0.0°/0%)(05G b — %G av)>
where we have put

Ocp = V—cab - (2/0')0'ch and O'g = .g—eao.ce'

Moreover, denoting by R;; and R,, the components of the Ricci tensors of M
and M respectively, the Ricci tensor of M has non-trivial components

Ry = — (n—1)o,4/o,
R,y = (n—2)(0,0,—00,0,)/0,
(3.19) 1 (_ ) (o4 f)/
Ry = Ry, — [00,,+0.)c+(n—2)(06}+0,0°(062)]F
— (n—3)0 /0.

If M is an Einstein manifold, that is,

(3.20) Rj; = (n—1)kgj;,
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then it follows from the second equation of (3.19) and (3.20) that o,/c is a function
of the first coordinate x! only and, consequently, from (3.5) that o depends on
x! only. Therefore the first equation of (3.19) gives

(3.21) 0y = — ko,
and the third equation of (3.19) leads to
Rcb = (n—2) (a%+k62)gcb,

that is, M is also an Einstein manifold. The converse is true. A similar argument
can be developed in the case where M is a space of constant curvature by use of
(3.18). The equation (3.21) shows that ¢ is a special concircular scalar field with
characteristic constant k. Thus we have the following

LEMMA 3.2. Let M be an n(>2)-dimensional Riemannian manifold ad-
mitting a general concircular scalar field A. Then M is an Einstein manifold
(resp. a space of constant curvature) if and only if the manifold M diffeomorphic
to each A-hypersurface is an Einstein manifold (resp. a space of constant curva-
ture), and the function o given by (3.5) is a special concircular scalar field and
does not depend on M.

REMARK 3.3. In this lemma, if the scalar curvature of M is equal to a con-
stant k, then that of M is equal to the constant o2+ ko2 and vice versa. The
stationary points of a concircular scalar field o are isolated and the number of
them is at most two. It is known (Y. Tashiro [21, 22]) that, in a neighborhood
of a stationary point of o, M is isometric to an (n—1)-dimensional sphere and
M is a space of constant curvature.

4. Riemannian manifolds with (f, g, D2, 2)-structures

In this paragraph we shall clarify the geometrical structure of a Riemannian
manifold with (f, g, D2, A)-structure having certain properties.
We first prove following

LeEMMA 4.1. Let M be a Riemannian manifold of dimension n>2 with
(f, g, D2, A)-structure. If a canonical pair U and V of D? satisfy the relations

(4-1) Vjui - V,-uj = thii'
(4.2) Vjvi - Vivj = 2p ji

with scalar fields T and p, and p does not vanish on M, then 1= —kp, where
k is a constant.
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Proor. Differentiating (4.2) covariantly, we have
2kaf:ii + 2pkf:il' = Vijvi - VkVivj.

If we take the cyclic sum of this equation with respect to the indices i, j and k
and make use of Bianchi’s identity, then we obtain

PP fi+VifutVifi)) = — (ot pifatpifii) -
Similarly, from (4.1), we also obtain
S+ Vifu+Vifiy) = — S+t fattife)) -
From these equations, we have
p(tefii+ Tifa+tifii) = Wonfii+pifu+pifis)
and, contracting this equation with f/¢ and making use of (2.8), (2.12) and (2.14),
4.3) pl(n—4+21%)1, + 2(uit)u, + 2(vit)v,]
= t[(n—4+24%)p;, + 2u’pu; + 2(v'p)vi] -

Moreover, contracting this equation with u* and v*, we can obtain puit,=
tulp; and pvit;=1v'p; respectively. Substituting these relations into (4.3), we find
PTx = TPk>

which implies that t=kp, k being a constant. This completes the proof.

If one of the scalar field T and p is a constant, then so is the other and the
tensor field (f};) is a closed 2-form of M. We can see from (4.1) and (4.2) that
the set of all zero-points, if any, of the vector fields U and V is a border subset
of M. Therefore the function 1—A? does not vanish almost everywhere on
M. We also prove the following

LEMMA 4.2. Suppose that the function A does not vanish almost everywhere
on M in addition to the assumption of Lemma 4.1. Then the vector fields U
and V of a canonical pair are infinitesimal conformal transformations if and
only if they satisfy the equations

4.4) Viu, = p(kfji'—lgji)’
(4.5) Vivi = p(fji+kAgji).
In this case we have the equation

(4'6) li = p(ui— kv,-) .
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Proor. If the vector fields U and V are infinitesimal conformal transfor-
mations, then we have

4.7 Viu; + Vu; = 2yg;,
(4.8) Vjv; + V,’Uj = 2ngi,

where y and { are scalar fields on M. Comparing (4.1) with (4.7) and (4.2) with
(4.8) and taking account of Lemma 4.1, we obtain the equations

4.9) Viu; = kofs + v9 i

(4.10) Vi = pf;i + {g;is

respectively. On the other hand, differentiating (2.14) covariantly, we get

(4.11) wlu, = vilp, = — A

and, substituting (4.9) and (4.10) into this equation and making use of (2.11),
yu; + kpiv; = — pu; + {v;.

Since U and V are linearly independent, it follows from this equation that y= —pi
and {=kpi. Thus the substitution of these relations into (4.9) and (4.10) yields
the equations (4.4) and (4.5). The converse is trivial. The equation (4.6) follows
also from (4.4) and (4.11). This completes the proof.

We define a vector field £=(¢%) on M by
4.12) &t = p(kut+vh)

and denote the associated 1-from by 5. Concerning the vector field ¢ and the
gradient vector field 4 of A, we have

THEOREM 4.3. Let M be a Riemannian manifold of dimension n>2 with
(f, g, D?, A)-structure, where A does not vanish almost everywhere on M. Assume
that U and V of a canonical pair are infinitesimal conformal transformations
and satisfy the relations

Vjui —_— Viuj = 21f:ii9 Vjvi - Vivj = 2pf:"

with scalar fields © and p, and p does not vanish. Then the vector fields
(1+k2)~12 p=1A and (1+k?)~12p~1¢ constitute a canonical pair of the structure,
and A and ¢ satisfy the equations

@.13) Pt = — (L+kDp2Ag;; + (/DA
(4.14) Vit = (L+K2p2fy + (k[pDAm;,

where the scalar field k is given by
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4.15) k=(1-13)"uip, = — [k(1-12)] Wip,.
Proor. It follows from (2.12), (2.14), (4.6) and (4.12) that

(4.16) A&t =2, =0,
4.17) LAt = nét = (14k2)p*(1-42),
(4.18) Aidi + nim; = (1+kH)p?(uju;+v;0;).

By use of equation (2.11), we can verify the equations

4.19) fitki= My, fi'mi = — AA;

Comparing (2.8) and (2.9) with (4.18), we can obtain the equations
(4.20) fitfih = = o + [A+kHp?T 1 (AA" +1,E%),
@21 gunf i = 95 = [A+KDT Gudutnymy)

Thus we see from (4.16), (4.17), (4.19), (4.20) and (4.21) that (1+k2)~1/2p~14
and (1+k2)~1/2p=1¢ together with f and g constitute the (f, g, D?, A)-structure
and hence they form a canonical pair.

Differentiating (4.6) covariantly and making use of (4.4) and (4.5), we have

(4.22) Vidi = pju;—kv) — (1+k?)p?Ag;;.

Since F;A; and g;; are symmetric in i and j, the equation (4.22) implies that
Pj(“i—k”i) = pi(uj_kvj) .

This equation means that p; is proportional to u;—kv;, and we may put

4.23) pj=x(u;—kvj),

and the proportional factor k is given by (4.15). Substituting (4.23) into (4.22),
we have the equation (4.13). Similarly, differentiating (4.12) covariantly and
making use of (4.4) and (4.5), we have

Vi = pj(ku;+v;) + (L+k?)p2f;

and this equation substituted with (4.23) is equivalent to (4.14). This completes
the proof of Theorem 4.3.

The equation (4.13) shows that the function A is a general concircular scalar
field on M. Thus, by Proposition 3.1, the underlying manifold of M is locally
the product RxM of a 1-dimensional Euclidean space R and an (n—1)-di-
mensional Riemannian manifold M and the metric tensor g of M is given by
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1 0

0 O-ZQ' cb
with respect to an adapted coordinate system (x!, x?) for A, where the function ¢
is expressed by

(4.24) o= exp(- g(x/pz)l’dxl)

by virtue of (4.13). Now we prove the following

LeMMA 4.4. Under the assumptions of Theorem 4.3, the manifold M is
locally a warped product R x ,M of a 1-dimensional Euclidean space R and the
manifold M homothetic to A-hypersurfaces, where ¢ is a function on R given
by 6=(1-22)1/2,

ProoF. We shall prove that the function k/p? in the integrand of (4.24) is
dependent only on the first coordinate x!. Since A depends only on x!, it follows
from (4.6) that

(4.25) 2 = p(uy —kvy)
and 1,=0. Consequently we see that

(4.26) u, = kv,
and from (4.16) that

4.27) B =n,=0.

It follows therefore from (4.17) that

(4.28) A2 = (1+k2)p¥(1-22),
(4.29) n48% = (1 +kHp*(1-2%).

Since the function 1—4? does not vanish almost everywhere on M, the scalar
field p depends only on the first coordinate x! by virtue of (4.28).
The derivative of (4.28) in x! gives the equation

(4.30) (L+Ek2)pp’ = V2" [(1—22) + AA3[/(1 =22
It follows from (4.12) and (4.27) that

(4.31) ku, + v, =0.

Comparing (4.25) with (4.31), we have the equations

4.32) (1+k»)pu, =1 and (1+k?pv, = — kX',
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which shows that the first components of the vectors U and V' are dependent on
the first coordinate x! only. Substituting (4.30) and (4.32) into (4.15), we have
the expression

(L+Kk)K = 2"/(1—22) + 221 —32)2

and k depends on x! only. Consequently, comparing this expression with (4.28),
we have

(4.33) Klp? = A"A2 + AJ(1—22),

which shows that the function x/p? is dependent only on x!. Thus, as seen in
the previous paragraph, M is locally a warped product Rx ,M. Substituting
(4.33) into (4.24), we can obtain the expression

4.34) o= (1-21»)12,
and this completes the proof.

From (3.17) and (4.34), the non-trivial components of the Christoffel symbol
of M are given by

(4.35) {a} = - [A/A-a9]82, {&H} =AFw {5} =1{S&}.

By use of these expressions, we can prove the following

LemMa 4.5. Under the assumptions of Theorem 4.3, the (n—1)-dimensional
manifold M is homothetic to a contact metric manifold.

Proor. Since A,=0 and n, =0, it follows from (4.19) that

(4.36) St = @G/,
4.37) fo*na = 0.
The equation (4.17) is now reduced to

(4.38) n.&e = A2

By means of (4.28), (4.33) and (4.36), the equation (4.14) splits into
Piny =0, Py =[AN[(1=22)]n.,

(4.39) iy = (A"[2 )1,

(4.40) Perty = [A2[(1 =221 fop.

The equation (4.39) is expressed as

011y — {fb3na = (A"[A I,
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and, substituting (4.35), we have the equation

011y = [A"[A — AV [(L—2A)]n,.
The integration of this equation gives
(4.41) n, = A'(1—A2)12q,,

where 7], are dependent on M only and regarded as components of a 1-form of
M. Since g, =(1—A%g, it follows from- (4.41) that

& = DV [(L= 2121547,
We now put
Ea = gabﬁb.
Then &=(9) is a vector field on M and satisfies
(4.42) e =
by virtue of (4.38). The equation (4.40) is expressed as
Oty — {&3a = [A2[(1 =301 f s,

and, substituting (4.35) and (4.41), we have the equation

(4.43) Vel = [ [(1=32)3/2] f .
We define a tensor field f on M by
(444) 7cﬁb = f cb

Then the tensor field f,2=f, g satisfies the relation

(4.45) fot = [A=AA2 [N fe.

Substituting (4.41) and (4.45) into (4.37), we see that

(4.46) flafu? = fu?E" = 0.

The equation (4.20) for h=a and j=c is equivalent to
feft = — o6t + [(1-2%)/A*In.Le,

which is reduced to

(4.47) [(A-)/X21f > fp* = — 02 + 7.8

by means of (4.28), (4.36), (4.41) and (4.45). Similarly the equation (4.21) implies
that
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(4.43) [A—=22)/A21Gacfo Fa® = Gba — fisfla-

By the independency of the function 4 on M, it follows from (4.47) or (4.48)
that (1—A2)/A'2 is a constant on M, say ¢~2 (¢>0). Therefore we easily verify
from (4.42), (4.44), (4.46), (4.47) and (4.48) that the totality (cf, c2g, c"1¢, cif)
constitutes a contact metric structure on the (n—1)-dimensional manifold homo-
thetic to M. This completes the proof. '

Combining Lemma 4.4 with Lemma 4.5 and rewriting c2g,, in place of g,
on M, we can state the following

THEOREM 4.6. Let M be a Riemannian manifold of dimension n>2 with
(f, g, D?, A)-structure, where the function A does not vanish almost everywhere
on M. Assume that U and V of a canonical pair are infinitesimal conformal
transformations and satisfy the relations

Vju,--— V,-uj=2‘tfj,-, Vjv,-— VIUJ=2pj:“

with scalar fields © and p, and p does not vanish. Then M is locally a warped
product R x ;M of a 1-dimensional Euclidean space R and an (n—1)-dimensional
contact metric manifold M with the scalar field 6=(1—A2)!/2.  Each A-hyper-
surface of M is homothetic to M.

We see from (4.28) and (4.47) that (1+k?)p?=c2. Choosing suitably the
arc-length x! of A-curves, the solution of (4.28) is given by

A = cos ¢x1,
and hence ¢ is expressed as
o = sin cx!.

Therefore both A and o are special concircular scalar fields with characteristic
constant ¢2. The zero points of ¢ are those of 1—A2. Thus the following
theorem follows from Lemma 3.2 and Remark 3.3.

THEOREM 4.7. Let M be a Riemannian manifold of dimension n>2 with
(f, g, D?, A)-structure, where A does not vanish almost everywhere on M. Assume
that U and V of a canonical pair are infinitesimal conformal transformations
and satisfy the relations

Vjui - Viuj = 2Tf:ii, Vjv,- - Vin = 2pfﬂ

with scalar fields © and p, and p does not vanish. If there is a point of M where
A=+1, then M is a space of positive constant curvature.

If M is complete, then o=sincx! has stationary points corresponding to
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x1=0 and x!=m/c. Therefore, by use of a theorem due to Y. Tashiro [21, 22],
We can state

THEOREM 4.8. Let M be a complete Riemannian manifold of dimension n>?2
with (f, g, D?, A)-structure, where A does not vanish almost everywhere on M.
Assume that U and V of a canonical pair are infinitesimal conformal transfor-
mations and satisfy the relations

Vju,- - Viuj = 2Tfji9 Vjvi hd Vivj = 2pflji,

with the scalar fields © and p, and p does not vanish. Then the manifold M is
a sphere.

5. Submanifolds with induced metric compound structures of rank 2

Let M be a differentiable manifold of dimension n>2 and ¢ an immersion of
M into an m-dimensional almost Hermitian manifold M (m—n>2). As stated
in Paragraph 1, the n vectors B; and m —n mutually orthogonal unit normal vectors
C, span the tangent space T (M) of M at any point x of M. A metric compound
structure (f, g, v, f£) is naturally induced on M from the almost Hermitian
structure (G, J) of M. We assume that the structure is of rank 2. Then, by
Theorem 2.2, the submanifold M admits an (f, g, D2, A)-structure and the normal
bundle N(M) of M an (f*, g+, D%, A)-structure.

Since the components v# of v are expressed in the form

h — h h
v = auh 4+ Bk,

the transforms (1.4) and (1.5) are reduced to

(5.1) JiB* = fi"By* + ua,Cp¢ + v,8,C*
and
(5,2) Jl"Cq;' = — aqu"B,," - ﬁqvhth +fqup".

For any vector field X belonging to the orthogonal complement D*~2 of D2, it
follows from (5.1) that

JAKX"Bi;' = ihXith.

For the vector fields U=(u") and V=(v*) as a canonical pair of the (f, g, D?, 1)-
structure on M, we have the expressions

J;,"uiBi"' = - thth + (1 —-lz)otpCp",
J;."viBi" = iuhth + (1 -—lz)ﬂpcp"
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by virtue of (2.11), (2.12) and (2.14). From these expressions, we see that D? is
anti-invariant and hence M is the so-called CR-submanifold of M (see [1] and
[2], as to CR-submanifolds) if and only if A vanishes identically. Thus we have
the following

LEMMA 5.1. Let M be a submanifold with (f, g, D?, A)-structure in an
almost Hermitian manifold. Then M is a CR-submanifold if and only if the
function A vanishes identically.

On a submanifold M of an almost Hermitian manifold M, the van der
Waerden-Bortolotti covariant differentiation F; is defined by

VjBiK = 3jBi" + F,‘:;_Bj“Bil - th{jhi},

where I'%, and {}i} are the Christoffel symbols of M and M respectively. Since
V;B;* is normal to M for fixed i and j, we have the equation of Gauss

(5.3) = h;;,C,*

Jjip~p

where hj;, is the second fundamental tensor of the immersion ¢. The equation
of Weingarten is given by

(5.4) P,.Cx = — hiBX + 1,

Jap P’

where we have put
V,-C = a C + FKAB “Cq ] hjiq = g”'hth,

and [;,, is the third fundamental tensor of the immersion ¢ and called the induced
normal connection of M. A normal vector field N=y,C,* is called a normal
section on M and a subbundle of the normal bundle N(M) spanned by two linearly
independent normal vector fields a normal 2-section on M. The tensor hj,y,
is called the second fundamental tensor belonging to the normal section N. The
covariant differentiation F+ with respect to the normal connection is defined by

7470 = 0;%p + Valign>
and we have
ViN* = — h;y,B* + (P+y,)C,~.
The normal vector field
H=H,C), H,=(1/n)g/*hj;,,

is called the mean curvature vector field of M. 1If, for a normal vector field N,
the relation
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hjip')’p = pGji

is satisfied with a function p on M, then N is called an umbilical section on M, or
M is said to be umbilical with respect to N. If N is a unit normal vector field,
then the function p=h;*,p,/n is called the mean curvature belonging to N. 1If
p=0 identically, then N is called a geodesic section on M, or M is said to be
geodesic with respect to N. If M is umbilical (resp. geodesic) with respect to
every local normal section on M, then M is said to be totally umbilical (resp.
geodesic). The normal section N is said to be parallel in the normal bundle if
F;N* is tangent to M, that is, F}y,=0. Moreover N is said to be concurrent
along M if N is an umbilical (not geodesic) section and parallel in the normal
bundle. The submanifold M is said to be pseudo-umbilical if M is umbilical
with respect to the mean curvature vector field H.

Now we assume that the ambient manifold M is Kaehlerian. Differentiating
(5.1) covariantly along M and making use of (5.1) to (5.4), we have

— (uhhjip0,+0"h,B By + R fCo*
= (fithjpp+ o V04 BV 0+ 1,000, + 0,08, + w0yl 10+ 0:BLig ) C o~
+ (Vi fi*—u;h;* o, —v;h;*,B,)B,*
and, comparing the tangential and normal éomponents, the equations
(5.5 Vifi* = uhih o, — uthj0, + v;h;* B, — v*hjiB,,
(5.6) o Pt + BV ivi = Rjsfop — fithjnp — uiV $o0, — 07 1B,
Contracting (5.6) with o, and B, and making use of (2.2) and (2.16), we have

(5.7) Vjui = - lhjipﬁp _fihhjhp“p + UiﬁPV}“P
and
(5.8) Vv = Ahjip, = fi"hipBp — uiBpV i,

respectively. Substituting (5.7) and (5.8) into (5.6), we also have

(5.9 hjiofap — fi"Mjp — wiF o, — 0,7 £B, = Ah (0B, — 0B,
— fit (oo, + BoBy) + (BF Fou)) (a,0,— Byuy) .

Contracting (5.7) with u* or (5.8) with v?, we obtain

(5.10) Aj = uthj,B, — vihj,a,

by use of uiFu;=vilv,= --Mj. Differentiating (5.2) covariantly along M and
making use of (5.1) to (5.4), we have
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- (fhihth + ui“pqup + viﬁpqup)Bix - (“ihﬁq“p + vihﬁqﬂp -fprljrq)cp’C
= - (uiaj“q + ”iajﬁp + aqVi”i + :BqVJ'Ui + hjipfqp)Bix
+ (aijp - “ihjip“q -t hjiqﬂp +fqujrp)cpxﬂ
from which we obtain the equation (5.6) again and
(5.11) Vifw= “i(hjip“q —hjip) + Ui(hﬁpﬁq —hjigBy) -

If 71 f,,=0 identically, then f* is said to be parallel in the normal bundle.
If both the vector fields « and B of the (f+, g+, D%, A)-structure are umbilical sec-
tions on M and one of them is not a geodesic section, then the subbundle D} is
called an umbilical 2-section on M. If both « and B are geodesic sections on M,
then D% is called a geodesic 2-section on M. If both « and f are parallel in the
normal bundle (resp. concurrent along M), then D% is called a parallel (resp.
concurrent) 2-section on M. The following lemma is easily seen and justifies the
above terminologies of 2-sections.

LEMMA 5.2. Let y be any vector field in the subbundle D%.

(1) If both the orthonormal vector fields o and B are umbilical sections on
M, then so is y.

(2) If both the orthonormal vector fields o and B are parallel in the normal
bundle, then V+y belongs to D}.

We shall denote by 7 and p the mean curvatures belonging to « and f respec-
tively, that is,

t=Hy, and p=H,f

e
The sum of the squared mean curvatures belonging to two orthonormal vector
fields in D3 is independent of the choice of the vector fields in D%. We shall call

it the sum of two squared mean curvatures of D% and denote it by v2=12+ p2.
We prove the following

LEMMA 5.3. Let M be a submanifold with (f, g, D?, A)-structure in a
Kaehlerian manifold. If the codimension of M is equal to 2 or the subbundle
D% is a parallel 2-section on M, then the mean curvature vector field H of M is
given by

(5.12) H = ta + pp.
Proor. If Df is a parallel 2-section on M, then it follows from (5.9) that
(5.13) hﬁqfqp ""fihhjhp = Ahjiq(“qﬁp'—apﬂq) -f ihhth(aéap"'ﬂqﬂp)

and, contracting this equation with gJ¢,
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H,fpp = Mpa,—1B,)

because fJih;;,=0. Transvecting this equation with f,, and making use of (2.16)
and (2.17), we have the relation (5.12). In the case where the codimension is
equal to 2, it is obvious. This completes the proof.

By virtue of Lemmas 5.1 and 5.3, we can prove

THEOREM 5.4. Let M be a submanifold with (f, g, D?, A)-structure in a
Kaehlerian manifold. If the subbundle D% is a concurrent 2-section on M,
then M is either a CR-submanifold or a pseudo-umbilical submanifold.

Proor. If the function A vanishes identically, then M is a CR-submanifold
by Lemma 5.1. Assume that A does not vanish. Since D%} is a concurrent 2-
section on M, that is,

(5.14) hﬁqaq = ngl" hjiqﬂq = pg” and V}ap = Vﬁ'ﬂp = 0,
it follows from Lemma 5.3 that
hji,H, = v?g;,
and hence M is pseudo-umbilical.
We can state the following

THEOREM 5.5. Let M be a submanifold with (f, g, D?, A)-structure in a
Kaehlerian manifold. If the subbundle D% is a concurrent 2-section on M and
the tensor field f+ is parallel in the normal bundle, then M is either a CR-sub-
manifold or minimal.

Proor. If D} is a concurrent 2-section on M, it follows from (5.13) and
(5.14) that

hjiqfqp '_fihhjhp = - l(pap—rﬂp)gji + (Tap+pﬂp).fjii‘
Contracting this equation with u‘, we obtain
(5.15) uhjiofop + A'hyy, = — Npa,—1B,)u; + A(ta,+pf,)v;.

On the other hand, if the tensor field f+ is parallel in the normal bundle, the
equation (5.11) is reduced to

i — wh.. ih.. — v¢h.. =
uhjipo, — uthjigo, + 0*hj B, — v'hyB, = 0.

Contracting this equation with o, and B,, we have

(5.16) uihjip = T(apuj+ﬁpvj)
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and

5.17 vihy, = p(a,u;+B,yo;)

respectively. Substituting (5.16) and (5.17) into (5.15), we obtain
Mpa,—1B)u; = 0.

Since o and B are linearly independent, the above equation shows that 1=p=0
if A does not vanish. By means of Lemma 5.2, we see that H=0 and hence the
submanifold M is minimal. The remaining part of the statements follows from
Lemma 5.1.

6. Submanifolds with induced ( f, g, D2, 1)-structure

In this paragraph we consider submanifolds of dimension n>2 having um-
bilical 2-sections in an m-dimensional Kaehlerian manifold M (m —n>2).

If the subbundle D of the normal bundle N(M) is an umbilical 2-section on
a submanifold M of M, then the equations (5.5), (5.7), (5.8) and (5.10) are reduced
to

6.1 Viefii = t(Ug0—wigr;) + p(V;g1i—Vig;) >
(6.2) Viu; = tf;; — Apgj + Liv;,

(6.3) Vv, = pf;i + Atgj — L,

and

(6.4) A = pu; — v,

respectively, where T and p are the mean curvatures belonging to the vector fields
o and B respectively and we have put

(6.5) l; = B,V 4a,.
We prove the following

LEMMA 6.1. Let M be a submanifold of dimension n>2 with induced (f,
g, D2, J)-structure in a Kaehlerian manifold. If the subbundle D% is an umbili-
cal 2-section on M, then we have

(6.6) pj+TlJ=AuJ, Tl_plj= —Avj,
(6.7) Vj}-,' = A(ujui+vjl)i) - A.Vzgﬁ,

where v? is the sum of two squared mean curvatures of D% and

(6.8 A = ul(pi+l)/[(1-22) = — vi(t;—pl)[(1-22).
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Proor. It follows from (6.1), (6.2) and (6.3) that

(6.9) Vifii + Vifu + Vifi; = 0,
(6.10) - Vi = Py = 2afy + Loy — L,
(6.11) Vjvr = Vivy = 2pf5 = Lty + L.

Differentiating (6.10) covariantly, we have
Vijui - Viju,- = 2‘Ckfﬁ + 2Tkaji + (Vklj)v,- - (Vkl,-)vj + lekv,- - linvj.

If we take the cyclic sum of this equation with respect to i, j and k and making
use of (6.9), (6.11) and Bianchi’s identity, then we have

2n—pl) fii + 2z;—pl) fu + 2(ti— p) fyj
+ (Pl =Vl + (V1= Vil v + Pile—Pil)v; = 0.
By contraction of this equation with fJ¢, we obtain
(n—4+222) (r,—ply) + 2u'(z;— pl)uy + 20'(z;—pl)v,
— MW L=PL) + v fiPl, =0

Contracting the last equatidn with u* and %, we have

(6.12) ul(t;—pl) =0
and
(6.13) (n —Z)Di(‘ri —pl,) = A’(lel_ Vilj)vjui - (1 —lz)f" leli

respectively. Similarly it follows from the covariant differentiation of the equation
(6.11) that

(6.14) vi(pi+1l) =0,
(6.15) (n —2)ui(pi+‘tli) = - A(le,_ Vllj) vjui + (1 —A.z)fj ilei-

Comparing (6.13) with (6.15), we have
(6.16) vi(t;—pl) + ui(p;+l) = 0.

On the other hand, differentiating (6.4) covariantly and making use of (6.2)
and (6.3), we have ’

(6.17) lel = (p1+‘tlj)ul —'(‘U‘,—le)Ul - szgji,
which implies the equation’

(P,-+'Tl-j)'ui = (pitrlu; = (fj‘Plj)Ui - (Ti—pli)vj'
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By virtue of (6.12), (6.14) and (6.16), we can obtain the equation (6.6) from the
contractions of the above equation with u? and v!. Substituting (6.6) into (6.17),
we obtain the equation (6.7). This completes the proof.

The gradient vector field of the function A will be denoted by 4. We also
define a vector field £ on M by

(6.18) Er = tub 4+ pot
and denote by 5 the associated 1-form of £. Then we can state the following

THEOREM 6.2. Let M be a submanifold of dimension n>2 with induced
(f, g, D?, X)-structure in a Kaehlerian manifold, where A does not vanish almost
everywhere on M. Assume that the subbundle D% is an umbilical 2-section on
M. Then the vector fields v-1A and v=1¢ form a canonical pair of the structure,
and A and & satisfy the the equations

(6.19) kaji = Nj9ki — Ni9kj>
(6.20) Vi = Y(AAi+nm) — Avigj,
(6.21) © Vi = Y(Ami—n4) + Vi fii,

where Y= A[v2.

Proor. From (2.8), (2.9), (2.11), (2.12), (2.14), (6.4) and (6.18), we have the
relations

(6.22) fiifih = — 87 + v2 (400 +nER),
(6.23) Sith=dnys fiing = — 2,

(6.24) LE =g =0, A4 =nE =2 (1-22),
(6.25) S fi* = g5 — v2 Q0 +nm),

and hence v='4 and v~1¢ are a canonical pair of the structure. See also the proof
of Theorem 4.3.
It follows from (2.9) and (6.25) that

Aidi + mim, = vA(uu+o;0;).

Comparing this equation with (6.7), we have the equation (6.20). Differentiating
(6.18) covariantly and making use of (6.2) and (6.3), we can obtain the equation
(6.21). The equation (6.19) follows from (6.1) and (6.18). This completes the
proof.

The equation (6.21) shows that the véctor field ¢ is a Killing one on M.
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It follows from (6.6) that
17; + Pp; = Aﬂ‘l’
or equivalently
(6.26) Piv: = 2v2ya,;.
From (6.20) and (6.24) we obtain the equation
lj lei = [A(l ‘—“2.2) hand )-vz]).i,
which shows that trajectories of the gradient vector field A of A are geodesic arcs
in M. As seen in Paragraph 3, the submanifold M is locally diffeomorphic to
the product R x M of a 1-dimensional manifold R and an (n—1)-dimensional
manifold M. We can choose an adapted coordinate system (x!, x2) for the func-

tion A in a neighborhood W, with respect to which components of the metric
tensor g of M are equal to

9i1=1 9gp=691.=0

and the first coordinate x! is the arc-length of A-curves.
In terms of such a coordinate system (x!, x9), it follows from (6.24) that
n,=&=41,=0and

(6.27) vZ = 2"2/(1-22).
Taking account of (6.26) and (6.27), we have
(6.28) v =A"A%+ A/(1-22).

The equations (6.27) and (6.28) show that v2 and  are functions of the first coodi-
nate x! only. From the first equation of (6.23) we obtain

(6.29) Fot = A,

Putting j=b and i=1 in (6.21) and making use of (6.27) to (6.29), we have the
equation

Pony = — (A"[A)n,.

Since the component {4} of the Christoffel symbol and #, vanish identically,
this equation is reduced to

{s13ma = (X720
Putting j=1 and i=a in (6.21) again, we also obtain

OMa = {SMe = (A" [AM,.
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By these two equations we have

01m, = 2(A"[')n,
and we may put
(6.30) Mo = X2,

where 7], depend only on x* and define a 1-form on M.
Since ¢ is a Killing vector field on M, we have

£:9;; = E"0hg ;i + (0;EMgh; + (0:EMgn = 0,

where £, is the operator of Lie differentiation with respect to the vector field ¢.
Putting j=b and i=1 in the above equation, we obtain (0,£%)g,, =0, which implies
that 0,£4=0. Therefore the vector ¢ is independent of x!. Since &!=0, & is
regarded as a vector field on M. Moreover we see from (6.24), (6.27) and (6.30)
that

(6.31) ol = 1.

Putting j=b and i=a in (6.20) and making use of (6.27), (6.28) and (6.30),
we have the equation

Poho = — [AA2[(1—22)1gs, + [A2A" + AX4[(1 = 22)]ilsfla-
Since the left term of the equation is written as
Voha = — {pa}A" = (1/2)A'01gss

with respect to the adapted coordinate system, we have the linear differential equa-
tion

019ba + [2AN[(1 = 22)1gpq = 2[A°A" +AN3[(1 = A2)]iisMl,

in each components g,, of the metric tensor g of M. The solutions of these
equations are given by

(6.32) Ira = (L=2A0)g3, + A7y,

where g¥, depend on x? only. Since ¢ is a unit vector field on M and 5,=g,,£°,
it follows from (6.30) and (6.32) that

(6.33) g3.c° = 0.

Now we put

(6.34) Gba = G3a + Tpila-
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Then we can easily verify the positive definiteness of g. Let the (n— 1)-dimensional
manifold M be a Riemannian one endowed with the metric tensor g. From (6.32)
and (6.34) we have the relations

(6.35) Iba = (1=22)Gp, — (L= 22 = A2y,
The contravariant components of g are then given by
g = (1=#)ighe — [(1-2) — (1) 218

Now we denote by £ the restriction of & on a A-hypersurface M(x) through an
ordinary point x of A, which is regarded as a vector field on M. Then we have

ghei, = &b
Since ¢ is a Killing vector field on M, we have
£, = EIopm, + (07, = 0.
Putting i=a in this equation, we obtain the equation
E¢0.f, + 0,8 = 0.

Let 7 be the Riemannian connection with respect to § of M. Then it follows
from the above equation that

(636) Ee_eﬁa = ﬁeV—aEe =0
because & is a unit vector field on M. By use of (6.36), the Christoffel symbol
{}} of M splits into the components

{1} ={& ={aa} =0,

{&} = — [WV/(1=243)16.2 + [AV (A =23 + A" [V 17 e,

{clb} = A'A'Igcb - (A'A"+A‘,A'”)ﬁcﬁb’ _ '

{&} = (&) + [V2A -2 = 11(HEFE +7,7 22).

From (6.19), we see that P, f,*=0. The second equation of (6.23) implies
that f,2¢¢=n,f,¢=0. Therefore we can verify that d,f,=0. This shows that
f»* do not depend on the first coordinate x! and hence define a tensor field of
type (1, 1) on M, which will be denoted by f=(f,?). Then we have the equation
(6.38) ferle =1 fye = 0.

By means of (6.35), the covariant components f,,=g..f,° on M are related to
those of f on M by

(6.37)

Ja=(1 “p)ﬁm-
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It follows from the equations (6.22) and (6.25) that the tensor field f satisfies

(6.39) | foefet = — 08 + e
or equivalently
(6-40) gdcfbdfac = gba - ﬁbﬁa'

Putting j=» and i=a in (6.21) and making use of the expressions (6.37),
we have

(6.41) 71,5“ = fba and 7bﬁa . fba'
Putting k=c, j=b and i’=a in (6.19), we have
chba = )"2(1 - )'2) (ﬁbgcn - ﬁagcb) .

On the other hand, by taking account of the expression

Veloa = Octoa — {cs} fea — {catfoe — {do} f1a — {da} for
and the equations (6.29), (6.30) and (6.37), we obtain
| Vefsa = L=2Pefpa + Q=22 (A2 = 1) (1 ca — Macr) -
Consequently these equations give
(6.42) | Vofoa = TisGea = Taler

Hence the equations (6.38) to (6.42) show that the totality (f, g, &, #) constitutes
a Sasakian structure on M.

The restrictions f,%, g, ¢* and 1, of f, g, ¢ and 7 of M on each A-hypersurface
M(x) form a tensor field, an induced metric tensor, a vector field and a 1-form
of M(x) respectively. From the equations (6.22) to (6.25), (6.27) and (6.29),
we have

J St = = 02 + (YAMLe, nafo® = f,°6° =0,
r’aéa = ’1'2’ gdcfbdfac = Gba — (l/llz)nbna

with respect to the adapted coordinate system (x!, x¢). If we denote by 7 the
covariant differentiation with respect to the induced metric g,,, then it follows
from (6.19) to (6.21) that

ﬁbna = [}‘,2/(1 _}“Z)Jf;uv ﬁcfba = [1/(1 _2'2)] (nbgca - r’agcb)

on M(x), by use of (6.27) and (6.29). Since A and A’ are constants on each M(x),
we consider a vector field &4 and a 1-form #, defined by &2=A'8s and n,=1',
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on M(x). Then we see that the totality (f, g, £, ) constitutes an almost contact
metric structure on M(x). The last two equations are rewritten as

Pifia = XN~ fre Pofoa = [V J(A1=22)](AeGca — Ager) -

The normality of an almost contact metric structure (f, g, &, n) is defined
by the Nijenhuis tensor of the structure, that is,

Ny = f 2 Pufs® — Vofa® — [o2(Puf® = Pefa®) + nPpée — n .t =0,

see [13, 20]. By means of the above equations, it can be verified that the almost
contact metric structure (f, g, £, #) on M(x) is normal.

To speak in general, we suppose that an almost contact metric structure (f,
g, &, n) on a manifold satisfies the relations

(643) Vbnd = (p/q)fba, chba = (p/q) (nbgca - nagcb)a

p(>0) and q(#0) being constants. If we define a structure (f, g, &, 7) by

(644)  Ee=(pes, iy =am, [o*=f" Goa= PGa + (@*— PV
then we see that the structure (f, g, &, 77) is Sasakian. Such a deformation from a
normal almost contact metric structure to a Sasakian one defined by (6.44) will
be said to be AS-homothetic. An AS-homothetic deformation is reduced to a
D-homothetic one introduced by S. Tanno [18] if and only if p=gq.

Summing up our arguments stated above, we see that each A-hypersurface
M(x) is AS-homothetic to M. Thus we have

THEOREM 6.3. Let M be a submanifold of dimension n>2 with (f, g, D?,1)-
structure in a Kaehlerian manifold, where A does not vanish almost everywhere
on M. If the subbundle D% of the normal bundle is an umbilical 2-section
on M, then each A-hypersurface is AS-homothetic to a Sasakian manifold M.

By a straighforward computation from (6.39), the components of the curvature
tensor R, ;;* of M are given by

(6.45)

1 — —
Rij' =Ri11* =Ryp* =0,

AA'3 VAV — -
Rdcb1 = (1 Py ) +A'4 )("dfcb /P _2ﬂbfdc)a

Rlcb‘l = (l/(l)’: 12) + (l f_)}"z)z )[)'12(2ﬁcfba+ﬁbfca) - (1 _}.Z)fcbga] ’

= 2 " A2)'2 1\ =
Yaus + (24227 + 220 4 202 i,

A2
1-22

1
Rdlb

- (,1'2+w+
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Y CINp Yy /12,1'2 N 7 R A W
Rier® = (1—,12+1 12)2)‘s +<1 tetaoeet )’75

= ﬂ. A2 _
Ry = Ryop® — 2(5dgcb 623 4»)

A4 12/1'2 U»’UJ’ _
+ ((1 ,12)2 =2 + >(5d'lc’1b 0%41p)

232 2
(A '122 +T4_77+U“" - 1)(.‘7“'705“—5@’745")

(=)@ ucdst + T o= Tesl i

where R;_,* are components of the curvature tensor of M.
If the submanifold M is a space of constant curvature k, that is,

(6.46) Rkjih = k(akgji—azegki) s
then, comparing the second equation of (6.45) with (6.46), we have
(6.47) A?1=-23) =v2 =k,

which shows that k is positive. Since A”= —kA from (6.47), the last equation
of (6.45) is written as

(6.48) Ry = k(303G cp — 902G 4p) — (k—1) (837 7, — 0% 4y
+ G csa8® = Gasf1.E% — FaFen+ F o Fan+ 2T ac S5

by taking account of (6.35) and (6.46). The equation (6.48) shows that the
manifold M is a Sasakian space form, that is, a space of constant f-sectional
curvature.

Conversely, if (6.47) and (6.48) are satisfied, then we can verify that the
submanifold M is a space of constant curvature k. Thus we have

THEOREM 6.4. Let M be a submanifold of dimension n>2 with (f, g, D?,
A)-structure in a Kaehlerian manifold, where A does not vanish almost every-
where on M. Assume that the subbundle D% is an umbilical 2-section on M.
Then M is a space of constant curvature if and only if the manifold M AS-
homothetic to each A-hypersurface is a Sasakian space form and the sum of
two squared mean curvatures of D% is a constant.

If the subbundle D of the normal bundle N(M) is a concurrent 2-section
on M, then we have I;=0 by (6.5). Therefore the assumptions of Lemma 4.1
are satisfied by the equations (6.2) and (6.3) and hence we have t1=kp, k being
a constant. From this fact and the equation (6.6), we see that 7 and p are con-
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stants. Thus the following is immediately obtained from Theorem 6.4.

COROLLARY 6.5. Let M be a submanifold of dimension n>2 with (f, g,
D2, })-structure in a Kaehlerian manifold, where A does not vanish almost
everywhere on M. Assume that the subbundle D% of the normal bundle is a
concurrent 2-section on M. Then M is a space of constant curvature if and
only if the manifold M AS-homothetic to each A-hypersurface is a Sasakian
space form.

In the case where the submanifold M is of codimension 2 in M, the assump-
tions of Theorem 6.4 show that M is a non-minimal totally umbilical submanifold.
The squared mean curvature |H|?> of M is expressed as |H||?=v? by Lemma
5.3. Therefore the sum of two squared mean curvatures of D% is a constant if the
mean curvature vector field H of M is parallel in the normal bundle. By
means of Theorem 6.4, we have the following

COROLLARY 6.6. Let M be an n(>2)-dimensional non-minimal totally
umbilical submanifold of codimension 2 in a Kaehlerian manifold. Then
M is a space of constant curvature if and only if the manifold M AS-homothetic
to each A-hypersurface is a Sasakian space form and the mean curvature vector
field H is parallel in the normal bundle.

In the remaining of this Paragraph, we assume that the sum of two squared
mean curvatures of D%, v2, is a constant, say c2, in addition to the assumptions of
Theorem 6.3. Then the equation (6.26) gives Y =0 and hence the equation (6.20)
is reduced to

(6.49) lel = - Czlgji,

which shows that A is a special concircular scalar field with characteristic con-
stant ¢2. As we have already seen in Paragraph 3, the submanifold M is locally
a warped product Rx ,M of a 1-dimensional Euclidean space R and (n—1)-
dimensional Riemannian manifold M, to which each A-hypersurface M(x) is
homothetic. With respect to an adapted coordinate system (x!, x%) for 4, it
follows from (3.4), (3.5) and (6.49) that

(6.50) o=1X,
and the metric form of M is given by
g;idxidxt = (dx')? + A'2g ,dxcdx®,

where G, is the metric tensor of M. It follows from (6.24) that n, =¢1=0, A2=0
and 1'2/(1—A?)=c2. From (3.17) and (6.50), the non-trivial components of the
Christoffel symbol {/;} are expressed by
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(6.51) (&Y =@ [Aoe, {hYy = —XVFw {8} = {8}

It is obvious that the equations (6.29) and (6.30) are satisfied. Putting k=1,
j=b and i=a in (6.19) and using (6.51), we obtain

(6.52) Joa = 2 foar

where f;, depend on M only and form a 2-form on M. Moreover we see from
(6.19) and (6.21) that f,* and &2 are independent of x!, which will be denoted by
f»2 and &9 respectively. Making use of (6.22) to (6.25), (6.29) and (6.30), we can
verify that the totality (f, g, &, #) constitutes an almost contact metric structure on
M. By means of (6.21), (6.30), (6.51) and (6.52), we have

4 e = csza'
Putting k=c, j=b and i=a in (6.19) again, we can obtain
7cfba = cz(ﬁbgca - ﬁagcb)‘

Taking account of the last two equations, we can verify that M is a normal almost
contact metric manifold. If ¢2=1, then we see that M is a Sasakian manifold.
Thus we can state the following

THEOREM 6.7. Let M be a submanifold of dimension n>2 with (f, g, D?,
A)-structure in a Kaehlerian manifold, where A does not vanish almost every-
where on M. If the subbundle D% of the normal bundle is an umbilical 2-
section on M, and if the sum of two squared mean curvatures of D% is a constant,
then M is locally a warped product R x ;.M of a 1-dimensional Euclidean space
R and an (n—1)-dimensional normal almost contact metric manifold M, and
each A-hypersurface is homothetic to M. In the case where the sum of two
squared mean curvatures of D% is equal to 1, M is a Sasakian manifold.

If the subbundle D% of the normal bundle is a concurrent 2-section on M,
then /;=0 and 7 and p are constants. Moreover it follows from (6.2) and (6.3)
that the assumptions of Theorem 4.6 are satisfied. By Theorem 4.6, the function
o is equal to (1—42)1/2. Therefore we have ¢2=1 by (6.50). Combining this
fact with Theorem 6.7, we can state the following

THEOREM 6.8. Let M be a submanifold of dimension n>2 with (f, g,
D2, })-structure in a Kaehlerian manifold, where A does not vanish almost every-
where on M. If the subbundle D% is a concurrent 2-section on M, then M is
locally a warped product Rx ;.M of a 1-dimensional Euclidean space R and

an (n—1)-dimensional Sasakian manifold M, and each A-hypersurface is
homothetic to M.
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The solution of A'2=¢2(1—A2) along a A-curve is given by
A = sin ¢cxl.

Therefore, if M is complete, A has stationary points corresponding to x!=0 and
x!=nfc. Thus, by use of a theorem due to Y. Tashiro ([21, 22]), we can state

THEOREM 6.9. Let M be a complete submanifold of dimension n>2 with
(f, g, D?, A)-structure in a Kaehlerian manifold, where A does not vanish almost
everywhere on M. If the subbundle D% of the normal bundle is an umbilical
2-section on M, and if the sum of two squared mean curvatures of D% is a con-
stant, then M is a sphere.

By an argument similar to Corollary 6.6, we have immediately, from Theorem
6.9, the following corollary first due to M. Okumura [12].

COROLLARY 6.10. Let M be an n(>2)-dimensional complete non-minimal
totally umbilical submanifold of codimension 2 in a Kaehlerian manifold.
If the mean curvature vector field of M is parallel in the normal bundle, then
M is a sphere.

7. Submanifolds with induced normal ( f, g, D?, R)-structures

In this Paragraph we consider a submanifold M of dimension n>2 with
induced normal (f, g, D?, A)-structure in an m-dimensional Kaehlerian manifold
M (m—n>2).

If we put

hjipey = Hji,  hjip, = K;; and B Vio, =1

then the equations (5.5), (5.7), (5.8) and (5.10) are written as

(7.1) Vifji = uHy, — w;Hy; + v;Ky; — v,K, 5,
(7.2) Viu; = —AK;; — fi*H;, + Liv;,

(7.3) Vv, = AHj;; — f;"Kj;, — Liu;,

(7.4) Aj=u'K; —viH

on the submanifold M. We shall prove the following

LeMMA 7.1. Let M be a submanifold with induced (f, g, D?, A)-structure
in a Kaehlerian manifold. Then the distribution D? is involutive if and only
if the following is satisfied:

(7.5) fj"v"H,-;, + /hliHji bl (fjhuiKih"'ﬂ.UiKﬁ) + Auj + BUj = O
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with scalar fields A and B on M.
Proor. If D2 is involutive, then we have the equation

[U, V]* = Au* + Bo*,

where A and B are scalar fields on M. Putting A=A4+uil; and B=B+vi,
this equation is reduced to (7.5) by virtue of (7.2) and (7.3). The converse is
trivial.

If we substitute (7.1) to (7.3) into (2.19), then we have
(7.6) St = (fF*HP—f"H ) u; — (FFH =P H)uy + (KR =K ),
— (fi*K P = fi' K *)v; + Li(uv* —v;ut) — L;(u0"—v,u"),
where we have put L;=a,f,l;,,. The normal connection restricted on the sub-

bundle D} of the normal bundle is said to be flat if L;=0 identically. We prove
the following

LEMMA 7.2. Let M be a submanifold with normal (f, g, D2, X)-structure in
a Kaelerian manifold. If the distribution D? is involutive and the normal
connection restricted on the subbundle D% is flat, then we have the relations

(7.7) (1 —lz)uiHj,- = uiuhH,-huj + uivhHihvj,
(7.8) (1= Hj; = utv"Hyu; + viv"H,;,
(7.9) (l—lz)u"Kﬁ = u‘u"K,-huj + uithihUj,
(7.10) (1—}.2)vini = uithihuj + viv"K;,,vj,
(7.11) ujuiHﬁ - UjviHji = - 2ujUiKﬁ, ujuini - Ujvini = 2ujviHji.
PrOOF. Under the assumptions of the lemma, it follows from (7.6) that
(7.12) (fijkh _fthjk)ui = (fi*H,*" —fthik)uj + (fijkh _fthjk)vi
= (fi*Ky* _fthik)vj =0.
Contracting this equation with u” and substituting (7.5), we have
(7.13) (fjkuthh-'lkakj)“t = (fi*u"Hy,— Av* Hy,)u;
+ (fj"v"Hk,,-l-lukaj)U,- bl (fikUthh'Flukai)vj + A(Ujvi —vjui) = O N

and, contracting this equation with u?,
(1 —112)(fjkuthh —'lkakj) + Zluiv"Hi,,uj - ll(uiuhliih - U‘U"I‘I,-,,)vj
— A(1—=A%v; = 0.
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Contracting this equation with v/, we have A=0 and

(7.14) (1= (f;*u"Hy,— A Hy ;) = —2u'v*Hyu; + Au'u"H,;,—vio*Hy)v;.
Substituting (7.14) into (7.13), we can obtain the equation

(7.15) (1 =23 (f j*o*Hy+ Au*H, ;) = Mu'utH,—vio"Hy)u; + 2uiv*Hyp;.

If we substitute (7.14) into the contraction of (7.15) with f;{, then we have the re-
lations (7.7) and (7.8). Similarly, from the contraction of (7.12) with v*, we see
that B=0 and obtain the relations (7.9) and (7.10). Since A=B=0, we also have
the relation (7.11) by taking account of the equations (7.5) and (7.7) to (7.10).
This completes the proof.

We also prove the following

LemMA 7.3. In addition to the assumptions of Lemma 7.2, we assume that
one of two orthonormal vector fields in D% is an umbilical (not geodesic) section
on M. Then the subbundle D% is an umbilical 2-section on M.

Proor. If a is an umbilical section on M, that is,
(7.16) H;; =g,
7 being the mean curvature belonging to «, then it follows from (7.11) that

wu'K;; = vv'K;, uvK;=0.
From (7.9), (7.10) and (7.16), we obtain ’
(7.17) u'K; =pu; and v'K; =1,
where p=u/u‘K;;/(1—2%). By virtue of (7.12), (7.16) and (7.17), we have the
equation
(7.18) Kt = fih K%
It follows from (7.4), (7.16) and (7.17) that
Aj=pu; — ;.

Differentiating this equation covariantly and making use of (7.2) and (7.3), we
obtain

V}ll = pjui - iji + Tp.fji - /’{«pKJ, + ‘L:fithh - Atzgﬁ.

If we take the skew-symmetric parts of this equation and make use of (7.18), then
we have

(7.19) pi; — pu; — Tv; + T + 2tpf; + 2tf;*Kj, = 0,
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and, contracting this equation with 4’ and making use of (7.17),
(7.20) pi = au; + bu;,

where a=uip;/(1—12) and b= —uir;/(1—A?). Similarly, from (7.19), we can
obtain

(7.21) T = — bu; + cv,,

where ¢=vit;/(1—2%). Moreover, substituting (7.20) and (7.21) into (7.19), we
have the equation

f thih = Pfji~
Consequently, contracting this equation with f,/ and making use of (7.17), we have
(7.22) K; = pg;;

and this completes the proof.
Combining Lemma 7.3 and Theorem 6.3, we can state

THEOREM 7.4. Let M be a submanifold of dimension n>2 with normal
(f, g, D?, A)-structure in a Kaehlerian manifold, where A does not vanish almost
everywhere on M. Assume that the distribution D? is involutive and the normal
connection restricted on the subbundle D% .is flat. If one of two orthonormal
vector fields in D% is an umbilical (not geodesic) section on M, then each A-
hypersurface is AS-homothetic to a Sasakian manifold M.

The following theorem is a combination of Lemma 7.3 with Theorem 6.4.

THEOREM 7.5. Let M be a submanifold of dimension n>2 with normal
(f, g, D?, A)-structure in a Kaehlerian manifold, where 2. does not vanish almost
everywhere on M. Assume that the distribution D? is involutive, the normal
connection restricted on the subbundle D% is flat, and one of two orthonormal
vector fields in D% is an umbilical (not geodesic) section on M. Then M is a
space of constant curvature if and only if the manifold M AS-homothetic to each
A-hypersurface is a Sasakian space form and the sum of two squared mean cur-
vatures of D% is a constant.

Under the assumptions of Lemma 7.2, if one of two orthonormal vector
fields o and g in D is concurrent along M, then we see that /;=0 and the relations
(7.16) and (7.22) are valid, that is, the subbundle D% is an umbilical 2-section on
M. Tt follows from (7.2) and (7.3) that the vector fields U and V are infinitesimal
conformal transformations and satisfy the relations (4.1) and (4.2). By Lemmas
4.1 and 6.1, both the mean curvatures belonging to « and f are constants. There-
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fore, by Theorems 4.6 and 6.7, we see that the submanifold M is locally a warped
product R x ,M of a 1-dimensional Euclidean space R and an (n— 1)-dimensional
Sasakian manifold M, to which each A-hypersurface is homothetic. Thus we state

THEOREM 7.6. Let M be a submanifold of dimension n>2 with normal
(f, g, D?, A)-structure in a Kaehlerian manifold, where A does not vanish almost
everywhere on M. Assume that the distribution D? is involutive and the normal
connection restricted on the subbundle D} is flat. If one of two orthonormal
vector fields in D% is concurrent along M, then M is locally a warped product
Rx ;M of a l-dimensional Euclidean space R and an (n—1)-dimensional
Sasakian manifold M.

The following theorem follows from Theorem 4.8 or 6.9.

THEOREM 7.7. Let M be a complete submanifold of dimension n>2 with
normal (f, g, D%, A)-structure in a Kaehlerian manifold, where 1 does not vanish
almost everywhere on M. Assume that the distribution D? is involutive and
the normal connection restricted on the subbundle D% is flat. If one of two
orthonormal vector fields in D% is concurrent along M, then M is a sphere.
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