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Let F be a formally real field, P a preordering and p a form over F. We shall
say that a pair (p, P) is maximal if p is P-anisotropic and P is maximal among the
preorderings over which p is anisotropic. For a given g-cone Q (cf. [7]) we shall
define a preordering P(Q) and show that, P being a preordering, (p, P) is a maximal
pair for some form p if and only if P is of finite index and of the form P = P(Q) for
some q-cone Q; such a preordering will be called a g-fan in this paper.

The main purpose of this paper is to characterize a g-fan in terms of the
g-dimension which is defined in §3, and give a reduction formula on g-dimensions
(Theorem 3.6 and Theorem 3.9).

§1. Defintions and preliminaries

Throughout this paper, a field always means a formally real field. We denote
by F the multiplicative group of F. For a multiplicative subgroup P of F, P is
said to be a preordering of F if P is additively closed and F2cP. We denote by
X(F/P) the space of all orderings o with P(6)> P, where P(o) is the positive cone
of o. A valuation v of F is called a real valuation if its residue field is formally
real. The objects: valuation ring, valuation ideal, group of units, residue field
and group of values will be denoted by A, M, U, F,and G respectively. A pre-
ordering P of F will be called compatible with a valuation v of F (or v is compatible
with P) if 1+ M < P. If a preordering P of F is compatible with a valuation v,
then Pn U is a union of cosets of M and P=¢(Pn U) is a preordering of F,,
where ¢ is the canonical surjection: A—F,.

We shall say that two orderings o, t € X(F/P) are connected in X(F/P) if
o =1 or there exists a fan of index 8 which contains ¢ and 7, and we denote the
relation by 6~1. It is known that the relation ~ is an equivalence relation in
X(F|P) ([4], Theorem 4.7). Each equivalence class of this relation is called a
connected component of X(F/P). We say that a preordering P is connected if
X(F/P) is connected. We denote by gr (X(F/P)) the translation group of X(F/P)
in the terminology of [4], namely gr (X(F/P))={a e y(F|/P)|a-X(F/P)=X(F|P)}
where y(F/P)=Hom (F/P, {+1}) is the character group of F/P. For a pre-
ordering P of finite index, P is connected if and only if dim F/P=3 and dim
gr(X(F/P)z1.
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Let v be a valuation compatible with P. We shall define a group isomor-
phism:

F|P — G[o(P)x F[Pevveeeennn (*)

as a preliminary step to §3. Let s: G- F be a g-section ([7], §7) with the property
that s(u(P))cP. We define the group homomorphism f: F—G x F,/F2 by f(x)=
(v(x), xs(v(x))~* mod M). Then by easy calculation, we can see f~1(v(P)x P)=P
and we get the group isomorphism (*) ([5], Theorem, p. 186).

PROPOSITION 1.1. Let P be a preordering of finite index and v be a valuation
compatible with P. Then we have

gr (X(F/P)) = Hom (G/u(P), { £ 1}) x gr (X(F,/P)).
In particular
dim gr (X(F/P)) = dim G/u(P) + dim gr (X(F,/P))

as Z,-vector spaces. Moreover if there exists a valuation v of F which is com-
patible with P and v(P)+# G, then the index of P is 4 or X(F/P) is connected.

ProoF. The group isomorphism F/P=~G/v(P)x F,/P naturally induces a
group isomorphism y(F/P)~ Hom (G/v(P), {+1})xx(F,/P). Considering
X(F/P) and X(F,/P)as subsets of y(F/P) and x(F,/P) respectively, we get a natural
bijection: X(F/P)=~Hom (G/v(P), {+1}) x X(F,/P). Then it follows immediately
that

gr (X(F/P)) = Hom (G/v(P), {+1}) x gr (X(F,/P).

If v(P)# G, then dim gr (X(F/P))=1 and this implies that X(F/P) is connected or
the index of P is 4. Q.E.D.

For two formsf and g over F, we write f=~g (mod P) if dim f=dim g and for
any o € X(F/P), sgn,(f)=sgn,(g) where sgn,(f) and sgn,(g) are the signatures
at o of f and g respectively. If f=xg (mod P) for some x € F, then we say that
the forms f and g are P-similar. We now recall the definitions of the residue
class forms of a form p=<{ay,...,a,> and the sets of valuations Q(P),
Q(P, a,..., a,) which were introduced in [1]. Let v be a valuation of F which is
compatible with a preordering P. If v(a;)=v(a;) (mod v(P)) for any i, j, then it
is clear that there exist xe F and t,€ P (i=1,..., n) such that v(xt,a;)=0 for any i.
Let p=<{(xt;ay)",..., (xt,a,)”) be the form over F, where the bar means the
residue class modulo M. We shall show that p is unique up to P-similarity.
Assume that x’ e F and t;e P (i=1,..., n) satisfy the same conditions. We put
p'={(x'"tia)",..., (x'tja,)~> and a=(xt,;a,) (x'tia;)"!. Then a is a unit of A4
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and we have a(x'tia)=(tt;71;t71)(xt,a;), #5774t ePnU for every i.
These relations imply p=&-p’ (mod P) and the conclusion follows. For a form
p=<ay,..., a,», the equivalence relation in {a,,..., a,} defined by v(a)=u(a;)
(mod v(P)) gives rise to a partition of this set. Let p=p,;L.--Lp, be the decom-
position of p with respect to this partition; that is, ¢ is the number of classes and
each p; satisfies the condition mentioned above. The forms p; (i=1,...,¢) of F,
are called the residue class forms of p.  As for Q(P), it is the set of valuations which
are compatible with at least one ordering o€ X(F/P), and Q(P, ay,...,a,)=
{ve Q(P)lv(a;) £ v(a;) (mod v(P)) for some i and j}. For ve Q(P), there exists the
least preordering which is compatible with v and contains P. We denote it by P®.

ProposiTiON 1.2. ([1], Theorem 3.3) Let p=<{ay,...,a,) be a form such
that p is P-anisotropic and o-indefinite for any 6 € X(F/P). Then there exists a
valuation ve Q(P, a,..., a,) such that p is P*-anisotropic.

§2. g-cones and g-fans

In [6], Prestel introduced the notion of g-cones and pre-q-cones which gene-
ralize that of orderings and preorderings respectively. A subset Q of F, will be
called a pre-q-cone if it satisfies the following conditions:

1 2+Q<Q (@ F*QcQ (3 Q¢n-0=¢ 4 leQ

For a pre-g-cone Q, if QU —Q=F, then Q will be called a g-cone of F. (In [7],
a pre-g-cone Q contains the element 0 € F and does not necessarily contain 1 € Q.
In this paper we assume 0c=Q and 1 € Q for convenience.) It is easily shown that
if Q is a pre-q-cone, then S;-Q =Q where Sp=Dp(0)=ZXF2,

DEFINITION and PROPOSITION 2.1.  For a pre-qg-cone Q of F, we define P(Q)=
{xeQ|xQ<=Q}. Then P(Q) is a preordering of F. For a preordering P of F,
if there exists a q-cone Q such that P(Q)=P, then P will be called a g-fan.

The proof is easy and omitted.

DEFINITION 2.2. Let p be a form and P be a preordering of F over which p is
anisotropic. If p is P’-isotropic for any preordering P'2 P, then we say that the
pair (p, P) is a maximal pair.

By [1], Corollary 3.4, if (p, P) is a maximal pair, then P has a finite index.

LeMMA 2.3. Let P be a preordering and Q be a pre-q-cone of F. Then the
following statements hold.

(1) P(Q)> P if and only if Q is a union of cosets of P.

(2) If P(Q)> P, then there exists a q-cone Q1> Q such that P(Q,)> P.
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PrOOF. The assertion (1) follows immediately from the definition. As for
the assertion (2), let M ={Q’|Q’ is a pre-q-cone which contains Q and is a union of
cosets of P}. Then M is an inductive set with respect to the inclusion relation,
and by Zorn’s Lemma, there exists a maximal element Q, of M. Itis easy to show
that Q, is a required one. Q.E.D.

THEOREM 2.4. Let P be a preordering of F which is of finite index. Then
the following statements are equivalent:

(1). Pis a g-fan.

(2) There exists a form p such that (p, P) is a maximal pair.

PrOOF. (1)=>(2): Let Q be a g-cone of F such that P(Q)=P. By Lemma
2.3, (1), there exist ay,...,a,eF such that Q=a,PU---Ua,P. We put p=
{ay,..., a,y; then it is clear that p is P-anisotropic. Let P’ be a preordering of F
which contains P properly and take an element xe P'—P. Then we have xQ ¢ Q
and so there exists o€ Q such that xae=Q. This implies —xaeQ and p is P’-
isotropic.

(2)=(1): We put Q' =D(p/P), where D(p/P) is the set {be F|p represents b
over P}. Then it follows from the maximality of P that Q' is a pre-q-cone and
P(Q)=P. By Lemma 2.3, (2), there exists a q-cone Q such that P(Q)oP. Itis
clear that the form p is P(Q)-anisotropic and the maximality of P shows that
P(Q)=P. Q.E.D.

COROLLARY 2.5. For a form p and a preordering P of F, the following
statements are equivalent:

(1) p is P-anisotropic.

(2) There exists a q-fan P’ of finite index such that P'>P and p is P'-
anisotropic.

ExAMPLE 2.6. Let P be a preordering of finite index. If P is an ordering,
then clearly P is a gq-fan. Moreover a non-trivial fan P is a gq-fan. In fact let
{1, a,,..., a,} be a complete system of representatives of the positive cone of some
ordering o€ X(F/P), i.e. P(c)=PUa,PUu---Ua,P. We put p=({l=a,,
asy,..., 4,_1, —a,y. Since P is a fan, p is P-anisotropic, and we can readily see
that Q=D(p/P) is a gq-cone and P(Q)>P. Conversely take an element xe Q— P.
We have only to show xQ ¢ Q. To do this, we may assume that x=a, or x= —a,,.
Since PUa,PU---Ua,P is an ordering, we have a,a,e€a;P for some j(j#n).
Then a,(—a,)P= —a;P ¢ Q, which implies xQ ¢ Q.

The following proposition is shown implicitly in the proof of [1], Corollary
3.4.

PROPOSITION 2.7. Let v be a valuation which is compatible with a pre-
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ordering P. Let p={ay,..., a,) be a form such that (p, P) is a maximal pair.
Then the following statements hold.

(1) The value group G is generated by v(a;) (i=1,..., n) and v(P).

(2) Let p; (i=1,..., t) be the residue class forms of p and P; (i=1,..., t) be
preorderings of F, such that P,o> P and (p;, P;) are maximal pairs. (Since each
p; is P-anisotropic by [1], Proposition 3.1, Zorn’s Lemma guarantees the exis-
tence of P,) Then we have P= nP; (i=1,..., 1).

THEOREM 2.8. Let P be a preordering of finite index. If P is a q-fan, then
P is connected. In particular, if p is P-anisotropic, then there exists a con-
nected preordering P'(P’'> P) of finite index such that p is P'-anisotropic.

Proor. By Theorem 2.4, there exists a form p=<{ay,..., a,» such that (p, P)
is a maximal pair. When P is an ordering, the assertion is clear. Therefore we
may assume that P is not an ordering. Then for any o € X(F/P), p is g-indefinite
by the maximality of P. So it follows from Proposition 1.2 that there exists a
valuation ve Q(P, a,,..., a,) such that p is P’-anisotropic. Hence P*=P by the
maximality of P and so P is compatible with v. There exist a; and a; such that
v(a;)Fv(a;) (mod v(P)), and we can see that v(P)#G. It follows from Proposition
1.1 that dim gr (X(F/P))=1. Since P is a g-fan, P is not an intersection of two
orderings, and so P is connected. Q.E.D.

DEerINITION 2.9. For a preordering P of F, we define Y(F/P)={Q: a q-cone of
F|P(Q)> P}. Naturally the set X(F/P) can be identified with a subset of Y(F/P).

Let P be a preordering of finite index and X,,..., X, be the connected com-
ponents of X(F/P). We put P;=X#, i.e. P, is the preordering of X;. Then we
have P= N P; and it is the decomposition of P into connected components (cf.

(3], §2).

COROLLARY 2.10. Notation being as above, we have Y(F/P)= U Y(F/P))
(disjoint union).

Proor. It is clear that Y(F/P;)< Y(F/P) for any i. Let Q be an element of
Y(F/P). By Theorem 2.8, P(Q) is connected and this implies P(Q)> P; for some i,
and Qe Y(F/P;). Thus Y(F/P)=u Y(F/P;). Next we shall show that Y(F/P;) n
Y(F|P;)=¢ for any i#j. Assume on the contrary that there exists a g-cone Q €
Y(F/P)n Y(F/P;). Then P(Q) contains P; and P;; since P(Q) is a preordering,
this implies that X;=X(F/P;) and X;=X(F/P;) have a common ordering, a
contradiction. Q.E.D.
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§3. Valuations and g-fans

For a preordering P, there exists a finest valuation » compatible with P. Its
valuation ring A is generated by Ay, o € X(F/P), where A% is the finest valuation
ring compatible with o € X(F/P),i.e. Aj={ae F|b—ae P(c) and b+ a € P(o) for
some be @} and Q is the field of rational numbers. We shall call v the finest
valuation of P and A the finest valuation ring of P. The set of valuations com-
patible with P forms a chain.

LEMMA 3.1. Let v, v, be valuations compatible with a preordering P, and
Ay, A, be the valuation rings of v, v, respectively. If A,<A,, then dim G,/
v4(P)2dim G,/v,(P).

ProoOF. ' It is easy to see that vy (v,(P))=P-U, and v3(v,(P))=p-U,, where
U, and U, are the groups of units of 4, and A, respectively. Then, since U, < U,
and F/PU;=G;/v(P) (i=1, 2), we have dim G,/v,(P)=dim G,/v,(P). Q.E.D.

LemMA 3.2. Let P be a preordering of finite index and v be the finest
valuation compatible with P. If P is connected, then dim G/v(P)=1.

Proor. First we note dim gr (X(F/P))=1 and dim F/P#2 since P is con-
nected. We take tegr(X(F/P)), t#1. We write X(F/P)={o,,...,0y,
04,...,70;}. Then we have k>2 since dim F/P#2. We let P, be the preordering
of a 4 fan {o,, 0, 104, 10;} (i=2,..., k). By [2], Theorem 2.7, there exists a
valuation v; such that v; is compatible with P; and P, is trivial (i.e. the index of P;
equals 2 or 4), for any i=2,..., k. For the value group G; of v;, we have v,(P;) #G;
by Proposition 1.1. The valuation ring A4; of the valuation v; contains the finest
valuation ring Ag' compatible with o, ; hence the set {4;} forms a chain. We may
assume that 4, is the maximal one. Then the valuation v, is compatible for any
ordering of X(F/P), so v, is compatible with P. Then the valuation ring 4 of v
is contained in 4, and hence dim G/v(P)=>dim G,/v,(P)=1 by Lemma 3.1.

Q.E.D.

LEMMA 3.3. Let v be the finest valuation of a preordering P. Then any
valuation of F, compatible with P is trivial.

Proor. Let 7 be a valuation of F, compatible with P, 4 and 4 be the
valuation rings of v and ¥ respectively and ¢: A—F, be the canonical surjection.
Then A’=¢~1(A) is a valuation ring of F, and it is clear that the valuation v’
corresponding to A’ is compatible with P. Since v is the finest valuation of P
and 4’ < A, it follows that 4A’=A4 and o is trivial. Q.E.D.

THEOREM 3.4. Let P be a preordering of finite index and v be the finest
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valuation of P. If P is connected and is not a fan, then dim G/v(P)=dim gr
(X(F/P)). In particular, the induced preordering P of F, is not connected.

ProOF. Assume on the contarary that dim G/v(P)#dim gr (X(F/P)). Then
we have dim G/v(P)<dim gr (X(F/P)) and dim gr (X(F,/P))=1 by Proposition 1.1.
From [2], Example 2.6, P is not a fan, so dim F,/P#2 and P is connected. Then
it follows from Lemma 3.2 that #(P)# G, where © is the finest valuation of P and G
is its value group. This contradicts Lemma 3.3. Q.E.D.

DEerINITION 3.5. Let P be a preordering of finite index. Then P can be
written as P=P, N --- N P,, where P; is a g-fan for any i=1,..., n. We call the
least number of n the g-dimension of P and denote it by q-dim (P).

THEOREM 3.6. Let P be a connected preordering of finite index and v be a
valuation which is compatible with P. Then the following statements are
equivalent.

(1) Pisa g-fan.
(2) g-dim (P)<2r, r=dim G/v(P).

Proor. (1)=>(2): Let(p, P) be a maximal pair, and p; (i=1,..., t) be residue
class forms of p. Then it follows from t <2 that g-dim (P)<2" by Proposition
2.7, (2).

(2)=(1): If Pis an ordering of F,, then P is a fan ([2], Example 2.6) and the
assertion follows from Example 2.6. If r=0, then P is a q-fan and there exists
a g-cone Q of F, such that P(Q)=P. We write Q=a,Pu---U a,P, a;e U, a;=
a;mod M (i=1,..., m). Itis clear that the form p={a,,..., a,,» is P-anisotropic.
Since F/P=~F |P, we see that Q=D(p/P)=a,P U -+ U a,,P and Q is a q-cone of F.
Then it follows immediately that P(Q)=P, and so P is a g-fan. Next we consider
the case r=1 and P is not an ordering. We can write P=P, n---n P, 2<s<2r,
such that P;#P; for any i#j and each P, is a q-fan. (If P is a g-fan, then we
write P=P n P(z), where P(7) is the positive cone of some ordering t € X(F,/P).)
Let 0;(i=1,..., s) be g-cones of F, such that P(Q;)=P;. We write §;=a;;PU - U
ai,P (i=1,...,5), where a;;€ U, a;;=a;; mod M and 2m is the index of P. Let
s: G—F be a g-section with s(v(P))= P and «,,..., «, be elements of G such that the
set {&,..., &} is a basis of the Z,-vector space G/v(P). Let A be the set
{e;0;+--- +&,0,; =0, 1} consisting of 2" elements of G. Let y; (i=1,...,2") be
elements of F such that y,=1 and A={v(y);i=1,...,2"}. We put p=
ZyKaigy..., Gy (=1,...,2", where a;;=ay; for i=s.) Since the residue class
forms of p are P-anisotropic, p is P-anisotropic ([1], Proposition 3.1). Also
2.dim p equals the index of P by the group isomorphism (*) in §1. Since {y;a;;;
i=1,...,2", j=1,..., m} are the complete system of representatives of Q=D(p/P)
over P, Q is a q-cone. It is clear that P(Q)> P and we shall show the reverse
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inclusion. It suffices to show that f(P(Q))<uv(P) x P, where f is the group homo-
morphism defined in §1.

Step 1. First we shall show that v(P(Q))cv(P). Assume on the contrary
that there exists o € P(Q) such that v(ax)é=v(P). Then we can write v(a)=v( y,)+b
for some y,#1 and bev(P). Tt follows from the facts v(xa,;)=v(x) € v( y;) + v(P)
and aa,; € Q that aa; € y,a,;PU --- U y1a4,, P (i=1,..., m). It is now easy to show
that by a suitable renumbering of {a;}, we may assume that aa,; € y,a;;P for any

=1,...,m. So we can write aa;=y,ayp;, p;€ P (i=1,..., m). The residue class
forms of <aa;q,...,%d1,y and < Veiseos ViGgmy are {dqq,.--, d1mp and
{dy1s---» Aymy respectively and they are P-similar by the argument in §1. This
shows that O, = B0, for some fe F,and so P,=P,. This is a contradiction.

Step 2. Next we shall show that as(v(e))"! mod M e P for any e P(Q).
Let k be an integer with 1<k <s. Since v(a) € v(P), we have ay,a,; € y,a,;PU --- U
ViimP (i=1,..., m). Similarly to Step 1, we can find a bijection o: {1,..., m}—
{1,..., m} such that aay; € a,;P (i=1,..., m). So we can write aa,;=a,;p; for
some p;e€ P. Then since s(v(«))~! € P and v(p;)=uv(«), we have p;s(v(e))"*e Pn U;
therefore pa,;=a,,p;, where f=as(v(x))"* mod M and p;=p;s(v(e))~! mod M e
P. This shows that pQ,=0,, and so BeP,=P(Q,). Thus we have f=
as(v(e))~te n P,=P. Q.E.D.

COROLLARY 3.7. Let P be a connected preordering of finite index and v be
the finest valuation of P. Then the following statements are equivalent:

(1) Pisa g-fan.

(2) g-dim (P)<2r, where r=dim gr (X(F/P)).

Proor. The assertion follows immediately from Theorem 3.4 and Theorem
3.6. Q.E.D.

Let v be a valuation of F compatible with a preordering P of F. Let Tand S
be preorderings of F and F, respectively such that ToP and SoP. We say that
T is the lifting of S if X(F/T) consists of all orderings which lift the orderings of
X(F,/S), i.e. X(F|T)={oe€ X(F|P)| e X(F,/S)}. If T is the lifting of S then it
is clear that T=S.

LemMA 3.8. Notation being as above, we have |X(F|T)|=2" x | X(F,/S)| and
dim G/u(T)=r (r=dim G/v(P)), namely o(T)=uv(P).

Proor. It is clear that for an ordering t € X(F,/P), there exists exactly 2"
orderings o; € X(F/P) which lift the ordering . So we have |X(F/T)|=2"x
|X(F,/S)|. This shows that dim G/v(T)=r since X(F/T) = Hom (G/vu(T),
{£1}) x X(F,/S). Q.E.D.

THEOREM 3.9. Let P be a connected preordering of finite index and v be the
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finest valuation of P. Then q-dim (P)is the least integer s satisfying s=q-dim
(P)/2r, where r=dim gr (X/P).

Proor. We put m=q-dim (P) and write P=P, n --- n P,, where each P, is a
q-fan. By Corollary 3.7, we may assume 2"<m. We put S;=P,-;_1)4+; N---N
P, (i=1,...,s—1) and S;=Py_1)4+; N--NP,. We let T; be the liftings of
S;(i=1,...,8)and T=n T, (i=1,...,s). By Theorem 3.6 and Lemma 3.8, each T;
is a g-fan. Since we have the isomorphisms F/P=~G/u(P)x F, /P and F/T=x
G/u(T)x F,|T, it follows froms T= n T;=P and v(T)=v(P) that T=P. Hence
g-dim (P)<s. Conversely we write P=P, n--- NP, where each P; is a q-fan.
Then by Theorem 3.6, g-dim (P;) £2! <2 (t=dim G/v(P,)); therefore g-dim (P)<
2rq-dim (P) since P=P, n---n P,. Q.E.D.

ReMARK 3.9. (1) The converse of Theorem 2.8 is not valid. In fact let K
be a field with exactly three orderings and F=K((x)) and P=S;=ZXF2. Then
X(F|P) is connected and dim gr(X(F/P))=1. Since F,~K has exactly three
orderings, we have g-dim (P)=3 and by Corollary 3.7, P is not a g-fan.

(2) In Example 2.6, we showed that a non-trivial fan is a g-fan. The
converse is false. In fact we put L=K((x))(( y)) where K is the field given in (1)
and P=S; =XL2. Then X(L/P)is notafan. However since dim gr (X(L/P))=2,
we can see that P is a q-fan by Corollary 3.7.
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