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1. Introduction

This paper is concerned with bounded solutions of the second order semilinear

elliptic equations

(1.1) Δu + φ{x)uy = 0

and

(1.2) Δu + φ(x)e« = 0

in the entire Euclidean space K", n > 3, where Δ denotes the n-dimensional Laplace

operator, φ(x) is a locally Holder continuous function in Rn and 7 is a nonzero

constant.

The problems of existence and nonexistence of entire solutions of semilinear

elliptic equations of the form Δu+f(x, u) = 0 have been investigated by many

authors; see, for example, [3], [4], [6], [8], [9] and [12], We refer in particular

to the recent papers by Ni [8, 9] in which explicit conditions are given which

guarantee the existence of bounded entire solutions of (1.1) and (1.2).

Our main objective is to give conditions for the existence of bounded positive

entire solutions of (1.1) and bounded entire solutions of (1.2) by means of the

method of supersolutions and subsolutions. The principal device in this paper

is the construction of spherically symmetric supersolutions and subsolutions for

(1.1) and (1.2), and this enables us to prove the following theorems which extend

considerably the basic existence results of Ni [8, 9].

THEOREM 1.1. Suppose there exists a locally Holder continuous function

φ*(t) on [0, 00) such that \φ(x)\<φ*(\x\)for all xeRn and

(1.3) \°° tφ*(t)dt < 00.

Then (1.1) with yΦ\ has infinitely many positive solutions which are bounded

and bounded away from zero in Rn. Moreover, if either φ(x)>0 or φ(x)<0for

all xeRn, then equation (1.1) possesses infinitely many bounded positive solu-

tions with the property that each of these solutions tends to a positive constant

as |x|->oo.
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THEOREM 1.2. Suppose φ(x) satisfies the conditions of Theorem 1.1. Then

equation (1.2) possesses infinitely many bounded solutions in Rn. Moreover,

if either φ(x)>0 or φ(x)<0for all xeRn

9 then equation (1.2) possesses infinitely

many bounded solutions that tend to constants as |x|-*oo.

We also obtain necessary conditions for equation (1.1) [resp. (1.2)] with

one-signed φ(x) to possess bounded positive entire solutions [resp. bounded entire

solutions].

Furthermore, motivated by the observation that there seems to be no previous

result concerning entire solutions of systems of semilinear elliptic equations, we

make an attempt to extend the results for (1.1) and (1.2) to systems of the types

ί Δu + φ(x)uyvδ = 0
(1.4)

[ Δv + φ(x)u^vv = 0,

ί Δu + φ(x)eyu+δv = 0
(1.5)

[ Δv + ψ(x)e»u+vv = 0,

where φ(x) and φ(x) are locally Holder continuous functions in Rn, and γ, <5, μ

and v are constants. The desired extension depends on a suitable modification

of the supersolution-subsolution method employed to develop existence theory

for the single equations (1.1) and (1.2).

2. The equation Δu + φ(x)u? = 0

2.1. We begin by stating an existence theorem which is basic to our sub-

sequent considerations. Consider the semilinear elliptic equation

(2.1) Δu+f(x, w) = 0,

where/(x, ύ) is defined on Rn x JR1, is locally Holder continuous in x with exponent

λe(09 1) and is continuously differentiate in u.

By a supersolution [resp. subsolution] of equation (2.1) in Rn is meant a

function v [resp. w] e Cf£c

λ(Rn) satisfying

(2.2) AΌ+ f(x, v)<0 [resp. Aw +/(x, w)>0], x e R n .

THEOREM A. (Akό and Kusano [2]) If there exist a bounded supersolution

v(x) and a bounded subsolution w(x) 0/(2.1) in Rn such that

(2.3) w(x)<v(x)9 xeR",

then equation (2.1) possesses an entire solution u(x) satisfying
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(2.4) w(x) < u(x) < v(x)9 xeRn

REMARK 2.1. The boundedness of v(x) and w(x) in Theorem A is not neces-

sary (see W. -M. Ni [9, Theorem 2.10]). However, Theorem A in this form

suffices for our purposes.

In this section we consider equation (1.1) under the following assumption.

Assumption (A): φ(x) is locally Holder continuous in Rn with exponent

λ e (0, 1) and there exists a nonnegative function φ*(t) on [0, oo) such that

Φ*eCf o c ([0, oo)) and

(2.5) \Φ(x)\<Φ*(M\ xei?"

In order to discuss the existence of bounded positive entire solutions of (1.1)

it is convenient to distinguish the following three cases: (i) φ(x)<0 in R"; (ii)

φ(x)>0 in R"; and (iii) φ(x) has indefinite sign in Rn.

2.2. The case where φ(x)>0 in Rn. In this case our discussion is based on

the following theorem.

THEOREM 2.1. Let assumption (A) be satisfied. If the equation

(2.6) Δv + φ*(\x\)υy = 0

has a positive solution which is bounded and bounded away from zero in Rn,

then equation (1.1) has a positive entire solution which is bounded and bounded

away from zero in Rn.

The conclusion of this theorem immediately follows from Theorem A since

any positive solution of (2.6) is a supersolution of (1.1) and any positive constant

is a subsolution of (1.1).

We therefore wish to construct a positive solution of (2.6) which is bounded

and bounded away from zero in Rn. It is natural to seek such a solution of (2.6)

with spherical symmetry: v(x) = y(\x\). If we put ί = |x|,. then the problem is

reduced to the following one-dimensional problem:

^ = o, f>o,
(2.7) *

1

As easily verified, solving (2.7) is equivalent to solving the integral equation

(2.8)
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Our idea is to regard this as an operator equation y =«^> with & defined by

(2.9) &y{t) = α - -Λ-

and to solve it by means of the fixed point theorem of Schauder-Tychonoff.

THEOREM 2.2. Let yφ\. In addition to assumption (A) suppose that (1.3)

holds. Then, for some positive constant α, (2.7) has a positive solution which is

bounded and bounded away from zero for t>0.

PROOF. We distinguish the three cases : y > l ; O < y < l ; and y < 0.

(i) Superlinear case: y> 1. Let α > 0 be small enough so that

(2.10) 1 - *?^L Γsφ*(s)ds > 0,
n — 2 Jo

and put

(2.11) Jfc(α) = α - - ^ - ( sφ*(s)ds > 0.
n—2 Jo

Let C[0, oo) denote the locally convex space of continuous functions on [0, oo)

with the topology of uniform convergence on every compact subinterval of [0, oo).

Consider the set

(2.12) Γ = { y e C [ 0 , oo):fc(α)<X0<α for

which is a closed convex subset of C[0, oo). Now, we show that the operator

defined by (2.9) maps Γinto itself. If y e Y, then obviously ^y(t)<(x and

α ~ —^ [ sφ*(s)yy(s)ds
n — z jo

> α - -J*^- (' sφ*(s)ds > Λ (α), / > 0.
n — 2 Jo

(ii) Sublinear case: 0 < y < 1. Let α > 0 be large enough so that (2.10) holds

and define fc(α) by (2.11). If we let Γbe the same subset of C[0, oo) as defined

in (i), then it readily follows that & maps Y into itself.

(iii) Singular case: y<0. Let α > 0 be so large that

(2.13) α1"? - ^ L [°° sφ*(s)ds > 0,
n — 2 Jo

and define

(2.14) A(t) = *i-y - 1=2- (' sφ*(s)ds.
n — z jo
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Then, 0<[y4(ί)] 1 / ( 1 " y ) <α, ί>0, and we can consider the set

(2.15) Y = {j>eC[0, oo): [ A ( 0 ] 1 / ( 1 " y ) < X 0 < α for t > 0}.

It can be shown that & maps Yinto itself. Indeed, clearly &y{f)<v. and

* - — ^ Γ j
H — Z Jo

α Kr [
n — 2 Jo

- r ) , / 2; 0.

To see the last equality it suffices to consider the function

P(t) = α Kr ['
n — Z Jo

and show that P(0) = 0 and P'(t)=O for t>0. In this case, we define fe(α) by

( 1 _ Λ , foo \l/(l~y)

α l _ v _J_JM sφ*(s)dΛ
n—z Jo /

We have thus seen that & is a self-map of F in each of the cases (i), (ii) and (iii).

Next, we show the continuity of the operator &. If ym e Y (m = 1, 2,...) and

ym(t)-+y(t) as m->oo uniformly on every compact subinterval of [0, oo), then

y e Y and we have

(2.17)

for ί^0. With the use of (1.3) and Lebesgue's dominated convergence theorem,

it follows from (2.17) that, in each of the cases (i), (ii) and (iii), ^rym(t)->Ssry(t)

asm-+oo uniformly on every compact subinterval of [0, oo). Finally, we check

the relative compactness of &Y. In fact, &Y is clearly uniformly bounded at

every point of [0, oo), and from the relation

KWίfll =|Jl(y

where C = αy if y>0 and C = [k(α)]y if y<0, it follows that &y is equicontinuous

at every point in [0, oo).

All the conditions of the Schauder-Tychonoff fixed point theorem are satisfied,

and hence the mapping & has a fixed point y in Y. This fixed point y~y(t) is a

solution of the integral equation (2.8), and so it is a solution of the initial value

problem (2.7) with the required boundedness property. This completes the

proof of Theorem 2.2.
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Combining Theorem 2.1 with Theorem 2.2 yields the following existence

theorem for (1.1)

THEOREM 2.3. Let yφ\ and in addition to assumption (A) suppose that

(1.3) holds. Then, equation (1.1) has infinitely many bounded positive entire

solutions which converge to positive constants as |x|->oo.

PROOF. By Theorem 2.2 there are positive constants α and k(cc) such that

the initial value problem (2.7) has a solution y(t) satisfying k(a) < y(t) < <x for

t > 0. Since y'{t) < 0 for t > 0, the limit η = limf _ «, y(t) > /c(α) exists. The function

v(χ) = y(\χ\) is a solution of (2.6), and hence a supersolution of (1.1), whereas the

constant η is a subsolution of (1.1). From Theorem A it follows that (1.1) has an

entire solution u(x) such that η<u(x)<v(x) in R". It is clear that l i m ^ . ^ u(x) =

η. It is not hard to see that there exist infinitely many values of α > 0 which yield

different positive entire solutions of (1.1). This completes the proof of Theorem

2.3.

REMARK 2.2. In the case where y = l, that is, equation (1.1) is linear, we

have a weaker conclusion: //

(2.18) Γ tφ*(t)dt < n - 2,
Jo

then equation (1.1) with γ = l has infinitely many bounded positive entire solu-

tions which tend to positive constants as |x|-»oo.

Whether (2.18) can be replaced by (1.3) or not is unknown to us.

2.3. In this subsection we assume that φ(x)<0 for xeRn. The following

theorem is parallel to Theorem 2.1.

THEOREM 2.4. Let assumption (A) be satisfied. If the equation

(2.19) Aw - φ*(\x\)w? = 0

has a positive solution which is bounded and bounded away from zero in Rn,

then equation (1.1) has a positive entire solution which is bounded and bounded

away from zero Rn.

This is an immediate consequence of Theorem A. In fact, since φ(x)<0 in

R", every positive constant is a supersolution of (1.1) in R", and in view of (2.5)

any positive solution of (2.19) is a positive subsolution of (1.1) in Rn.

According to Theorem 2.4, the problem under study for (1.1) is reduced to

the problem of finding a bounded positive solution of (2.19). As in subsection

2.2, we seek a spherically symmetric solution w(x) = z(\x\) of (2.19). Putting

ί = |x|, we get the following ODE problem:
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Z " + JLJL Z> - φ*(t)zy = 0, ί > 0,
(2.20) ' t

(0) = & z'(0) = 0

which in turn is equivalent to the integral equation

(2.21) z(t) = β + -L-^s[i- (-f )"~2]> (φ»(j)«fe, i > o.

We will solve (2.21) by reducing it to an operator equation z = &z with ^ defined by

and applying the fixed point theorem of Schauder-Tychonoff.

THEOREM 2.5. In addition to assumption (A) suppose that (1.3) is satisfied.

Then, for some positive constant β, equation (2.20) has a bounded positive solu-

tion which is bounded away from zero for t>0.

PROOF. The proof of this theorem is analogous to that of Theorem 2.2.

(i) Superlinear case: y> 1. We take a positive constant β so small that

(2.22) β1-? - H i Γ tφ*(t)Λ > 0.
n — λ Jo

Define the function B(t) by

(2.23) B(ί) = β'-y - l^L Γ sφ*(s)ds
n — Z Jo

and put

(2.24) l(β) = limt^lB(t)V^-y\

Noting that /?^[B(ί)]1 / ( 1~y ), ί>0, we consider

(2.25) Z = {zeC[0, oo):j5<z(0<[B(ί)] 1 / ( 1- y ) /or

which is a closed convex subset of locally convex space C[0, oo). If z eZ, then

β<&z(t) and as in case (iii) in the proof of Theorem 2.2, we have

<β ϊ\

It follows that ^ maps Z into itself.

(ii) Linear case: y = 1. Let β be any fixed positive constant and put
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(2.26) B(ί) = βexpζ^-^ sφ*(s)ds),

(2.27)

Define

Z = {ze C[0, oo): β < z(t)<B(t) for t > 0}.

Then ^ maps Z into itself. In fact, if zeZ, then β<&z(t), and

—L^ f' j0*(j)z(j)rfj
n — Z Jo

—-V (' sφ*(s)B(s)ds
n — Z Jo

(iii) Sublinear case: 0 < γ < 1. Put

(2.28) B(t) = βι~y + - L = i ff

 sφ*(s)ds,
n — Z Jo

(2.29) /(/?) = li

where j? is any positive constant. Then β < [ £ ( 0 ] 1 / ( 1 ~ y ) , t>0. Define Z by

(2.25). If zeZ, then β<&z(t), t>0, and proceeding as in case (i), we have

9z(t) < β + —ί^- Γ
/i — 2 Jo

This implies that 0 maps Z into itself,

(iv) Singular case: y<0. Put

(2.30)

where β is any positive constant, and define

(2.31) Z = {zeC[0, oo): β<z(t)<l(β) for t>0}.

Then it follows that ^ is a self-map of Z. In fact, if z e Z, then obviously β < &z

and we have

β + — ί = - [' sφ*(s)zy(s)ds
n — Z Jo

β + T ^ Σ \Ό °
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We have thus shown that in each of the cases (i)-(iv), 0 maps Z into itself.

Furthermore, it can easily be shown that ^ is continuous and that <3Z is relatively

compact in C[0, oo). Therefore, applying the Schauder-Tychonoff fixed point

theorem, we conclude that the integral equation (2.21) has at least one solution

in Z. This implies that the initial value problem (2.20) has a bounded positive

solution which is bounded away from zero. This completes the proof of Theorem

2.5.

Theorems 2.4 and 2.5 yield the following theorem which is the main result

of this subsection.

THEOREM 2.6. In addition to assumption (A) suppose that (1.3) is satisfied.

Then, (1.1) has infinitely many positive entire solutions which tend to positive

constants as |x|-»oo.

PROOF. By Theorem 2.5, in each of the cases (i)-(iv), we can take positive

numbers β and l{β) in such a way that the initial value problem (2.20) has a positive

solution z(t) satisfying β<z(t)<l(β) for t>0. Since z'(ή>0, t>0, the positive

limit l im^^ z(t) = ζ<l(β) exists. The functions φc) = ( and vφc) = z(|x|) are,

respectively, a supersolution and a subsolution of (1.1) in Rn, and so, from The-

orem 2.4 and Theorem A it follows that (1.1) has a solution u(x) such that vφc)<

u(x)<v(x) in Rn. Obviously, lim^x^aou(x) = ζ. As easily verified, there exist

infinitely many values of β>0 which yield different entire solutions of (1.1).

This finishes the proof.

2.4. We now turn to the case where φ(x) is not of constant sign.

THEOREM 2.7. Let assumption (A) be satisfied. If the equations (2.6) and

(2.19) possess bounded positive solutions v(x) and vφc), respectively, such that

w(x)<v(x) in Rn

9 then there exists at least one solution u(x) of (IΛ) satisfying

(2.32) vφc) < u(x) < v(x), x e Rn.

This theorem follows from Theorem A, since v(x) and vφc) are respectively,

a supersolution and a subsolution of (1.1) in R".

Now suppose that (1.3) holds. We put

k{a) = α - -J* \™tφ*(t)dt,
n — I Jo +

n — 2
if either y>ί orO<y<l, and

/ 1 «, foo \l/(l-y) Ry Γco

k(x) = U-y-Λ—L\ ίφ*(ί)dή , i{β) = β + -P—\ tφ*(t)dt
\ n — L Jo / n — Z Jo

if γ<0. In either case positive numbers α and β can be taken so that the above
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k(oc) and /(/?) are positive and

(2.33) β<l(β)<k(oc)<a.

From the proof of Theorems 2.2 and 2.5 we see that to such α and β there cor-

respond a solution y(t) of (2.7) and a solution z(ί) of (2.20). In view of (2.33)

we have

(2.34) z(t)<y(t) for t > 0.

The functions v(x) = y(\x\) and w(x) = z(\x\) are, respectively, a solution of (2.6)

and a solution of (2.19) satisfying w(x)<i;(x) in Rn, and Theorem 2.7 guarantees

the existence of an entire solution u(x) of (1.1) satisfying (2.32). It is easy to

check that there exist infinitely many pairs of positive numbers α and β which

produce different entire solutions of (1.1). We have thus proved the following

THEOREM 2.8. Let yφ\. In addition to assumption (A) suppose that (1.3)

is satisfied. Then, equation (1.1) possesses infinitely many positive entire solu-

tions which are bounded and bounded away from zero in Rn.

Concerning the linear equation (1.1) ( y = l ) we have the following existence

theorem.

THEOREM 2.9. Suppose that assumption (A) and (2.18) are satisfied. Then,

equation (1.1) with y = l has infinitely many positive entire solutions which are

bounded and bounded away from zero in R".

REMARK 2.3. Theorem 1.1 stated in the introduction follows from Theorems

2.3, 2.6 and 2.8.

We now present a variant of Theorems 2.8 and 2.9 which is suggested by

Ni [9]. We write x = (xί9 x2)eRmxRn-m, m > 3 .

THEOREM 2.10. Suppose there exists a positive and locally Holder con-

tinuous function φ*(t) on [0, oo) satisfying

(2.35) \φ(x)\ < φ*(l*il),

Suppose that

\ tφ*(t)dt < oo if y Φ 1
Jo

and

° tφ*(t)dt < m - 2 ifγ=L
o
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Then (1.1) has infinitely many positive entire solutions which are bounded and

bounded away from zero in Rn. Moreover, if either φ(x)>0 or φ(x)<0for all

xeRn, then (1.1) has infinitely many bounded positive entire solutions which

tend to positive constants uniformly in x2 as IXJ-KXD.

PROOF. Consider the equations

ΛJ +φ*(l*i l)3 y = 0 ,

Δmw - φ+{\xx\)W = 0,

where Δm denote the Laplace operator in Rm. By the proof of Theorems 2.2 and

2.5 these equations have spherically symmetric positive solutions ^(xj, w(x±)

which are bounded and bounded away from zero in Rm and satisfy w(x1)<v(xί),

xt eRm. Define the functions v(x) and w(x) in Rn as follows:

v(x) = v(xu x2) = O(X{)9 W(X) = w(xl9 x2) = w(Xi).

Then, Δυ = Δmv9 Δw = Δmw and in view of (2.35) we have

Δv + φ(x)v? < Δmv + Φ*(\XX\)ΌI = 0 ,

Δw 4- φ(x)wy > Δmw - φ*(|x!|)wy = 0

in R". This implies that v(x) and w(x) are, respectively, a supersolution and a

subsolution of (1.1) in Rn. Since w(x)<v(x), xeRn, the conclusion follows from

Theorem A.

3. The equation JM + φ(x)eu = 0

The purpose of this section is to establish the existence of bounded entire

solutions of equation (1.2). As in the preceding section we distinguish the three

cases: (i) φ(x)>0 in R"; (ii) φ(x)<0 in Rn; and (iii) φ(x) is not one-signed in Rn.

3.1. The case where φ(x) > 0 in Rn.

THEOREM 3.1. Let assumption (A) be satisfied. If the equation

(3.1) Δv + φ*(\x\)ev = 0

has a bounded solution in Rn

9 then (1.2) has a bounded solution in Rn.

Since a bounded solution of (3.1) is a supersolution and any constant is a

subsolution of (1.2) in Rn

9 the conclusion of this theorem follows from Theorem A.

Consider the initial value problem:
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ί y" + -^-y' + Φ*(t)ey = O, t>0,
(3.2) '

I XO) = α, y'(0) = 0,

where α is a constant. If y(t) is a bounded solution of (3.2), then the function
v(x)=y(\x\) is a bounded solution of (3.1). In order to solve (3.2) we transform
it into the integral equation

(3.3) y(t) = α - - ± - £ ^ l - ( i j 2 ] ^ ^ ) ^ ^ ^ , / > 0.

Let α be fixed. Putting

(3.4) k(oc) = α - -£L- JJ sφ*(s)ds,

we consider the set

Y={j>eC[0, oo):

and define the operator «^: Y-»C[0, oo) by

^>ω = « - ̂ ryj/f1- ( f )""2

Then, & maps 7 into itself. For, if y e 7, then

α > J*>(/) > α - —Lr- Γ
n — Z jo

> α - - ^ Γ sφ*(s)ds ^ Λ(α), / > 0.
Λ — 2 Jo

The continuity of & follows from the inequality

WyJt) - &y{t)\ < —^ Γ sφ*(s)\e»«ω - β^

Λ — 2 Jo

and the relative compactness of &Y follows from the relation
ds < eΛ [' φ*(s)ds.

Jo

Consequently, Schauder-TychonofΓs fixed point theorem is applicable, and (3.3)
(and hence (3.2)) has a bounded solution. Proceeding as in the proof of Theorem
2.3, we can prove the following

THEOREM 3.2. Suppose assumption (A) is satisfied. If (1.3) holds, then
equation (1.2) has infinitely many bounded entire solutions which tend to con-
stants as |x|-»oo.
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3.2. The case where φ(x)<0 in Rn.

THEOREM 3.3. Let assumption (A) be satisfied. If the equation

(3.5) Aw - φ*(\x\)ew = 0

has a bounded solution in Rn

9 then (1.2) has a bounded solution in Rn.

Because of φ(x)<0 and (2.5), a bounded solution of (3.5) is a subsolution and

any constant is a supersolution of (1.2) in Rn. Therefore, the conclusion of

Theorem 3.3 follows from Theorem A.

We seek a spherically symmetric solution w(x) = z(|x|) of (3.5). This reduces

to the initial value problem:

Iί± - φ*(t)ez = 0, t > 0,
(3.6) ' '

= β z'(0) = 0,

where β is constant. The equivalent integral equation is

(3.7) z(ί) = β + -J-2 \[s[l - (±y~2^*(s)e^ds, t > 0.

Define the operator ^ by

(3.8) &z(t) = β + -^-j J% [l - ( f )W"2] Φ*(s)ez(s)ds, ί > 0.

Now, if (1.3) holds, then we choose β such that

(3.9) e~β Kr Γ sφ*(s)ds > 0.

n — I Jo
Put

(3.10) B(ί) = \o

and consider the set

Z={zeC[0, OD): β<z{t)<B(t) for

If z e Z, then we have for t > 0

β < &z(t) < β 4- — - =
n — 2 o

< β + —Kr Γ sφ*(s)eB^ds
n — 2 Jo
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Γ \l ds
n — Z Jo \ n —

e-f> l— Γ sφ*(s)dsY =
n — Z Jo /

This shows that ^ maps Z into itself. The continuity of ^ and the relative

compactness of ^ Z are obvious. Hence, there exists a fixed point z of ^ in Z,

which is a solution of (3.6).

THEOREM 3.4. Suppose assumption (A) is satisfied. If (1.3) fto/ds,

(1.2) /iαs infinitely many bounded entire solutions which tend to constants as

M-oo.

The proof of this theorem is similar to that of Theorem 2.6.

3.3. The case where φ(x) is not of constant sign in R".

THEOREM 3.5. Let assumption (A) be satisfied. If (3.1) and (3.5) have

bounded solutions υ(x) and w(x), respectively, such that w(x)< v(x), xeRn, then

(1.2) has a bounded entire solution u(x) such that

(3.11) w(x) < u(x) < v(x), xeRn.

Let α be a fixed constant. Choose a constant β so that (3.9) holds and put

/(j9) = limf_00 B(t), where B(t) is defined by (3.10), that is

(3.12) l(β) = \o

Since l(β)-* — oo as /?-»— oo, we can take β so that

(3.13) β < l(β) < k(oc) < α,

where k(oί) is given by (3.4). Let y(t) and z(t) denote the solutions of (3.2) and

(3.6), respectively. Then, β<z(t)<l(β)<k(oc)<y(t)<oc for ί < 0 . If we define

the functions v(x) and VV(JC) by

then, v(x) and w(x) are, respectively, solutions of (3.1) and (3.5) satisfying w(x)<

v(x) in Rn. Theorem 3.5 then implies that (1.2) has an entire solution u(x) satis-

fying (3.11). Thus we obtain the following theorem.

THEOREM 3.6. In addition to assumption (A) suppose that (1.3) is satisfied.

Then equation (1.2) has infinitely many bounded entire solutions.

Combining Theorems 3.2, 3.4 and 3.6 yields Theorem 1.2 stated in the intro-
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duction. We conclude this section with a result which corresponds to Theorem

2.10.

THEOREM 3.7. Let x = (xu x2)eRm'xRn~m, ra>3. Suppose there exists a

positive locally Holder continuous function φ*(t) on [0, oo) satisfying (2.35).

If (13) holds, then (1.2) has infinitely many bounded entire solutions. Moreover,

if either φ(x)>0 or φ(x)<0for all xeR", then (1.2) has infinitely many bounded

entire solutions, each of which tends to a constant uniformly in x2 as IxJ-xx).

REMARK 3.1. The facts mentioned above are also true of the equation

Δu + φ(x)eau = 0,

where α is a nonzero constant, since by putting v = <xu, it is reduced to

Δυ + aφ(x)eυ = 0.

4. Necessary conditions

In this section we are interested in necessary conditions in order that: (i)

equation (1.1) possesses a bounded positive entire solution; and (ii) equation

(1.2) possesses a bounded entire solution.

THEOREM 4.1. Suppose that either φ(x)>0 or φ(x)<0, xeR", and there

exists a continuous function φ*(0 on [0, oo) satisfying

(4.1) \φ(x)\ > φ*(\x\) > 0, xeR",

7/(1.1) has a positive entire solution which is bounded and bounded away from

zero in Rn, then

(4.2) Γtφ*(t)dt< oo.
Jo

PROOF, (i) The case where φ(x)>0 in R". We assume that (1.1) has a

positive entire solution w(x) which is bounded and bounded away from zero in Rn.

Let ΰ(t) denote the spherical mean of u(x) over the sphere St = {xeRn:

|x| = 0, i.e.,

where ωn denotes the surface area of the unit sphere Sί. The spherical mean of

u(x) satisfies the following relation (Lemma 2 of [10, p. 69]):

(4.3) An = AΓi = ^-"-^
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Taking the spherical mean of (1.1) over St and using (4.3) and (4.1), we obtain

tι-»{t»-χu'(t)y + φ*(t)ΰ~?(t) < 0, t > 0.

where ' = djdt. By the boundedness assumption on u(x) there exist positive
constants k and K such that k<W(t)<K. Therefore, we have

^ - " ( r - ^ W + kφ*(t) < 0, t > 0.

It is easy to see that the above inequality is equivalent to

(4.4) (t*-n(t»-2Q(t)yy + ktΦM < o, t > o.

Since

0 < 0, ί > 0,

ί3~'I(ίM"2M(0)/ is nonincreasing for ί>0. On the other hand, it can be shown that
fi-2(tn-2ΰ(t)y>0, t>0. In fact, if there exists to>0 such that - c =
ίo~M('o'2"0o))' < 0, then we have

ί3-»(r-2M(0)' < - c < 0, ί > ί0,

or

(4.5) (ίrt"2«(0)' < - ct»-\ t > t0.

Integrating (4.5) over [ί0, ί], we obtain

- c
Jfo

/I —

which implies that t7(ί)<0 eventually, since the last term tends to ~oo as t-+oo.
But this contradicts the positivity of ΰ(ί), and so we have (tn~2u(t))'>0, t>0, as
claimed. From (4.4) we have

Integrating this over \tu t], ^ > 0 and noting that t3~n(tn-2u(t)y>0, we obtain

k [' sφ*(s)ds < if-n(if-2i/(i1))' - t3-2(t»-2ΰ(ήy

This shows that (4.2) holds.
(ii) The case where φ(x)<0 in #", The spherical mean ΰ(t) of w(x) satisfies

the inequality
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t'-\t «-ιΰ'(t)y - Φ+(t)ϊP(t) > o, t > o.

There exist positive constants / and L such that l<u?(t)<L. Hence, we have

(4.6) ^ - " ( f - i S W - lφ*(t) > 0, t > 0,

which is equivalent to

(4.7) α3-"(f»-2w(0)')' - itφM > 0, t > 0.

This implies that (ί3"w(r~2i?(r))/)/>0, so that t3-n(tn'2ΰ(t)y is nondecreasing for
ί>0. Moreover, t3~n(tn~2ϋ(t))' is bounded above. To see this we assume to
the contrary that for any G > 0, there exists tG > 0 such that

(4.8) f3-»(ί»-2M(ί))' > G, ί > tG.

Dividing (4.8) by t3~n and integrating over [ίG, ί], we obtain

t»-2fι(t) - tG'
2Γι(tG) > -Sϊ-y {t"~2 - tG~

2\ t > tG9

which implies

Since G is an arbitrary positive constant, it follows that

, ^ ΰ(t) = oo,

which contradicts the boundedness of ΰ(t).
Therefore, there exists a positive constant M such that

(4.9) t3-n(tn-2ΰ(t))' < M, t > 0.

Let t0 be fixed. Integrating (4.7) over [ί0, ί] and using (4.9), we have

sφ*(s)ds < t3-\t»-2ΰ(t))' ~ t%-n(tξ-2ΰ(to)y
to

< M - t^-n(tξ-2π{t0)y, t > t0.

This implies (4.2) and the proof is complete.

If φ(x)>0 in Rn and y< 1 in (1.1), then a stronger result is obtained.

THEOREM 4.2. Let φ(x)>0 in Rn and y<l . Suppose there exists a con-
tinuous function φ*(t) on [0, oo) satisfying (4.1). //(l.l) has a positive entire
solution, then (4.2) holds.
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PROOF, (i) The case where 0 < y < l . Let u(x) be a positive entire solu-

tion of (1.1). As in Kitamura and Kusano [5] we put

From Lemma 2 of [10] it follows that

wnι jst

By an easy calculation, we obtain

+ (l-y)irMtι

<(l-y)u-yAu= -(l-y)φ(χ)

< — (1—7)0^(1x1).

Hence, we have

fi-i^π-n/'φy < _ (l-y)φ*(tl t > 0,

or

(t*-*(t"-2u(t)yy < - (i-y)tφM, t > o.

Proceeding exactly as in the part (i) of the proof of Theorem 4.1, we get the desired

conclusion.

(ii) The case where y < 0. The following proof is motivated by Kusano and

Swanson [7]. Let α be a fixed positive constant and put v(x) = u(x) + α. We have

(4.10) Av + φ*(\x\)υy < 0, xe R\

Since

Au + φ(x)uv > Av + φ(x)vy > Av + 0*(|x|)fly.

We take the spherical mean of (4.10) and make use of Jensen's inequality: v~ϊ>vy.

(Note that the function vγ with negative y is convex.) Then we have

fi-»(ί»-iij'(ί))' + φ*(i)Όy(i) < 0, t > 0,

or equivalently

< o, t> o.

Then, (t3-n(t"-2v(t)yy <0, t>0, and an integration of this inequality shows that

there exist constants c± and t1 such that

(4.12) (t"-2v(t))' < Clt»-\ t>tv
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Integrating (4.12) again over [tl9 ί], we obtain

t"-2ϋ(t) - tΓ2v(ti) < -^j(tn~2-tΓ2X t > t u

which gives

This implies that there exists a positive constant C such that

v(t) < C, t > tγ.

Since y<0, we have vy(t)>Cy, t>tγ, and combining this with (4.11), we get

(^-"(ί"- 2^*))') ' + atφM < 0, t < tx.

Integrating the above and noting that t3~"(t"~2v(t)y is positive, we see that

Cy \ tφ*(t)dt < oo,

thereby completing the proof of Theorem 4.2.

Combining Theorems 2.3, 2.6 and 4.1, we have the following theorem giving

a necessary and sufficient condition for (1.1) to have a bounded positive entire

solution which is bounded away from zero in Rn.

THEOREM 4.3. Let either φ(x)>0 or φ(x)<0, xeR". Suppose there exist

a locally Holder continuous function φ*(t) on [0, oo) and a constant c ( 0 < c < l )

satisfying

(4.13) cφ*(\x\) < \φ(x)\ < φ*(\x\), xeR".

Then, (1.3) is a necessary and sufficient condition for (1.1) with yφ\ to have a

positive entire solution which is bounded and bounded away from zero in Rn.

With regard to the sublinear equation (1.1) with nonnegative φ(x) a stronger

result follows from Theorems 2.3 and 4.2.

THEOREM 4.4. Let y<\ and φ(x)>0, xeRn. Suppose there exist a func-

tion φ*(t) and a constant c ( 0 < c < 1) satisfying (4.13). Then (1.3) is a necessary

and sufficient condition for (1.1) to have a positive entire solution.

Applying the technique used in the proof of Theorem 4.1 to (1.2), we have

the following theorem.

THEOREM 4.5. Suppose that either φ(x)>0 or φ(x)<0, xeRn, and there
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exists a continuous function φ*(t) satisfying (4.1). //(1.2) has a bounded entire

solution, then (4.2) holds.

The following theorem follows from Theorems 3.2, 3.4 and 4.5.

THEOREM 4.6. Let either φ(x)>0 or φ(x)<0, xeR". Suppose there exist

a locally Holder continuous function φ*(t) on [0, oo) and a constant c ( 0 < c < l )

such that (4.13) holds. Then, (1.3) is a necessary and sufficient condition for

(1.2) to have a bounded entire solution.

Now, we consider the equation

(4.14) Δu + φ(x)e~u = 0.

THEOREM 4.7. Let φ(x)>0, xeRn. Suppose there exists a function φ*(t)

satisfying (4.1). //(4.14) has an entire solution which is bounded below, then

(4.2) holds.

PROOF. Let u(x) be a solution which is bounded below in Rn. Then, there

exists a constant α satisfying v(x) = u(x) + α > 0 in Rn, and v(x) satisfies the equation

(4.15) Δv + φ(x)e"e-v = 0.

Taking the spherical mean of (4.15) over the sphere St and noting that e~v is a

convex function of v, we have

tι-n(tn-H'(t))' + e"φ*(t)e-ϋ^ < 0, t > 0.

Hence,

(4.16) (*3-»(f"-2i?(0)')' + e«tφ*(t)e-ϋ^ < 0, t > 0.

Integrating the inequality (t3~n(tn~2v(t))')'<0, which is a consequence of (4.16),

from tt > 0 to ί, we see that £(ί) is bounded, that is v(t)< k, t>tu for some constant

k. Combining this with (4.16), we obtain

(4.17) (t3-n(tn-2v(t))')' + e«-Hφ*(t) < 0, t > tx.

Since (tn~2ϋ(f))'>0 for t>tί (see the proof of Theorem 4.1), an integration of

(4.17) yields

/•oo

\ tφ*(f)dt < oo.

This completes the proof.

THEOREM 4.8. Let φ(x)>0, xeR". Suppose there exist a locally Holder

continuous function φ*(t) on [0, oo) and a positive constant c satisfying (4.13).
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Then (1.3) is a necessary and sufficient condition in order that: (i) the equation

Δu + φ(x)eau = 0, α < 0,

possesses an entire solution which is bounded below: and (ii) the equation

Δu - φ(x)eau = 0, α > 0,

possesses an entire solution which is bounded above.

This follows from Theorem 4.7 and Remark 3.1.

5. Systems of elliptic equations

In this section we consider elliptic systems of the form

f Δu + F(x, u,v) = 0
(5.1)

[ Δv + G(x, u, v) = 0

in Rn

9 where F(x, u, v) and G(x, u9 v) are defined on Rn xR1 xR1, are locally

Holder continuous in x with exponent λ and are continuously differentiable in

u and v.

Our objective here is to extend the existence theory developed in Sections 2

and 3 to the elliptic systems (1.4) and (1.5), which are specializations of (5.1).

This can be done, since the previous supersolution-subsolution method (Theorem

A) can be so extended as to apply directly to systems of the form (5.1).

By a super-supersolution of (5.1) in Rn is meant a vector function (u, v)e
n)x Cftcλ(Rn) satisfying the differential inequalities

f Δv +F(x9 u, Ό) < 0
(5.2)

1 Δv + G(x,ύ,v) < 0

in Rn. A vector function (ύ, ϋ) e Cffc

λ(Rn) x Cj+c

λ(Rn) satisfying

f Δύ + F(x, ύ,ϋ)>0
(5.3)

[ Δϋ + G(x, ύ, ϋ) > 0

in .R" is called a sub-subsolution of (5.1) in Rn. A super-sub solution of (5.1)

in Rtt is a vector function (M, ϋ) e Cffc

λ(Rn) x Cffc

λ(Ra) which satisfies the following

inequalities in Rn:

ί Δu + F(x, u, ϋ) < 0
(5.4)

[ Δϋ + G(x, w, ϋ) > 0.
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A sub-supersolution of (5.1) can be defined analogously.

Our basic existence theorems for (5.1) follow.

THEOREM 5.1. Suppose Fv(x, u9 v)>0 and Gu(x, u, v)>0 in RnxRιxRK

If there exist a bounded super-supersolution (ύ(x), v(x)) and a bounded sub-

subsolution (ύ(x), ϋ(x)) o/(5.1) in Rn such that

(5.5) ύ(x)<ύ(xl v(x)<v(x), xeR",

then system (5.1) possesses a bounded entire solution (u(x), v(x)) satisfying

(5.6) ύ(x) < u(x) < ύ(x\ v(x) < v(x) < v(x), x e Rn.

THEOREM 5.2. Suppose Fv(x, u,v)<0 and Gu(x, u, v)<0 in RnxR1xR1.

If there exist a bounded super-subsolution (ύ(x)9 ϋ(x)) and a bounded sub-super-

solution (ύ(x), v(x)) of (5.1) in R" such that (5.5) holds, then system (5.1)

possesses a bounded entire solution (u(x), v(x)) satisfying (5.6).

We give a detailed proof of Theorem 5.1, which is based on the following

lemma.

LEMMA 5.1. Let BR be a ball with radius R>0 in Rn. If the hypotheses

of Theorem 5.1 are satisfied, then there exist vector functions (uR(x), vR(x)) and

(ύR(x), ϋR(x)) with the following properties:

( i ) (uR(x)9 vR(x)) and (UR(x), ϋR(x)) are both of class C^\BR) x C2+λ(BR);

(ii) (uR(x)9 υR(x)) and (ύR(x), vR(x)) satisfy (5.1) in BR; and

(iii) U(x)<UR(x)<uR(x)<u(x),

ϋ(x) < ϋR(x) < vR(x) < ϋ(x), xeBR.

PROOF OF LEMMA 5.1. We proceed as in Sattinger [11, Theorem 2.1]. Take

a vector function (/, g) e Cffc

λ(Rn) x Cffc

λ(Rn) such that

ύ(x) < f{x) < ύ(x), ϋ(x) < g(x) < v(x)9 x e Rn,

and consider the boundary value problem

Γ Δu + F(x, u, v) = 0
(5.7)

[ Δυ + G(x, u,v) = 0 in BR,

u(x)=f(x), v(x) = g(x) on dBR.

Since F and G are continuously differentiate in u and v there exist positive con-

stants Kί9 K2 satisfying

(5.8) Fu(x9 u, v) + Kx > 0, Gv(x9 u, v) + K2> 0, in BRxItx J 2 ,
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where It = [inf5 R u(x), s u p B Λ w(x)], I2 = [infB R ϋ(x), s u p B R ί?(x)].

Now we consider the following iteration scheme:

(Δ-Kx)um = - [F(x, um-l9 ι?m-i

(Λ-K2)vm = - [G(x, u m _ 1 ? ̂ - ! ) + X 2 ^ - i ] in BR,

WmW = / ( 4 ^mW = 0<X> on 5B Λ , m = 1, 2,....

If we put (wo(X), t;0(x)) = (w(x), V(X))9 then (w^x), ^^x)) is well-defined and (5.2)

implies

ί, tθ] > 0

1 (A-K2)(Vl-v0) = - [ J ί + G(x, δ, ?)] > 0 in BR9

" i W = / W ? ^iW = ^W on dBR.

Hence, by the maximum principle

(5.10) ι/0(x) > ut(x)9 vo(x) > v^x), x G BR.

Put JF(X, M, V) = F(X, U, v) + Kίu, G(x,u9v) = G(x,u,v) + K2v. Then, by (5.8),

F(x, M, ύ) and G(x, M, I;) are nondecreasing in u and t;. Therefore, if we assume

that Mm_1(x)>Mm(4 ^ m - i W ^ Φ ) i n 5Λ» then from (5.9) we see that

f {Δ-K1){um+1-um) = - [F(x, wm, vJ-F(x, wm_l5 ί;m_!)] > 0
(5.11)

[ (Δ-K2)(vm+ί-vm) = - [6(x, wm, O - ^ ( x , ! ! „ - ! , ^ - 0 ] > 0 in BR9

wm+1W = wm(x) = /(x), rm + i(x) = ϋm(x) = βf(x) on dBRi

and again by the maximum principle we have

(5.12) um(x) > um+ί(x), vm(x)>vm+ί(x), xeBR.

Since (5.10) holds, by incuction we get a sequence {(wm(x), ^m(x))}m=i satisfying

(5.12) for each m. We denote this sequence by {(wm(x), ?m(x))}w=i If w e P u t

(i*0(x), vo(x)) = (ύ(xl ϋ(x))9 then (5.9) yields a sequence {(ώm(x), ί)m(x))}^=i with

the property that

um(x)< ύm+1(x) and ϋjx) < ϋm+1(x) in BR9 m = 1, 2,... .

On the other hand, in view of (5.5), we have

f (Δ-KJiu^ύJ = - [ί?(x,zϊ, ί ) - ^(x, ύ9 β)] < 0

i (J - X 2 ) ( ? i -»i) •= " [^(x, u9 i) - G(x, ύ, 0)] < 0 in J5R,
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*!(*) = U!(x)=/(x), $i(x) = ϋi(x) = 0(x) on dBR.

Hence, the maximum principle implies that uί(x)>ύί(x) and vί(x)>ϋί(x) in BR,

By induction it is easily seen that the sequences {(um(x), vm(x))}%=i and {(ύm(x),

U*m=i satisfy

ύ < ύx ••• < ύm< -" < ύ " < ύ1 < ύ
(5.13)

ϋ < ϋί < ••• < ϋm < ••• < vm < ••• < vt < v in BR.

Therefore, {(um(x)9 ίm(x))}^i and {(ύm(x), ίm(x))}^=1 converge pointwise to

some vector functions (uR(x), VR(X)) and (ύR(x), vR(x)) respectively in BR.

Now we prove that both (uR(x), vR(x)) and (ύR(x), ϋR(x)) are solutions of

the boundary value problem (5.7). Since (w(x), v(x)) and (ύ(x), ϋ(x)) are bounded

on BR, there exist positive constants Lt and M1 such that

\\F(x9 wm, vJ\\Lp(BR) < Lu | |wJ | L p ( β j 0 < Lί9

\\G(x> ύm, Vm)\\Lp(BR) < Mu \\vm\\LP(BR) < Ml9

for all m. Moreover, ||/||^p(j5R) and ||6f||̂ 5(βR) are bounded for any p>l.

Hence, by the L^-estimates of Agmon-Douglis-Nirenberg [1, Theorem 15.2 and

its Corollary] with choice p = n/(l — λ)9 there exist positive constants L 2 and M2

independent of m such that

(5.14) \\um\\c*+*<B) < L2i I I ^ I I C I + A ^ ) < M2.

This implies that F(x9 iίm(x), vm(x)) and G(x, wm(x), vm(x)) are Holder continuous

with exponent λ in BR and their Holder norms are independent of m. From the

Schauder estimates

\\Um\\c°(BR))>

\\Vm\\c°iBR))

with constants L 3 and M 3 independent of m, it follows that the sequence {(um(x)9

vm(x))}%=1 is bounded in C2+λ(BR) x C2+λ(BR). Since the injection C2+λ(BR)x

C2+λ(BR)->C2(BR)x C2(BR) is compact and {(um(x), vm(x))}%=1 is a monotone

sequence, {(wm(x), ί j x ) ) } ; ^ converges in C2(SR) x C2(SΛ) to (wΛ(x), »Λ(x)).

From (5.9) it clearly follows that (uR(x), vR(x)) is a solution of the boundary value

problem (5.7) and of course belongs to C2+λ(BR) x C2+λ(BR).

In an analogous way it can be shown that (ύR(x), ϋR(x)) is also a solution of

the boundary value problem (5.7) of class C2+λ(BR) x C2+λ(BR). Furthermore,

from (5.13) the following relations are valid

ώ(x) < UR(x) < uR(x) < u(x), ϋ(x) < ϋR(x) < vR(x) < v(x)9 x e BR.
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This completes the proof of Lemma 5.1.

PROOF OF THEOREM 5.1. By Lemma 5.1, for each ball BR = {xeRn: \x\ <R}9

R = l,2..., there exists a solution (uR(x)9 vR(x)) of (5.7) satisfying

(5.15) ύ(x) < uR(x) <u(x)9 ϋ(x) < υR(x) < v(x), xeBR.

Consider the sequence {(uR(x), vR(x))}R=ί. We wish to show that this sequence

contains a subsequence converging to a desired entire solution of (5.1).

Let <S>0 be any fixed integer and let R>S + 1. We claim that there exist

constants L 4 and M 4 independent of R such that

(5.16) \\UR\\C2+HBS) ^ L 4 and \\vR\\c2+HBs) < M 4 .

According to (5.15), \\F(x, uR9 vR)\\LHBs+ί), \\G(x, uR, vR)\\LP(Bs+i)9 | | W R | | L P ( B S + I )

and | | ^ | | L p(B s + l ) are uniformly bounded. Therefore, by the interior Lp-estimates

of Agmon-Douglis-Nirenberg with choice p = n/(l —λ), there exist positive con-

stants L5 and M5 independent of R such that

(5.17) \\UR\\C* + HBS + P) ^ L5 a n d K H c i ^ ( B s + p) ^ M5»

where p is any constant with 0 < p < 1. This implies that the functions FR(x) =

F(x, uR(x), vR(x)) and GR(x) = G(x, uR(x), vR(x)) are uniformly Holder continuous

with exponent λ in Bs+P. Applying the Schauder interior estimates, we have

(5.18) " - - > + I*I«..+.,>.

\\VR\\C* + HBS) ^ C2(\\VR\\CO(BS + P) + I I ^ | | C A ( B , + P ) ) ,

where Cί and C2 are independent of R, giving the required estimtes (5.16).

Because of the compactness of the injection C2+A(J5i)x C 2 + A (5 1 )->C 2 (5 1 )x

C2(B1), {(uR(x), vR(x))}R=zί has a subsequence {(uRjl(x)9 vRjί(x))}(j)

=:1 which

converges in C2(BX) x C 2 ^ ) to a vector function (M^X), i^ίx)). Obviously

(M^X), V^X)) satisfies (5.1) in Bx and

u(x)<u\x)<ύ{x\ ϋ(x) < v\x) < υ(x), xefi,.

In a similar way {(MKil(x), vRjl(x))}f=1 has a subsequence {(MΛ J 2(X), VR^X))}^

which converges to a vector function (M2(X), V2(X)) in C2(B2) x C 2(ΰ 2) Repeat-

ing this procedure, we obtain for each fe = 1, 2,... a sequence {(uRjk(x)9 vRjk(x))}f=i

which converges in C2(Bk) x C2(Bk) and is a subsequence of {(uRjk_ t(x),

V i W ) f ? - i L e t (MfcW' t;fc(x)) = lim^ o o (u R . k (x), ^^(x)) . Then, (κfc(x),

vk(x)) satisfies (5.1) in Bk and

fi(x) < u f cW < M(X), β(x) < t;fc(x) < ?(x), x e SΛ.
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Moreover, (uk(x)9 vk(x))\Bk_1==(uk-ί(x)9 v^x)). Accordingly, we define (U(x%

V(x)) in Rn such that

(U(x)9 V(x)) = (uk(x)9 vk(x)) if xeBk.

Then (U(x), V(x)) is obviously a solution of system (5.1) in Rn satisfying

ύ(x) < U(x) < ύ(x\ υ(x) < V(x) < v(x), xeR".

This completes the proof of theorem 5.1.

The proof of Theorem 5.2 is based on the following lemma.

LEMMA 5.2. Let BR be a ball with radius R>0 in Rn. If the hypotheses of

Theorem 5.2 are satisfied, then there exist vector functions (ύR(x)9 vR(x)) and

(ύR(x)9 vR(x)) with the following properties:

( i ) (ϊίR(x)9 vR(x)) and (UR(x), vR(x)) are both of class C2+λ(BR) x C2+\BR);

(ii) (uR(x)9 vR(x)) and (ύR(x), vR(x)) satisfy (5.1) in BR; and

(ϋi) ύ(x) < ϊίR(x) < ύR(x) < ύ(x),

ϋ(x) < ϋR(x) < vR(x) < ϋ(xl xeBR.

To prove Lemma 5.2 we employ the same iteration scheme (5.9) with con-

stants Kx and K2 satisfying (5.8). Let F(x, M, V) and G(x, u, v) be as in the proof

of Lemma 5.1. Then, F(x9 u, v) is nondecreasing in u and nonincreasing in v,

and G(x, u, v) is nonincreasing in u and nondecreasing in υ. Using this fact

and the maximum principle, we can show that the iteration scheme (5.9) with

(wo(x), VO(X)) = (U(X)9 ϋ(x)) and (uo(x), vo(x)) = (ύ(x), v(x)) produces sequences

of vector functions {(ujx), ϋm(x))}%=1 and {(ώM(x), »m(x))}ϊ=i, respectively,

satisfying (5.13). The desired functions are obtained as the limits of these se-

quences :

(uR(x), ϋR(x)) = l i m , ^ (um(x)9 ϋm(x)l (uR(x)9 vR(x)) = limm_>00 (um(x)9 vm(x)).

In what follows we consider the systems

f Δu + φ(x)f(u, v) = 0
(5.19)

I Av + ψ(x)g(u, v) = 0,

f Δu - φ(x)f(u9 v) = 0
(5.20)

1 Δv - φ(x)g(u9 υ) = 0,

which are specializations of (5.1). We assume that φ(x) and ψ(x) are nonnegative

and locally Holder continuous (with exponent λ) in Rn

9 and that /(w, v) and

g(u9 v) are positive and continuously differentiable in u and v.
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Suppose that there exist nonnegative locally Holder continuous functions

Φ*(x), </>*(*), Ψ*(x) a n d ψ*(x) in Rn such that

(5.21) φ*(x) < φ(x) < φ*(x), ψ*(x)<ψ(x)<ψ*(x), xeR».

It is easy to see that under condition (5.21) a vector function (w(x), v(x))

satisfying

f Δύ + φ*(x)f(ύ, v) = 0
(5.22)

{ Δv + ψ*(x)g(ύ, ΰ) = 0

in Rn is a super-supersolution of (5.19) in Rn

9 and a function (ύ(x), ϋ(x)) satisfying

f Δu + φ
(5.23)

1 Δϋ + φ*

in R" is a sub-subsolution of (5.19) in Rn. Similarly, functions (u(x), ϋ(x)) and

(ύ(x), v(x)) satisfying

ί Δu + φ*(x)/(ιί, 0) = 0
(5.24)

1 Jβ + ^φ(x)^(iι, fi) = 0

and

r Δu + φ*(*)/(ώ, ϋ) = oφ*()/( )
(5.25)

1 Jiί + Φ*(x)g(ύ, υ) = 0
in Rn are, respectively, a super-subsolution and a sub-supersolution of (5.19) in

Rn. The following theorem immediately follows from the above observation

and Theorems 5.1 and 5.2.

THEOREM 5.3. (i) Suppose fυ(u, υ)>0 and gu(u, υ)>0. If"(5.22) and (5.23)

possess bounded solutions (u(x), v(x)) and (β(x), ϋ(x)) satisfying (5.5), then

(5.19) possesses a bounded entire solution (M(Λ ), V(X)) satisfying (5.6).

(ii) Suppose fυ(u,v)<0 and gu(u,v)<0. If (5.24) and (5.25) possess

bounded solutions (w(x), 6(x)) and (w(x), υ(x)) satisfying (5.5), ίften (5.19) pos-

sesses a bounded entire solution (u(x)9 v(x)) satisfying (5.6).

Likewise, under condition (5.21), vector functions (M(X), V(X)) and (fi(x), δ(x))

satisfying

( Δu - φ*(x)f(ύ, v) = 0
(5.26)

I Δv - ψ*{x)g(u9 ϊ) = 0



152 Nichiro KAWANO

and

f Δύ - φ*(x)f(ύ, β) = 0
(5.27)

I At - ψ*(x)g(ύ9 ϋ) = 0

in Rn are, respectively, a super-supersolution and a sub-subsolution of (5.20) in

Rn, and (w(x), f)(x)) and (fi(x), u(x)) satisfying

Au - <£*(*)/(*, 0) = 0
(5.28)

[ Aϋ - φ*(x)g(u, ϋ) = 0

and

ί Jβ - φ*(x)f(U9 v) = 0
(5.29)

I Av -\l/*(x)g(ύ, v) = 0

in # n are, respectively, a super-subsolution and a sub-supersolution of (5.20) in

JRW. This observation combined with Theorems 5.1 and 5.2 yield the following

result.

THEOREM 5.4. (i) Suppose fv(u, v)>0 and gu(u,v)>0. If (5.28) and

(5.29) possess bounded solutions (u(x)9 ϋ(x)) and (ώ(x), v(x)) satisfying (5.5),

then (5.20) possesses a bounded entire solution (u(x), v(x)) satisfying (5.6).

(ii) Suppose fv(u9v)<0 and gu(u,v)<0. If (5.26) and (5.27) possess

bounded solutions (u(x), v(x)) and (ύ(x), ϋ(x)) satisfying (5.5), then (5.20) pos-

sesses a bounded entire solution (u(x), v(x)) satisfying (5.6).

6. Systems of elliptic equations (continued)

Let us now apply the above existence theorems to the specific systems (1.4)

and (1.5) with one-signed coefficients φ(x) and φ(x).

THEOREM 6.1. Suppose that <5>0, μ^0, γ + δ>l and μ + v>l. Suppose

moreover that there exist locally Holder continuous functions φ*(t) and ψ*(t)

on [0, oo) such that

(6.1) 0 < φ(x) < φ*(\x\), 0 < ψ(x) £.ψ*(\x\), xeR».

If

(6.2) ί°° tφ*(t)dt < oo and ί°° tψ*(t)dt < oo,
Jo Jo

then system (1.4) has infinitely many positive entire solutions (w(x), v(x)) such

that u(x) and v(x) are bounded and tend to positive constants as |x|-»oo.
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PROOF. We first construct a positive super-supersolution (ύ(x)9 v(x)) of

(1.4) as a spherically symmetric solution of the system

Δύ + φ*(\x\)frΌ* = 0
(6.3)

' Av + φ*(\x\Wvv = 0

in Rn. If (y(t), z(ί)) is a solution of the system of ordinary differential equations

(6.4)

z" + -2L-L z' + φ*(t)y»z* = 0, ί > 0,

satisfying the initial conditions

(6.5) y(0) = z(0) = α > 0, /(0) = z'(0) = 0,

α being a constnat, then the function (w(x), r(x)) with ύ(x)=y(\x\)9 υ(x) = z(\x\)

is a solution of (6.4). To solve (6.4)-(6.5) the Schauder-Tychonoff fixed point

theorem is used. Let α > 0 be small enough so that

(6.6) 1 - °ζ-^- Γ tφ*(t)Λ > 0, 1 - *£^ Γ tψ*(t)dt > 0
n — 2 Jo n — 2 Jo

and put

(6.7) /(α) = α - - α Y \ tφ*(t)dt, m(α) = α - α M ^ \ lψ*(ί)dt.

n — 2 Jo Λ — 2 Jo

Consider the set defined by

X = {(y9 z)G c[0, oo) x C[0, oo): /(α) < y(i) < α, m(α) < z(t) < α, ί > 0}.
X is a closed convex subset of the locally convex space C[0, oo) x C[0, oo) of all

continuous vector functions on [0, oo) with the topology of uniform convergence

on every compact subinterval of [0, oo). Define the operator tF\ X->C[0, oo) x

C[0, oo) by ^(y, z) = (>>*, z*), where

(6.8)
z*W = α -

Applying an argument similar to that used in the proof of Theorem 2.2, we can

show that IF maps X into itself, that ^ is continuous and that the image set ^X

is relatively commpact in C[0, oo) x C[0, oo). Therefore, the Schauder-Tychonoff
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theorem implies that J5" has a fixed point (y, z) e X. This fixed point is a solution

of the system of integral equations

(6.9)

- (f )"
for ί > 0 . By differentiation of (6.9) we see that (y(i)9 z(t)) is a solution of (6.4)-

(6.5). Since

y'(t) = - £ ( y ) / I 1 Φ*(s)yKs)za(s)ds < o,

Z'(t) = - £ ( y ) n " 2 ^ * ( 5 ) r ( 5 ) z v ( 5 ) j 5 < 0,

there exist positive constants η and £ such that l i m , ^ y(t) = η>l(oc) and

lim^oo z(ί) = C>m(α). Define ύ(x) = η and D(x) = C. Then, the constant vector

function (w(x), Γ(X)) = (A/, ζ) is a sub-subsolution of (1.4) in Rn and satisfies (5.5).

Applying (i) of Theorem 5.3, we conclude that (1.4) has an entire solution (u(x),

v(x)) such that

η < u(x) < y(\x\), ζ < v(x) < z(\x\), xeR\

Obviously, \im^x^o0u(x) = η and lim^x^o0v(x) = ζ. The conclusion of the the-

orem follows, since there exist infinitely many constants α > 0 satisfying (6.6).

Next we consider the system

ί Δu - φ(x)υδ = 0
(6.10)

[ Av - ψ(x)u? = 0

in R", where δ and γ are constants such that S> 1 and γ>l.

THEOREM 6.2. Suppose there exist locally Holder continuous functions

φ*(t), φ+(t\ ψ*(t) and ψ*(t) on [0, oo) such that

(6.11) o < ^(W) < φ(χ) < φ*(\x\)9 o<φ*(M)<Ψ(χ)<Ψ*(M),

If (6.2) holds, then (6.10) has infinitely many bounded positive entire solutions

(w(x), v(x)) such that u(x) and v(x) are bounded and bounded away from zero.

PROOF. A bounded positive solution (ύ(x), v(x)) of

f Δύ - φ*(\x\)vδ = 0
(6.12)

[ Av - φ*(\x\)uy = 0
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is a super-subsolution of (6.10) and a bounded positive solution (w(x), v(x)) of

f Δύ - φ*(\x\)υδ = 0
( 6 1 3 )

is a sub-subsolution of (6.10). We wish to find such (ύ(x), ϋ(x)) and (ύ(x), v(x))

so that they are spherically symmetric and satisfy (5.5).

Consider the following initial value problem:

t
(6.14)

We take cc1 and β1 so small that

(6.15)

z" +-rL-Lz' -ψ*(ήyy = 0, ί>0,

n —

0, y'(0) = z'(0) = 0.

< «y

and consider the set X t defined by

Xx = {{y, z ) e C[0, oo) x C[0, oo): α t < j<ί) < 2α 1 ; j9± < z(ί) < 2j8x, ί > 0 } .

It is easy to verify that if we define the operator J*Ί by ̂ (y, z)=(y*, z*), where

(6.16)

, t > o,

then J ^ is continuous and maps Xγ into a compact subset of Xx. It follows

that ^ Ί has a fixed point (v, z)eXx, which is a solution of (6.14). Putting

u(x) = y(\x\) and 0(x) = z(|x|), we obtain a radial super-subsolution (w(x), 0(x))

of (6.10) in Rn satisfying

(6.17) αx < u(x) < 2αl9 βί<v(x)<2βu xeR".

Likewise, by choosing positive constants α2 and β2 so that

(6.18)
n —
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and arguing as above, we see that there exists a radial sub-supersolution (ύ(x),

ΰ(x)) of (6.10) in Rn such that

(6.19) α2 < u(x) < 2α2, β2 < v(x) < 2β2, x e Rn.

If we choose α1 ? α2 βx and β2 so that 2 α 2 < α x and 2β1<β2, then the functions

(ύ(x), ϋ(x)) and (ύ(x), ΰ(x)) satisfy (5.5), and by (i) of Theorem 5.4, equation

(6.10) possesses an entire solution (u(x), v(x)) satisfying (5.6). This finishes the

proof.

REMARK 6.1. Theorem 6.2 is true even if either (5 = 1 or y = l. Suppose

(5 = 1 and φ(x)>0 in Rn. Then the first component of a solution (u(x)9 v(x)) of

(6.10) satisfies the fourth order elliptic equation

(6.20) A (-φ^y Λu) - φ(x)Uy = 0

in Rn. Therefore, the condition (6.2) is sufficient for the existence of a positive

entire solution of (6.20) which is bounded and bounded away from zero.

Finally, we consider the elliptic system (1.5).

THEOREM 6.3. Suppose that γ, δ, μ and v are nonnegative and that φ(x) and

φ(x) satisfy condition (6.1). If (6.2) holds, then (1.5) possesses infinitely many

bounded entire solutions.

PROOF. We seek a super-supersolution of (1.5) as a solution of the system

(6.21)
Λΰ + ιA*(wy i"+v* = o.

The initial value problem associated with (6.21) in R1 is the following:

(6.22)

f + A_i_ y' + φ*(t)eyy+*z = 0

' + - = 0 , t > 03

= β, /(0) = z'(0) = 0,

where α and β are constants. Put

Λ = α - - W L '*•«* B = β -
and consider the subset of C[0, oo) x C[0, oo)
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X = {(y, z)eC[0, oo) x C[0, oo): A < y(t) < α, B < z(l) < β, t > 0}.

Define the operator ^ by &(y9 z)=(y*, z*), where

y*(t) = α -

Then, <& is a continuous operator mapping X into a compact subset of X, and so

^ has a fixed point (y, z) in X. The function (u(x), U(X)) = ( J ( | X | ) , Z(|X|)) is a

super-supersolution of (1.5) in Rn. On the other hand, the constant function

(ύ(x), t)(») = 04, B) is a sub-subsolution of (1.5) in JR". The conclusion of the

theorem now follows from (i) of Theorem 5.3.
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