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Introduction

The purpose of this note is to demonstrate some simple facts about the set of
free homotopy classes. An application will be found in the construction of G-CW
approximations of G-spaces through Brown’s construction.

Throughout this note, let [A4, B] denote the set of all free homotopy classes
of continuous maps of 4 to B for any spaces A and B. Then, we have the fol-
lowing two theorems.

THEOREM 1. Let X and Y be spaces and f:X—Y a continuous map. Sup-
pose that X and Y are arcwise connected and

(*) [ (X, x) —7(Y, f(x)) (x € X) is surjective.

Then, f+: n,(X, x)-n,(Y, f(x)) is injective or surjective if and only if f: [S", X]
—[S*, Y] is injective or surjective, respectively.

THEOREM 2. Let f:X—Y be a continuous map and N=1. Then, the fol-
lowing three conditions are equivalent to each other:
(1) For any xe€ X, the induced homomorphism (n=1) or map (n=0)

f*: nn(X’ X)‘—‘—> 77'.n(Y9f(x))

is bijective when n< N and surjective when n=N.
(2) For any CW complex K, the induced map

f«: [K, X]— [K, Y]

is bijective when dim K < N and surjective when dim K= N.
(2) (2)isvalid for K=x or S* (n=1) and, in addition, f 4 in (2) is surjective
for K=V, ., S}, the wedge of circles S}=S!, where A is any set.

Theorem 2 is a corollary to Theorem 1, because () is a consequence of the
last condition in (2)'. Here, we notice that A in (2)’ can be taken to be each
conjugate class of n,(Y, f(x)) (see Lemma 1.3), and to be the one-point-set when
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7,(Y, f(x)) is finite or nilpotent (see Proposition 3.1). So, we can restrict K in
Theorem 2 to finite CW complexes under some finiteness conditions on the
fundamental groups; but this is not the case in general. Such conditions and
counter-examples will be given in §3 and §4, respectively.

Now, we present some results in the theory of G-spaces. Let G be a
topological group. By a G-space X, we mean a space X together with a con-
tinuous G-action on X. For a subgroup H of G, the H-stationary subspace
{xeX: gx=x for every ge H} is denoted by X¥. Let & be an orbit type family
for G; # consists of subgroups of G, and gHg 'e& if He&# and ge€G.
A (not necessarily Hausdorff) G-CW complex K is called a G-CW, complex if
the isotropy subgroups of G-cells in K are contained in & (see [5]). Let[ , I¢
denote the set of all free G-homotopy classes of G-maps. Then, an equivariant
version of Theorem 2 is given by the following theorem, which is equivalent to
Theorem 5.2*%) of [4] when & consists of all closed subgroups of G.

THEOREM 3. Let f:X—Y be a G-map between G-spaces and N=1. Then,
the following four conditions are equivalent to each other:

(1) For any H e, X" is non-empty if and only if so is YH, and
moreover, for any x € XH, the induced homomorphism (n=21) or map (n=0)

f*: ﬂn(XH, X) - nn(YHa f(x))

is bijective when n< N and surjective when n=N.
(2) For any G-CW, complex K, the induced map

f*: [K9 X]G I [K’ Y]G

is bijective when dim K/G < N and surjective when dim K/G= N.
) (2) is valid for K=(G/H)x L where He & and L is a CW complex

with trivial G-action.

()" (2) is valid for K=G/H or (G/H)x S" (n=1) and, in addition, f, in
(2) is surjective for K=(G/H)x V,., S} (S}=S'), where He & and G acts
trivially on the second factors.

By using the construction of E. H. Brown [1] and by the above theorem, we
have the following

THEOREM 4. Let & be an orbit type family for G. Then, for any G-space
X, there exists a pair of a G-CW, complex K (X)and a G-map py: Kz(X)-»X
such that

(Px)x: MK (XY, 1) —> 1, (XH, px(v) (n 2 0)

*) We remark that a missing part of the proof of this theorem is covered by that in this note.
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is bijective for any He & and ve K (X)4. Moreover, for any G-map f: X-Y,
there exists a G-cellular map K, (f): K4(X)— K (Y), unique up to homotopy,
such that pyoK z(f) is G-homotopic to fopy.

When £ consists of all subgroups of G, K,(X) is constructed more canon-
ically in [S]. A variant of Brown’s construction used in Hastings-Waner [2]
also seems applicable to the proof of Theorem 3; but our construction given in
§2 is much simpler. Besides, even when G={e}, our construction which uses
only the free homotopy classes is newly justified.

§1. Elementary study of free homotopy sets and proofs of Theorems 1, 2
and 3

We shall prove Theorem 1 by an elementary lemma. Let K and X be arcwise
connected spaces with base points v, € K and xoe X. Let [K, vy; X, x,] denote
the set of all based homotpy classes of (continuous) maps of (K, vg) to (X, X,).
Then, we have the forgetful map

V: [K, vo; X, x0] — [K, X]

to the free homotopy set. Assume that K is a CW complex and v, is a vertex of
K. Then, for any maps f: (K, v9)—(X, x,) and a: (I, )=(X, x,), we have a
homotopy f;: K—X with fy=f and f(vo)=a(t) (t€l), and denote f,: (K, vy)—
(X, xo) by a-f. The following lemma can be proved by a standard homotopy
argument:

Lemma 1.1. n,(X, x,) operates on [K, vy; X, xo] by [0]-[f1=[a-f] and
the set [K, vg; X, xol/mn(X, xo) of all orbits is identified with [K, X] by the
Jorgetful map .

PrOOF OF THEOREM 1. Consider the commutative diagram

m(X, %) L5 m(¥, £(x))
v I
[sn, x]-L¥=/ | (80 1]

where /’s are the forgetful maps and the lower [« is denoted by f, to distinguish
it from the upper f .

Injectivity: Assume that f, is injective. Take g:(S", *)—(X, x) with
f«[g1=0in n,(Y, f(x)). Then, f,[g]=0in [S", Y] and hence [g]=0 in [S", X].
Since the orbit of 0 in 7,(X, x) consists of 0 alone, we see that [¢g]=0 in 7:,,(X X)
by Lemma 1.1, Thus the group homomorphism' f is injective, ‘
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Conversely, assume that f, is injective. Let g, g': S"— X be two maps such
that f,[g]=f:[9']in [S", Y]. We may assume that g(x)=g'(x)=x. By Lemma
1.1, there is a fen(Y, f(x)) with B-[fogl=[f-g’]. Take an element ae
(X, x) with f,a=p by the assumption (*) in the theorem. Then, f,(a-[g])=
fx[g’]. So, a-[g]=[g’] by the assumption, which implies [¢g]=[g’] in [S", X].
Thus f, is injective.

Surjectivity: If f, is surjective, then so is f, by Lemma 1.1.

Assume that f, is surjective, and take any h: (S”, *)—(Y, f(x)). Then,
there is a map g: S"— X with f,[g]=[h] in [S", Y], where we may assume that
g(x)=x. By Lemma 1.1, there is a Bemn,(Y, f(x)) such that B-[fogl=[h].
Take aen,(X, x) with fya=p by the assumption (*) in the theorem. Then
Sy (a-[gD)=[h]; and f, is surjective. qg.e.d.

To prove Theorem 2, we notice the following lemma, where
VaSt = V4 S (S =8Y), [Tam =Tlicam, (= 7).

LemMA 1.2. For any set A, any map f: X—Y between arcwise connected
spaces and x€ X, the induced map f, (=f4): [V4S!, X]->[V, S, Y] can be
identified with the map

(ITs fe)e: ITgm)/ad 1 — ([147")/ad 7’
induced from the product 1, f« of the induced homomorphism
fein=n,(X, x)— ' = n,(Y, f(x)),
where |[ad denotes the set of orbits by the conjugation-action a - (o;)= (oo, 1).

Proor. [V, S, #; X, x] can be identified naturally with [],n. Thus,
the lemma follows immediately from Lemma 1.1. q.e.d.

LeMMA 1.3. In Lemma 1.2, assume that f,=(I1, f4)s is surjective for any
A=mn'-B, where n'-B={bfb~1: ben'} is the conjugate class of fen’. Then,
fx: n—n is also surjective.

Proor. Take any Ben’ and consider [, fy: [ =117 for A=n'"-B.
Then the assumption means that for any (8,)e ], n’, some conjugate b-(f,)=
(bB,b~1) (be ') is contained in the image of T[], f«. Now, take (8,) to be

=4 forany Aed =n"-8.

Then, f=bf, b~ for Ay=b"1fbe A and so feImf,. Thus f, is surjective.
q.e.d.

PrOOF OF THEOREM 2. The implication (1)=>(2) is well-known in the theory



On the set of free homotopy classes and Brown’s construction 363

of CW complexes. (2)" is a special case of (2). (2)' for K=x implies (1) for

n=0. Lemma 1.3 shows that the last condition in (2)’ implies the assumption

(*) in Theorem 1. The implication (2)'=>(1) now follows from Theorem 1.
q.e.d.

Proor oF THEOREM 3. Let L be a CW complex with trivial G-action. Then,
for any He &, K=(G/H)x L is a G-CW, complex and we can identify naturally
as K/G=L and [K, Z];=[L, Z¥] for any G-space Z. So, (2)’ is a special case
of (2), and Theorem 2 shows the equivalence of (1), (2)' and (2)". The
implication (1)=>(2) is due to a standard argument in the theory of G-CW
complexes. q.e.d.

§2. Proof of Theorem 4 through Brown’s construction

We shall construct K,(X) in Theorem 4. Let ¥ be the category of G-CW,
complexes and free G-homotopy classes of G-maps. The sum in this category
stands for the disjoint union. Consider the equalizer E(gy, g;) of two maps
do» 91: A— B, defined to be the identification space '

E(go, g1)=AxI+B|[~ with (a, )~ g/a) for any a4 and tel.

If A, Be¥ and g,, g, are G-cellular, then E(g,, g,)€ %.
Choose one representative for each class of conjugate subgroups in & and
put &' ={representatives} = %. Then,

%, ={G/H,(G/H) x S*: He #',n 2 1} and
¢, =%V {(GIH) x V,St: HeF', A =« Map (S}, X)}

(V4 S'=V,, S}, Si=S!) are small subcategories of €. Let €, (resp. €,) be a
minimal subcategory which contains % (resp. ;) and is closed under the oper-
ation of taking finite sum and equalizer. Then, %, and %, are small, full sub-
categories of %.

Now, we fix a G-space X and put H(-)=[-, X];. We see that (¥, %,) is
a homotopy category and H is a homotopy functor in the sense of E. H. Brown
[1]. To construct Ky(X)e¥ in Theorem 4, we use Brown’s construction
given there.

If y is anything and Ye %, (Y, y) € € will denote a copy of Yand ¢,: (Y, y)—
Y will be an identification. By induction on n, we define K, € € and u, € H(K,)
so that

Kn < Kn+1 and H(fn)un+1 = Uy,

where f,: K,—K,,, is the inclusion. Put
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Ko=2(Y,u) and uo= X H(t)ue H(K,),

where the sum ranges over all Ye &, and all ue H(Y). Note that the choice of
K, and ug in [1] is arbitrary. So, we specify them as above to get the following

LemMmaA 2.1. T, :[Y, Ko]lg—H(Y) is surjective for any Ye %,.

Suppose that K, and u, (n=0) have been defined. Let K,,, €% be the
equalizer of

2 9rtgogy: 2 (Y, (90, 91)) — K, for i=0,1,

where the sum ranges over all Ye %, and all pairs of G-cellular maps g, g,
Y- K, such that g, is not freely G-homotopic to g, and H(go)u,=H(g,)u,. Then,
it is easy to see that there is a u,, , € H(K, + ) with H(f)u,.=u,.

From the way of the construction of K, (n=1) together with Lemma 2.1
and %,< ¥%,, we see the following

LemMa 2.2. Iim T, : lim[Y, K,]c—>H(Y) is bijective for any Ye €, and
surjective for any Ye €. ’ 7

Let K (X)=\UK, be the direct limit and h,: K,—»K,(X) the inclusion.
Then, K,(X) e % and there is a uy € H(K;(X)) such that H(h,)uy=u,. Further-
more, ‘ ' -

LemMA 2.3. T,.:[Y, Ke(X)]J¢—>H(Y) is bijective for any Ye ¥, and
surjective for any Ye €,.

In fact, lim T, in lemma 2.2 is the composition of
lim (hy)y: im [Y, K,]g — [Y, Ke(X)]g

and T,,; and lim(h,), is bijective for any Ye %,, because the image of Y or
YxI(Ye %,) is contained in a finite G-CW, subcomplex of K, (X). Thus,
Lemma 2.3 is a consequence of Lemma 2.2.

Take a G-map py: Kz (X)—> X representing uy € H(K #(X))=[K#(X), X];-
Then

(_Px)* = T,,x ,[.Y’ Ks(X)]¢ — LY, X]6 = H(_Y),

which satisfies Lemma 2.3. So, the first half of Theorem 4 is a consequence of
the implication (2)"=>(1) in Theorem 3 by the definition of ¥, and ¥,. The
last half of Theorem 4 is clear by construction; and Theorem 4 is proved
completely.
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§3. Some finiteness conditions

In this section, we shall prove two propositions to give a condition that K in
Theorem 2 can be restricted to finite CW complexes.
In the notations of Lemma 1.2, consider the induced homomorphism

¢ =frn=m(X,x)— ' =7,(Y, f(x)) (f: X>Y, xeX),
and the induced map f, (=f4): [V, S!, X]-[V, S!, Y] identified with the map
(ITa@)e: TTam)fad n — (T4 7")/ad 7'

induced from the product homomorphism [], ¢, where /ad denotes the set of
orbits by the conjugation-action a-(x;)=(ac;a~1). Then, we have the following
proposition, where (sn) (resp. (bn)) means that

(sn) (resp. (bn)) fs=(14 @)s is surjective (resp. bijective) when |A|=n.

PROPOSITION 3.1. (i) When n’ (resp.m) is finite or nilpotent, (sl) (resp.
(sn) for all n) implies the assumption (x) in Theorem 1 that f,=¢ is surjective.
(ii) When r is nilpotent, (bl) and (s2) imply that ¢ is bijective.

Proor. (i) Put #=Imecn’. Then (s1) means that n'={e} U \UpB-
(t—{e}). So, when 7' is finite, this implies that |n'|<1+(|7]|—1)|n'/7|=1+
|n'|—|7'[7| and 7' =T.

When =’ is nilpotent, take the upper central series {e}=ZycZic---cZ,=n'.
Let BeZi,,. Then, b-Be7 for some ben’' by (s1), and b-B=B mod Z; since
Zi41|Z;=2Z(n'|Z}). So, if Z;cT, then fe@ and Z},,=#. Thus we see Z;cT
by induction; and n'=Z, =7.

Assume that (sn) holds for all n. Let fen’. Then b-({f}U(T—{e})) =T
for some ben’ by (s|7]) when = is finite. This shows fe® and n'=7. Now
consider the lower central series given by 7,=7, ;. , =[7, 7;] and ny=7n', nj,,; =
[n', n;]. Then, for any B,enj; (1<A=<n), there is a ben’ with b-f,e@,,,.
This is the assumption when i =max i(4) is 0, and is proved by induction on i and
by the definition of commutator subgroups. So, =#,,={e} if @,={e}. Thus,
when = is nilpotent, so is 7’ and we have n’ =7 as is shown already.

(ii) ¢ is injective by (bl) and we regard ¢ as the inclusion. Take the upper
central series {e}=Z,<Z,c---<Z,=n. Then, we see by induction that Z,
is a normal subgroup of 7’; and so is n=Z, and n'=n by (s1). In fact, take any
a€Z;,, and fen’. Then b'-(a, )enxn for some b'en’ by (s2), and so
b'-a=a-o for some aen by (bl). Thus b-(a, f)=(a, ;) where b=a~'b'en’
and a,en. So, b-(f-a)=(a;b)-a=0a,-a=amodZ; since Z;,,/Z;=Z(rn|Z),
and f-a=b-!.-a=amod Z; by inductive assumption. Hence f-a€Z;,, and
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Z;,, is normal in 7', as desired. q.e.d.

We now consider the following finiteness condition (%) for any group =:
(xx) There exists a finite subset A of n such that Z(A)-a={aaa=': ae Z(A)}
is finite for any ae . (Z(A) is centralizer of A.)

EXAMPLE 3.2. = satisfies (xx), when

(1) = is a FC-group, i.e., each conjugate class - o of a €t consists of finite
elements (e.g., © is abelian or finite), or

(2) = is finitely generated group or a free group.

In fact, any FC-group = satisfies (**) by taking the empty set for 4. If n is
generated by a finite set A4, then Z(4)=Z(n). If nisfree and A={a,, a,} (a;#a,)
is a subset of a system of free generators of n, then Z(4)={e}. So, Z(A)-o={a}
in these cases.

PROPOSITION 3.3. When 7 or n' satisfies (x*), @=f, is bijective if (bn)
holds for all n.

By the proof of Theorem 2, we have the following

COROLLARY 3.4. In cases of Propositions 3.1 and 3.3, Theorem 2 is valid
by restricting K to finite CW complexes.

In Proposition 3.3, ¢ is injective by (bl) (see the proof of Theorem 1), and
we regard ¢: nc=n’ as the inclusion hereafter. When Acn, we denote by d,=
(d;)eT1, = the element with d, =4 for any Le A. Then, a-d,=d, means o € Z(A)
when aen and aeZ(A, n')={fen’: BA=AP for any A€ A} (the centralizer of
A in ©') when a € 7', respectively.

LEmMMA 3.5. Assume that (bn) holds, and let A and B be finite sets with
Acmr, |A|=n and |Bl=m—n, and Bge 1z’ be any element.

(i) If (sm) holds, then there exists age(I1g7) N Z(A4, ©’)- Bp.

(ii) If (bm) holds in addition, then Z(A)-ag=1g %) N Z(A4, ') - Bp.

Proor. (i) For (d4, Bg)ellsn' xIIgn’, there is a (x,, xg)e(I1 X
I[Ign)nn'-(dy, Bg) by (sm), and so x,=a-d, for some aen by (bn) since
dsellyn. Thus, ag=a~'-xge[Izn and (d,, ag)=pB-(d4, Bp) for some fen'.
This means that B e Z(A, =n') and (i).

(i) Ifoaze(Igm)nZ(A, n')- By in addition, then (d,, ag)en’-(d4, Bp) and
so (dy, ag)=a'-(d,, ag) for some a’'en by (bm). This means o' € Z(A) and
ap€Z(A)-ap. q.e.d.

PrROOF OF PROPOSITION 3.3. Assume that 7’ satisfies (*+) by a finite subset
Bof n'. Then, there is a (¢,) e(ITgn) N =’ -dp by (s|B|]). So, A={w,: beB}cn
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satisfies A=f,-B for some f,en’. Take any Ben’. Then B'=Z(A4,n')-f=
Bo-(Z(B)-(B5!- B)) is finite by (#%). By (blA4|), (s(]4]+|B’])) and Lemma 3.5
(i), we have b-dy €[]p n for some beZ(A4, n'). So, for b’=b"1.feB’, we
see that B=b-b'=b-d, €n; and n'=m.

Assume now that n satisfies (#*) by a finite subset A of n. Take any fen’.
Then there is an aennZ(4, n')-B by (blA]), (s(]4]+1)) and Lemma 3.5 (i).
Put A'=Z(A)-a which is a finite subset of # by (*#*). Take again o' e ® with
o'=b-f for some beZ(A, n')nZ(A', ') by (b(|4]+|4'])) and (s (J4| +|A4| +1)).
Then, o' € Z(A)-a=A" by (b(J4|+1)) and Lemma 3.5 (ii). So, f=b"'!.-a'=
o' en; and n’' =m. g-e.d.

§4. Counter-examples

In this section, we shall show that Proposition 3.3 and Corollary 3.4 do not
hold in general without any assumption on =« or n’, that is, K in Theorem 2 cannot
be restricted to finite CW complexes.

Counter-examples are given by using the infinte symmetric group S,=
Unen Sy Where N is the set of positive integers and S, is the symmetric group of n
letters {1, 2,..., n}. Any element 6 € S, is a bijection 6: N— N such that m(¢)=
{ne N: a(n)#n} is a finite subset of N.

PrOPOSITION 4.1. For any injection ¢: N->N, let $:S,—S, be the
homomorphism defined by

po|N—@N =id, @o|pN = gogop~! (d€S,).

Then the induced map (I1,®)s of (IT4S,)/ad S, to itself is bijective for any
finite set A.

COROLLARY 4.2 Let X be the Eilenberg-MacLane complex K(S, 1), and
f: X—>X be the map such that f,=p on n(X)=S,. Then,the induced map

f2 (=f4) of the free homotopy set [K, X] to itself is bijective for any finite
CW complex K.

@ is not surjective unless ¢ is surjective. So, these give counter-examples.

We see that f, in Corollary 4.2 is bijective for the 1-skeleton K! of any finite
CW complex K by Proposition 4.1 and Lemma 1.2, and so for K by a standard
homotopy argument because x,(X)=0 for n>2.

PROOF OF PROPOSITION 4.1. By the definition of @, it is clear that @ is in-
jective and that ¢ € Im ¢ if and only if m(¢)c N for ceS,,,.

Let A be a finite set. Take any (¢,)el], S, and put M=\U,., m(c,).
Then, M is a finite subset of N and there exists a o € S, such that s(M)c=¢N. So,
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m(oo,0-)c@N and oo,06"1€lm ¢ for any Ae A. Thus, (IT, @), is surjective.

Now, assume that (¢;), (6;)e]], S, are contained in ImJ], @ and (¢})=
0-(0;) for some ceS,. When m(o)Z¢N, take ne m(c)—@N and put ¢'=
(nn")a, where (nn') is the transposition of n and n’'=0(n) (#¥n). Then,

m(o’) = m(o) — {n}, (03) =0’-(02).

In fact, the first one is clear. Since 6;, 6, Im @ and n& N, n and n’ are fixed
by ¢, =00,06~1, which shows the second one. Since m(c) is finite, the repeating
use of this process shows that (¢3)=1-(0,) for some 7€ S, with m(t)coN, i.e.,
telm . Thus, (I1, @), is injective. q.e.d.

In the end of this section, we note the following counter-example, which is
given by T. Ohkawa before we obtain Corollary 4.2, where spaces are assumed
to be arcwise connected CW complexes.

REMARK 4.3. (T. Ohkawa). For any based map f: X—Y, we can construct
X2 X, Y,oYand an extension f: X ,— Y, of f with the following properties:

(1) fox: [K, Xo]-[K, Y] is bijective for any finite CW complex K.

(2) For the induced homomorphisms n;(X)-L4 n,(Y) 22, (Y,,) L2 (X )
(i: YY), iy is injective and Imf_ 4 NImi,=Im(i,of,), (and so f s is not
surjective when f is not surjective).

The construction is done by modifying the one given in §2 so as to satisfy
(2), and is sketched as follows: Let X, =X v V(K, h), Y; be the equalizer of

V hot,, j (the inclusion): V(K, h)— Y' =Y v V(K, h),

and f;: X;— Y'Y, be defined by f and the identity map, where the wedge ranges
over all finite CW complexes K with base points and all based maps h: K—»Y
(up to free homotopy). Furthermore, let X,, Y, be the equalizers of

Z 9i°l(go.91)" Z (K, (g()a gl)) I Xl (l =0, 1)5
Zflogiot(go,gl): 2 (K, (gos9)— Y, (i=0,1),

respectively, and f,: X,— Y, be defined by the identity map and f,, where the sum
(disjoint union) ranges over all K of above and all pairs of based maps gq, g;:
K— X, such that f,og, is freely homotopic to fiog,. Let X,, ¥, and f,: X, Y,
be defined inductively by the first or second construction according to n is odd or
even. Then, X =\UX,, Y,=UY, and f,=\Uf,: X,—Y, are the desired ones.
In fact, (1) is clear. (2) is seen by the following result:

Let E=E(g,, g,) be the equalizer of based maps g,, g,: A—B and consider

ny(A) 2%, 7y (B) L1, 7 (E) &2 1, (S?) (i =0, 1)
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where i; and i,: S'=# X I/~ cE are the inclusions. Then, the isomorphism

y(E) = 7(B) % 7,(S81) [ {(9ox2) ™ s(g1x0)s™ 12 a € my(A))

is induced from i, and i,,, where s e #,(S!) is a generator, (which is shown by
using van Kampen'’s theorem). Furthermore, if Ker go,=Ker g,4, then i,, is
injective and the right hand side is an HNN-extension which satisfies the Normal
Form Theorem (cf., e.g., [3, Ch. IV, Th. 2.1]).
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