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Let F be a formally real field, P a, preordering and p a form over F. We shall

say that a pair (p, P) is maximal if p is P-anisotropic and P is maximal among the

preorderings over which p is anisotropic. For a given q-cone Q (cf. [7]) we shall

define a preordering P(Q) and show that, P being a preordering, (p, P) is a maximal

pair for some form p if and only if P is of finite index and of the form P = P(Q) for

some q-cone Q; such a preordering will be called a q-fan in this paper.

The main purpose of this paper is to characterize a q-fan in terms of the

q-dimension which is defined in §3, and give a reduction formula on q-dimensions

(Theorem 3.6 and Theorem 3.9).

§ 1. Defintions and preliminaries

Throughout this paper, a field always means a formally real field. We denote

by F the multiplicative group of F. For a multiplicative subgroup P of F, P is

said to be a preordering of F if P is additively closed and F 2 c P. We denote by

X(F/P) the space of all orderings σ with P(σ) => P, where P(σ) is the positive cone

of σ. A valuation v of F is called a real valuation if its residue field is formally

real. The objects: valuation ring, valuation ideal, group of units, residue field

and group of values will be denoted by A, M, U, Fv and G respectively. A pre-

ordering P of F will be called compatible with a valuation υ of F (or v is compatible

with P) if 1 + M c P. If a preordering P of F is compatible with a valuation v,

then P Π U is a union of cosets of M and P = φ(P Π (7) is a preordering of F y ,

where φ is the canonical surjection: A-+Fv.

We shall say that two orderings σ, τe X(F/P) are connected in X{FjP) if

σ = τ or there exists a fan of index 8 which contains σ and τ, and we denote the

relation by σ~τ. It is known that the relation ~ is an equivalence relation in

X{FjP) ([4], Theorem 4.7). Each equivalence class of this relation is called a

connected component of X(F/P). We say that a preordering P is connected if

X{FjP) is connected. We denote by gr (X(F/P)) the translation group of X(FjP)

in the terminology of [4], namely gr(Z(F/P)) = {αGχ(F/P)|α X(F/P) = X(F/P)}

where χ(F/P) = Horn (F/P, {±1}) is the character group of FjP. For a pre-

ordering P of finite index, P is connected if and only if dim F/P ̂ 3 and dim
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Let v be a valuation compatible with P. We shall define a group isomor-
phism :

FIP—*Glv(P)xFJP (*)

as a preliminary step to §3. Let 5: G->JF be a q-section ([7], §7) with the property
that s(v(P))cP. We define the group homomorphism / : F-> G x FJF* by f(x) =
(v(x)9 xs^x))'1 mod M). Then by easy calculation, we can see f~ι{v(P) xP) = P
and we get the group isomorphism (*) ([5], Theorem, p. 186).

PROPOSITION 1.1. Let P be a preordering of finite index and v be a valuation
compatible with P. Then we have

gr (X(F/P)) s Horn (CMP), { ± 1}) x gr (X(FJP)).

In particular

dim gr (X(F/P)) = dim G/v(P) + dim gr (X(FJP))

as Z2-vector spaces. Moreover if there exists a valuation v of F which is com-
patible with P and v(P)φG, then the index of P is 4 or X(F/P) is connected.

PROOF. The group isomorphism F/P^GIv(P)xFv/P naturally induces a
group isomorphism χ(F/P) £ Horn (G/v(P), {± 1}) x χ(Fv/F). Considering
X(F/P) and X(FJP) as subsets of χ(F/P) and χ(FJP) respectively, we get a natural
bijection: X(F/P) ̂  Horn (G/v(P), { ± 1}) x X(FJP). Then it follows immediately
that

gr (X(F/P)) s Horn (G/v(P), {±1}) x gr (X(FJP).

If v(P)Φ G, then dim gr (X(F/P))^\ and this implies that X(F/P) is connected or
the index of P is 4. Q. E. D.

For two forms/ and g over F, we write f=g (mod P) if dim/= dim g and for
any σeX(F/P), sgnσ(f) = sgnσ(g) where sgnσ(f) and sgnσ(g) are the signatures
at σ of / and # respectively. If / = Λ # (modP) for some x e / , then we say that
the forms / and g are P-similar. We now recall the definitions of the residue
class forms of a form p = <α l v . . , απ> and the sets of valuations Ω(P),
Ω(P, alv.., απ) which were introduced in [1]. Let z; be a valuation of F which is
compatible with a preordering P. If v{a^) = v(aj) (mod ι (P)) for any i, j , then it
is clear that there exist xeF and tt,eP (i = 1,..., ή) such that t^xίίαi) = 0 for any i.
Let p = <(xί1α1)~,..., (xίMαM)"> be the form over Fυ, where the bar means the
residue class modulo M. We shall show that p is unique up to P-similarity.
Assume that x ' e F and t\eP (j = l,..., ή) satisfy the same conditions. We put
p' = ((x't'ίaί)-,...,(xrt'nan)-) and α = (xί1«1) (x'fίβi)"1. Then α is a unit of 4



On the q-dimension of a space of orderings and q-fans 161

and we have oe(x'ίjfli)=(ί1ίί"
1ί/

iί7
1)(xί,fll), t^'f^tf1 eP OU for every i.

These relations imply p ^ α p' (modP) and the conclusion follows. For a form

p = < α l v . . , αΛ>, the equivalence relation in {al9...9an} defined by ^ α ^ Ξ ^ )

(modu(P)) gives rise to a partition of this set. Let p = p 1 l l p f be the decom-

position of p with respect to this partition; that is, t is the number of classes and

each pi satisfies the condition mentioned above. The forms p f (i = l,..., t) of Fv

are called the residue class forms of p. As for Ω(P), it is the set of valuations which

are compatible with at least one ordering σsX{FjP), and Ω(P, au...9an) =

{υ e Ω(P)\υ(ai) φ υ(aj) (mod v(P)) for some ί and j}. For v e Ω(P), there exists the

least preordering which is compatible with v and contains P. We denote it by Pv.

PROPOSITION 1.2. ([1], Theorem 3.3) Let p = <α1,..., απ> be a form such

that p is P-anisotropic and σ-ίndefinίte for any σeX{FjP). Then there exists a

valuation υeΩ(P> α,..., αn) such that p is Pv-anisotropic.

% 2. φ-cones and qr-fans

In [6], Prestel introduced the notion of q-cones and pre-q-cones which gene-

ralize that of orderings and preorderings respectively. A subset β of fi9 will be

called a pre-q-cone if it satisfies the following conditions:

(i) Q + Q^Q (2) F2QczQ (3) β n - ρ = φ (4) l e ρ .

For a pre-q-cone β, if Q U — Q = P, then Q will be called a q-cone of F. (In [7],

a pre-q-cone Q contains the element 0 e F and does not necessarily contain 1 e Q.

In this paper we assume 0 $ Q and 1 e Q for convenience.) It is easily shown that

if Q is a pre-q-cone, then SFQczQ where SF = DF(oo) = ΣF2.

DEFINITION and PROPOSITION 2.1. For a pre-q-cone Q of F, we define P(Q) =

{xeQ\xQaQ}. Then P(Q) is a preordering of F. For a preordering P of F,

if there exists a q-cone Q such that P(Q) = P, then P will be called a q-fan.

The proof is easy and omitted.

DEFINITION 2.2. Let p be a form and P be a preordering of F over which p is

anisotropic. If p is P;-isotropic for any preordering P'=£P, then we say that the

pair (p, P) is a maximal pair.

By [1], Corollary 3.4, if (p, P) is a maximal pair, then P has a finite index.

LEMMA 2.3. Let P be a preordering and Q be a pre-q-cone of F. Then the

following statements hold.

(1) P ( Q ) I D P if and only if Q is a union of cosets of P.

(2) 7/P(β)=>P, then there exists a q-cone β i ^ β such that P(Qt)z>P.
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PROOF. The assertion (1) follows immediately from the definition. As for

the assertion (2), let M = {Q'\Q' is a pre-q-cone which contains Q and is a union of

cosets of P}. Then M is an inductive set with respect to the inclusion relation,

and by Zorn's Lemma, there exists a maximal element QίofM. It is easy to show

that QΊ is a required one. Q. E. D.

THEOREM 2.4. Let P be a preordering of F which is of finite index. Then

the following statements are equivalent:

(1) P is a q-fan.

(2) There exists a form p such that (p, P) is a maximal pair.

PROOF. (1)=>(2): Let Q be a q-cone of F such that P(Q) = P. By Lemma

2.3, (1), there exist aί9...,aneF such that Q = axP (J •• U anP. We put p =

<α!,..., #„>; then it is clear that p is P-anisotropic. Let P' be a preordering of F

which contains P properly and take an element xeP' — P. Then we have xQ ct Q

and so there exists α e β such that xaφQ. This implies — x α e β and p is P'-

isotropic.

(2)=>(1): We put Q'=D(ρjP), where D(p/P) is the set {beF\p represents b

over P}. Then it follows from the maximality of P that Q! is a pre-q-cone and

P(Q') = P. By Lemma 2.3, (2), there exists a q-cone Q such that P(Q)=>P. It is

clear that the form p is P(β)-anisotropic and the maximality of P shows that

P(Q) = P. Q. E. D.

COROLLARY 2.5. For a form p and a preordering P of F, the following

statements are equivalent:

(1) p is P-anisotropίc.

(2) There exists a q-fan P' of finite index such that P'=>P and p is P'-

anisotropίc.

EXAMPLE 2.6. Let P be a preordering of finite index. If P is an ordering,

then clearly P is a q-fan. Moreover a non-trivial fan P is a q-fan. In fact let

{1, α2> •> β/t} be a complete system of representatives of the positive cone of some

ordering σ e X(F/P), i.e. P(σ) = P U a2P U U anP. We put p = <1 = al9

α2,. > an-u — O Since P is a fan, p is P-anisotropic, and we can readily see

that Q = D(ρ/P) is a q-cone and P(g)=>P. Conversely take an element xeQ-P.

We have only to show xQ ct Q. To do this, we may assume that x = a2 or x = — απ.

Since P u a2P\J ••• U αMP is an ordering, we have a1aneaiP for some

Then α2( ~ ar)P = — Λ j ^ Φ Q> which implies xQ ct Q.

The following proposition is shown implicitly in the proof of [1], Corollary

3.4.

PROPOSITION 2.7. Let v be a valuation which is compatible with a pre~
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ordering P. Let p = <α1,..., an} be a form such that (p, P) is a maximal pair.

Then the following statements hold.

(1) The value group G is generated by v(at) (ί = l,..., ή) and υ(P).

(2) Let pi (Ϊ = 1,..., 0 be the residue class forms of p and P ; (ι = l,..., t) be

preordering s of Fv such that P^P and (pi9 Pt) are maximal pairs. (Since each

pi is P-anisotropic by [1], Proposition 3.1, Zorn's Lemma guarantees the exis-

tence of Pi.) Then we have P = Π Pt (i = l,..., t).

THEOREM 2.8. Let P be a preordering of finite index. If P is a q-fan, then

P is connected. In particular, if p is P-anίsotropίc, then there exists a con-

nected preordering P ' ( P ' I D P ) of finite index such that p is P'-anisotropic.

PROOF. By Theorem 2.4, there exists a form p = (aί9..., αn> such that (p, P)

is a maximal pair. When P is an ordering, the assertion is clear. Therefore we

may assume that P is not an ordering. Then for any σ e X(F/P)9 p is σ-indefinite

by the maximality of P. So it follows from Proposition 1.2 that there exists a

valuation veΩ(P, aί9..., an) such that p is Pϋ-anisotropic. Hence Pυ — P by the

maximality of P and so P is compatible with v. There exist at and aj such that

v(ai) φ v{aj) (mod v(P)), and we can see that v(P) φ G. It follows from Proposition

1.1 that d imgr(Z(F/P))^l . Since P is a q-fan, P is not an intersection of two

orderings, and so P is connected. Q. E. D.

DEFINITION 2.9. For a preordering P of F, we define Y(FjP) = {Q: a q-cone of

}- Naturally the set X(F/P) can be identified with a subset of Y(FjP).

Let P be a preordering of finite index and Xl9..., Xn be the connected com-

ponents of X(F/P). We put Pi = Xf, i.e. P f is the preordering of Xt. Then we

have P = Π Pt and it is the decomposition of P into connected components (cf.

[3], §2).

COROLLARY 2.10. Notation being as above, we have 7(F/P)= U Y(F/Pi)

(disjoint union).

PROOF. It is clear that Y(F/Pi)czY(FIP) for any i. Let Q be an element of

Y(FjP). By Theorem 2.8, P(Q) is connected and this implies P(Q)ID P f for some i,

and Q e Y(F/Pi). Thus Y(FjP)= u Y(FjP^ Next we shall show that Y(FjP^ n

Y(FjPj) = φ for any iΦj. Assume on the contrary that there exists a q-cone Qe

Y(F/Pi) n Y(FjPj). Then P(Q) contains P f and Py, since P(Q) is a preordering,

this implies that Xi = X(F/Pi) and Xj = X(FIPj) have a common ordering, a

contradiction. Q. E. D.
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§ 3. Valuations and #-fans

For a preordering P, there exists a finest valuation v compatible with P. Its

valuation ring A is generated by Aσ

Q, σ e X(F/P), where Aσ

Q is the finest valuation

ring compatible with σ e X(F/P), i.e. Aσ

Q = {a e F\ b - a e P(σ) and b + a e P{σ) for

some b e Q} and Q is the field of rational numbers. We shall call v the finest

valuation of P and A the finest valuation ring of P. The set of valuations com-

patible with P forms a chain.

LEMMA 3.1. Let vu v2 be valuations compatible with a preordering P, and

Aί9 A2 be the valuation rings of vu v2 respectively. If AιaA2, then dim Gίl

^ ( P ) ^ dim G2/t;2(P).

PROOF. It is easy to see that vjί(vί(P)) = P>U1 and υ2

1(v2(P)) = pΊJ2, where

Uί and U2 are the groups of units of Aί and A2 respectively. Then, since U1 c U2

and F/PUi s GMP) (i = 1, 2), we have dim GJv^P) ^ dim G2/v2(P). Q. E. D.

LEMMA 3.2. Let P be a preordering of finite index and v be the finest

valuation compatible with P. If P is connected, then dim

PROOF. First we note dim gr (X(F/P)) ^ 1 and d i m F / P # 2 since P is con-

nected. We take τegr{X{FjP)\ τφ\. We write X(F/P) = {σ1,..., σk9

τσu...9 τσk}. Then we have k^2 since dim FjPφl. We let P; be the preordering

of a 4 fan {σu σt, τσί9 τσj (i = 2,..., k). By [2], Theorem 2.7, there exists a

valuation t;f such that vt is compatible with P f and P, is trivial (i.e. the index of P f

equals 2 or 4), for any i = 2,..., k. For the value group G, of t?/5 we have ^(P/) φ Gt

by Proposition 1.1. The valuation ring A{ of the valuation vt contains the finest

valuation ring Aft1 compatible with σx hence the set {A^\ forms a chain. We may

assume that A2 is the maximal one. Then the valuation v2 is compatible for any

ordering of X(F/P), so v2 is compatible with P. Then the valuation ring A of v

is contained in A2 and hence dim G/v(P)^dim G2/v2(P)^ 1 by Lemma 3.1.

Q. E. D.

LEMMA 3.3. Let v be the finest valuation of a preordering P. Then any

valuation of Fv compatible with P is trivial.

PROOF. Let v be a valuation of Fv compatible with P, A and A be the

valuation rings of v and v respectively and φ: A-+Fυ be the canonical surjection.

Then A/ = φ~1(Ά) is a valuation ring of F, and it is clear that the valuation υ'

corresponding to A' is compatible with P. Since v is the finest valuation of P

and A'<=A, it follows that A' = A and v is trivial. Q. E. D.

THEOREM 3.4. Let P be a preordering of finite index and v be the finest
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valuation of P. If P is connected and is not a fan, then dim G/v(P) = dim gr

(X(F/P)). In particular, the induced preorderίng P of Fv is not connected.

PROOF. Assume on the contarary that dim G/v(P) φ dim gr (Z(F/P)). Then

we have dim G/v(P) < dim gr (X(F/P)) and dim gr (X(FJP)) ^ 1 by Proposition 1.1.

From [2], Example 2.6, P is not a fan, so dim FJPΦ2 and P is connected. Then

it follows from Lemma 3.2 that ϋ{P)ΦG, where v is the finest valuation of P and G

is its value group. This contradicts Lemma 3.3. Q. E. D.

DEFINITION 3.5. Let P be a preordering of finite index. Then P can be

written as P = Pί Π ••• Π Pn, where P, is a q-fan for any i = l,..., n. We call the

least number of n the q-dimension of P and denote it by q-dim (P).

THEOREM 3.6. Let P be a connected preordering of finite index and v be a

valuation which is compatible with P. Then the following statements are

equivalent.

(1) P is a q-fan.

(2) q-dim (P) ̂  2r, r=dim G/v(P).

PROOF. (1)=>(2): Let (p, P) be a maximal pair, and pt (i = 1,..., 0 be residue

class forms of p. Then it follows from t^2r that q-dim ( P ) ^ 2 r by Proposition

2.7,(2).

(2)=>(1): If P is an ordering of Fv, then P is a fan ([2], Example 2.6) and the

assertion follows from Example 2.6. If r = 0, then P is a q-fan and there exists

a q-cone Q of Fv such that P(Q) = P. We write Q = άJ> U ••• U amP, a^Ό, at =

a( modM (i = l,..., m). It is clear that the form p = <a l 5..., αm> is P-anisotropic.

Since F/P^FJP, we see that Q = D(ρlP) = aiP U ••• U amP and Q is a q-cone of F.

Then it follows immediately that P(Q) = P, and so P is a q-fan. Next we consider

the case r ^ 1 and P is not an ordering. We can write P = P1 n ••• Π Ps, 2:gs^2 r

5

such that PiΦPj for any iφj and each Pt is a q-fan. (If P is a q-fan, then we

write P = P Π P(τ), where P(τ) is the positive cone of some ordering τ e X(FJP).)

Let 5ι (i = 1,..., s) be q-cones of Fv such that P(Qt) = P t . We write Qt = α 4 1P u U

άimp (ί = l,..., s), where aueU, aij = aij modM and 2m is the index of P. Let

5: G-+F be a q-section with s(t>(P))czP and α l v . . , αr be elements of G such that the

set {α l9...,αΓ} is a basis of the Z2-vector space G/v(P). Let v4 be the set

{βjαjH hεrαr; εf = 0, 1} consisting of 2 r elements of G. Let yi (i = l,..., 2r) be

elements of F such that J Ί = 1 and >4 = {ι;(iyί); i = l,..., 2r}. We put p =

Zyt.<a i l?..., aimy (i = l,...,2 r, where a^^a^ for i*ts.) Since the residue class

forms of p are P-anisotropic, p is P-anisotropic ([1], Proposition 3.1). Also

2 dimp equals the index of P by the group isomorphism (*) in §1. Since { j ^ ;

ί = l,..., 2Γ, 7 = 1,..., m} are the complete system of representatives of Q = D(ρ/P)

over P, β is a q-cone. It is clear that P(β) z> P and we shall show the reverse
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inclusion. It suffices to show that f(P(Q)) <= v(P) x P, where / is the group homo-

morphism defined in §1.

Step 1. First we shall show that v(P(Q))c:v(P). Assume on the contrary

that there exists α e P(Q) such that ϋ(α)$v(P). Then we can write v(a) = v(yk) + b

for some ykφl and b e v(P). It follows from the facts v(ocau) = v(oc)e v(yk) + υ(P)

and OLaueQ that ocaueykakίP\j ••• u ykakmP (ί = l,..., m). It is now easy to show

that by a suitable renumbering of {<%}, we may assume that ocalieykakiP for any

z = l,..., m. So we can write uau = ykakiph pteP (/ = 1,..., ra). The residue class

forms of <αα 1 1 , . . . ,αα l m > and <ykaku..., ykakm> are <fl n , . .,f l l B ,) and

<α f c l,..., akm) respectively and they are P-similar by the argument in §1. This

shows that Q1 =βQk for some β e Fv and so Pt =Pk. This is a contradiction.

Step 2. Next we shall show that α s ^ α ) ) " 1 m o d M e P for any oceP(Q).

Let k be an integer with l-^kfLs. Since u(α) e v(P), we have αjfcαfcί e ykakίP u U

ykakmP (ί = l,..., m). Similarly to Step 1, we can find a bijection σ: {1,..., m}->

{1,..., m} such that ocakieakσ(i)P (ί = l,..., m). So we can write ocaki = akσ(i)pι for

some j?f e P. Then since sθ(α))-1 e P and v(pi) = t (α), we have PiS(i^α))"1 e P fl 1/

therefore βάki = άkσ(ί)p
f

h where β = ocs(v(oc))~1 mod M and p^P/sMα))" 1 mod M e

P. This shows that βQk = Qk, and so βePk = P(Qk). Thus we have β =

^ ΓΊPk = P. Q. E. D.

COROLLARY 3.7. Lei P be a connected preordering of finite index and v be

the finest valuation of P. Then the following statements are equivalent:

(1) P /'s a q-fan.

(2) q-dim (P) ̂  2r, wftere r = dim gr (X(F/P)).

PROOF. The assertion follows immediately from Theorem 3.4 and Theorem

3.6. Q. E. D.

Let v be a valuation of F compatible with a preordering P of F. Let Tand S

be preorderings of F and F r respectively such that TZDP and SID P. We say that

T is the lifting of S if X(F/T) consists of all orderings which lift the orderings of

X(FJS), i.e. X(F/T) = {σe X(F/P)\ σe X(FJS)}. If T is the lifting of S then it

is clear that T=S.

LEMMA 3.8. Notation being as above, we have \X(F/T)\ = 2 r x \X(FJS)\ and

dim Gjv{T) = r(r = dim Gjv{P)\ namely v(T) = v(P).

PROOF. It is clear that for an ordering τ e X(FJP), there exists exactly 2r

orderings σ, e X(F/P) which lift the ordering τ. So we have \X(F/T)\=2rx

\X(FJS)\. This shows that dim G/v(T) = r since *(F/T) s Horn (G/i<Γ),

5). Q.E.D.

THEOREM 3.9. Lei P be a connected preordering of finite index and v be the
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finest valuation of P. Then q-dim (P)ίs the least integer s satisfying s^q-dim

(P)/2r, where r = dimgr(Z/P).

PROOF. We put ra = q-dim (P) and write P = PX Π ••• Π Pm where each P f is a

q-fan. By Corollary 3.7, we may assume 2 r < m . We put Si = P2r(i-1)+1 Π ••• Π

p2n (i = l , . . . , s- l ) and S s = P 2 , ( s _ 1 ) + 1 (Ί ••• Π P m . We let T, be the liftings of

Si (i = l,..., s) and T= n 7] (ι = l,..., 5). By Theorem 3.6 and Lemma 3.8, each Tt

is a q-fan. Since we have the isomorphisms FjP^Gjv{P)xFυIP and FjT^

Glv(T)xFjT, it follows froms f = n ff = P and ι<T) = t;(P) that T = P . Hence

q-dim (P)^s . Conversely we write P = PX Π ••• ΓϊPn where each P f is a q-fan.

Then by Theorem 3.6, q-dim ( P ί ) g 2 ί g 2 r (ί = dim G/v(Pi)); therefore q-άim(F)^

2rq-dim (P) since P = PiΓi Γ\Pn. Q. E. D.

REMARK 3.9. (1) The converse of Theorem 2.8 is not valid. In fact let K

be a field with exactly three orderings and F = K((x)) and P = SF = ΣF2. Then

X{FjP) is connected and dimgr(X(F/P)) = l. Since FV^K has exactly three

orderings, we have q-dim(P) = 3 and by Corollary 3.7, P is not a q-fan.

(2) In Example 2.6, we showed that a non-trivial fan is a q-fan. The

converse is false. In fact we put L= K((x))(( y)) where K is the field given in (1)

and P = SL = ΣL2. Then X(L/P) is not a fan. However since dim gr (X(LIP)) = 2,

we can see that P is a q-fan by Corollary 3.7.
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