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Introduction

Let T3 denote a 3-torus S'!x S!'xS'. Let W(¥4, m, n) be the 4-manifold
obtained from T3 x [0, 1] by attaching three 2-handles along the three standard
generators S! in T3x 1 with framing numbers ¢, m and n (see §1 for the
precise definition). Then, OW(£, m, n)=0,W (4, m,n) U0, W (4, m,n)=T3*x0U
H(¢, m, n) and n,(H(4, m, n))={o, B, y; a=(B~'yfy~")*, B=(ytaya=1)", y=
(a=1Baf~1)">. In particular, H(¢, m, n) is a homology 3-sphere. It is known
that H(0, m, n) is diffeomorphic to S3 and H(1, 1, 1) is the Poincaré homology
3-sphere. We refer the reader to [5], in which Y. Matsumoto proves some
facts about H(4, m, n) including the claims that the author made before.

We shall prove the following two theorems. Let SDiff(T3) denote the
group of all orientation preserving diffcomorphisms of T3. For an fe SDiff(T?)
we consider the matrix fy € SL(3, Z) which is defined as the induced automorphism
f« of H,(T?) with respect to the basis consisting of the classes of three standard
generators.

Since T3 is an irreducible and sufficiently large 3-manifold without boundary,
[« =g+ implies that f and g are mutually isotopic by the theorem of Waldhausen
[9].

THEOREM 1. Let fe SDiff(T3). Then, there exists an F € SDiff(W(1,1,1))
such that F|T?x0=f and F|H(1, 1, 1)=id.

THEOREM 2. Let fe SDiff(T?). Then, there exists an F € SDiff(W(0, 0, 0))
satisfying F|T3x0=f and F|H(0, 0, 0)=id if and only if f, belongs to the
subgroup G={(a;))€e SL(3, Z); a,;+a,;+az;=1mod 2 (j=1, 2, 3)}.

RemMARK. If we replace W(0, 0, 0) with W(0, m, n), we should replace G

1 m n
with gGg~! where g=( 0 1 0 |.
0 01

As an application of Theorem 1, we have the following theorems. Take a
non-singular algebraic curve C of degree 3 in the complex projective plane P2
Then, C is diffeomorphic to a 2-torus T2 and the self-intersection number [C]2=9.
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Blow up P? at 9 distinct points on C. Then, we get an embedded torus T2 with
trivial normal bundle in P2#9(—P2?). Remove the interior T2 x D? of the regular
neighborhood of T2 and define N = P249(— P?)— T2 x D2.

THEOREM 3. The manifold N U T? x D? obtained by reattaching with any
diffeomorphism of T3 is diffeomorphic to the original P?49(— P?).

THEOREM 4. The manifold N U N obtained by attaching with any orien-
tation reversing diffeomorphism of T3 is diffeomorphic to the K3 surface.

To prove Theorem 3 and that the diffeomorphism class of N U N in The-
orem 4 does not depend on the choice of orientation reversing diffeomorphism of
T3, it suffices to embed W(—1, —1, —1)=—W(l, 1, 1) in N so as to be IN=
0oW(—1, —1, —1). This is not difficult and we can prove moreover Prop-
osition 6.1 which says that N is diffeomorphic to W(—1, —1, —1) U P(Eg; —2),
where P(Eg; —2) is the manifold obtained by plumbing according to the graph
Eg weighted by —2. We use the study of elliptic surfaces due to Kodaira for the
proof of Proposition 6.1 and the remaining part of Theorem 4.

REMARK. P2#9(— P?) has a structure of an elliptic rational surface and when
the reattaching corresponds to a logarithmic transformation, N U T2 x D? has
been known to have a structure of a non-singular rational surface with b, =10
(see Remark 2 in §6); in particular, to be diffeomorphic to P2#9(—P2?). The
logarithmic transformation of multiplicity m corresponds to the reattaching by

1 00
fwith fy=| 0 * =« |eSL(3, Z).
0 = m

In §1 we introduce the precise construction of W(¢, m, n) and some facts
about H(4, m, n). §2 is devoted to the proof of Theorem 1. In §3 we determine
the generators of the group G defined in Theorem 2. With this the proof of
Theorem 2 is completed in §4. In §5 we get an embedding of W(—1, —1, —1)in
N and in §6 we prove Proposition 6.1 by studying the structure of an elliptic
surface and its general fibre. §§7 and 8 are devoted to the proofs of Theorems 3
and 4 respectively.

§1. Homology 3-sphere H(¢, m, n)

We consider T3=R3/Z3 as the cube whose left-right, front-back and upper-
lower sides are identified. Let o, f and y be the loops corresponding to the
coordinate axes with identified end points. And let 0<a<1/2. Then, Sl=
Stx(l—a)xa, Sj=ax8S'x(1—a) and S!=(1—a)xaxS! are disjoint loops
in T3. They are encircled by the — (meridian) loops with base point (0, 0, 0)
of homotopy classes =1y~ 1, y~laya~! and o~ 1faf~1.
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QY

Figure 1

By using van Kampen’s theorem we get
(T3-S u SpuSh)
= <o, B, y; Lo, B~ 1yBy~11=L1B, v 'aya™"]=[y, a7 1faf~1]=1).

The framing of the regular neighborhood N(S!) of S! is defined to be an
isotopy class of a diffeomorphism h: S'x D?2—N(S'). To fix the notation we
draw the parallel axes h(S' x0U S* x pt) with pte dD? in the cube and consider
#(right-handed screws) — #(left-handed screws) as a complete numerical invariant
of the framing, called the framing number. (Ex. === stands for the (+1)-
framing). Three 2-handles D?x D? are attached to T3 x [0, 1] along N(S)),
N(S}) and N(Sj}) in T3x 1 with the framing numbers ¢, m and n respectively.
W4, m, n)=T3x[0, 1JU(D?*xD?y D?>x D?y D?x D?) denotes the resulting
surgery trace. Then, we have o-(f~ 1By ") t=B-(y laya=1)"m=7y.
(@ 1afp~YH)""=1 in H(4, m, n)=0,W(4, m, n). Hence, =n,(H(¢, m, n))=
a, B, vs a=(B~"py~1)", B=(~aya~ )", y=(a~'Baf~")">. In particular,
H(4, m, n) is a homology 3-sphere.

As mentioned in the introduction we refer the reader to [5] for the related
results. For example u(H(¢, m, n))=¢mn mod 2.

REMARK. If we attach a O-framed 2-handle to W(¢, m, n) along N(S}) in
T3 x 0, we have an embedded 2-sphere as the union of S! x [0, 1] and the axes of
two 2-handles attached along N(S!). Then, the self-intersection number of the
2-sphere is equal to the framing number ¢, when the orientation of W(¢, m, n) is
given by the 4-ple of vectors (v,, v,, v3, v,) Where v, = ~10 in T3x [0, 1] and
(v,, v3, v4) gives the orientation of T3x 1. As a boundary of W(¢, m, n), T3x0
inherits the orientation opposite to that of T3 x 1.
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§2. Proof of Theorem 1

Note at first the following facts. Assume that f and g of SDiff(T?) extend
respectively to G and F of SDiff(W(1, 1, 1)) which restrict to the identity on
H(1, 1, 1). Then, fog extends to FoG with FoG|H(1, 1, 1)=id and f~! extends
to F~1 with F~1|H(1, 1, 1)=id. Also, if fis isotopic to f’ as diffecomorphisms of
T3, then f’ can extend to F’ as the union of the isotopy between f’ and f with F
and this F’ satisfies F'|H(1, 1, 1)=id. So, we have only to prove Theorem 1
for the generators of SL(3, Z)=n(SDiff(T?)). Of course, by the operation of
matrixes on R3, SL(3, Z) is naturally a subgroup of SDiff(T?3).

A unimodular matrix with just one non-zero entry (i.e. +1) in each row and
column is called a permutation matrix. And a permutation matrix is called

101 001
restricted if at least one diagonal entry is [.  Set Q=<O 1 0 |and P1=( 01 O>.
001 -100

Then, SL(3, Z) is generated by the restricted permutation matrixes and the
matrix Q. In fact, by the Euclidean division algorithm we see that SL(2, Z) is
generated by Q and P,, and SL(3, Z) is generated by SL(2, Z) and the restricted
permutation matrixes.

Recall that the surgery trace W(1, 1, 1) is the union of T3 x [0, 1] and three
2-handles attached along N(S}), N(S}) and N(S}). Let fe SDiff(T?) be defined
by a non-identity restricted permutation matrix P. Then, f makes one axis
fixed and the other two axes permuted or orientation reversed. The framing
numbers of the regular neighborhoods of three axes are all +1 and f may reverse
the orientation of the axes but preserves the orientation of T3. So, f|\UN(axes)
preserves the framing. Hence, f can extend naturally over the corresponding
2-handles, i.e., there is an element F of SDiff(W(1, 1, 1)) such that F|T3x0=f.
Moreover, we can assume that F restricts to the identity on one of the 2-handles.

Lemma 2.1. Let FeSDiff(W(1, 1, 1)). Suppose that F restricts to the
identity on one of the 2-handles of W(1, 1, 1). Then, g=F|H(1, 1, 1) is iso-
topic to the identity.

PrOOF. Take the axis S} in H(1, 1, 1) of the dual 2-handle of W(l, 1, 1).
Since F|the 2-handle=id, g|N(S})=id. Recall that H(l, 1, 1)—N(S}) is
diffeomorphic to S3— N(trefoil knot); this is because T3—I\°J(S},US}3US;)=
§3— N(Borromean rings) [4] and the surgery along two components reduces the
remaining component to the trefoil knot (see [5] for example). So, h=
glH(1, 1, 1)— N(S}) is considered to be a diffeomorphism of S3— N(trefoil knot)
onto itself which restricts to the identity on the boundary. It is known that the
outerautomorphism group of m,(S3—trefoil knot)=<a, b; a>=5b3) is of order
2; the non-trivial element is represented by a—a~! and b—b~! (see Schreier
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[8]). Since the meridian ab~! remains unchanged by h, h induces the identity
on ;. Note that the non-trivial knot complement is an irreducible, d-irreducible
and sufficiently large manifold which is not homeomorphic to a line bundle.
By the theorem of Waldhausen [9, Cor. 7, 5], h is isotopic to the identity relative to
the boundary. Hence, g is isotopic to the identity. g.e.d.

This completes the proof for the restricted permutation matrixes, because F
can be reconstructed as the union of the original F and the isotopy between g
and the identity.

Now let f be the element of SDiff(T3) defined by Q. Then, fy([«], [81, [y])=
([, [B], [x+7y]) and we can assume that f|N(S!)U N(S})=id. We consider
that two 2-handles of W(1, 1, 1) are attached along N(S!) and N(S}). The 3rd
2-handle is originally attached along N(S!) but we can deform it, for example,
by sliding it over the handles attached along N(S!). The resulting surgery trace is
still diffeomorphic to W(1, 1, 1) but the new 3rd 2-handle is considered to be
attached along the regular neighborhood of a connected sum S},, of S} with a
parallel axis (S!)’ on dN(S!) by a band in T3—N(SLU S}). If we take a band
as in the following figure, we can see that S, is isotopic to f(S}) in T*—SL U S}.

(83
Sa

Figure 2

Let f.n.(S?) stand for the framing number of N(S!). With the above band
sum

fn(SL,,)=fn(SH+fn.(SH)—1=1,

because the figure of the parallel axis of S}, has an extra =U’) So, f can
extend to a diffeomorphism F of W(1, 1, 1) which restricts to the identity on the
handle attached along N(S!). By Lemma 2.1 this completes the proof of The-
orem 1.
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§3. Generators for the groups of stochastic matrixes modulo 2

Let G0={(a,-j)ESL(3, Z), a;y +ai2+ai351 m0d2(i=1, 2, 3) and alj+a2j+

1 0 2 1 0 1
a;;=1mod2(j=1,2,3)}. SetR=({0 1 0 ]and S=(0 1 1).
0 0 1 0 01

PROPOSITION 3.1. G, is generated by the restricted permutation matrixes
and R.

To prove this we use the following elementary lemma.

LemMmA 3.2. If |b|>|a| is satisfied for non-zero integers a and b, then
|b—2 (sign (ab))al| < |b].

Proor. This 1is because —|b|<—|a|+(|b|—]|al)=|b]—2|a]<|b] and
|16 —|2a| | =|b—2(sign (ab))a|.

PROOF OF PROPOSITION 3.1. Let g=(a;;) be an element of G,. Note that
G, mod 2 is generated by the images of restricted permutation matrixes. So,
by multiplying restricted permutation matrixes we can assume that a;;=4;; mod 2.
By multiplying R*! from left the matrix (a;;) is transformed into (a;;) with
aj;=ay;+2a;; (j=1,2,3) and a;;=a;; (otherwise). Similarly the multi-
plication of P,R*!P7! from left transforms (a;;) into (aj;) with aj;=a;;F
2a,;(j=1, 2, 3) and aj;=a;; (otherwise). Here, P, is the restricted permutation
matrix defined in §1. With this fact and Lemma 3.2, we can decrease |a,;| and
las;| by even integers unless |as;|=0. So, the reduced (a;;) satisfies a;; =0.
Consider the multiplications of P,R*!P;! and P;P,R*'P;1P3! from left for the

1 00 010
restricted permutation matrixes P,=( 0 0 1 Jand Py=(—1 0 0 ). Then,
0-1 0 0 01

by Lemma 3.2 we can decrease |a,;| and |a,,| further by even integers without
changing a3, =0 unless |a,,;|=0. So, we get a reduced matrix satisfying a,,=

a3,=0. Then, a,;=+1. Andifa,;=—1, we multiply a restricted permutation
'—1 0 O
matrix( 0 -1 O); we may assume a,; =1 and a,, =a3;=0. By multiplying
0 0

R#*! and P,R*1P;! from right we can reduce further so that a,,=a,;;=0. We
can reduce also the remaning terms in the same way and finally get the identity
matrix from the original (a;;) by multiplying the restricted permutation matrixes
and R*1, g.e.d.

Let G={(a;))eSL(3, Z); a,;+a,;+as;;=1mod2 (j=1, 2, 3)}. Then, G,
is a subgroup of G of index 4. In fact, G/Gy=~G mod2/G, mod2 with
|G mod 2| =24 and |G, mod 2|=6. Moreover, G mod 2 is generated by G, mod 2
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and the image of S. This implies the following proposition.

PrOPOSITION 3.3. G is generated by the restricted permutation matrixes
together with R and S.

§4. Proof of Theorem 2

To prove the ‘if’-part it suffices to show that the diffeomorphisms defined by
the generators of G extend to diffeomorphisms of W(0, 0, 0) as in the proof of
Theorem 1. In fact, since any orientation preserving diffeomorphism of
H(0, 0, 0)=S3 is isotopic to the identity, we can modify the diffeomorphism of
W(0, 0, 0) so as to restrict to the identity on H(0, 0, O) without changing it near
T3 x0.

In case fe SDiff(T?) is defined by the operation of a restricted permutation
matrix, the extension is easily constructed as in §2.

Let now f be defined by the matrix R. Then, f.([«], [£], YD) =], [B],
[20c+7]). We consider the handle adding (or sliding) defined by the following
band sum S}, ,, of S} with the parallel axes (S})" and (S})” on IN(S}).

N
f&--

I

! & sy
] - -4 S}

. —|E— |6
L ]--

Figure 3

Observe that fIN(S!)U N(S})=id and Sj,,, is isotopic to f(S}) in T*—SLU S}.
Moreover,

£n.(Shy 4 ,) =£.0(S1)+1—1=0.

So, f extends to a diffeomorphism of W(0, 0, 0).

If f is defined by S, then fi([«], [B], [yD=([a], [B], [x+f+y]). We
consider the band sum S},,,, of S} with the parallel axes (S})’ and (S})’ on
ON(S?) and ON(S}) respectively as in the following figure.
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(S2)
Sa

Figure 4

Then, fIN(S})UN(S))=id and S}, is isotopic to f(S!) in T3—-S!uSj.
Moreover, the framing number is zero as the sum of :g,) and @n: So, f
extends to a diffeomorphism of W(0, 0, 0). Hence we complete the proof of the
‘if’-part.

There is a natural identification id: 0T?x D2—0,W(0, 0, 0) such that
(id)~(S!) with O-framing bounds a framed 2-disk in T?x D2. For an element
f of SDiff(T?3) we consider a manifold M = W(0, 0, 0) U, T? x D? obtained by an
attaching diffeomorphism idof: 0T? x D2—0,W(0, 0, 0). Assume that f extends
to an F e SDiff(W(0, 0, 0). Then, M is diffeomorphic to W(0, 0, 0) U;; T2 x D?=
S2xS2—D* In particular, M is of even type. But, if f, is not contained in G,
there is a column with a,, a,4 and a;, satisfying a,,+a,4+as,=even. We
may assume *=13, because PGP~ 1=G for any restricted permutation matrix P.
Then, observe that f(S}) is realized by some band sum a,3S!+a,;S}+a;;S!
and its framing number modulo 2 is equal to (a3 —1)+(a,; —1)+(a;3—1)mod 2.
In this case M has a homology class of odd self-intersection number, that is, M
is of odd type. This is a contradiction, which completes the proof of the ‘only if’-
part.

§5. Embedding of W(—1, —1, —1)in N
We shall show the following lemma with the minimum knowledge about

algebraic curves.

Lemma 5.1. W(—-1, —1, —1)=-W(, 1, 1) is realizable as a submanifold
in N (defined in the introduction) such that ON =0,W(—1, —1, —1).

Proor. Let D* be a small disk neighborhood of (0, 0, 1) in P2. Since the
diffeomorphism class of (P2, C) is independent of a particular choice of the
non-singular curve C of degree 3 in P2, we may take C={(x, y, z)e P?;



Extension problem of diffeomorphisms 197

x2z+ y3+¢z3=0} with sufficiently small ¢>0. Then, due to Milnor [6] C n 6D*
is a right-handed (2, 3) torus knot k (the orientation in [6] is opposite to ours) and
C nD* is isotopic to the minimal Seifert surface S of k in 6D*. So, we may
consider that our T2 is a union of S with a 2-disk outside D*. Take two circles
7, and y, on S as in the following figure.

Figure 5

Then, we can find smoothly embedded 2-disks D, and D, in D* such that D,n S=
0D;=v; (i=1,2) and D, nD,=0D, n0D,=one point. In P2#9(—P?) there is
also a smoothly embedded 2-sphere which intersects with T? transversally at one
point. Therefore, on dN(T?)=T?3 there are three disjoint circles along which we
can attach 2-handles embedded in N. The framing numbers of the 2-handles
are all —1; in fact, for the first two the framing number is equal to the linking
number of the parallel circles on S in dD* and for the last one it is equal to the
self-intersection number of the 2-sphere (see Remark in §1). This means that
W(—-1, —1, —1) =N with 0,W(—-1, —1, —1)=0N(T?)=0N.

§6. A structure of N via an elliptic surface

We shall prove a stronger result (=Proposition 6.1) than Lemma 5.1 by
using the facts about algebraic curves and elliptic surfaces.

PROPOSITION 6.1. N is diffeomorphic to the union W(—1, —1, —1)U
P(Eg; —2), where P(Eg; —2) is the manifold obtained by plumbing according
to the graph Eg weighted —2.

-2 -2 -2 =2 =2 =2 =2

[ ]
-2

We use the construction of the basic member ¥: V—4 of the family #( ¢, G)
of elliptic surfaces over a non-singular curve 4 due to Kodaira [2, §8]. In our
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case A=P! and 4'=4—{a,, a,} for some two points a, and a, in P!; the func-
tional invariant #: 4—{a,, a,}— P! is the constant function #=0; and the

homological invariant G is determined by the monodromy (_{ (1)> around a,
and <(1) _}> around a,. Then, we have an elliptic surface y: V- P! with only

two singular fibres, one is of type II* on a, and another of type II on a,.
This is constructed by blowing up and down the quotient of the product bundle
E x P! by the monodromy group of order 6, where E is the elliptic curve C/
(Z+ Zw) with w?+w+1=0. Proposition 6.1 will be proved by the following
two lemmas.

LEMMA 6.2. N is diffeomorphic to V—N(a general fibre), where N(a
general fibre) is the interior of the regular neighborhood of ¥~ 1(a) with ae P! —

{als aZ}'

LEMMA 6.3. V—N(a general fibre) is diffeomorphic to W(—1, —1, —1)U
P(Eg; —2).

PrROOF OoF LEMMA 6.2. By the construction we see that 7,(V)=0 and Euler
number x(V)=yx(/~(a,))+ (Y~ Ya,))=12. The formula of M. Noether
12(p,+1)=y +c? implies p,=0 because c¢}=K?=0 for the elliptic surfaces. In
fact, due to Kodaira [2, Ths. 12.1 and 12.3] the canonical line bundle K of Vs
induced from the complex line bundle f—f over 4, where f is a cotangent line
bundle of 4 and ¢(f)=—p,—1. Here, we note that complex line bundles over
4 are determined by their Chern number ¢: H(4; C*)>H*(4; Z)~Z. In our
case ¢(f)=—2 and c(f)=—1. This implies also that K= —[F] where F is an
irreducible positive divisor defined by a general fibre of the elliptic surface V.
So, P,=dim H(V; 0(2K))=0. Hence, V is a rational surface (see [7]), because
the irregularity g =0 which follows from #,(V)=0. This means that, if we blow
down V 9 times, 6~ °(V) is biholomorphic to P2. Now we remark that the basic
member Y admits a holomorphic section s: P'—V and s(P!) is a non-singular
rational curve with (s(P'))2=c(f)=—1. Since Y~ '(a,) consists of 9 rational
irreducible curves whose intersection form is of the graph E, weighted —2, we
find the generators of H,(V; Z) as follows.

By blowing down the 9 exceptional curves (i.e. non-singular rational curves
with self-intersection number = — 1) successively as above, the general fibre reduces
to a non-singular curve C of genus 1 in P2. By Chow’s theorem [1], C is an
algebraic curve. Since a non-singular algebraic curve of degree d in P? has
genus (d—1)(d—2)/2, C is a non-singular algebraic curve of degree 3. Describe
this process in the inverse direction; we blow up P? at a point on C and get a curve
C, in o(P?) and inductively we blow up ¢i(P2) at a point on C; and get a curve
Ciyy in o(ci(P?)=0c'"(P?); and finally Co=Fcd®(P?)=V. The diffeo-
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-2 -2 -1
-2 blow down
6 times
-2 —_ 2

=== - general fibre

s(P)

0
)
» | \, L ~ L~ | %

[\\ blow ¢ intersection with
down down down ! triple multiplicity

Figdre 6

morphism class of (¢°(P2?), C,) is independent of the choice of the point on C;
at which we blow up ¢i(P?). Hence, for our T2 in P2#9(— P?) defined in the
introduction we have a diffeomorphism g: V- P2#9(— P?) satisfying g(F)=T?2.
Remove the interior of the regular neighborhood and we get a diffeomorphism
of V—N(F) onto N. q.e.d.

PrOOF OF LEMMA 6.3. Remark that the regular neighborhood of the sin-
gular fibre is given by blowing up and down of the oribit space of the equivariant
regular neighborhood of the central fibre in the product T2-bundle with the
operation of monodromy. So, we can infer that the preimage of a small disk
neighborhood of the image of a singular fibre by the projection Y is a regular
neighborhood of the singular fibre. On the other hand the regular neighborhood
of the singular fibre of type I1* is P(E4; —2) and that of type II (i.e. of rational
curve with one cusp singularity) is the regular neighborhood of the union of a
general fibre F and two vanishing cycles corresponding to D; and D, in the proof
of Lemma 5.1. 'We know now that the closure Z of the complement is a T2-
bundle over S! x I and hence there is a diffeomorphism h: Z—0P(Ey) x I.. There-
fore, V—N(F)=W(—1, —1, ©)UZU P(Es; —2), which is diffeomorphic to
W(—1, —1, o) U P(Eq; —2). Here, oo in W(—1, —1, c0) means that the
handle along N(S}) does not attached.

Note that P(E,; —2) is made of P(Eg; —2) with one 2-handle attached and
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the axis of the dual handle is the intersection P(Ey; —2) n s(P!). Since we may
choose h so that h(s(P')nZ)=(0P(Ey; —2) ns(PY))x I, this dual 2-handle is
considered to be a 2-handle attached to W(—1, —1, o) along N(S}). Its fram-
ing number is equal to the self-intersection number of s(P'). Therefore, V— N(F)
is diffeomorphic to W(—1, —1, —1)U P(Eg; —2). g.e.d.

REMARK 1. The orientation of the manifolds is consistent with the obser-
vation that H(1, 1, 1)=2(2, 3, 5)=0P(Eg) and 0, W(—1, -1, —1)=H(-1, —1,
—-1)=—-H(1,1,1).

REMARK 2. If a general fibre of the elliptic surface V is replaced with a
multiple fibre with multiplicity m by a logarithmic transformation Ly(b#a, a4, a,),
then K=~[F]+(m—1)[F,]=—[F,] (see [3, p. 772]) which implies P,=0.
Hence, L, (V) is a rational surface with y=12 because 7, =0. In particular,
L,(V) is diffeomorphic to P2#9(— P?).

§7. Proof of Theorem 3

Let fe SDiff(T?). Then, by Theorem 1 there exists an Fe SDiff(W(—1,
—1, —1)) such that F|T3x0=f and F|H(—1, —1, —1)=id. We can make
union of the diffeomorphisms id|]N—W(—1, —1, —1) and F which induces a
diffeomorphism of N\U,T?x D? onto N\U,T?xD?. Note that there exists an
orientation reversing diffcomorphism of T3 which extends to a difftomorphism
of T2x D2, for example, Je GL(3, Z) with J([«], [B], YD =], [B1, —[¥])-
Hence, N\U,T? x D? is diffeomorphic to N\U;;T? x D2. Therefore, also for any
orientation reversing diffeomorphism of f of T3, N\U,T? x D? is diffeomorphic to
N\ 4 T? x D2 = P2$#9( — P?) by Theorem 1.

§8. Proof of Theorem 4

Take the rational elliptic surface ¢ : V—P! given in the proof of Prop-
osition 6.1. We may assume that a; and a, are contained in the interior of the
unit disk D of C<P!. Recall that, near dD, y is a product bundle with a fixed
elliptic curve E as fibre. Take a biholomorphic map j: D—P!—D defined by
J(2)=1/z. Then, the operation of the matrix J in §7 is isotopic to idr. x j|éD.
So, by Lemma 6.2 N\U;N admits a structure of an elliptic surface W with only
four singular fibres, two of which are of type IT* and the others of type II. We see
n(W)=0 and y(W)=24. Therefore, p,=1 from the formula of M. Noether,
and K=0 because c(f)= —2 and ¢(f)= —p,— 1= —2 (see [2, Ths. 12.1 and 12.3]).
Hence, Wis a K3 surface. By Theorem 1 N\U N is diffeomorphic to this manifold
for any orientation reversing diffeomorphism f because foJ € SDiff(T?3).
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REMARK. Any K3 surfaces are mutually deformable [3] and hence diffeo-

morphic to each other.
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