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Introduction

Let T 3 denote a 3-torus SΐxSίxS1. Let W(£, m, n) be the 4-manifold

obtained from T 3 x [0, 1] by attaching three 2-handles along the three standard

generators S1 in Γ 3 x 1 with framing numbers £, m and n (see §1 for the

precise definition). Then, dW(£, m, n) = d0W(£9 m9 ri) U dγW(£, m,n) = Γ 3 x 0 u

H(£, m, n) and πγ{H{£, m, n)) = <α, β9 y; a = (/?"1y/fy-1)1, β = (y-ιocy(χ-ψ, y =

(oL~1β<xβ~ί)ny. In particular, H(£, m, n) is a homology 3-sphere. It is known

that H(0, m, n) is diffeomorphic to S 3 and H(l, 1, 1) is the Poincare homology

3-sphere. We refer the reader to [5], in which Y. Matsumoto proves some

facts about H(£, m, n) including the claims that the author made before.

We shall prove the following two theorems. Let SDiff(T3) denote the

group of all orientation preserving diffeomorphisms of T 3 . For an fe SDiff(T3)

we consider the matrix /* e SL(3, Z) which is defined as the induced automorphism

/* of Hi(T3) with respect to the basis consisting of the classes of three standard

generators.

Since T 3 is an irreducible and sufficiently large 3-manifold without boundary,

/*= =S f* implies tha t/and g are mutually isotopic by the theorem of Waldhausen

[9].

THEOREM 1. Let feSDiff(T3). Then, there exists an FeSDiff(W{\, 1,1))

such that F\T3 x θ = / and F|H(1, 1, ί) = id.

THEOREM 2. Let feSDiff(T3). Then, there exists an FeSDiff(W(0,0,0))

satisfying F\T3x0=f and F\H(0, 0, 0) = ϊd if and only if /* belongs to the

subgroup G = {(αo)GSL(3, Z ) ; aίj + a2j + a3j = l mod 2 0 = 1, 2, 3)}.

REMARK. If we replace W(0, 0, 0) with Jf (0, m, n), we should replace G

( 1 m n
0 1 0
0 0 1

As an application of Theorem 1, we have the following theorems. Take a

non-singular algebraic curve C of degree 3 in the complex projective plane P2.

Then, C is diffeomorphic to a 2-torus T2 and the self-intersection number [ C ] 2 = 9 .
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Blow up P 2 at 9 distinct points on C. Then, we get an embedded torus T2 with

trivial normal bundle in P2#9( — P2). Remove the interior T2 x ύ2 of the regular

neighborhood of T2 and define N = PH9(-P2)- T2 x D2.

THEOREM 3. The manifold N U T2xD2 obtained by reattaching with any

diffeomorphism of T 3 /s diffeomorphic to the original P2#9( —P2).

THEOREM 4. The manifold N {] N obtained by attaching with any orien-

tation reversing diffeomorphism of T 3 is diffeomorphic to the K3 surface.

To prove Theorem 3 and that the diffeomorphism class of N U N in The-

orem 4 does not depend on the choice of orientation reversing diffeomorphism of

T3, it suffices to embed W(-l, - 1 , - 1 ) = -W(l, 1, 1) in N so as to be dN =

d0W(—\, —1, —1). This is not difficult and we can prove moreover Prop-

osition 6.1 which says that N is diffeomorphic to W( — l, —1, —1)\JP(E8; —2),

where P(E8; —2) is the manifold obtained by plumbing according to the graph

E8 weighted by — 2. We use the study of elliptic surfaces due to Kodaira for the

proof of Proposition 6.1 and the remaining part of Theorem 4.

REMARK. P2#9( — P2) has a structure of an elliptic rational surface and when

the reattaching corresponds to a logarithmic transformation, N U T2 x D2 has

been known to have a structure of a non-singular rational surface with b2 = 10

(see Remark 2 in §6); in particular, to be diffeomorphic to P2#9( —P2). The

logarithmic transformation of multiplicity m corresponds to the reattaching by
/ I 0 0\

/with / * = 0 * * eSL(3, Z).
\0 * m)

In §1 we introduce the precise construction of W(£, m, ή) and some facts

about H(£, m, n). §2 is devoted to the proof of Theorem 1. In §3 we determine

the generators of the group G defined in Theorem 2. With this the proof of

Theorem 2 is completed in §4. In §5 we get an embedding of W( — l, — 1, — 1) in

N and in §6 we prove Proposition 6.1 by studying the structure of an elliptic

surface and its general fibre. §§7 and 8 are devoted to the proofs of Theorems 3

and 4 respectively.

§ 1. Homology 3-sphere H(£, m, ή)

We consider T3 = R3IZ3 as the cube whose left-right, front-back and upper-

lower sides are identified. Let α, β and γ be the loops corresponding to the

coordinate axes with identified end points. And let 0<a<l/2. Then, S^ =

S1x(l — a)xa, Sj = axS1x(l — a) and SJ = (1— a)xa x S1 are disjoint loops

in T 3. They are encircled by the — (meridian) loops with base point (0, 0, 0)

of homotopy classes β'^βy'1, y^αyα" 1 and oc~ίβaβ~1.
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Figure 1

By using van Kampen's theorem we get

= <α, β9 y; [α, β~ ^ , Γ = [y, or

The framing of the regular neighborhood NζS1) of S1 is defined to be an

isotopy class of a diffeomorphism h: SίxD2-+N(S1). To fix the notation we

draw the parallel axes h(Sι x θ u S1 xpt) with ptedD2 in the cube and consider

#(right-handed screws) — #(left-handed screws) as a complete numerical invariant

of the framing, called the framing number. (Ex. = \ - £ = z stands for the (+1)-

framing). Three 2-handles D2xD2 are attached to T 3 x [0, 1] along JV(SJ),

N(SjJ) and N(SJ) in T 3 x 1 with the framing numbers £9 m and n respectively.

W(£, m, n) = T3x [0, 1] U (D2 xD2\]D2xD2\] D2xD2) denotes the resulting

surgery trace. Then, we have oc (β~ίyβy~1)~lι=β -(y~1ayoL~ί)~m = y

(oc-ίβ(xβ-1)-n = ί in H(£, m, n) = d1W{e, m, n). Hence, π ^ i ί ^ , m, n)) =

<α, J8, y; QL^fβ^γβγ'1)^ jS = (y- 1αyα" 1)-, y = ( α - 1 M " 1 ) M > . In particular,

//(^, m, n) is a homology 3-sphere.

As mentioned in the introduction we refer the reader to [5] for the related

results. For example μ(H(£, m, n)) = £mn mod 2.

REMARK. If we attach a 0-framed 2-handle to W{£9 m, n) along JV(SJ) in

T 3 x 0, we have an embedded 2-sρhere as the union of S* x [0, 1] and the axes of

two 2-handles attached along iV(SJ). Then, the self-intersection number of the

2-sphere is equal to the framing number £9 when the orientation of W(£, m, ή) is

given by the 4-ple of vectors (υu v2, v3, ι?4) where v1= - 1 0 in T 3 x [0, 1] and

(v2, v3, ϋ4) gives the orientation of T 3 x 1. As a boundary of W(£9 m, n), T 3 x 0

inherits the orientation opposite to that of T 3 x 1.
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§ 2. Proof of Theorem 1

Note at first the following facts. Assume that / and g of SDίff(T3) extend
respectively to G and F of SDiff(W(ί9 1, 1)) which restrict to the identity on
H(ί9 1, 1). Then,/o0 extends to F°G with FoG\H(l, 1, l) = id and / - * extends
to F~x with F~ι\H(l, 1, 1) = id. Also, if/is isotopic to / ' as diffeomorphisms of
T3, then / ' can extend to F' as the union of the isotopy between / ' and / with F
and this F' satisfies F'\H(l9 1, l) = id. So, we have only to prove Theorem 1
for the generators of SL(3, Z) = πo(SDiff(T3)). Of course, by the operation of
matrixes on R3, SL(3, Z) is naturally a subgroup of SDiff(T3).

A unimodular matrix with just one non-zero entry (i.e. +1) in each row and
column is called a permutation matrix. And a permutation matrix is called

/ 1 0 1\ / 0 0 1
restricted if at least one diagonal entry is 1. SetQ= 0 1 0 and Pi = 0 1 0

\0 0 1/ V-l 0 0,
Then, SL{3, Z) is generated by the restricted permutation matrixes and the
matrix Q. In fact, by the Euclidean division algorithm we see that SL(2, Z) is
generated by Q and Pί9 and SL(3, Z) is generated by SL{2, Z) and the restricted
permutation matrixes.

Recall that the surgery trace W(l, 1, 1) is the union of T3 x [0, 1] and three
2-handles attached along JV(SJ), N(S}) and N(S)). Let fe SDiff(T3) be defined
by a non-identity restricted permutation matrix P. Then, / makes one axis
fixed and the other two axes permuted or orientation reversed. The framing
numbers of the regular neighborhoods of three axes are all +1 and / may reverse
the orientation of the axes but preserves the orientation of T3. So, /|WiV(axes)
preserves the framing. Hence, / can extend naturally over the corresponding
2-handles, i.e., there is an element F of SDiff{W{\, 1, 1)) such that F |Γ 3 x0=/.
Moreover, we can assume that F restricts to the identity on one of the 2-handles.

LEMMA 2.1. Let F eSDiff(W(l9 1, 1)). Suppose that F restricts to the
identity on one of the 2-handles of W{\, 1, 1). Then, g = F\H(l9 1, 1) is iso-
topic to the identity.

PROOF. Take the axis SJ in H(ί9 1, 1) of the dual 2-handle of W(l9 1, 1).
Since i^the 2-handle = id, g\N(S1

d) = id. Recall that H(ί9 1, 1)-Λ(SJ) is
diffeomorphic to S3-iV(trefoil knot); this is because T3-N(Sl U 5^ U SJ) =
S3 — iV(Borromean rings) [4] and the surgery along two components reduces the
remaining component to the trefoil knot (see [5] for example). So, h =
g\H(l, 1, 1) — iV(SJ) is considered to be a diffeomorphism of S3 — iV(trefoil knot)
onto itself which restricts to the identity on the boundary. It is known that the
outerautomorphism group of π^S 3 — trefoil knot) = <α, b; a2 = b3} is of order
2; the non-trivial element is represented by α-^α"1 and b-^b'1 (see Schreier
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[8]). Since the meridian ab'1 remains unchanged by h, h induces the identity

on π x . Note that the non-trivial knot complement is an irreducible, δ-irreducible

and sufficiently large manifold which is not homeomorphic to a line bundle.

By the theorem of Waldhausen [9, Cor. 7, 5], h is isotopic to the identity relative to

the boundary. Hence, g is isotopic to the identity. q. e. d.

This completes the proof for the restricted permutation matrixes, because F

can be reconstructed as the union of the original F and the isotopy between g

and the identity.

Now let/be the element of SDiff(T3) defined by Q. Then, /*([α], [β], [y]) =

([α], [jS], [α + y]) and we can assume that /|JV(SJ) U N(S$) = id. We consider

that two 2-handles of W(l, 1, 1) are attached along JV(SJ) and N(S}). The 3rd

2-handle is originally attached along N(SJ) but we can deform it, for example,

by sliding it over the handles attached along N(S*). The resulting surgery trace is

still diffeomorphic to W(l9 1, 1) but the new 3rd 2-handle is considered to be

attached along the regular neighborhood of a connected sum S*+y of S* with a

parallel axis (SJ)' on dN(SιJ by a band in T3-N(Sι

a U Sι

β). If we take a band

as in the following figure, we can see that 5J+ y is isotopic to /(SJ) in T3-Sl U S}.

Let f.n.ί

Figure 2

stand for the framing number of N(SX). With the above band

sum

f.n.(Sί+ 7)=f .n.(S})+f.n.(SJ) - 1 = 1,

because the figure of the parallel axis of Sl+y has an extra = = ( § ) . So, / can

extend to a diffeomorphism F of W(ί9 1, 1) which restricts to the identity on the

handle attached along N(Sl). By Lemma 2.1 this completes the proof of The-

orem 1.
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§ 3. Generators for the groups of stochastic matrixes modulo 2

LetG0 = {(aiJ)eSL(39 Z ) ; an+ai2 + ai3ΞΞlmod2(i = l,2, 3 )and a
/I 0 2\ / I 0 1

fl3/=l mod2 O*=l, 2, 3)}. Set R= 0 1 0 and S= 0 1 1
\0 0 1/ \0 0 1

PROPOSITION 3.1. Go is generated by the restricted permutation matrixes

and R.

To prove this we use the following elementary lemma.

LEMMA 3.2. If |&|>|α| is satisfied for non-zero integers a and b9 then

PROOF. This is because -\b\< -\a\+(\b\-\a\) = \b\-2\a\<\b\ and
\\b\-\2a\\ = \b-2(ύgn{ab))a\.

PROOF OF PROPOSITION 3.1. Let g = (aij) be an element of Go. Note that
Go mod 2 is generated by the images of restricted permutation matrixes. So,
by multiplying restricted permutation matrixes we can assume that atj = δ^ mod 2.
By multiplying R±x from left the matrix (αι7) is transformed into (αjy) with
a'1j = alj±2a3j O' = l, 2, 3) and af

ij = aij (otherwise). Similarly the multi-
plication of P^*1?^1 from left transforms (αt7) into (a'(j) with a'3J = a3J +
2atj 0 = 1, 2, 3) and a'ίJ = aij (otherwise). Here, P t is the restricted permutation
matrix defined in §1. With this fact and Lemma 3.2, we can decrease \atl\ and
\a3i\ by even integers unless |α 3 1 |=0 . So, the reduced {atj) satisfies α 3 1 =0.
Consider the multiplications of P2R

±1P2ί and P3J
C>2^±1^21^31 fr°m left for the

/ I 0 0\ / 0 1 0\
restricted permutation matrixes P2 = 0 0 1 a n d P 3 = —1 0 0 . Then,

\0 - 1 0/ \ 0 0 1/
by Lemma 3.2 we can decrease | α u | and \a21\ further by even integers without
changing α 3 1 = 0 unless \a2ί\=0. So, we get a reduced matrix satisfying a2X —
a31=0. Then, aίl = ±l. And if a11 = — 1, we multiply a restricted permutation

/ - I 0 0\
matrix 0—1 0 we may assume α u = l and a21 = a3ί=0. By multiplying

\ o o i)
R±x and P2R

±XP2

X from right we can reduce further so that aί2 = aί3=0. We
can reduce also the remaning terms in the same way and finally get the identity
matrix from the original (αl7) by multiplying the restricted permutation matrixes
and R*1. q.e.d.

Let G = {(αι7)eSL(3, Z); α υ + α2; + α3,. = l mod2 0 = 1, 2, 3)}. Then, Go

is a subgroup of G of index 4. In fact, G/Go s G mod 2/G0 mod 2 with
\G mod 2| =24 and |G0 mod 2| = 6. Moreover, G mod 2 is generated by Go mod 2
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and the image of 5. This implies the following proposition.

PROPOSITION 3.3. G is generated by the restricted permutation matrixes

together with R and S.

§ 4. Proof of Theorem 2

To prove the 'if'-part it suffices to show that the diffeomorphisms defined by

the generators of G extend to diffeomorphisms of W(0, 0, 0) as in the proof of

Theorem 1. Tn fact, since any orientation preserving diffeomorphism of

H(0, 0, 0) = S3 is isotopic to the identity, we can modify the diffeomorphism of

W(0, 0, 0) so as to restrict to the identity on H(0, 0, 0) without changing it near

Γ 3 x 0 .

In case feSDiff(T3) is defined by the operation of a restricted permutation

matrix, the extension is easily constructed as in §2.

Let now / be defined by the matrix R. Then, /*([α], [β], [y]) = ([α], [/?],

[2α + y]). We consider the handle adding (or sliding) defined by the following

band sum S\a + y of SJ with the parallel axes (SJ)' and (SJ)" on dN(Sl).

Figure 3

Observe that /|N(SJ) U N(S}) = id and

Moreover,

is isotopic to /(SJ) in T3-Sl U

J) + 1 - 1 = 0.

So,/extends to a diffeomorphism of W(09 0, 0).

If / is defined by S, then /„([«], |j8], [y]) = ([α], [jί],

consider the band sum Sl+β + γ of SJ with the parallel axes (

dN(Sl) and dN(S$) respectively as in the following figure.

[α + /ϊ + y]). We

£)' and (S^)' on
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sι

β (sι

βy

/A , J
1 >

/ *
/

/
/

/
/

/

f'"

/

(Si)'

Figure 4

Then, f\N(Sί

Λ)ΌN(Sί

β) = id and Sι

a+β+y is isotopic to /(SJ) in T 3 - S i u S ^ .

Moreover, the framing number is zero as the sum of =ro) a n ί * ^ ) = So, /

extends to a diffeomorphism of W(0, 0, 0). Hence we complete the proof of the

'if-part.

There is a natural identification id: dT2xD2-+d0W(09 0,0) such that

(id)~ί(S1) with 0-framing bounds a framed 2-disk in T2xD2. For an element

/ of SDiff(T3) we consider a manifold Λf = Ff(O, 0, 0) u, T 2 x 2)2 obtained by an

attaching diffeomorphism idof: dT2xD2-+d0W(0, 0, 0). Assume that / extends

to an F e SDiff(W(0, 0, 0). Then, M is diffeomorphic to W(0, 0, 0) u ω T2xD2 =

S2xS2 — O4. In particular, M is of even type. But, if /* is not contained in G,

there is a column with α 1 # , a2* and α 3 * satisfying α1H. + α 2 * + α 3 * = e v e n We

may assume * = 3, because PGP~1 = G for any restricted permutation matrix P.

Then, observe that /(-SJ) is realized by some band sum tfiaS^ + α^S^ + α^SJ

and its framing number modulo 2 is equal to (a13 — l) + (a23 — l) + ( α 3 3 — l)mod 2.

In this case M has a homology class of odd self-intersection number, that is, M

is of odd type. This is a contradiction, which completes the proof of the Only if '-

part.

§ 5. Embedding of W{ -1, - 1 , - 1 ) in N

We shall show the following lemma with the minimum knowledge about

algebraic curves.

LEMMA 5.1. W(-l, - 1 , - 1 ) = -W(l9 1, 1) is realizable as a submanifold

in N (defined in the introduction) such that dN = d0W(-l, - 1 , - 1 ) .

PROOF. Let D 4 be a small disk neighborhood of (0, 0, 1) in P2. Since the

diffeomorphism class of (P 2 , C) is independent of a particular choice of the

non-singular curve C of degree 3 in P 2 , we may take C = {(x, y, z)eP2;
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z3 = 0} with sufficiently small ε>0. Then, due to Milnor [6] C Π

is a right-handed (2, 3) torus knot k (the orientation in [6] is opposite to ours) and

C n D 4 is isotopic to the minimal Seifert surface S of fe in SD4. So, we may

consider that our T2 is a union of S with a 2-disk outside D 4. Take two circles

γt and y2 on S as in the following figure.

Figure 5

Then, we can find smoothly embedded 2-disks Dx and D2 in D 4 such that Df Π 5 =

aZ). = y. (i = l, 2) and Dλ 111)2 = 5 0 ! nδD 2 = one point. In P 2 ί f9(-P 2 ) there is

also a smoothly embedded 2-sρhere which intersects with T2 transversally at one

point. Therefore, on dN(T2)=T3 there are three disjoint circles along which we

can attach 2-handles embedded in N. The framing numbers of the 2-handles

are all — 1 in fact, for the first two the framing number is equal to the linking

number of the parallel circles on S in 3D4 and for the last one it is equal to the

self-intersection number of the 2-sphere (see Remark in §1). This means that

W(-\, - 1 , - 1 ) c J V w i t h a 0 W ( - l , - 1 , -l) =

% 6 A structure of N via an elliptic surface

We shall prove a stronger result ( = Proposition 6.1) than Lemma 5.1 by

using the facts about algebraic curves and elliptic surfaces.

PROPOSITION 6.1. N is diffeomorphic to the union W( — 1, — 1, — 1)U

P ( £ 8 ; —2), where P(ES; —2) is the manifold obtained by plumbing according

to the graph E8 weighted —2.

-2 -2 - 2 - 2 - 2 - 2 - 2•
2

We use the construction of the basic member φ: V-+Δ of the family &"(/> G)

of elliptic surfaces over a non-singular curve Δ due to Kodaira [2, §8]. In our
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case Δ=Pι and Δ' = Δ — {au a2} for some two points ax and a2 in P 1 ; the func-

tional invariant e/:Δ — {a1, a2}-+P1 is the constant function </ = (); and the

homological invariant G is determined by the monodromy ( __* π ) around aγ

/Ό — 1 \ u /
and ί, . J around a2. Then, we have an elliptic surface φ: V-+P{ with only

two singular fibres, one is of type II* on aί and another of type II on a2.

This is constructed by blowing up and down the quotient of the product bundle

ExP1 by the monodromy group of order 6, where E is the elliptic curve Cj

(Z+Zω) with ω 2 + ω + l = 0 . Proposition 6.1 will be proved by the following

two lemmas.

LEMMA 6.2. N is dίffeomorphic to V—N(a general fibre), where N(a

general fibre) is the interior of the regular neighborhood of φ~1(a) with ae P1 —

LEMMA 6.3. V— N(a general fibre) is dίffeomorphic to W( — ί9 —1, — 1) U

-2).

PROOF OF LEMMA 6.2. By the construction we see that πί(V) = 0 and Euler

number χ(V) = χ(ψ-1(a1)) + χ(ψ-1(a2)) = 12. The formula of M. Noether

12(pg+l) = χ + cl implies pg = 0 because cl = K2 = 0 for the elliptic surfaces. In

fact, due to Kodaira [2, Ths. 12.1 and 12.3] the canonical line bundle K of V is

induced from the complex line bundle I —f over Δ, where ! is a cotangent line

bundle of Δ and c(f)= — pg— 1. Here, we note that complex line bundles over

Δ are determined by their Chern number c: Hι(Δ; CX)-+H2(Δ; Z)^Z. In our

case c( !)=—2 and c(f)=— 1. This implies also that K= — [F] where F is an

irreducible positive divisor defined by a general fibre of the elliptic surface V.

So, P2 = άimH°(V; Θ(2K)) = 0. Hence, V is a rational surface (see [7]), because

the irregularity q = Q which follows from π1(V) = 0. This means that, if we blow

down V 9 times, σ~9(V) is biholomorphic to P2. Now we remark that the basic

member φ admits a holomorphic section s: P J->K and ^(P1) is a non-singular

rational curve with (s(P1))2 = c(f)= — 1. Since φ~x{a1) consists of 9 rational

irreducible curves whose intersection form is of the graph E9 weighted —2, we

find the generators of H2(V; Z) as follows.

By blowing down the 9 exceptional curves (i.e. non-singular rational curves

with self-intersection number = — 1) successively as above, the general fibre reduces

to a non-singular curve C of genus 1 in P 2 . By Chow's theorem [1], C is an

algebraic curve. Since a non-singular algebraic curve of degree d in P 2 has

genus (d—l)(d — 2)l2, C is a non-singular algebraic curve of degree 3. Describe

this process in the inverse direction; we blow up P 2 at a point on C and get a curve

Cι in σ(P2) and inductively we blow up σ*(P2) at a point on Q and get a curve

C ί + 1 in σ(σf(P2)) = σ ί + 1 (P 2 ) ; and finally C 9 = Fcσ9(P2) = V. The diffeo-
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- 2 - 2

- 2

- 2 - 1

- 2 -

- 2

blow down
6 times

- I
• - 2

— general fibre

s(Pι)

-2

blow
down

- 1 -

- 1

y _ ;
/ \ blow

down

0

- 1 -

Figure 6

blow
down

intersection with
triple multiplicity

morphism class of (σ9(P2), C9) is independent of the choice of the point on Ct

at which we blow up σ^P2). Hence, for our T2 in P 2 # 9 ( - P 2 ) defined in the

introduction we have a diffeomorphism g: F->P2#9( — P 2) satisfying g(F)=T2.

Remove the interior of the regular neighborhood and we get a diffeomorphism

of V-N(F) onto N. q.e.d.

PROOF OF LEMMA 6.3. Remark that the regular neighborhood of the sin-

gular fibre is given by blowing up and down of the oribit space of the equivariant

regular neighborhood of the central fibre in the product T2-bundle with the

operation of monodromy. So, we can infer that the preimage of a small disk

neighborhood of the image of a singular fibre by the projection φ is a regular

neighborhood of the singular fibre. On the other hand the regular neighborhood

of the singular fibre of type II* is P(E9; — 2) and that of type II (i.e. of rational

curve with one cusp singularity) is the regular neighborhood of the union of a

general fibre F and two vanishing cycles corresponding to Dί and D2 in the proof

of Lemma 5.1. We know now that the closure Z of the complement is a T 2 -

bundle over S1 x I and hence there is a diffeomorphism h: Z-+dP(E9) x /. There-

fore, V-N(F) = W(-1, - 1 , o o ) u Z t l P ( £ 9 ; - 2 ) , which is diffeomorphic to

W ( - l , - 1 , oo)uP(£ 9 ; -2). Here, oo in W(-l, - 1 , oo) means that the

handle along N(SJ) does not attached.

Note that P(E9; -2) is made of P ( £ 8 ; - 2 ) with one 2-handle attached and
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the axis of the dual handle is the intersection P(E9; -2) n sCP1). Since we may
choose h so that h(s(Pί)nZ)^(dP(E9; -2) n s(P1))x/, this dual 2-handle is
considered to be a 2-handle attached to W( — l, - 1 , oo) along iV(SJ). Its fram-
ing number is equal to the self-intersection number of sζP1). Therefore, V— N(F)
is diffeomorphic to W(-1, - 1 , -1) U P(E8 - 2). q. e. d.

REMARK 1. The orientation of the manifolds is consistent with the obser-
vation that H(l9 1, 1) = I(2, 3, 5) = dP(Es) and dxW(-l9 - 1 , - l ) = ff(-l, - 1 ,

1, 1).

REMARK 2. If a general fibre of the elliptic surface V is replaced with a
multiple fibre with multiplicity m by a logarithmic transformation Lb(b φa, aί9 α2),
then K=-[F]+(m-l)[Fb]=-[Fb] (see [3, p. 772]) which implies P 2 = 0.
Hence, Lft(F) is a rational surface with χ = 12 because π 1 =0. In particular,
Lb(V) is diffeomorphic to P 2#9(-P 2).

§7. Proof of Theorem 3

Let feSDiff(T3). Then, by Theorem 1 there exists an FeSDiff(W(-l,
- 1 , -1)) such that F | T 3 x 0 = / and F |H(-1, - 1 , - l ) = /d. We can make
union of the diffeomorphisms id\N — W( — l9 — 1, —1) and F which induces a
diffeomorphism of N\JdT

2xD2 onto N\jfT
2xD2. Note that there exists an

orientation reversing diffeomorphism of T3 which extends to a diffeomorphism
of T2xD2, for example, JeGL(3, Z) with J([α], [£], [y]) = ([α], [βl -[y]).
Hence, N\jjT2xD2 is diffeomorphic to N\JidT

2xD2. Therefore, also for any
orientation reversing diffeomorphism of/ of T3, N\J fT

2 x D2 is diffeomorphic to
T2 x D 2 =P 2 #9(-P 2 ) by Theorem 1.

§8. Proof of Theorem 4

Take the rational elliptic surface φ: V-+Px given in the proof of Prop-
osition 6.1. We may assume that a1 and a2 are contained in the interior of the
unit disk D of C c ? 1 , Recall that, near 5D, φ is a product bundle with a fixed
elliptic curve E as fibre. Take a biholomorphic map j : ύ-^P1 — D defined by
j(z) = l/z. Then, the operation of the matrix J in §7 is isotopic to idτ2xj\dD.
So, by Lemma 6.2 N^JjN admits a structure of an elliptic surface W with only
four singular fibres, two of which are of type II* and the others of type II. We see
πί(W) = 0 and χ(W) = 24. Therefore, pg=l from the formula of M. Noether,
and K = 0 because c(!)= - 2 and c(f)= -pg-1 = - 2 (see [2, Ths. 12.1 and 12.3]).
Hence, Wis a K3 surface. By Theorem 1 N\JfN is diffeomorphic to this manifold
for any orientation reversing diffeomorphism/because fijeSDiff(T3).
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REMARK. Any K3 surfaces are mutually deformable [3] and hence diffeo-
morphic to each other.
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