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Introduction

The purpose of this note is to demonstrate some simple facts about the set of
free homotopy classes. An application will be found in the construction of G-CW
approximations of G-spaces through Brown's construction.

Throughout this note, let [A, JB] denote the set of all free homotopy classes
of continuous maps of A to B for any spaces A and B. Then, we have the fol-
lowing two theorems.

THEOREM 1. Let X and Y be spaces and f:X-*Y a continuous map. Sup-
pose that X and Y are arcwise connected and

(*) /* : πγ(X, x) >πx( Y, /(*)) (x e X) is surjective.

Then,/*: πn(X, x)-*πn(Y, f(x)) is injective or surjective if and only iff*: [Sn, X"]
-»[SW, Y] is injective or surjective, respectively.

THEOREM 2. Let f:X-+Y be a continuous map and jv^l. Then, the fol-
lowing three conditions are equivalent to each other:

(1) For any xeX, the induced homomorphism (n^l) or map (n = 0)

f*:πH(X9x)—+πn(Y9f(x))

is bijective when n<N and surjective when n = N-
(2) For any CW complex K, the induced map

is bijective when dim K<N and surjective when dim K = N-
(2)' (2) is valid for K = * or Sn (n^ 1) and, in addition, /* in (2) is surjective

for K= WλeΛ S\, the wedge of circles S^S1, where A is any set.

Theorem 2 is a corollary to Theorem 1, because (*) is a consequence of the
last condition in (2)'. Here, we notice that A in (2)' can be taken to be each
conjugate class of πx(Y,/(x)) (see Lemma 1.3), and to be the one-point-set when
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nί(Y,f(x)) is finite or nilpotent (see Proposition 3.1). So, we can restrict K in

Theorem 2 to finite CW complexes under some finiteness conditions on the

fundamental groups; but this is not the case in general. Such conditions and

counter-examples will be given in §3 and §4, respectively.

Now, we present some results in the theory of G-spaces. Let G be a

topological group. By a G-space X, we mean a space X together with a con-

tinuous G-action on X. For a subgroup H of G, the H-stationary subspace

{xeX: gx = x for every g eH} is denoted by XH. Let J5* be an orbit type family

for G; J5" consists of subgroups of G, and gHg~1e^r if He^ and geG.

A (not necessarily Hausdorff) G-CW complex K is called a G-CW^ complex if

the isotropy subgroups of G-cells in K are contained in & (see [5]). Let [ , ] G

denote the set of all free G-homotopy classes of G-maps. Then, an equivariant

version of Theorem 2 is given by the following theorem, which is equivalent to

Theorem 5.2*} of [4] when & consists of all closed subgroups of G.

THEOREM 3. Let f:X-+Ybe a G-map between G-spaces and jy^l. Then,

the following four conditions are equivalent to each other:

(1) For any H e^, XH is non-empty if and only if so is YH, and

moreover, for any xeXH, the induced homomorphism ( n ^ l ) or map (n=0)

f*:πn(XH,x)—+πn(YH,f(x))

is bijective when n<N and surjective when n = N>

(2) For any G-CW^ complex K, the induced map

is bijective when aim K/G<N and surjective when dim K/G — N.
(2)' (2) is valid for K = (G/H)xL where He& and L is a CW complex

with trivial G-action.

(2)" (2) is valid for K = GjH or (G/H)xSn ( n ^ l ) and, in addition, /* in

(2) is surjective for K = (G/H)x \/λeΛS{ (S\ = Sι), where He & and G acts

trivially on the second factors.

By using the construction of E. H. Brown [1] and by the above theorem, we

have the following

THEOREM 4. Let $? be an orbit type family for G. Then, for any G-space

X, there exists a pair of a G-CW^ complex K^{X)anda G-map px: K

such that

(px)*: τtn(KAX)H, v) — * πn(X", px(v)) (n ^ 0)

*} We remark that a missing part of the proof of this theorem is covered by that in this note.
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is bijectiυefor any He«f and veK^(X)H. Moreover, for any G-mapf: X-*Y,
there exists a G-cellular map K^(f): K^{X)-^K^{Y), unique up to homotopy,
such that pyoKjr(f) is G-homotopic to f°px.

When ^ consists of all subgroups of G, K^(X) is constructed more canon-
ically in [5]. A variant of Brown's construction used in Hastings-Waner [2]
also seems applicable to the proof of Theorem 3 but our construction given in
§2 is much simpler. Besides, even when G = {e}, our construction which uses
only the free homotopy classes is newly justified.

§ 1. Elementary study of free homotopy sets and proofs of Theorems 1, 2

and 3

We shall prove Theorem 1 by an elementary lemma. Let K and X be arcwise
connected spaces with base points voeK and x0 eX. Let [X, vo; X, x0] denote
the set of all based homotpy classes of (continuous) maps of (K, v0) to (X, x0).
Then, we have the forgetful map

ψ:iK9Ό0;X9x0']—>[K,X]

to the free homotopy set. Assume that K is a CW complex and v0 is a vertex of
K. Then, for any maps / : (K, vo)-+(X, x0) and α: (/, i)-»(X, x0), we have a
homotopy ft: K-*X with / 0 = / and ft(v0)=oc(t) (tel), and denote fx: (K, vo)-+
(X, x0) by α •/. The following lemma can be proved by a standard homotopy
argument:

LEMMA 1.1. nx(X, x0) operates on [X, vo; X, XQ] by [α] [/] = [α•/] and
the set [K, vo; X, Xς^jπ^X, x0) of all orbits is identified with \K, X~\ by the
forgetful map ψ.

PROOF OF THEOREM 1. Consider the commutative diagram

πn(X,x) J?U πn(Y,f(x))

[*

where i/r's are the forgetful maps and the lower/^ is denoted by/# to distinguish
it from the upper /*.

Injectivity: Assume t h a t / # is injective. Take g: (Sn, *)-+(X9 x) with
/*M=0inπ n (7,/(x)) . Then,/#[^]=0in [S", Y] and hence [flf]==Ό in [S», X].
Since the orbit of 0 in πn(X, x) consists of 0 alone, we see that [#]=0 in πn(X, x)
by Lemma 1,1, Thus the group homomorphism/* is injective,
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Conversely, assume that/* is injective. Let g, g'\ Sn-+X be two maps such
that/#[#] =/#[#'] *n \βn> Y~] We may assume that g(*) = g'(*) = x. By Lemma
1.1, there is a βeπ^Y, f{x)) with β-[f°9] = lf°9'] Take an element αe
nt(X9 x) with f*a = β by the assumption (*) in the theorem. Then, /*(<*• [#]) =
/*[#']• So, a [#] = [#'] by the assumption, which implies [#] = [<7'] in [Sw, X].
Thus / # is injective.

Surjectivity: If/* is surjective, then so is/ff by Lemma 1.1.
Assume t h a t / # is surjective, and take any h: (Sn

9 *)->(F,/(*)). Then,
there is a map g: Sn-+X with/#[g] = [7ι] in [Sn, 7], where we may assume that
g(*) = x. By Lemma 1.1, there is a βeπ^Zfix)) such that jβ [/°#] = [/*].
Take α e π ^ I , x) with f*<x=β by the assumption (*) in the theorem. Then
/* (α [#]) = [A] and /* is surjective. q. e. d.

To prove Theorem 2, we notice the following lemma, where

VΛ S1 = VλeΛ S\ (S\ = S1), ΓL π = ΠAβ^ πΛ (πΛ = π).

LBMMA 1.2. For any set A, any map f: X-+Y between arcwise connected
spaces and xeX, the induced map /* ( = / * ) : [V^S1, *]->[>,! S1, 7] can be
identified with the map

(ΠΛ Λ ) t : (ΠΛ *)l*d π — , (ΠΛ π')/ad π'

induced from the product Y\Λ /* o/ίfte induced homomorphism

/*: π = π i(X, x) > π' = ̂ (7,/(x)),

where /ad denotes the set of orbits by the conjugation-action α (αΛ) = (ααλα~1).

PROOF. [V^^1, * ; ^ 5 ^ ] can be identified naturally with Y\Λπ. Thus,
the lemma follows immediately from Lemma 1.1. q. e. d.

LBMMA 1.3. In Lemma 1.2, assume that / # = ( Π Λ /*)# is surjective for any
A — π'-β, where π' β = {bβb~1: beπ'} is the conjugate class of βeπ'. Then,
/* : π->π; is αίso surjective.

PROOF. Take any βeπ' and consider Y\Λ /* : Y\Λ π->Πyi^' ŷ '* A — π'-β.
Then the assumption means that for any (/?Λ)eΠλπ'> some conjugate b-(βλ) —
(bβλb~x) (fe e π') is contained in the image of ΓL /*• Now, take (βλ) to be

βλ = λ for any λeA = π'-β.

Then, /? = &i?Aô  ~x for Ao = fe ~ ίβb e A and so β e I m / * . Thus /* is surjective.
q.e.d.

PROOF OF THEOREM 2, The implication (1)=>(2) is well-known in the theory
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of CW complexes. (2)' is a special case of (2). (2)' for K = * implies (1) for

n = 0. Lemma 1.3 shows that the last condition in (2)' implies the assumption

(*) in Theorem 1. The implication (2)'=>(1) now follows from Theorem 1.

q. e.d.

PROOF OF THEOREM 3. Let L be a CW complex with trivial G-action. Then,

for any H e F , K = (G/H)xL is a G-CW^ complex and we can identify naturally

as K/G = L and [X, Z~\G = [L, Z H ] for any G-space Z. So, (2)' is a special case

of (2), and Theorem 2 shows the equivalence of (1), (2)' and (2)". The

implication (1)=>(2) is due to a standard argument in the theory of G-CW

complexes. q. e. d.

§ 2. Proof of Theorem 4 through Brown's construction

We shall construct K^{X) in Theorem 4. Let # be the category of G-CW^

complexes and free G-homotopy classes of G-maps. The sum in this category

stands for the disjoint union. Consider the equalizer E(gθ9 gt) of two maps

gθ9 gx: A->B, defined to be the identification space

> gι)=AxI + BI~ with (a, t)~gt(a) for any aeA and teI.

If A, Be& and g0, gγ are G-cellular, then E(g0,

Choose one representative for each class of conjugate subgroups in & and

put &' = {representatives} c &. Then,

0 = {G/H, (G/H) x Sn:He^',n^ 1} and

[ = # 0 u {(G/H) x V^S1: Hejr',Ac: MapίS1, X)}

(WΛS
1= VλeΛ SJ, Si = Sx) are small subcategories of <€. Let ^ 0 (resp. <Vt) be a

minimal subcategory which contains # 0 (resp. <£[) and is closed under the oper-
ation of taking finite sum and equalizer. Then, # 0 and ^x are small, full sub-
categories of #'.

Now, we fix a G-space X and put / / (•) = [•, X~\G We see that (# , #Ό) i s

a homotopy category and H is a homotopy functor in the sense of E. H. Brown

[1]. To construct Kp(X)e<& in Theorem 4, we use Brown's construction

given there.

If y is anything and Ye # , (7, y) e ¥> will denote a copy of Yand ty: (Y, y)-»

7 will be an identification. By induction on n, we define Kne<£ and wn e H(Kn)

so that

Kn c K n + ! and H(fn)un+1 = MΠ,

where fn: Kn->Kn+ι is the inclusion. Put
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Ko = Σ(Y,u) and uo = ΣH(tu)ueH(Ko),

where the sum ranges over all Ye <^1 and all ueH(Y). Note that the choice of
Ko and u0 in [1] is arbitrary. So, we specify them as above to get the following

LEMMA 2.1. Tuo: [7, K0]G-*/J(Y) is surjectivefor any Ye <gt.

Suppose that Kn and un (n^O) have been defined. Let Kn+1e^ be the
equalizer of

Σ ft»U): Σ ( Ϊ ; (0o, 0i)).—* Kn for i = 0, 1,

where the sum ranges over all Ye &0 and all pairs of G-cellular maps g0, gί:
Y-*Kn such that g0 is not freely G-homotopic to gί and H(go)un = H(gί)un. Then,
it is easy to see that there is a un+ί eH(Kn+ί) with H(fn)un+ί = un.

From the way of the construction of Kn (n^ l ) together with Lemma 2.1
and &oc: Φl9 we see the following

LEMMA 2.2. lim TUn: lim[Y, K,JG->H(Y) is bijective for any Ye&0 and
surjectivefor any Ye Φt.

Let Kp{X)~\jKn be the direct limit and hH: Kn^K^(X) the inclusion.
Then, Kp(X) e <# and there is a ux e H(K^{X)) such that H(hn)ux=un. Further-
more,

LEMMA 2.3. Tuχ: [7, Kr(Xy]G-+H(Y) is bijective for any Ye<#0 and
surjectivefor any Ye ^x.

In fact, lim TUn in lemma 2.2 is the composition of

lim (/tj*: lim [7, XJ G — [7, K^X)1G

and Tuχ and lim (/?„)* is bijective for any Ye &0, because the image of 7 or
7 x / ( 7 e # 0 ) i s contained in a finite G-CW^ subcomplex of K#(X). Thus,
Lemma 2.3 is a consequence of Lemma 2.2.

Take a G-map px: K^(X)-^X representing ux

Then

(Px)* = r t t χ: [7, XΛJOL — [l; Ώ G = H(Y)9

which satisfies Lemma 2.3. So, the first half of Theorem 4 is a consequence of
the implication (2)"=>(1) in Theorem 3 by the definition of ^ 0

 a n ^ ^i The
last half of Theorem 4 is clear by construction; and Theorem 4 is proved
completely.
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§ 3. Some finiteness conditions

In this section, we shall prove two propositions to give a condition that K in
Theorem 2 can be restricted to finite CW complexes.

In the notations of Lemma 1.2, consider the induced homomorphism

φ = / * : π = πx(X, x) > π' = πt(y,/(x)) (/: X^Y, xeX),

and the induced map/# (=/*) : [ VΛ S\ X]->[ VΛ S1, Y] identified with the map

(ΓL <?)*: (ΓL π)/ad π > (ΓL

induced from the product homomorphism Y[Λ φ, where /ad denotes the set of
orbits by the conjugation-action α (αΛ) = (ααλα"1). Then, we have the following
proposition, where (sn) (resp. (bn)) means that
(sn) (resp. (bn)) / # =(ΓLi Φ)* ̂  surjectίve (resp. bijective) when \Λ\ = n.

PROPOSITION 3.1. (i) When π' (resp.π) is finite or nilpotent, (si) (resp.
(sή) for all ή) implies the assumption (*) in Theorem 1 that f* = φ is surjective.

(ii) When π is nilpotent, (bl) and (s2) imply that φ is bijective.

PROOF, (i) Put π=lmφciπr. Then (si) means that π' = {e}U yjβeπ>β
(π-{e}). So, when π' is finite, this implies that | π ' | ^ l + ( | π | - l ) | π 7 π | = l +
|π'| — |π'/π| and π' = π.

When π' is nilpotent, take the upper central series {e} = Z'o c Zi c cz Z^ = π'.
Let jβeZJ+1. Then, b βeπ for some beπ' by (si), and b-β = β mod ZJ since
Z;+1/Z; = Z(π7Z;). So, if Z cπ, then β e π and Z;+Ic=π. Thus we see Z' c π
by induction; and π' = Z'n — π.

Assume that (sn) holds for all n. Let βeπ' . Then b ({β} U (π-{e}))cπ
for some beπf by (s|π|) when π is finite. This shows βeπ and π' = π. Now
consider the lower central series given by πo = π, π ί + 1 =[π, π j and π'0 = π\ π'i+1 =
[π', π ]. Then, for any βλeπ'i(λ) (l^λ^n), there is a 5eπ ' with b'βλeπi{λ).
This is the assumption when i = max ί(/l) is 0, and is proved by induction on i and
by the definition of commutator subgroups. So, π'm = {e) if πm = {e}. Thus,
when π is nilpotent, so is π' and we have π' = π as is shown already.

(ii) φ is injective by (bl) and we regard φ as the inclusion. Take the upper
central series {β} = Z oc:Z 1c: c:Zn = π. Then, we see by induction that Zt

is a normal subgroup of π' and so is π = Zn and π' = π. by (si). In fact, take any
αe,Z i + 1 and βeπ' . Then b' (a,β)eπxπ for some ft'eπ' by (s2), and so
fe' α = α α for some aeπ by (bl). Thus fr (α, β) = (oc, oq) where b = a~γbreπ'
and oqeπ. So, b (β α) = (α1ί?) α = α1 -αΞαmodZ; since Zi+ίIZi = Z(πlZi)9

and β-oc = b~ι α = αmodZ ί by inductive assumption. Hence jS α e Z ί + 1 and
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Z i + 1 is normal in π', as desired. q.e. d.

We now consider the following finiteness condition (**) for any group π:

(**) There exists a finite subset A of π such that Z(A) cc = {aoίa~x: ae Z(A)}

is finite for any cceπ. (Z(A) is centralizer of A.)

EXAMPLE 3.2. π satisfies (**), when

(1) π is a FC-group, i.e., each conjugate class π-otofoceπ consists of finite

elements (e.g., π is abelίan or finite), or

(2) π is finitely generated group or a free group.

In fact, any FC-group π satisfies (**) by taking the empty set for A. If π is

generated by a finite set A, then Z(A) = Z(π). If π is free and A — {ax, a2} (at Φ a2)

is a subset of a system of free generators of π, then Z(A) = {e}. So, Z(A) α = {α}

in these cases.

PROPOSITION 3.3. When π or π' satisfies (**), φ=f* is bίjective if (bn)

holds for all n.

By the proof of Theorem 2, we have the following

COROLLARY 3.4. In cases of Propositions 3.1 and 3.3, Theorem 2 is valid

by restricting K to finite CW complexes.

In Proposition 3.3, φ is injective by (bl) (see the proof of Theorem 1), and

we regard φ: π c π ' as the inclusion hereafter. When A an, we denote by dΛ =

(dλ) e Y\Λ π the element with dλ = λ for any λ e A. Then, oc-dΛ = dΛ means α e Z(A)

when α e π and <xeZ(A, π') — {βeπ': βλ = λβ for any λeA} (the centralizer of

A in π') when α e πr, respectively.

LEMMA 3.5. Assume that (bn) holds, and let A and B be finite sets with

Aczπ, \A\ = n and \B\ = m — n, and βBe Π B π ' be any element.

(i) //(sm) holds, then there exists ocB

E(YlBπ) Π Z(A, π')-βB.

(ii) If(bm) holds in addition, then Z(A) OCB = (ΠB π) Π Z(A, πf) βB.

PROOF, (i) For (dA, βB)eY[Λπ
r y.γ\Bπ', there is a (xΛ, xB)e(J\A π x

Π B π ) Π πr (dA, βB) by (sm), and so XA — ̂  ^A for some α e π by (bn) since

d* e ΓίΛ π. Thus, αB = α~x xB e Π B π and (dA, ccB) = β- (dA, βB) for some βe π'.

This means that β e Z(A, π') and (i).

(ii) If αB G ( Π B π) fl Z(A, πf) ^ in addition, then (dA, aB) e π'. (rf̂ , )8B) and

so (dA, <xB) = oc' -(dA, aB) for some oc'eπ by (bm). This means α ' e Z ( i ) and

5 . q.e.d.

PROOF OF PROPOSITION 3.3. Assume that π' satisfies (**) by a finite subset

B of π\ Then, there is a (α^) e ( Π 5 π) n π' dB by (s|B|). So, A = {α*: f? e B} c π
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satisfies A = βo-B for some βoeπf. Take any βeπ'. Then B' = Z(A, π')-β =
βo-{Z(B) (βoι-β)) is finite by (**). By (b\A\), (s(\A\ + \B'\)) and Lemma 3.5
(i), we have b-dB>eY\B>π for some beZ(A, π'). So, for b' = b~ι -βeB', we
see that β = b b' = b'db, eπ; and π' = π.

Assume now that π satisfies (**) by a finite subset A of π. Take any β e π'.
Then there is an αeπ n Z(A, π') β by (b\A\), (s (|X| +1)) and Lemma 3.5 (i).
Put A' = Z(A)-OL which is a finite subset of π by (**). Take again α'eπ with
α' = b β for some 6 e Z(i4, π') n Z(i4\ π') by (b (|4| + \Λ'\)) and (s (|^| + \A\ +1)).
Then, α'6Z(i).α = i ' by (b(|i4| + l)) and Lemma 3.5 (ii). So, j3=f>-i.α' =
α' e π and π' = π. q. e. d.

§ 4. Counter-examples

In this section, we shall show that Proposition 3.3 and Corollary 3.4 do not
hold in general without any assumption on π or π', that is, K in Theorem 2 cannot
be restricted to finite CW complexes.

Counter-examples are given by using the infinte symmetric group 5^ =
\JneN Sn, where N is the set of positive integers and Sn is the symmetric group of n
letters {1, 2,..., n). Any element σeS^ is a bijection σ: N->N such that m(σ) =
{neN: σ(ή)Φn} is a finite subset of JV.

PROPOSITION 4.1. For any injection φ: N-*N, .let φ: S^-^S^ be the
homomorphism defined by

φσ\N — φN = id, φσ\ φN = φ°σ°φ~ι ( σ e S J .

Then the induced map (ΓLφ)« °f (YΪΛ SΌo)/ad Soo ίo ϊίse// is bijective for any
finite set A.

COROLLARY 4.2 Let X be the Eilenberg-MacLane complex K(S^> 1)> and
f: X—>X be the map such that f* = φ on πί(X) = S(X). Then, the induced map
/# (=/*) °f the free homotopy set [K, X~\ to itself is bijective for any finite
CW complex K.

φ is not surjective unless φ is surjective. So, these give counter-examples.
We see that/# in Corollary 4.2 is bijective for the 1-skeleton K1 of any finite

CW complex K by Proposition 4.1 and Lemma 1.2, and so for K by a standard
homotopy argument because πn(X) = 0 for w^2.

PROOF OF PROPOSITION 4.1. By the definition of φ, it is clear that φ is in-
jective and that σ e Im φ if and only if m(σ) cz φN for σeS^

Let A be a finite set. Take any (σλ)GYlΛSo0 and put M = \JλeΛ m(σλ).
Then, M is a finite subset of N and there exists a σ e S^ such that σ(M) cφN. So,
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m{σσλσ"1)czφN and σσλσ~ 1elmφ for any λeΛ. Thus, (ΓLi <P)# is surjective.

Now, assume that (σλ), (σχ)eY[ΛSo0 are contained in lmY\Λφ and (σj[) =

σ-(σλ) for some σeS^. When m(σ)ς£φN, take nem(σ) — φN and put σ' =

(nn')σ, where (nw') is the transposition of n and n' = σ(n) (Φri). Then,

m(σ') <= m(σ) - {n}, (σi) = σ' (σA).

In fact, the first one is clear. Since σλ, σ'λ e Im φ and n£φN9 n and n' are fixed

by σ'λ = σσλσ~γ, which shows the second one. Since m(σ) is finite, the repeating

use of this process shows that (σ'λ) = τ-(σλ) for some τeS^ with m(τ)czφN9 i.e.,

τ e l m φ . Thus, (Π/iφ)# is injective. q.e.d.

In the end of this section, we note the following counter-example, which is

given by T. Ohkawa before we obtain Corollary 4.2, where spaces are assumed

to be arcwise connected CW complexes.

REMARK 4.3. (T. Ohkawa). For any based mapf: X-+Y, we can construct

X^^X, Y^ID Y and an extension f^: X^-^Y^ of f with the following properties:

(1) Z^*: [X, X^-^IK, Y^] is bijective for any finite CW complex K.

(2) For the induced homomorphisms πx{X)J±^ πx{Y) -»-> π^Y^) Iss*. ^ ( I J

(i: YczY^), i* is injective and Im/ 0 0 S ( ! nImt ! ( ! =Im(tV/J, (and so f^* is not

surjective when f* is not surjective).

The construction is done by modifying the one given in §2 so as to satisfy

(2), and is sketched as follows: Let Xt=Xw V(K, h), Yx be the equalizer of

V hoth, j (the inclusion): V (K, h) > T = Y v v(K,h)9

and/i: X^-* Y' <= Yx be defined by/and the identity map, where the wedge ranges

over all finite CW complexes K with base points and all based maps h: K-+ Y

(up to free homotopy). Furthermore, let X2, Y2 be the equalizers of

Σ di°hβo,g0: Σ (K, (g0, flf J ) — > Xt (i = 0, 1),

Σfi°gi°hgo,gι): Σ (K, (g09 g±)) > Y± (i = 0, 1),

respectively, and/ 2 \X1-+Y1 be defined by the identity map and/ l 5 where the sum

(disjoint union) ranges over all K of above and all pairs of based maps g0, g1:

K-*XX such that/iO^o is freely homotopic to fagt. Let Xn9 Yn and/w: Xn->Yn

be defined inductively by the first or second construction according to n is odd or

even. Then, I w = \jXn, Y^ = \j Yn and fw = \jfniX^^Y^ are the desired ones.

In fact, (1) is clear. (2) is seen by the following result:

Let E=E(g0, gj be the equalizer of based maps g0, gx: A-*B and consider

^π^M-πάSi) (i = 0, 1)
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where i± and i 2 : S1 = *xI/~ cE are the inclusions. Then, the isomorphism

nx(E) s

is induced from ilφ and ι2Hc, where s e π ^ S 1 ) is a generator, (which is shown by

using van Kampen's theorem). Furthermore, if Ker go*=Keτ g^, then i l s | c is

injective and the right hand side is an HNN-extension which satisfies the N o r m a l

F o r m Theorem (cf., e.g., [3, Ch. IV, Th. 2.1]).

References

[ 1 ] E. H. Brown: Abstract homotopy theory, Trans. Amer. Math. Soc, 119 (1965), 79-85.
[2] H. M. Hastings and S. Waner: On Brown's construction for compact Lie group actions,

(preprint).
[ 3 ] R. C. Lyndon and P. E. Schupp: Combinatorial Group Theory, Erg. d. Math. 89,

Springer-Verlag, Berlin, 1977.
[4] T. Matumoto: On G-CW complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci.

Univ. Tokyo, IA, 18 (1971), 363-374.
[ 5 ] : A complement to the theory of G-CW complexes, to appear in Japan. J. Math.,

10-2 (1984).

Department of Mathematics,
Faculty of Science,

Hiroshima University






