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§1. Introduction

Let ¢ be a positive integer and let Q, be the group of order 4t given by
0, = {x, y: x* =y, xyx=y},

the group generated by two elements x and y with the relations x! = y? and xyx=y,
that is, Q, is the subgroup of the unit sphere S3 in the quaternion field H generated
by the two elements

x =exp(ni/t) and y =j;

and Q,=Z, and Q, for t=2""! (m=2) is the generalized quaternion group
which is denoted by H,, in [4].

Then, Q, acts on the unit sphere S4*3 in the quaternion (n+ 1)-space H"*!
by the diagonal action, and we have the quotient manifold

S4n+3/0, of dimension 4n+3.

Some partial results on the reduced K-ring K(S***3/Q,) of this manifold are
obtained by [4], D. Pitt [14], T. Mormann [13] and K. Kojima. In this paper,
we shall determine completely the additive structure of K(S4"+3/Q,).

Consider the complex representations a,, a; and b, of Q, given by

ag(x) =1, a;(x) = -1, _[(x 0

l - 1 [ o) [i if ¢ is odd, {b‘(x)_<0 x“)’

a(y)=-1, (a(y)= 0 —1
=1 )

1 if¢zis even,
and the elements
(1.1 o = &a;—1), By =E&b,—2) in R(S***3]Q)  (cf. (3.3),

where ¢ is the natural ring homomorphism of the representation ring of Q, to
R(S4**3/Q,). Furthermore, consider the following subgroups of Q,:

(1.2) Gy = Q, generated by x4 and y, G, = Z, generated by x?7,

where t=rq, r=2""', m=1 and q is odd. Then, we have the ring homomor-
phisms
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ig: R(S#3]Q,) — R(S4*+3Q,),
T R(5*+3)0) — R(L*™(g)) (L' (q)=5*"* Z,),

(1.3)

-~

induced from the natural projections i,: S4"+3/G,—S*"*3/Q,. Let
(1.4) c: KO(L3"*(q)) —> R(L3"*(q)) = R(L2"1())

be the complexification, where I?f)( ) is the reduced KO-ring and L3"*!(q) is the
(4n+2)-skeleton of L2"*1(q).
Then, we have the following

THEOREM 1.5. (i) The ring K(S*"*3/Q,) is generated by the elements a,
when t=1, o, and B, when t is 0dd =3, oy, @, and §; when t is even, respectively,
where a; and B, are the ones in (1.1).

(ii) Put t=rq where r=2""', m=1 and q is odd. Then, the ring iso-
morphism

n =70 @ 7,2 R(S*+3/Q,) = R(S**+3/Q,) @ KO(L3™(q))
can be defined by
o =i and 7w, = c loi¥

by using i} in (1.3) and the monomorphism c in (1.4). Further, for the gener-
ators o; and B, in K(S*"*+3/0,) or R(S***+3]Q,), there hold the equalities

o} + 302 + 40, + 7 if tis odd,
n(ay) = a;, 7(By) =
B+ ¢ if t is even,
where G is the real restriction of the stable class n—1 of the canonical complex
line bundle n over L3"*1(q) and it generates the ring KO(L3"*1(q)).

Consider the following integers u(i) and elements J; and &, in K(S4"*3/Q,)
with r=2m"1 (m=2), where «; and §, are the ones in (1.1) for t=r and

BO) = By, B(s) = B(s—1)* + 4B(s—1) (s=1):
For i=25+d<N'=min{r, n} with 0=<s<m and 0=d <25, put
n=2n+1 ifnisodd, =2n if niseven,
n' = 2%, + b;, 0= b, <25
u(l) = 2m-1+241 5, =B, ifi=1;
u(i) = 2m7sm2raL 5, = B(s) + Tgay 23 TDEHDR(s—1)

fi=251<s<m;
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(1.6) . dy+1  for 2d<bl,,
w(i)=2ms=3a(),  g(i)=
{ i for 2d>b,,,

0;=B{1B(1) TTi=8 2+ B(2)) — 221 BB (s)
+ Y sri20@t-ha-1pdf(s+1—1) ifi=25+d=3,d=1;
ay=o,—2 3213 B(s) T3 2+ B@)).

Then, the additive structure of K(S***3/Q,) is given by the following theorem
where Z,{x) denotes the cyclic group of order k generated by x:

THEOREM 1.7. Let r=2""1, m>2 and N'=min {r, n}. Then, we have
R(S4m*3/Q,) = Z3n+ 1 o) DZyn+ iK% YDB(m), B*(m) = TN, Z,i<6
where B*(m) is the subring of K(S***3/Q,) generated by B,, which is isomorphic

to the subring of KO(L" (2™)) generated by & by sending B, to a.
We notice that the additive structure of K(S*"*+3/Q,)=K(L2"*1(4)) is deter-
mined in [10, Th. A].

For the reduced KO-group I&)(L%”* 1(@)) (q: odd) in Theorem 1.5 (ii), it is
sufficient to determine its additive structure in case when g is a power of an odd
prime (cf. (6.1)).

Let p be an odd prime and r=1, and consider the elements

18 o) =T (e (1)

) )ai in KO(L§(p) (0Ss<r),

where g(s)=(p*—1)/2 and & is the one given in Theorem 1.5 (ii). (@’(s) is well
defined as an integral polynomial in & because the order of &' is a power of p by
[9, Th. 1.1 (ii) and Prop. 2.11 (ii)].) Furthermore, consider the following integers
#(2i) and elements (s, k) in KO(L(p)), where 0<s<r, 0<k<pi(p—1)/2 and
i=q(s)+k+1=[N/2] (N=min {p"—1, n}):

n—p'+1=a,p’(p—1)+b,, 0=b,<p’(p—1);
. a,+1 if 2k+1<b,,
1(21) =pr—s+l+a3, a‘s=
a, if 2k+12b,,
(1.9) 5 o PP DEGAN LG (g —g)pt
a(s, k)= if b;<2k+1<b;+ps—1 or 2k+1<b,—p*(p—2)—1,

o*15'(s) otherwise.

Then, we have the following
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THEOREM 1.10. Let p be an odd prime and r=1. Then the additive struc-
ture of KO(L3(p)) is given by

KO(Ly(p") = T2 Z,51<5(s, k),
where N=min {p"—1, n}, i=(p*+2k+1)/2 and 0=k <ps(p—1)/2.

We prepare some results on the complex representation rings R(Q,) and
R(Gy) for Q, and the subgroups G, given in (1.2) in §2. In §3, we define the
elements o;(i=0, 1, 2) and f;(je Z) of K(S***3/Q,) and study the homomorphism
i*: R(S4"+3/0,)— K(S4"*3/G,) of (1.3) in Proposition 3.10. In §4, we first deter-
mine the order of K(S***3/Q,) by using the Atiyah-Hirzebruch spectral sequence,
and prove Theorem 1.5 in Theorem 4.7 by using the known results on ¢ in (1.4)
given in [9, Prop. 2.11] and the ones obtained in §3.

In §5, we study the subring B"(m) of K(S4"+3/Q,) (r=2m"!, m=2) generated
by B; using the ring monomorphism f: B"(m)—»KNO(L{;'(Zr)) of Lemma 5.10 and
the additive structure of I?O(Lg'(Zr)) given in [5, Th. 1.9], and prove Theorem
1.7 by showing some relations in K(S4"+3/Q,). Theorem 1.10 is proved in §6 by
using the additive structure of K(L4(p")) given in [11, Th. 1.7] and the complex-
ification c: KNOf»IZ which is monomorphic for L3(p").

§2. The complex representation ring R(Q,)

Let ¢t be a positive integer and let Q, be the subgroup of order 4t of the unit
sphere S3 in the quaternion field H generated by the two elements

x =exp(ni/t) and y =j.

Consider the complex representations a; (i=0, 1,2) and b; (jeZ) of Q,
given by

[ao(X)=1,
ao(»)=-1, b,.(x)=(’g 2 )
(2.1) ai(x)=—1, 0 (—1)
[ (—1)i-4 if 7 is odd, bj(y)=( ) .
ai(y)={ . o Lo
(—1)t if ¢ is even,

Then, we see easily the following

ProrposiTION 2.2 (cf. [3, §47.15, Example 2]). The complex represen-
tation ring R(Q,) of Q, is a free Z-module generated by 1, a; (i=0, 1, 2) and b;
(1£j<1t), and the multiplicative structure is given as follows:
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a, iftisodd,
a(2)=1, a%= a,=apa,, b0=1+a0, b,=a1+az,
1 iftis even,
biyi=b,y, b_;=by bibj=bi+j+bi—j’ aoh;=b;, ab;=b,_;.
Let
2.3) o=a;—1(i=0,1,2) and B;=b;-2(jeZ)

be the elements in the reduced representation ring R(Q,). Then, we have

ProrosITION 2.4 (cf. [4, Prop. 3.3]). The reduced representation ring
R(Q)) is a free Z-module generated by o; (i=0, 1, 2) and B; (1<j<t), and the
multiplicative structure is given as follows:

oo — 204 iftis odd,
ag=—20,, ai= o 0y =00y + 0o+ aly,
— 20, if tis even,

Bo=ay, Bi=o1+%, Bii=Bi—i» B-i=Bi
BiB;j=Birj+Bi-j—=2Bi+B;), aofi=—20y o f;i=p,—i—pi—2a,.

These show that the ring R(Q,) is generated by a, if t=1, o, and B, if t is odd =3,
and oy, oy and By if t is even.

The following lemmas are well known:

Lemma 2.5 (cf. [7, Ch. 13, Th. 3.1]). R(S®) is the polynomial ring Z[(],
where { is given by

. Zy Z,
C(Zl+j22)= _ f0r21+j22€S3.

Z2 2y,

Lemma 2.6 (cf. [1, §8]). R(Z,) is the truncated polynomial ring Z[u]/
{uk—1), where p is given by z—exp (2ni/k) for the generator z of Z, and {u*—1)
means the ideal of Z[u] generated by u*—1.

Consider the following three subgroups G, of Q,, where
=rq,r=2"1m2=1 and q is odd:
G, = Q, generated by x? and y,
2.7)
G, = Z, generated by x?", G, = Z,, generated by x1.

Then the inclusion i,: G, < Q, induces the ring homomorphism

(2.8) i¥: R(Q) — R(Gy
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by the restriction of representations of Q, to G,. By the definitions (2.1) and (2.3),
Proposition 2.4 and Lemma 2.6, we see easily the following

ProrosITION 2.9. (1) () = o; (i=0, 1, 2),
i§(B2) = oo, i§(Baivy) = 4+t if t is odd,
i§(B) =P if t is even.
(i) %) =0, i¥(B) =p+pi-2.
(i) (o) =0, iF(a) =p—1(i=1,2), if(B)=p+p'-2.

§3. Some elements in K(S4"*3/Q,)

Assume that a topological group G acts freely on a topological space X.
Then, the natural projection

p: X — X|G
defines the ring homomorphism
3.1) &: R(G) — R(X/G)

as follows (cf. [7, Ch. 12, 5.4]): For an n-dimensional representation w of G,
&(w) is the complex n-plane bundle induced from the principal G-bundle p: X —
X/G by the group homomorphism w: G—GL(n, C). Furthermore, if H is a
subgroup of G, then the inclusion i: H<=G and the natural projections p’: X —
X/H, i: X/H- X/G induce the commutative diagram

R©G) -5, R(X/G)
(3.2) ,-*1 l,-*
RH) -5 R(x/H).

Now, Q, acts on the unit sphere S#'*3 in the quaternion (n+ 1)-space H"+!
by the diagonal action

4G5> qnr 1)=(q415---» 49n+1)  for qeQ,=S° g;eH.
Then the natural projection S4*+3—S4n*+3/Q, defines the ring homomorphism
¢: R(Q) — R(s*+3/Q,)
of (3.1), and by using the same letter, we define the elements

(3.3) 2 =&ay) (i=0, 1,2), B;=¢(By) (jeZ) in K(S**3/Q),
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where o;, B, € R(Q,) are the ones given in (2.3).
The K-ring K(HP") of the quaternion projective space HP"=S*"*3/S3 is
given by

(3.4) (cf. [15, Th. 3.12]) K(HP") = Z[v]/{v*t1),
where v=]—2 and /. is the canonical complex plane bundle over HP".

For the ring homomorphism ¢: R(S3)—K(HP") of (3.1), by the definition of
{ in Lemma 2.5 and v in (3.4), we see easily the following

LEMMA 3.5 (cf. [7, Ch. 13, Th. 3.1]). &((—2) = v.
LeMMA 3.6 (cf. [4, Lemma 4.4]). 7#*(v) = B,,

where n*: R(HP")— R(S*"*+3/Q,) is the homomorphism induced from the natural
projection n: S*"*+3/Q,—~ HP".

ProOOF. We can prove the desired equality by (3.2), (2.1), (3.3) and Lemmas
2.5-6 in the same way as the proof of Lemma 4.4 in [4]. q.e.d.

The K-ring K(L"(k)) of the standard lens space L*(k)=S2"*1/Z, mod k is
given by

(3.7) (N. Mahammed [12]) K(L*(k)) = Z[c]/<{o"*!, (6 +1)*—1),
where 6=n—1 and n is the canonical complex line bundle over L"(k).

For ¢: R(Z,)— R(L"(k)) of (3.1), we have

LEMMA 3.8. &(u—1)=n—1.

Proor. Since the first Chern class of # generates H2(L"(k))=2Z,, we have
the desired equality by the definition of # in Lemma 2.6 (cf. [1, §2 and Appendix,
3)D. g.e.d.

Let i,: S*"+3/G,—S*"*3/Q, be the natural projection induced from the in-
clusion i,: G,<=Q, for the subgroup G, (k=0, 1, 2) in (2.7). Then the induced
homomorphism
(3.9 it: R(84+3]Q,) — R(S*"*3(Gy)
satisfies the following

PROPOSITION 3.10. The equalities in Proposition 2.9 hold by replacing
«; and B; with a; and B; in (3.3) and p with n in (3.7) when k=1, 2.

Proor. By using (3.2), Proposition 2.9, (3.3), (2.6) and Lemma 3.8, we
obtain the desired equalities in-each case. g.e.d.
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§4. Proof of Theorem 1.5

The cohomology group of the quotient manifold X =S4%"*3/Q, is given as
follows:

(4.1) (cf. [2, Ch. X11, §7]) H*(X; Z) = Zy ifO<iZn,
H42(X; Z) = Z, (t: 0dd), = Z,®Z, (t: even) if 0<i<n,
H?**Y(X;Z)=0 if0<i<2n, HYX;Z)= H**X; Z)="Z.
By (4.1) and the Atiyah-Hirzebruch spectral sequence for K(X), we have
LEMMA 4.2. #RK(S4*3/Q,) = 24n+2n,

where A denotes the order of a group A.
We prepare two lemmas for the proof of Theorem 1.5. Put
t=rq, where r=2""1, m>1 and q is an odd integer.
Then, we have the following

LEmMMA 4.3, i%: K(S4"+3]Q,)— R(S***3/Q,) is epimorphic, where i¥ is the
homomorphism in (3.9) for Go=0,.

Proor. By Proposition 3.10, i¥(x;)=0o; (i=0, 1) and i¥(f;)=p; hold. On
the other hand, the ring K(S4"+3/Q,) is generated by «y, a, and B, by [4, Th. 1.1].
Thus, we have the desired result. g.e.d.

Consider the homomorphism

(4.4) ¢&: R(Q) — K(S**3/Q,)
of (3.1) for the natural projection S#"*+3—S4#+3/Q, and set
R =Imé.

Then, concerning with the homomorphism
it: R($4%3]Q,) — R(L*"*\(q)) (L*"*1(q)=S*"*3/Z,)
in (3.9) for G, =Z,, we have the following
Lemma 4.5, i#(R) = Im (c: KO(L3"(g)) - R(L3"*1(q)) = R(L2"*1(9))),
where c is the complexification and L¥(q) is the 2k-skeleton of L¥(q).

Proor. By (3.3) and Proposition 3.10, we have the equalities
B =ni+n"i =2 = c(r(n'-1)), if(a;) =0(j=0,1,2);
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while the ring I?b(L%"”(q)) is generated by r(ni—1) (i=1), where r: R—KO
is the real restriction and is epimorphic for L3"*1(q) (g: odd), (cf. [9, Prop. 2.11]).
Therefore, we obtain the desired result by the first half of Proposition 2.4.

g.e.d.

Now, we consider the ring homomorphism
(4.6) n=no@®m,: R(=Im £) —> R(S**3/Q,) @ KO(L3"*'(q))
given by ny = i¥|R and n; = ¢ 1o(i}|R),

where i¥ is the one in Lemma 4.3 and =, is defined by the above lemma since the
complexification ¢ in that place is monomorphic for odd g (cf. [9, Prop. 2.11]).

THEOREM 4.7. (i) ¢ in (4.4) is an epimorphism and R=K(S4"*3]Q,).
(ii) Let t=rq,r=2""1, m=1 and q is odd. Then = in (4.6) is a ring
isomorphism

n=no@m,: R(S*+3/Q,) = R(S*+3/Q,)®KO(L3"(9)).

ProOOF. In (4.6), n, is epimorphic by (3.3) and the proof of Lemma 4.3, and
so is 7, by Lemma 4.5. On the other hand, by Lemma 4.2 and [9, Prop. 2.11],

#R($4+3]Q,) = 2m+9m*2 and  4KO(L3™*'(9)) = ¢"

Therefore 7 in (4.6) is also epimorphic since g is odd, and we see the theorem
because ¥R < #K(S4"*+3/Q,)=2(m+*3)n+2gn by Lemma 4.2. g.e.d.

REMARK 4.8. By the definition of = in (4.6), Proposition 3.10 and the proof
of Lemma 4.5, we have the following equalities for n in the above theorem:

() = o; (i=0, 1, 2),
n(B2) = oo +r(n*—1),

(Bris1) = g+ +r(n?+1 —1) if t is odd,
n(f) = Bi+r(ni—1) if t is even.

REMARK 4.9. By (3.3) and Theorem 4.7 (i), the relations in Proposition 2.4
hold in R(S4"+3/Q,) and so the ring K(S***3/Q,) is generated by o, if t=1, a,
and B, if tis odd=3, and oy, oy and B, if t is even.

Combining Theorem 4.7 (ii) with the above remarks, we complete the proof
of Theorem 1.5.
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§5. The group K(S*'+3/Q,) (r=2m"1)

In this section, we shall determine the additive structure of K(S*"*3/Q,) for
r=2m"1 with m=2 by giving an additive base. In case m=1, K(§4"*3/Q,)=
R(L?"*1(4)) and its additive structure is given in [10, Th. A]. The results in
case m=2 is given in [4, Th. 1.2]. For m=3, T. Mormann [13] and Kazuyoshi
Kojima have determined its additive structure.

Let m22 and, in addition to the elements «; and f; in R(S4"*+3/Q,) of (3.3),
define f(s) in K(S*"*+3/Q,)(r=2m"") inductively as follows:

(5.1 BO) =By, Bls) = P(s—1)* + 4B(s—1) (sz1).
Then, we have the relations in K(S4"*+3/Q,) given by the following lemmas.
LEMMA 5.2. Bas = B(s) + (=D 'ag (s=1).

Proor. By noticing Remark 4.9, we can show aof(1)= —4u,, aof(s)=
0 (s=2) and the equality in the lemma inductively using the relations in Prop-
osition 2.4. q.e.d.

LemMMA 5.3. B,y — By = 22 {2+ BB TTEE 2+ B(1)} .

Proor. In R(Q,), the relation b,;_, =b;b;_, — by for i=25"1 (s=1) holds by
Proposition 2.2, and so we have

by =by {0y T2 by — ZrPTIr3 0 boey =by+ X2 by (b —2) TT1EE 1 by

Therefore, by (2.3), Lemma 5.2 and the relation (2+ §,)xo=0 in Proposition 2.4,
we have

Bror=Br= T2 Q+B)(B(s)+ (= 1)¥ o) [Trsh s (BE) +0+2)
= 282 Q4 BB TS 2+ (). q.e.d.
LEMMA 5.4 Q+pay =0, 2+B)oy = P—y — By,
2+B)B(m—1) =2, —p,), Bi*' =0.

Proor. The first two follow from Proposition 2.4 and Remark 4.9. The
third one is shown as follows:

Q+pI(Mm—1) = 2+ B,) (B, — (—1)"%ap) (by Lemma 5.2)
=Q2+B)B = 2B,-1—PB;)  (by Proposition 2.4).
The last one follows from (3.4) and Lemma 3.6. q.e.d.

LEMMA 5.5. Let P(x) be a polynomial in x with
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P(x) = ax + higher terms, where a is a positive integer,

and B(n, P) (n=0) be the ring generated by x with the two relations x"*1=0 and
P(x)=0. Then, $#B(n, P)=a".

PROOF. We can prove the equality inductively by noticing that B(0, P)=0
and by showing that

(%) Ker(p,: B(n, P) — B(n—1, P)) = Z,{x")

for the natural ring epimorphism p, given by p,(x)=x.

- If p(»)=0 for y € B(n, P), then y=0Q(x)x" + Q,(x)P(x) for some polynomials
Q; by definition, which shows that y =kx" in B(n, P) for some k€ Z. On the other
hand, ax"=P(x)x""'=0 in B(n, P) by definition. Conversely, if kx"=0 (keZ)
in B(n, P), then kx"=R,;(x)x"*!+ R,(x)P(x)=ak’x" for some polynomials R;
and some k’ € Z, which shows that k=0 mod a. Thus we see (x). q.e.d.

LEMMA 5.6. Let B"(m) be the subring of RK(S*"*3/Q,) (r=2m-1) generated
by B,. Then

$B"(m) < (4r)".

PRrROOF. Since f(s)=225f, + higher terms by (5.1), we see that the polynomial
P’(B,) in B, given by the right hand side in Lemma 5.3 is 2m(2m~2 —1)f, + higher
terms. Consider the polynomial P(8,) in 8, given by

P(B,) = 2+ B,)B(m—1) — 2P'(B,) = 4rB, + higher terms.

Then, by the definitions of B(n, P) and B"(m), the equality in Lemma 5.3 and the
last two ones in Lemma 5.4 show that a ring epimorphism B(n, P)— B"(m) is
defined by sending the generator x to #,. Thus we see the lemma by the above
lemma. g.e.d.

For a given integer n, put
(5.7) n =2n+1 ifnisodd, =2n if nis even,
and consider the ring monomorphism
¢': KO(LY (2r)) — R(L2"*12F))  (r=2m"1, m=2)

given by ¢’ =c; if nis odd, =c¢, if n is even, where c; =c and ¢, are the ones defined
in [S, Prop. 5.3] by modifying the complexification ¢. Furthermore, consider the
ring homomorphism

i*: R(S4"*3/Q,) — K(L?"*1(2r)) in (3.9).
Then, by [5, Proof of Cor. 5.16] and Proposition 3.10, we have
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(5.8 (@ =n+n"'—2=1i3B),

where & is the real restriction of 6=#—1 in (3.7). Therefore, we can define the
ring epimorphism

(5.9 f=c""tei¥: B*(m) — R"(m) with f(8,) = &,

where B"(m) is the subring of K(S*"+3/Q,) generated by f, and R"(m) is the one
of KO(L"'(2r)) generated by o.

LEMMA 5.10. f is a ring isomorphism, $B"(m)=(4r)" and f(B(s))=a(s),
where G(s) € KO(L" (2r)) is the element defined in [5,(1.6)]1 by 6(0)=3a and &(s)=
o(s—1)2+4a(s—1) (s=1).

Proor. We notice that #R"'(m)=(#K~0(L"'(2r)))/2=(4r)" by [5, (1.4),
Th. 1.9 and Cor. 4.12]. Thus f is isomorphic by Lemma 5.6. Since f(8;)=ga,
we see the desired equality by (5.1) and the definition of a(s). g.e.d.

LEMMaA 5.11. 2"11B(m—2) =0 in K(S**3/Q,) (r=2m"124).

PROOF. 2"*1G(m—2)=0 in KO(L"(2r)) for r=2m"1>4 by [5, Lemma
6.9(1)]. Thus, the desired result follows from Lemma 5.10. g.e.d.

LEMMA 5.12. The following relations hold in RK(S*"*3]Q,) (r=2m"122):
(i) 2"*iey, = 0.
(i) 2mley = 2"2{30d Bls) [Trsd 2+ ()} -

Proor. (i) follows from the relations aof; = —2a, and p3*1=0 in Lemma
5.4.
(i) 0=aft*! = pi(B,—1—B1) — 24, B}

= (Xl=o (= D2BF ) (Br-1 — )+ (= D" 12H ey
= (—Dm2" 3 B(s) T3 2+ @) + (—1DH12m* e
= (—Dm2"2 ZP B(s) [T @+ (@) + (1) +127Hay,
by Lemmas 5.3-4 and 5.11. q.e.d.

Let u(i), &, and §; be the integers and the elements in K(S4"*3/Q,) (r=2m"1>2)
defined in (1.6). Then, we have the following

LemMMA 5.13. (i) 2"*l@; = 0.
(i) The subring B"(m) in Lemma 5.6 is given by

Br(m) = ¥ X, Z,)<0;> (N’ = min {r, n}).
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Proor. (i) follows from the definition of &, in (1.6) and Lemma 5.12 (ii).

(ii) By the additive structure of I?b(L"'(Zr)) given in [5, Th. 1.9], where 2k =
g(m—1) for the stable class k of the non trivial real line bundle over L*'(2r),
and by the definition (1.6) and Lemma 5.10, we see immediately that

(5.14) R"(m) = ¥, 2,;<6;) and f(J) = 0,
for the isomorphism f: B"(m)=~R"(m) in (5.9). Thus (ii) holds. g.e.d.
We are ready to prove Theorem 1.7.

PROOF OF THEOREM 1.7. The group K(S*"+3/Q,) is generated additively
by g, &, and B"(m) in Lemma 5.6 by Remark 4.9 and Lemmas 5.2-4. On the
other hand, 2"+12n+1(#B"(m))=22"+2(4r)" =4K(S*"+3/Q,) by Lemmas 4.10 and
4.2. These together with Lemmas 5.12 (i) and 5.13 complete the proof of
Theorem 1.7. q.e.d.

§6. An additive base of KO(L%(q)) for odd ¢

In this section, we give an explicit additive base of the group I?Z)(Lg(q)) for
odd g, where L{(q) is the 2n-skeleton of the standard lens space L"(q)=S2"*+!/
Z,mod g. For this purpose, it is sufficient to study the case g=p’ (p: odd prime,
r=1), because the following fact is known (cf. [6, Prop. 2.2]):

(6.1) Let g=T]1p*»? be the prime power decomposition of q and
my: Lg(p*» D) — L§(q)
be the natural projection. Then we have the isomorphism
@ 1 KO(Li()) = @, KO(LY(p*»@))  with 14(5) = &,
where G is the real restriction of c=n—1 in (3.7).

In the rest of this section, let p be an odd prime and r>1.
To study the group KO(L4(p")), consider the elements

62) oc=n—-1=00), a(s) =n*"—1=(1+0)P"—1 (0Zs=71), o) =0,

in K(L3(p"), where 7 is the one in (3.7). Further, consider the elements
5()eKO(LY(p) and (s, k) e KOLY(P))

defined in (1.8-9). Then, we have the following three lemmas.

LEMMA 6.3. For the complexification c: KO(L3(p")) — K(L&(p")), the
following equalities hold:
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(i) ¢o =0%(1+0),
(ii) c6'(s) = o(s)/a(1+0)4®®),
(iii) c(@'(s—p)P'Fantktly = g(s—2)P'g2k*1[(1 4 g)a(D+ht1,
where o and o(s) are the elements in (6.2) and q(s)=(p*—1)/2.
PrROOF. (i) is proved in [9, (2.12)].
(i) By (i) and (1.8), we see that
(c5 ()(1+0)19 = T (p(2i+1)) TG~ (MG a2
= 23 {Zlo(p*/(2i+ 1) (D) (250} o
= X1 (p/(j+ 1)) Th=o (7DD 07
= 33 (»°/(j + 1)) o/ (by [8, Lemma (3.7)])
=255 (el = (1+ o) —1)/o=0a(s)/o.
This implies (ii).

(iii) follows immediately from (i), (ii) and the definition g(s)=(p*—1)/2.
q.e.d.

LEMMA 6.4. For the elements a(s, k) in (1.9), we have
ca(s, k) = a(s, 2k+ 1)/(1 + o)) +k+1]
where a(s, d) e R(L&(p")) is the element defined in [11, (1.6)].

Proor. By Lemma 6.3 (iii) and the definition of o(s, d) in [11, (1.6)], we
see easily the desired equality. q.e.d.

__ Lemma 65. () 5'(s)=293 k;6/ with kyy=1, and §G&'(r)=0 in
KO(Ly(p")-

(ii) For 0Ss<r,0=k<p*(p—1)/2 and i=q(s)+k+1=[N/2] with N=min
{p"— 1, n}, and the integer t(2i) defined in (1.6), we have

o(s, k) = i, 1,6/ withl; =1 mod p, and t2i)a(s, k) =0 in Ia)(Lg(p’)).

PrOOF. We see the first half of (i) by (1.8), and it implies that of (ii) by (1.9)
since 4, in (1.9) is positive by definition. We have ¢(¢6'(r)) =00(r)/(1 +0)1"W*1=0
by Lemma 6.3 (i), (ii) and (6.2), which implies ¢6'(r)=0 since ¢ in Lemma 6.3 is
monomorphic. Since #(2i)o(s, 2k+1)=0 in K(L2(p")) by [11, Th. 1.7], Lemma
6.4 implies the second half of (ii). q.e.d.

Now, we are ready to prove Theorem 1.10.
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PROOF OF THEOREM 1.10. By [9, Prop. 2.11 (i)], we have the following
(6 6) The ring KO(L (p") is generated by & satisfying ¢"/21*1=0, and
KO(Ly(p))=prto2).
This and Lemma 6.5 imply that KO(L%(p")) is generated additively by &(s, k) in
(1.6) and is X2 Z,,,5(s, k) (i=q(s)+k+1), because we have [N/ 1(2i)=
p'tr/2) by a routine calculation. Thus, we complete the proof of Theorem 1.10.
q.e.d.
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