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Introduction

This paper is concerned with the Cauchy problem (hereafter called (CP)) for
the scalar quasilinear equation

(DE) u, + 2 (piw),,=0 for t>0,xeR?

where ¢=(¢;, ¢3,..., ;) is a smooth R¢-valued function on R such that ¢(0)=0.

We treat this problem from the point of view of the theory of nonlinear semi-
groups and establish a new operator theoretic algorithm for solving the problem
in conjunction with product formulae. It is well-known that solutions of (CP)
can be constructed by both the method of vanishing viscosity and the finite differ-
ence method. Recently, Giga and Miyakawa proposed in [7] a new method for
constructing solutions of (CP) via the iterative scheme

(0.1) U1 = Chuk, k = 0, 1, 2,...,

where the operators C,, h>0, are defined by

(02) (Cuan(x) = | 27 (sign (u(x— h¢'(£) — &)+ sign (€)dL

for x € R4, where h stands for a mesh size of time difference.
Let u(1, x) be a function of (¢, x) € (0, o0) x R4 and f(t, x, &) the function of
(1, x, £)e(0, o0) x R?x R defined by

f(t, x, &)=27(sign (u(t, x)—&)+sign (£)),

where £ is understood to mean a parameter varying over R. Then the function
u and f satisfies the relation

u(t, x) = gkf(t, x, )dE

and

This reseach was supported in part by Grant-in-Aid for Scientific Reseach (No. 57740079),
Ministry of Education,



490 Yoshikazu KOBAYASHI

piutt, ) = 8010, x Ode,

for i=1,2,...,d. (See Proposition 1.1 below.) Hence, if f(t, x, &) satisfies the
linear equation

0.3) fo+ 21 i) /5, =0

at a time ¢, then u(t, x) satisfies (DE) at t. Since the solution f(¢, x, &) of (0.3)
satisfies

f(t+h7 X, é) =f(ta x—h(p,(é)s é)

for t, h =0, the above-mentioned suggests that a solution of (CP) is approximated
by the solution of the scheme (0.1). In fact, it is proved in [7] that approximate
solution of (CP) can be constructed through the scheme (0.1) and converge to
a weak solution of (CP). Although their idea is quite natural and interesting in
the sense that their method is interpreted in terms of kinetic theory of gases, it is
not explicitly discussed in [7] whether the limit of the approximate solutions is
uniquely determined by initial data. It is well known that there can be an infinite
number of weak solutions of (CP) for the same initial value and that an additional
condition, called-the entropy condition, is ‘needed to select “‘physically right”’
weak solutions which are uniquely determined by initial data.

The main objective of this work is to establish a convergence theorem for
approximate solutions defined through the scheme (0 1) to the weak solutions of
(CP) satisfying the entropy condition.

1t is already known that the problem (CP) can be studied via nonlinear semi-
group theory. For example, Crandall [4] and subsequently Oharu-Takahashi
[14] constructed a semigroup {7T(t)},>o of nonlinear contractions on L!(RY)
such that, for uye L'(R9) n L®(RY), u(t, x)=(T(t)uy)(x) gives a unique entropy
solution of (CP). In the first paper, the vanishing viscosity method is employed
and the generation theorem due to Crandall-Liggett is directly applied, while in
the second paper finite-difference approximation of (CP) is discussed from the
point of view of the approximation theory for nonlinear semigroups and a con-
vergence theorem for nonlinear semigroups plays an essential role.

In this paper we discuss a new semigroup approach to the problem (CP).
Let {T(t)},50 be the semigroup constructed in the works cited above. Then we
obtain the following convergence theorem which is the main result of this paper.

THEOREM. Let ue LY(R%). Then we have the convergence
0.4) T(Hu = lim,,,, Clt/4ly

in LY(RY) for t=0 and the convergence is uniform in ¢ on compact subsets of
[0, 00). (Here [£] denotes the greatest integer in { € R.)
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The above mentioned result not only shows that the method proposed by Giga
and Miyakawa is a new method for constructing “entropy solutions’’ of (CP)
but also provides an operator theoretic algorithm for obtaining semigroup
solutions of (CP) in term of product formula (0.4).

The plan of the paper is as follows: In Section 1 the results of Crandall [4]
and Oharu-Takahashi [14] are recalled and nonlinear dissipative operators are
introduced in connection with the notion of entropy condition for weak solutions
of (CP). In Section 2 various stability properties of the scheme (0.1) are studied.
Basic estimates concerning the consistency with (CP) of the scheme are prepared
in Section 3. Finally, in Section 4, the proof of our main theorem mentioned
above is given and several consequences of the theorem are discussed.

1. Preliminaries

Let R? denote the d-dimensional Euclidean space with norm |-|. We
denote by x-y the Euclidean inner product of x and y.

Let ¢=(p;, ¢3,-.., ¢4) be a fixed continuously differentiable function on R
into R4. We assume that the function ¢ is normalised in the sense that ¢(0)=0.
The derivative (¢}, ¢3,..., ¢3) of ¢ is denoted by ¢'.

The spatial gradient (f,,, f,,..., f,) of a function f on R? is written as f,.
We write LY(R?) and L®(R?) for the ordinary Lebesgue spaces with standard
norms |||, and ||, respectively. Also CF(R?) is the usual space of smooth
functions with compact supports. We use the function

-1, if ¢&<0,
sign (&) ={ 0, if ¢=0,
1, if &> 0.

Given a uye L*(R?), a function u(t, -) on [0, «0) into L®(R?) is called an
entropy solution of (CP) with initial value u, if it satisfies the following
conditions:

(a;) Jlu(t, )|l & is uniformly bounded in ¢ € [0, o).
(a,) For each te[0, o) and each r>0,

lims_,,S| , luGs, x)—u(t, ¥)ldx = 0
and

u(0, x) = uy(x) a.e..

(a;) For each ke R and each fe CP((0, o0) x R?) with f =0,
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a7 e - kA
+ sign (u(t, )~ k) ((u(t, )~ $(K) -£(1, )}dxdt 2 0.

Condition (a;) was proposed by Vol’pert [15] and is regarded as an entropy
condition in the multi-dimensional case. Also (a;) implies that an entropy so-
lution u is a weak solution of (DE), i.e., u satisfies (DE) in the sense of distributions.
The existence and uniqueness of the entropy solution of (C P) was established by
Kruzkov [9].

In order to treat (CP) via nonlinear semigroup theory, it is required to define
a generator A such that

Au = — 21 (oW,

in an appropriate sense. We here define two operators A, and A in L'(RY) in
the following way:

(by) ueD(Ay) and we Ayu if and only if
u, we L'(R%) n L*(R?%) and

12| sign (0= ) {GUx) = BN LX) WD )} 20,

for every ke R an every fe CF(R?) with f=0.

(b;) A is the closure of 4, in L'(RY), i.e., u € D(A) and w e Au if and only
if there exist sequences {u,} in D(4,) and {w,} in L*(R%) such that w, e Aqu, and
u,—u, w,—w in L1(R?) as k— oo.

The definition of the operator A4 is due to Crandall [4]. The operator 4,
is in fact single-valued, C{(R%)=D(A,) and it is represented as

Aou = — 244 ((15.'(“)),‘,- for ueD(Ap),

in the sense of distributions. (See [4], Lemma 1.1.) It follows from the results
of [4] and [14] that A is a densely defined, m-dissipative operator in L'(R¢Y),
i.e., A satisfies conditions (c¢;) and (c¢,) below. (See the references [1], [11] and
[12] for basic properties of dissipative operators.)

(¢q) For A>0, u;e D(A) and w; € Au;, i=1, 2, we have
luy—Awy —(uy —Aw)lly = Juy—u,|.
(c;) For A>0 and ve L'(R*9), there exists a u € D(A) such that u—AAu>v.

By virtue of the above-mentioned properties of A4, the generation theorem of
nonlinear semigroups due to Crandall-Liggett [5] can be applied to conclude
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that there exists a semigroup {T(#)};>, of nonlinear contractions on L!(R9)
into itself such that

(1.3) Twu = lim, ;o (I—AA) /4y in LY(RY)

for ue LY(R?) and t=0, where [ stands for the identity operator on L!(R?).
For each uge L' (R?), the function u(t)=T(t)u, gives a solution in a generalized
sense of the abstract Cauchy problem

(ACP) du/dte Au, u(0) = u,

in the Banach space L!(R%). Moreover it is shown in [4] and [14] that u(z, x)=
(T(Hug)x) is an entropy solution of (CP) with initial value u, in L'(R%)n
L*(R9).

Let {C}},»0 be the family of operators defined by (0.2) and set

A, = h"Y(C,—1) for h>0.
Then the iterative scheme (0.1) can be rewirtten in the following form:
(1.4) h=(uk* —uk)y = A,u*, k=0,1,2,...

In order to prove the main theorem via the approximation theory for nonlinear
semigroups, we employ Theorem 3.2 in Brezis-Pazy [3]. Hence it suffices to show
that the family {C,};> o satisfies the following two conditions. '

(d,) Each C,is a contraction operator on L!(R?) into itself in the sense that
|Chu—Cyolly £ Jlu—v], for u, ve LY(RY).

(d,) For each 2>0 and each ve L'(RY),
(I—=2AA)"'v =lim,, o (I —AA4,) v in LY(RY).

Condition (d,) implies that C is a contraction operator on L!'(R9) into
itself for every h>0 and k=0, 1, 2,.... In this sense, (d,) ensures the stability
of the scheme (0.1) or (1.4). Although we cannot expect that 4, converges directly
to Aqu as h | 0 even if u € D(Ay), we may understand that the family of operators
Ay, h>0, approximates the operator A on (ACP), because condition (d,) implies
that ue D(A4) and we Au if and only if there exist u,e L'(R?) such that u,—u
and A,u,—»w in LY(R%) as h|0. (See [13] and [12].) Noting that, under
condition (d,), (d,) yields the convergence (0.4), we call hereafter (d,) the con-
sistency condition.

Following Giga and Miyakawa [7], we employ the function F on R xR
defined by

F(a, &) = 27 1(sign (a — &) +sign (&)), for a,éeR.
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Using this function, we can rewrite the operator C, as

(1.5) (Cpu) (x) = S F(u(x—he'(&)), &Hdé for xeR‘.
R

We here list some basic properties of the function F in the next proposition:

ProrosiTION 1.1. (i) Ifa=b, then F(a, )= F(b, &) for £€R.
(ii) If fis a locally integrable function on R and a, be R, then

(1.6) SJ@KH&@—HAOW&=£KO%
and
(1.7) [ 1@IF@ &= F®, Olde = sign (a—b) [ r0)ae.

(iii) For eachae R, F(a, £)=0 for |£|>|a| and F(0, £)=0 for all £ R.
(iv) For each a, beR,

§Hm&%=m§|ﬂm@ﬁ=w
R R
and

SR |F(a, &)—F(b, &)|d = |a—b].

Proor. Since the function sign (-) is nondecreasing on R,
F(a, &) — F(b, §) = 27'(sign(a—¢)—sign(b—¢)) 2 0

fora=b and € R. Let f be locally integrable on R and let a>b. Then

12 if £=a,
(1.8) F(a, &) — F(b, £) = razcxh

12 if &=b,

0 otherwise.

Thus we have (1.6). Similarly, (1.6) holds in the case a<b. By (i),
|F(a, )—F(b, &)| = sign(a—b)(F(a, §)—F(b, <))

for a, b, £e R. Hence (1.6) implies (1.7). Furthérmore, the function sign(-)
is odd, and so

F(0, &) = 2-1(sign (¢)+sign (—¢&)) = 0 for éeR.
Therefore, F(a, £)=0 for |£|>|a| by (1.8). The properties of F stated in (iv) are
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easily deduced from those of F listed in (ii) and (iii). Q.E.D.

ReEMARK. In the following argument, any other properties of F as mentioned
above will not be necessary. So, the function

1 if 0£¢<a,
F(a, ¢ ) =( —1 if ag¢é<0,
0 otherwise,

which is employed in [7], can be employed for the definition of the operator C,.

2. Stability of the scheme

First we prepare basic estimates concerning the stability of the operators
C, defined by (1.5). Although those estimates are essentially proved in [7], we
here give a proof of them for the sake of completeness. For each ye R4, we
define 77: L'(R%)— L'(RY) by

(Pu)(x) = u(x+y) for xe R?and ueL'(R9Y).

PrOPOSITION 2.1. Let h>0. Then:

(i) C, is a contraction operator on LY(RY) into itself and ||Cul,=<|ul,
for ue LY(R?).

(ii) Cyrv=1>C, for y e R4.

(iii) If u € L'(RY) n L*(R?), then C,u e L'(RY)nL*(R?% and ||Chul, <
fla]l oo

Proor. Let ue LY(R?). Then, by Fubini’s theorem,
[, ICaldx
R4
= SS L |F(u(x—he'(2)), OldxdE
R4xXR

- ngm [F(u(x), &)ldxde.

Since
SR \F(u(x), E)dE = fu(x)|

by (iv) of Proposition 1.1, we have C,u e L'(R?) and ||C,u|,<Z|lull,. Similarly,
it follows from Fubini’s theorem and (iv) of Proposition 1.1 that
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SRd [(Cpu)(x) — (Cpo)(x)|dx
= SSRMR |F(u(x—ho'(€)), &)— F(v(x —he'(&)), &)|dxdE
= [ IR0, = Fe, Dldxde
R4XR

= {0 —olax

for u, ve L'(R?). Assertion (ii) is evident from the definition of C,. It now
remains to prove (iii). Let ueL'(R% nL*(R%. Then, by (i) of Propo-
sition 1.1,

F(—llulle, &) = Flu(x—he¢'(8), &) = F(|lul, €) ace..

Integrating the above terms with respect to & and using (iv) of Proposition 1.1,
we have

- lullo S (Cu)(x) £ |lull, ae..
Therefore, C,u € L'(R%) n L*(R%) and ||Cyu,, < ||u]l . Q.E.D.

Asserion (i) of Proposition 2.1 implies that each A,=h"'(C,—1I) is m-dis-
sipative in L'(R4). Hence the resolvent

Jop=T—24,)7"

exists for each 4>0 and each h>0. Then, as easily seen, we have the relations

(2.1) Jl,hv = h()v+h)_11) =+ l(l+h)—1ChJ;"hU
and
(2.2) Ay = A7, 0 —0)

for ve L\(R?%) and A, h>0. Basic properties of the resolvents J, , of A4, may be
stated in the following form:

ProPoOSITION 2.2. Let h, A>0. Then:

(i) J,u is a contraction operator in L\(R?) into itself and ||J, vl < o],
for ve L'(R?).

(ii) Jpt?=1"J,, for ye R

(i) If veLY(R?% nL*(R?Y), then J,,ve L'(R)n L(R%) and |J;wl,=
o -

PrOOF. Since A, is an m-dissipative operator in L1(R¢), each of its resolvents
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Ji, is a contraction operator on L!(RY) into itself. Let ve L'(R?). Then, by
(i) of Proposition 2.1,
IChawvlls = 1apvlly-
Therefore, (2.1) implies that
1Jam0lls = h(A+R)" ol + AA+R)HT ;0015
and hence

[Jam0l1 S lolly-
It now remains to prove (ii) and (iii). For each ve L}(R¢) we define
Kou = h(A+h)"'v + MA+h)"'Cu for ueL'(RY).

Then Proposition 2.1 (i) implies that each K" is a strict contraction operator
(with Lipschitz constant less than or equal to A(A+h)™!) on L!(R?) into itself.
Therefore, each K¥ has a unique fixed point in L'(R9). But the relation (2.1)
states that, for each ve LY(RY), J, v itself is the unique fixed point of K*. To
prove (ii), let ve L'(R?) and ye RY. Then the application of Proposition 2.1
(ii) and the relation (2.1) yields

I 0 = h(A+h)" 170 + A(A+h)" 1G0T 0.

This means that 77J,,v is a fixed point of K***, and we have ©J, ,0=J,,7v by
the unicity of the fixed point. Finally, let ve L'(R4) n L*(R?%) and set X*=
{ue L'\(RY) N L*(RY); |lullo,=|vly,}. Then X® is a nonempty closed convex
subset of L(R%). Furthermore, Proposition 2.1 (iii) implies that K* maps X?
into itself. Consequently, the fixed point J, ;v of K" belongs to X*. Hence,
Jiv€ LY(RY) n L2(R%) and [|J; 0] = 0]l - Q.E.D.

3. Consistency of the scheme

We begin by establishing the following result, which is the core of our
argument below.

ProposiTION 3.1.  Let ue L\(R*) n L°(R?) and h>0. Then
(3.1 gxd ((Chu)(x) — k| = [u(x) — k) f(x)dx

< SRd sign (u(x)— k) S:u) (f(x+ he' (&) — f (x))dEdx

for every ke R and every fe CF(R?) with f=0.
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PrROOF. Let ke R, fe CF(R?), and assume that f>0. By (iv) of Proposition
1.1 we have

(Ca(x) = k= | Fu(x—hg'@), & = F(k, Ode, xR,
Hence
()= < | IPGuCe—he'@), O—Fik, DIdE, xe R
On the other hand, Proposition 1.1 (iv) yields
ue) =k = | IF@(x), &= F(k, lde, xeRe.
Therefore, the application of Fubini's theorem yields
(., (Can—KI=1uC)— kD ()
<, UP@x=hg'@), &)= F(k, O11(x)~ IF@(x), = Flk, DI f(dEdx

= Sm SR |F(u(x), &)= F(k, OI(f(x + h' (&) —f (x))d&dx,

We now apply Proposition 1.1 (ii) to the above estimate to obtain the desired
inequality (3.1). Q.E.D.

To show the consistency of our scheme with the problem (CP), we need a
few more estimates which are derived from (3.1).
Let P be the set of all functions p: R— R satisfying

(i) pis nondecreasing and Lipcshitz continuous;
(ii) the derivative p’ has compact support:

and
(iii) p(+ 00)+ p(—0)=0.

The next inequality (3.2) involving the operator A, corresponds to the
inequality (1.2) which specifies the operator A,.

ProposITION 3.2. Let ue LY(R?) N L*(R%) and h>0. Let peP. Then,
(32 [, PG (4 (001 )

= Sm S :m PR~ (x+h'(s) — f (x))dsdx

for every ke R and every fe CF(R?) with f=0.
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ProOF. We follow the argument of the proof of Lemma A in [4]. (See
also the proof of Theorem 5.3 in [14].) Choose a positive number m so that
llul , <m and the support of p’ is contained in the open interval (—m, m). Then
we have

(3-3) p(m) + p(—m) =0,

since p(+ 00)+ p(—o0)=0.
Let ke R, fe CF(R?) and assume that f=0. Set

9(5) = | sign (u(x) = 9) () (9 (v
and
his) = § ., sign () =) e hg (@) = foopded

for se R. Since

sign (u(x) —s) (A,u) (x)
= h™I[((Chu)(x) — ) sign (u(x) — s) — (u(x) — 5) sign (u(x) —s)]
< P HICpu)(x) —s| = lu(x)—sl},
it follows from Proposition 3.1 that

g(s) < h(s) for all seR.

Consequently, we have
(3.4) [" poueds <" ponds.
On the other hand, we have

(" poas = A" pssign @x) - s )0,
by Fubini’s theorem and

[y sign @) -sds = " p) = " p(s)ds = 2p(ux)
by (3.3). Hence
(35) [" P =2 ) (4 0 .

In the same way as above we have
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(3.6) S:., P(s)h(s)ds
= Ll (57 = 5o O w06 )~ e} s Ja.

Therefore integration by part yields
(37) [ @ {{1 r1(ree+ hr@) - e ds
= =p(=m) "7 £ Cer (@)~ e
{7 MO (5 + h ()~ 1 G
and
(38) I rO{)" e hgE)—f(ode) s
= pm) " h (et (@) —F (g
07 PN (et h () ~f ().

Moreover, observe that
b
[ Al h e ne @) -t ax = o
R4 a
for every a, be R. Hence, the substitution of (3.7) and (3.8) into (3.6) gives
(3.9) S':'m P()h(s)ds
= { .| ==+ pm) {7 hr x4 B @) —f ()

+ (17 = 1 PO e b ) —f s

k
=2 [{" s e+ ng' o) —ronds Jax,

where we have used (3.3) again. Combining (3.4), (3.5) and (3.9), we obtain the
desired inequality (3.2). Q.E.D.

The following result states that

lim - SUPiso | I(U5)C0ldx = 0
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for ve LY(R%) n L*(R%) and A>0.

PrOPOSITION 3.3. Let ve LY(R%) n L*(R%) and A>0. Then,
(3.10) S; | (Jauv)(x)ldx
x|>p

< SW lo(x)ldx + Ap—r)" Mol

for p>r>0and h>0, where M =sup {|¢"(5)]; [E|<|lo]l..)-

Proor. We follow the argument as in the proof of Lemma 4.3 in [14].
Let ve LY(R%) n L*(RY), >0, and set

Uy = J, 0 for h>0.
Then, it follows from Proposition 2.2 that u, e L'(R4) n L*(R*?) and
(3.11) lupll, = llvll,, p=1, co.

Let f be a uniformly bounded, nonnegative and Lipschitz continuous function
on R. Then we see in the same way as in the proof of Proposition 3.1 that the
following inequality holds:

[, (Caneol — a0y

. (un(x)
s Sm sign (u,(x)) So (f(x +hep' (&) —f(x))dEdx.
Let Lip (f) denote the smallest Lipschitz constant of f. Then,

Un
0

[, sign @) |7 (Fx+ h' (@)~ f (o)

<ntip(H| [ 16@ae|dx

e
< M Lip(7) {_ lu0ldx
< hM Lip (f)lvll 1,
where we have used (3.11). Therefore, we have
(3.12) Sm (I(Chup)()| = [ug(X)D f(x)dx < hM Lip (f)lvll,.
On the other hand, the relation (2.1) implies that

lus() = h(A+ 1)~ o(x)| + AA+R)TH(Chup)(x)|
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or
h(lup(x)| = (X)) < [(Cpup)(x)] — uy(x)].
Combining this with (3.12) yields

(3.13) [ lm@lredx < §  p@Ifeds+ M Lip (Dlel

Let p>r>0 and let 6":* be a function on [0, o) such that
0 if 0s<r
ore(s) =< (p—r)"(s—r) if r<s<p,
1 otherwise.
Set
fre(x) = 6m°(|x)) for xe R“.
Since
0=fro(x) =1 and [fr2(x)—f"2(y)| = (p—r)Hx—yl

for x, y e R4, the substitution f=f"* into (3.13) now yields the desired estimate
(3.10). Q.E.D.

4. Proof of theorem

In this section, we give the proof of our main theorem. Assertion (i)bof
Proposition 2.1 states that the stability condition (d,) holds. Hence it remains
to prove the consistency condition (d,). For this purpose, we prepare the fol-
lowing lemma.

LemMa 4.1. Let ve L\(RY) N L*°(R%) and A>0. Let u,=J,,w for h>0.
Then we have:

(i) The set {u,; h>0} is precompact in L'(R*).

(ii) If {h(n)} is a null sequence such that u,,, converges a.e. to a limit
u € LY(R?) as n— oo, then ue D(A,) and A~ (u—v)=Ayu.

Proor. Firstly Proposition 2.2 (i) states that
4.1 SUDss o [lually = [0l
Secondly Proposition 2.2 (i) and (ii) together imply

ltup—uylly = 27?0 —=J 550l

< llvv—vfl,
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for h>0and ye R4. Hence
(4.2) SUPyo | Pup =1yl — 0 as y— 0.

Furthermore, Proposition 3.3 implies that
(4.3) Sy o Sl L uldx—0 as p—s oo,
x|>p

In view of (4.1), (4.2) and (4.3), the Fréchet-Kolmogorov theorem can be applied
to imply the first assertion (i).

It now remains to prove (ii). Let {h(n)} be a null sequence such that u,,
converges a.e. to some limit u € L'(R%). By Proposition (iii),

(4.4) lunlw = flvlle  for h>0.

Hence, ue L'(R%) n L*(R?) and |u|,Z|vll,. Let ke R and take fe CP(R?)
with f=0. Let pe P. Inserting u, into u on (3.2) yields

(4.5) [, P00 (A 0 (00
< S .{S.""‘“’ PO f(x + h'(s)) —f(x))ds}dx.
RrRé Uk
Notice that {||u,||,,} is uniformly bounded in h by (4.4), and that

Apuy = 2" N(uy—0)

by (2.2). Hence, putting h=h(n) in {(4.5) and letting n tend to the infinity in the
resultant inequality, we have

(4.6) {., PG w0 = o) f(x)dx

= S {Su(x) p(3)¢/(s) 'fx(x)ds}dx
R4 k
by use of the Lebesgue convergence theorem. We then set

-1 if s<—1/¢
p(s)={ ¢s  if sl < 1/2,
1 if s> 1/,

for £=1,2,.... Choose p(s)=p,(s—k) as the function p on (4.6) and let ¢ tend
to the infinity. Then we have
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Sm sign (u(x) — k)i~ 1(u(x) — (X)) f (x)dx
< {7 sign - b ) fu0dsax
R4 Jk

= Sm sign (u(x) — k) (p(u(x)) — (k) - fu(x)dx.

This shows that u € D(A4y) and A~ (u —v)=Aqu. Q.E.D.

We can now prove the consistency condition (d,). Let ve LY(R¢) and A>0.
Choose a sequence v, € L\(R%) n L°(R*?) so that v,—v in L}(R%) as k—oo0. Set

uy=J,0 and uy =J; 0

for h>0 and k=1, 2,.... By (i) of Lemma 4.1, there exists a null sequence
{h(n)} such that, for each k, u,,, converges a.e. and in L'(R?) to some limit
u, € L\(R%) as n—»o0. Then, it follows from Lemma 4.1 (ii) that

(4.7) uk € D(Ao) al‘ld A»—](uk"’ l)k) = Aouk
for k=1, 2,.... By (i) of Proposition 2.2, we have
lue—u;lly = limy o o 13 nen Ve — I anemilly
= ”vk"'vjul

for k, j=1,2,.... Hence, there exists ue L'(R%) such that u,—»u in L'(RY)
as k—oo. Since A is the closure of A4,, it follows from (4.7) that u € D(A) and
AW (u—v)e Au. Obviously, this implies that u+AlAu3v and u=(I—Ai4)"'v.
By Proposition 2.2 (i), we also have

lup=snilly < llo—wvilly-
Hence

lup—ully S lu—uplly + o=l
Let h=h(n) and let n tend to the infinity. Then,
Hm sup, o [lune —ully = llu—uelly + llo—odlly

for k=1, 2,.... Consequently, uy,,+u=(0—-A4)"tv in L'(RY) as n—>oo. Since
the limit is uniquely determined by v, we can conclude that u, itself converges to
(I—AA4)~'vin L\(R%) as h | 0. Thus the proof of the Theorem is completed.

In the-above proof of the Theorem we did not use the fact that operator A
satisfies (c,), although we proved it. Thus, we have the following result due to
Crandall [4].
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COROLLARY 4.1. Let ve L'(R?) and A>0. Then there exists ue D(A)
such that u—AAu ev.

As we observed before, it is known that u(t, x)=(T(f)ug)(x) is an entropy
solution of (CP) if uye LY (R%) n L(R4). We here show it through the product
formula (0.1).

COROLLARY 4.2. Let {T(t)},»0 be the semigroup determined by (1.3).
Let uge L\(R%) n L*(R?) and let u(t, x)=(T(t))x). Then, u(t, x) is the entropy
solution of (CP) with initial value u,.

PrOOF. Set
u(t, x) = (Cit'Mug)(x)  for (t, x)e(0, o) x R4,

Then, it follows from the Theorem that u,(t,-) converges to u(t,-) in L!(RY)
as h | 0. Using (iii) of Proposition 2.1, we see that

"uh(t’ : )"aa g "uO”w‘

Therefore, u(t,-)e L%(R?) and |u(t,-)|<l|luollc for t=0. Furthermore,
t—T(t)ugy is continuous on [0, o) into L!(R?) and so condition (a,) is satisfied.
It remains to check condition (a;). Let ke R and feC®((0, ©)x R?) with
f=0. Notice that

up(t+h, x) = (Cuuy(t,+)) (x).

Hence, Proposition 3.1 implies that

Sm WY (uy(t+h, x)— k| = uy(t, x)= k) f(t, x)dx

up(t

< sign (e, 0=k {7 b7, x4+ hg @) -1, x)ded

Set f(t, x)=0 for xe R¢ and ¢+ <0. Integrating both sides of the above ine-
quality over 0<? < co and using a change of variables, we have

@8) (7wt %)= kIR0 =h, =18, x)dxds
< 070, sien 0 =10 {7 o x b @) =1 x)ddxat
Let {h(n)} be a null sequence such that'u,,;(t, x) converges a.e. to u(t, x)

as n—oo.. Put h=h(n) in (4.8) and let n tend to the infinity in the resultant
inequality. Then the Lebesgue convergence theorem yields
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)
- S S lu(t, x)— k| f(t, x)dxdt
0 JRC

= Sw S sign (u(t, x)—k) S"'("x) ¢'(Of{t, x)dedxdt,
0 JRd k
from which the inequality (1.1) follows. Q.E.D.

As mentioned before, it is proved in [9] that there exists a unique entropy
solution u of (CP) even if initial value u, lies in L*(R4). By virtue of the hyper-
bolic nature of (CP), the Theorem can be used to construct for u,e L*(RY)
the entropy solution u of (CP) via the iteration scheme (0.1). In fact, we have
the following corollary, which precisely gives an answer to the problem proposed
by Giga and Miyakawa [7]. In the remainder part of this paper, let C,u be the
function defined by (0.2) for u € L°(R%) and h>0.

COROLLARY 4.3. Let uge L°(R%). Then there exists a function u(t,-) on
[0, o0) into L™(R?) such that, for r>0 and T>0,

4.9) lim.so S' _ lut, 9=(C W) (ldx = 0,
S ,

uniformly in t'e [0, T] and the function u is an entropy solution of (CP) with initial
value u,.

For the proof, we first show a few properties of the operator C, on L*(R?)
which reflect the hyperbolic nature of the problem. (See also Lemma 2.1 and
Lemma 2.2 in [7].)

PrOPOSITION 4.1. Let h>0. Then:
(i) C, is an operator on L*(R?) into itself and

(4.10) ICall. < llull,  for weL”(RY).

i) 1f u, ve L“(RY) and M zsup {|¢'(E)l; 15| Smax (Jull., [0].,)}, then
@.11) J... a6~ (Ceola

<

|u(x)—v(x)|dx

S|x|§r+hM
for any r>0.
- PROOF. -The assertion (i) can be shown in the same way as the proof of

Proposition 2.1 (iii). Let wu,veL®R? and m=max(Jul, |vls). Let
M 2z sup {l¢’(Ol; |él=m} and r>0. Then, by (iii) of Proposition 1.1,
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SM ., [(Cu)(x%) — (Cyo)(x)|dx
= S | {ﬁ |F(u(x — he'(8)), &) — F(v(x —hep'(&), z)|d<:}dx'
|x|sr UR
= SMS, i oo PG = (), O = Flo(x—he (&), Hlde}dx.
Hence, the application of Fubini’s theorem yields

Slxl <r [(Chu)(x) = (Cho)(x)]dx

é Slﬂsm {glﬂSr |F(U(X—h¢’(é))’ é)—F(D(X—h(ﬁl(f)), é)ldX}dé

I\

Slﬂém {Slx[§r+hM [F(u(x), &)= F(u(x), f)ldx}d.f

- f o
- SleéHhM 1S|g|§m |F(u(x), €)= F(u(x), f)ldX}df.

We now apply (iii) and _(iv) of Proposition 1.1 to get (4.10). Q.E.D.

Proof of Corollary 4.3. Let uge L*(R?%) and M =sup {{¢'(E)|; & = uoll»}-
For each >0 and T>0, define a function uy™ on R? by

; Uo(x) if |x|Sr+ TM,
upT(x) = ]
0 otherwise.
Obviously, ufyTe LY(RY) n L*°(R?) and |uyT|,=<\uoll, for r>0 and T>0.
Therefore, (4.9) implies that

(4.12) IChuolle S lluoll. and  [ChugT|, < lu™lle < ulll.,

for r, T, h>0 and n=1, 2,.... Hence, using (ii) of Proposition 4.1 inductively,
we have

@.13) [y MCHP0) ) = (R T )l

<

{ Jto(3) = ()| dx =0
|x| Sr+(t/h1hM

for te [0, T} and r, T, h>0
Let {T(#)},50 be the semigroup on L(R9) constructed through (1.3). Since
ulyT e L'(R?), the Theorem implies that

Supte[o,nSM»I(CE'/"]uf)'T)(x)—-(T(t)uf,'T)(x)ldx—>0 as hloO
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for r, T>0. Hence we infer from (4.12) that

419 spon |

[x] I(CMug)(x) —(T()ugT)(x)ldx —> 0 as h {0

for r, T>0. Therefore, in view of (4.11), we see that there exits a function u(t,-)
on [0, o) into L*(RY) which satisfies (4.9) and ||u(t, )|l o, < |ltoll,. Furthermore,
(4.14) implies that for each fixed r, T>0 and each re[0, T,

(4.15) u(t, x) = (T(ugT) (x)

fora.a. xe R? with |x|<r. Since T(O)uyT=ulyT and T(t)ufyT is continuous in
t e [0, o) with respect to the norm || - |, we see that (a;) holds for the function
u(t, x).

Let ke R and fe C¥((0, o) x R4 with f=0. Then Corollary 4.2 states
that the inequality (1.1) holds for the function u"T(t, x)=(T(H)uyT)(x). Choose
r>0 and T>0 so that the support of f is contained in the set (0, T) x {x € R¢;
|[x]=r}. Then (4.15) implies u(t, x)=u"7(t, x) for (¢, x) belonging to the support
of f, and consequently the inequality (1.1) holds for the function u. Thus the
function u(t, x) is an entropy solution of (CP) with the initial value ug.- Q.E.D.
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