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Introduction

This paper is concerned with the Cauchy problem (hereafter called (CP)) for

the scalar quasilinear equation

(DE) ut + Σί=ι (Φi(u))Xi = 0 for t > 0, x e Rd

where φ = (φi, φ 2 , . , Φd) is a smooth Unvalued function on R such that φ(0) = 0.

We treat this problem from the point of view of the theory of nonlinear semi-

groups and establish a new operator theoretic algorithm for solving the problem

in conjunction with product formulae. It is well-known that solutions of (CP)

can be constructed by both the method of vanishing viscosity and the finite differ-

ence method. Recently, Giga and Miyakawa proposed in [7] a new method for

constructing solutions of (CP) via the iterative scheme

(0.1) uk+1 = Chuk, fc = 0,1,2,...,

where the operators Ch, h > 0, are defined by

(0.2) (Chu) (x) = ( 2-Hsign (u(x - hφ'(ξ)) - ξ) + sign (ξ))dζ
JR

for x e Rd, where h stands for a mesh size of time difference.

Let u(ί, x) be a function of (t, x) e (0, oo) x Rd and /(ί, x, ξ) the function of

(ί, x, ξ) 6 (0, oo) x Rd x R defined by

f(t, x, ξ) = 2-\sign(u(t, x)-ξ) + sign«)),

where ξ is understood to mean a parameter varying over R. Then the function

u and / satisfies the relation

u(ί, x) = \ f{t9 x9 ξ)dξ

and
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, x)) = \ φfi(ξ)f(t, *, ξ)dξ,
JR

for i = l , 2,..., d. (See Proposition 1.1 below.) Hence, if f(t, x, ξ) satisfies the

linear equation

(0.3) /f + Σί=iΦ'i(ζ)fXi = 0

at a time ί, then w(ί, x) satisfies (DE) at t. Since the solution /(ί, x, ξ) of (0.3)

satisfies

for ί, ft^O, the above-mentioned suggests that a solution of (CP) is approximated

by the solution of the scheme (0.1). In fact, it is proved in [7] that approximate

solution of (CP) can be constructed through the scheme (0.1) and converge to

a weak solution of (CP). Although their idea is quite natural and interesting in

the sense that their method is interpreted in terms of kinetic theory of gases, it is

not explicitly discussed in [7] whether the limit of the approximate solutions is

uniquely determined by initial data. It is well known that there can be an infinite

number of weak solutions of (CP) for the same initial value and that an additional

condition, called the entropy condition, is needed to select "physically right"

weak solutions which are uniquely determined by initial data.

The main objective of this work is to establish a convergence theorem for

approximate solutions defined through the scheme (0.1) to the weak solutions of

(CP) satisfying the entropy condition.

It is already known that the problem (CP) can be studied via nonlinear semi-

group theory. For example, Crandall [4] and subsequently Oharu-Takahashi

[14] constructed a semigroup {T(t)}t^0 of nonlinear contractions on Lx(Rd)

such that, for UQGL^R*) n L00(Λlί), u(t, x) = (T(t)uo)(x) gives a unique entropy

solution of (CP). In the first paper, the vanishing viscosity method is employed

and the generation theorem due to Crandall-Liggett is directly applied, while in

the second paper finite-difference approximation of (CP) is discussed from the

point of view of the approximation theory for nonlinear semigroups and a con-

vergence theorem for nonlinear semigroups plays an essential role.

In this paper we discuss a new semigroup approach to the problem (CP).

Let {T(t)}t^Q be the semigroup constructed in the works cited above. Then we

obtain the following convergence theorem which is the main result of this paper.

THEOREM. Let u e Lι(Rd). Then we have the convergence

(0.4) T(t)u = \imhi0

in Lι(Rd) for ί^0 and the convergence is uniform in t on compact subsets of

[0, oo). (Here [ξ] denotes the greatest integer in ξ e R.)
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The above mentioned result not only shows that the method proposed by Giga

and Miyakawa is a new method for constructing "entropy solutions" of (CP)

but also provides an operator theoretic algorithm for obtaining semigroup

solutions of (CP) in term of product formula (0.4).

The plan of the paper is as follows: In Section 1 the results of Crandall [4]

and Oharu-Takahashi [14] are recalled and nonlinear dissipative operators are

introduced in connection with the notion of entropy condition for weak solutions

of (CP). In Section 2 various stability properties of the scheme (0.1) are studied.

Basic estimates concerning the consistency with (CP) of the scheme are prepared

in Section 3. Finally, in Section 4, the proof of our main theorem mentioned

above is given and several consequences of the theorem are discussed.

1. Preliminaries

Let Rd denote the d-dimensional Euclidean space with norm | |. We

denote by x-y the Euclidean inner product of x and y.

Let φ = (φί9 φ2, , Φd) be a fixed continuously differentiate function on R

into Rd. We assume that the function φ is normalised in the sense that φ(0) = 0.

The derivative (φ'u φi,..., φ'd) of φ is denoted by φ'.

The spatial gradient (fXι,fX2,...,fXd) of a function / on Rd is written as fx.

We write Lι(Rd) and L°°(/?d) for the ordinary Lebesgue spaces with standard

norms || | |x and || H ,̂ respectively. Also CQ(RU) is the usual space of smooth

functions with compact supports. We use the function

sign
I
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Given a UQEL^R0), a function u(t, •) on [0, oo) into L°°(JRd) is called an

entropy solution of (CP) with initial value u0 if it satisfies the following

conditions:

(αx) ||w(ί, )lloo i s uniformly bounded in ί e [ 0 , oo).
(a2) For each t e [0, oo) and each r > 0 ,

\u(s, x)-u(t, x)\dx = 0
J|*l<r

and

u(0, x) = uo(x) a.e..

(α3) For each keR and each/e C^((0, oo) x Rd) w i t h / ^ 0 ,
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(1.1) \ \ {\u(t,x)-k\ft(t,x)
JO jRd

w(ί, x)-k)(φ(u(t, x))-φ(k)) fx(U x)}dxdt ^ 0.

Condition (a3) was proposed by VoΓpert [15] and is regarded as an entropy

condition in the multi-dimensional case. Also (α3) implies that an entropy so-

lution u is a weak solution oί(DE), i.e., u satisfies (DE) in the sense of distributions.

The existence and uniqueness of the entropy solution of (CP) was established by

Kruzkov [9].

In order to treat (CP) via nonlinear semigroup theory, it is required to define

a generator A such that

in an appropriate sense. We here define two operators Ao and A in Lx(Rd) in

the following way:

(bi) ue D(A0) and w e Aou if and only if

u, weL ι(/?d)nL°°(/?d)and

(1.2) [ sign{u(x)~k){(φ(u(x))-φ(k))-fx(x)-w(x)f(x)}dx ^ 0,
jRd

for every k e R an every / e C$(Rd) with / g θ .

(b2) -4 is the closure of Ao in OiR*), i.e., w G D(A) and w 6 ̂ Iw if and only

if there exist sequences {uk} in D(A0) and {wJ in L\Rd) such that wfc e ̂ .o

wfc a n < i

uk-^u, wk-+w in Lx(Rd) as /c-»oo.

The definition of the operator Λ is due to Crandall [4]. The operator Ao

is in fact single-valued, Cl(Rd)aD(A0) and it is represented as

Λou = -ΣUi (ΦM)xι for u e D(A0),

in the sense of distributions. (See [4], Lemma 1.1.) It follows from the results

of [4] and [14] that A is a densely defined, m-dissipative operator in L1(J?d),

i.e., A satisfies conditions (cj) and (c2) below. (See the references [1], [11] and

[12] for basic properties of dissipative operators.)

(c t) For λ>0, UιeD(A) and WιeAuh i = l, 2, we have

(c2) For λ>Q.and.ϋeL^Λ*),,there exists a u eD(A) such that u — λAuBv.

By virtue of the above-mentioned properties of A, the generation theorem of

nonlinear semigroups due to Crandall-Liggett [5] can be applied to conclude



First order quasilinear equations 493

that there exists a semigroup {T(t)}t^Ό of nonlinear contractions on L\Rd)

into itself such that

(1.3) T(u)u = \imλi0(I-λA)-^^u in LW)

for ueLι(Rd) and ί^O, where / stands for the identity operator on Lι(Rd).

For each uoeD(Rd), the function u(t)=T(t)u0 gives a solution in a generalized

sense of the abstract Cauchy problem

(ACP) du/dteAu, w(0) = u0

in the Banach space LJ(/?d). Moreover it is shown in [4] and [14] that u(t, x) =

(T(t)uo)(x) is an entropy solution of (CP) with initial value u0 in Lλ(Rd) Π

L°°(Rd).

Let {Ch}h^0 be the family of operators defined by (0.2) and set

Ah = h-\Ch-I) for fc>0.

Then the iterative scheme (0.1) can be rewirtten in the following form:

(1.4) /i-1(wk+1-uk) = Ahu\ fc = 0, 1, 2,....

In order to prove the main theorem via the approximation theory for nonlinear

semigroups, we employ Theorem 3.2 in Brezis-Pazy [3]. Hence it suffices to show

that the family {CΛ}Λ>0 satisfies the following two conditions.

Each Ch is a contraction operator on L\Rd) into itself in the sense that

WC.u-C.υW, ^ \\u-v\\, for u, υeL\Rd).

(d2) For each λ > 0 and each υ e L\Rd\

{l-λA)-χυ = \\mhio{l-λAhYH in V(Rd).

Condition {dx) implies that Ck

h is a contraction operator on Lι(Rd) into

itself for every h>0 and /c = 0, 1, 2,.... In this sense, {dx) ensures the stability

of the scheme (0.1) or (1.4). Although we cannot expect that Ah converges directly

to Aou as h I 0 even if u e D(A0), we may understand that the family of operators

Ah, h>0, approximates the operator A on (ACP), because condition (d2) implies

that ueD(A) and weAu if and only if there exist wΛeL1(i?d) such that uh~^u

and Ahuh~>w in L\Rd) as h I 0. (See [13] and [12].) Noting that, under

condition (6^), (d2) yields the convergence (0.4), we call hereafter (d2) the con-

sistency condition.

Following Giga and Miyakawa [7], we employ the function F on RxR

defined by

F(a,ξ) = 2-1(sign(α-<) + sign(ξ)), for a, ξeR.
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Using this function, we can rewrite the operator Ch as

(1.5) (Chu)(x) = [ F(u(x-hφ\ξ)\ξ)dξ for xeR*.
JR

We here list some basic properties of the function F in the next proposition:

PROPOSITION 1.1. (/) If a^b, then F(a, ξ)^F(b, ξ)for ξeR.

(ii) Iff is a locally integrable function on R and a, beR, then

(1.6) [ f(ξ)(F(a, ξ)-F(b, ξ))dξ = [af(ξ)dξ
JR Jb

and

(1.7) [ f(ξ)\F(a, ξ)-F(b, ξ)\dξ = sign (a-b)[af(ξ)dξ.
JR Jb

(Hi) ForeachaeR,F(a, ξ) = 0for \ξ\>\a\ and F(0, ξ) = Ofor all ξeR.

(iv) For each a, beR,

F(a,ξ)dξ = a, \ \F(a, ξ)\dξ = \a\
Λ JR

and

[ \F(a,ξ)-F(b,ξ)\dζ = \a-b\.
JR

PROOF. Since the function sign ( ) is nondecreasing on R,

F(a, ξ)- F(b, ξ) = 2-Hsign(α-ξ)-sign(ί>-ξ)) ^ 0

for a^b and ξeR. Let/be locally integrable on R and let a>b. Then

Ί / 2 if ξ = a,

1 if a > ξ > b,
(1.8) F(a, ξ) - F(b, ξ) =

-1/2 if ξ = b,

, 0 otherwise.

Thus we have (1.6). Similarly, (1.6) holds in the case a ̂  b. By (i),

\F(a, ξ)-F(b9 ξ)\ = sign(a-b)(F(a, ξ)-F(b9 ξ))

for α, b, ξeR. Hence (1.6) implies (1.7). Furthermore, the function sign( )

is odd, and so

F(0, ξ) = 2-Ksign(ξ) + sign(-ξ)) = 0 for ξeR.

Therefore, F(a, ξ) = 0 for \ξ\ > \a\ by (1.8). The properties of F stated in (iv) are
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easily deduced from those of F listed in (ii) and (iii). Q. E. D.

REMARK. In the following argument, any other properties of F as mentioned

above will not be necessary. So, the function

which is employed in [7], can be employed for the definition of the operator Ch.

2. Stability of the scheme

First we prepare basic estimates concerning the stability of the operators

Ch defined by (1.5). Although those estimates are essentially proved in [7], we

here give a proof of them for the sake of completeness. For each y e Rd, we

define τ"r L\Rd)-+Lι{Rd) by

(τyu) (x) = u(x + y) for xeRd and u e L\Rd).

PROPOSITION 2.1. Let h>0. Then:

(i) Ch is a contraction operator on Lι(Rd) into itself and \\Chu\\x ^ \\u\\x

forueLι(Rd).

(ii) Ckτ> = τ>ChforyeRd.

(iii) If u e V(Rd) f] L°°(Rd)9 then Chu e L\Rd) n L°°(Rd) and

NIL.

PROOF. Let u e Lι(Rd). Then, by Fubini's theorem,

\ \(Chu)(x)\dx

\F(u(x-hφ'(ξ)lξ)\dxdξ
xR

\F(u(x\ ξ)\dxdξ.
JjRtxR

Since

[ \F(u(x), ξ)\dξ = \u(x)\

by (iv) of Proposition 1.1, we have ChueL\Rd) and | |CΛM|| i ^ l|uII i.- Similarly,

it follows from Fubini's theorem and (iv) of Proposition 1.1 that
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ί \(ChuXx)-(ChvXx)\dx
JR<t

^\F(u(x-hφ'(ξ)), ξ)-F(v(x-hφ'(ξ)), ξ)\dxdξ

^\F(u(x),ξ)-F(υ(x),ξ)\dxdξ

= ί \u(x)-v(x)\dx
jRd

for u, veLι(Rd). Assertion (ii) is evident from the definition of Ch. It now
remains to prove (iii). Let ueL1(Rd)V[Lco(Rd). Then, by (i) of Propo-
sition 1.1,

/•(-NL, ξ) ύ F(u(x-hφ'(ξ), ξ) ύ F(||ιι|L, ξ) a.e..

Integrating the above terms with respect to ξ and using (iv) of Proposition 1.1,
we have

Therefore, Chu eυ(Rd) n L%R<<) and | | C Λ M | L ^ | | M ] L . Q.E.D.

Asserion (i) of Proposition 2.1 implies that each Ah = h~ί(Ch — I) is m-dis-
sipative in U{Rά). Hence the resolvent

exists for each λ>0 and each /j>0. Then, as easily seen, we have the relations

(2.1) Jλ>hv = Λ(A + Λ)->r +

and

(2.2)

for veLι(Rd) and λ, h>0. Basic properties of the resolvents JλJt of Ah may be
stated in the following form:

PROPOSITION 2.2. Let h, λ>0. Then:
( i ) JΛ Λ is a contraction operator in L\Rά) into itself and ||./A>»I>||1^||I>||1

forveL\R<>).
(ii) Jk,hχy = τ*Jλ,hforyeR*.

(iii) // υsL\RΛ)nLx{Rd\ then JλyhυeL\Rd) n Lx(Rd) and \\Jλ,hv\\xg,

llflL

PROOF. Since Ah is an m-dissipative operator in Lι{Rd), each of its resolvents
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Jλh is a contraction operator on L1(/?d) into itself. Let veLx(Rd). Then, by
(i) of Proposition 2.1,

Therefore, (2.1) implies that

and hence

It now remains to prove (ii) and (iii). For each v e L^R0) we define

Kvu = h(λ + h)-ιv + λ(λ + h)-ιChu for ueL\Rd).

Then Proposition 2.1 (i) implies that each Kv is a strict contraction operator
(with Lipschitz constant less than or equal to λ(λ + h)~ι) on L^R*) into itself.
Therefore, each Kv has a unique fixed point in L^R*). But the relation (2.1)
states that, for each veL1(Rd), Jλhv itself is the unique fixed point of Kv. To
prove (ii), let veLx(Rd) and yeRd. Then the application of Proposition 2.1
(ii) and the relation (2.1) yields

This means that τyJλthv is a fixed point of Kτyv, and we have τyJλ,h

v=:Jλ,hτyυ by
the unicity of the fixed point. Finally, let v e L1(/?d) Π L°°(/?d) and set Xϋ =
{ueL1(lϊd)nL0 0(Λd); HwlU^I^IL}. Then Xv is a nonempty closed convex
subset of Lι(Rd). Furthermore, Proposition 2.1 (iii) implies that Kv maps Xv

into itself. Consequently, the fixed point Jλhv of Kv belongs to Xv. Hence,
JλthveL\R<)nL«>(R<) and lU^lloo^ \\v\\*. ' Q.E.D.

3. Consistency of the scheme

We begin by establishing the following result, which is the core of our
argument below.

PROPOSITION 3.1. Let u eL\Rd) n L°°(#d) and h>0. Then

(3.1) ^ (\(Chu)(x) - fcj - \u(x) - k\)f(x)dx

S [ sign (u(x)-k) \U(X) (f(x + hφ\ξ))-f(x))dξdx
jRd Jk

for every keR and every feC$(Rd) with / ^ 0 .
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PROOF. Let keRJe Cξ(Rd), and assume that / ^ 0. By (iv) of Proposition

1.1 we have

(Chu)(x) - fc = ί F{u{x-hφ\ξ% ξ) - F(k, ξ)dξ,xeRd.
JR

Hence

\(Chu)(x)-k\ ^ [ \F(u(x-hφ'(ξ)% ξ)-F(k, ξ)\dξ, xeRd.
JR

On the other hand, Proposition 1.1 (iv) yields

|u(x)-fc| = ( \F(u(x),ξ)-F(k9ξ)\dξ, xeRd.
JR

Therefore, the application of FubinΓs theorem yields

ί (|(CΛiι)-fc|-|ιι(x)-fc|)/(x)dx

jRd

[ [ {\F(u(x-hφXξ))9 ζ)-F(k, ί)|/(x)-|F(iι(x), ξ)-F(k, ξ)\f(x)dξdx[
Rd JR

[ |F(iι(x), ξ)-F(k9 ξ)\(f(x + hφ'(ξ))-f(x))dξdx9

Rd JR

We now apply Proposition 1.1 (ii) to the above estimate to obtain the desired

inequality (3.1). Q.E.D.

To show the consistency of our scheme with the problem (CP), we need a

few more estimates which are derived from (3.1).

Let P be the set of all functions p: R-+R satisfying

( i ) p is nondecreasing and Lipcshitz continuous

(ii) the derivative p' has compact support:

and

(iii) p(+oo) + p(-oo) = 0.

The next inequality (3.2) involving the operator Ah corresponds to the

inequality (1.2) which specifies the operator Ao.

PROPOSITION 3.2. Let u e L \ R d ) Π L^R*1) and h>0. Let peP. Then,

(3.2) ( p(u(x))(Ahu)(x)f(x)dx
JRd

+ hφ'(s))-f(x))dsdx
JRd Jk

for every keR and every feC$(Rd) with / ^ 0 .
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PROOF. We follow the argument of the proof of Lemma A in [4]. (See

also the proof of Theorem 5.3 in [14].) Choose a positive number m so that

||u || oo S m and the support of p' is contained in the open interval (— m, m). Then

we have

(3.3) P(m) + p ( - m ) = θ,

since p( + oo) 4- p( — oo) = 0.

Let keR9fe C$(Rd) and assume that / ;> 0. Set

g(s) = \ sign (u(x) - s) (Ahu) (x)f(x)dx
jRd

and

h(s) = [ sign (u(x)-s)\UiX) h-*(f(x + hφ'(ξ)) -f{x))dξdx
JRd Js

for se R. Since

sign (u(x)-s)(Ahu)(x)

= /ί-1[((CΛw)(x)-s) sign (ιι(χ)-s)-(iι(χ)-s) sign (ιι(x)-s)]

it follows from Proposition 3.1 that

g(s) g Λ(s)' for all seR.

Consequently, we have

(3.4) [" p'(s)g(s)dsg[m pXs)h(s)ds.
J—m J—m

On the other hand, we have

fM p'(s)g(s)ds = [ \[m p'(s)sign(u(x)-s)ds\(Ahu)(x)f(x)dx,
J-m JRd U-m )

by Fubini's theorem and

[m p'(s) sign (u(x)-s)ds = [U{X) p'(s) - f" p\s)ds = 2p(u(x))
J—m J—m J u(x)

by (3.3). Hence

(3.5) (m p'(s)g(s)ds = 2
jRd

In the same way as above we have
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(3.6) p'(s)h(s)ds
J—m

r Γ/(*"(*) Cm \ (Cu(x)
= \ \[\ -\ )P'(S)\\ i

jRdL\Jm Ju(x)/ Us

Therefore integration by part yields

(3.7)

bXs))-f(x))ds
J—m

and

(3.8) (m pXs) \\UiX) h-\f(x + hφχξ))-f(x))dξ\ds
Ju(x) Us )

Ju(x)

Moreover, observe that

L
for every a, beR. Hence, the substitution of (3.7) and (3.8) into (3.6) gives

(3.9) \m p'(s)h(s)ds
Jm

= ( Γ - ( p ( - W ) + p(m )) C"<Jt) h-\f(x+hφ'(ξ))-f{x))dξ
JRdL Jk

+ f(u(x) - (k \p(s)h-\f(χ + hφ'(s))-f(x))ds~\dx
\Jk Ju(x)/ J

= 2

where we have used (3.3) again. Combining (3.4), (3.5) and (3.9), we obtain the

desired inequality (3.2). Q. E. D.

The following result states that

limp^^ sup Λ > 0 \ \(Jλihv)(x)\dx = 0
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for υeL\Rd) Π L%R«) and λ>0.

PROPOSITION 3.3. Letve L\Rd) n L™(Rd) and λ>0. Then,

(3.10) { (Jλ>hv)(x)\dx
)\x\>P

\x\>r

f o r p > r > 0 a π d /ι>0, where M = sup {\φ'(ξ)\; \ξ\£ \\v\\J.

PROOF. We follow the argument as in the proof of Lemma 4.3 in [14].

Let ve Lι(Rd) n L°°(Rdl λ>0, and set

uh = Jλhv for h > 0.

Then, it follows from Proposition 2.2 that uh e L\Rd) n L*>(Rd) and

(3.11) \ \ u h \ \ p ^ \ \ v \ \ p , p = l , e x ) .

Let / b e a uniformly bounded, nonnegative and Lipschitz continuous function

on /?. Then we see in the same way as in the proof of Proposition 3.1 that the

following inequality holds:

(\(Chuh)(x)\-\uh(x)\)f(x)dx
Rd

g ( sign (uh(x)) \UhiX) (f(x + hφ\ζ)) -f(x))dξdx.
JRd Jo

Let Lip(/) denote the smallest Lipschitz constant of/. Then,

\ sign (uh(x)) \Uh(X) (f(x + hφ'(O)-f(x)Wx
jRd JO

I [UhiX) \φ'(ξ)\dξ dx
I JO

\uh(x)\dx
JR*

£hM Up(f)\\v\\l9

where we have used (3.11). Therefore, we have

(3.12) J ^ (\(Chuh)(x)\ - \uh(x)\)f(x)dx ^ hM Lip (f)\\v\\t.

On the other hand, the relation (2.1) implies that

\uh(x)\ g
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OΓ

h(\uh(x)\ - \v(x)\) ̂  \(Chuh)(x)\ - \uh(x)\.

Combining this with (3.12) yields

(3.13) { \uh(x)\f(x)dx ^ [
JRd JRd

Let ρ>r>0 and let δr>p be a function on [0, oo) such that

( 0 if 0 ̂  5 < r

(ρ-r)-\s-r) if r ̂  s < p,

1 otherwise.

Set

f>p(x) = δr*f>(\x\) for x e Rd.

Since

0 ύfr>p{x) S 1 and \fr>o(x)-f>o(y)\ ^ (p-r)-ι\x~y\

for x, yeRd, the substitution / = / r > p into (3.13) now yields the desired estimate

(3.10). Q.E.D.
4. Proof of theorem

In this section, we give the proof of our main theorem. Assertion (i) of

Proposition 2.1 states that the stability condition (d x) holds. Hence it remains

to prove the consistency condition (d2). For this purpose, we prepare the fol-

lowing lemma.

LEMMA 4.1. Let veL\Rd) n L°°(/?d) and λ>0. Let uh = Jλthυ for /?>0.

Then we have:

(i) The set {uh; h>0} is precompact in L\Rd).

(ii) // {h(n)} is a null sequence such that uh{ji) converges a.e. to a limit

u e L1(Rd) as n->oo, then u e D(A0) and λ~1(u — v) = Aou.

PROOF. Firstly Proposition 2.2 (i) states that

(4.1) s u p ^ o l l u j ^ IMU.

Secondly Proposition 2.2 (i) and (ii) together imply
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for h> 0 and y e Rd. Hence

(4.2) s u p ^ o l l τ ^ - u j ! >0 as y —> 0.

Furthermore, Proposition 3.3 implies that

(4.3) sup Λ > 0 \ \uh(x)\dx >0 as p
J\x\>P

0 0 .

In view of (4.1), (4.2) and (4.3), the Frechet-Kolmogorov theorem can be applied

to imply the first assertion (i).

It now remains to prove (ii). Let {h(n)} be a null sequence such that uA ( π )

converges a.e. to some limit ueLι(Rd). By Proposition (iii),

(4.4) I l K j I α o ^ N L for Λ > 0 .

Hence, u eL\Rd) r\ L*{Rd) and H u H ^ H L . Let keR and take feC$(Rd)

with/^0. Let p e P. Inserting uh into u on (3.2) yields

(4.5) p(uk(x))(Akuk){x)f(x)dχ

JRd Ufc

Notice that {HM/JU.} is uniformly bounded in h by (4.4), and that

Ahuh = λ-χ(uh-υ)

by (2.2). Hence, putting h = h(n) in (4.5) and letting n tend to the infinity in the

resultant inequality, we have

(4.6) ί p(u(x))λ-ι(u(x)-v(x))f(x)dx
jRd

ύ \ R d ^ X ) p{s)φ\s) fx{x)ds}dx

by use of the Lebesgue convergence theorem. We then set

- 1 if s ^ -Λt£

£s if \s\ <\l£;

1 if s ^ \l£%

for £ = 1, 2,.... Choose p(s) = pί(s — k) as the function p on (4.6) and let £ tend

to the infinity. Then we have
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[ sign («(x) - k)λ-\u(x) - υ(x))f(x)dx

[X) sign(s-k)φ'(s)-fx(x)dsdx
Rd Jk

= [ sign (u(x) - k) (φ(u(x)) - φ(k)) fx(x)dx.

This shows that ueD(Λ0) and ?rί(u-v) = Aou. Q.E.D.

We can now prove the consistency condition (d2). Let υ e L\Rd) and λ>0.

Choose a sequence vk e L\Rd) n U°(Rd) so that vk^v in L1(i?d) as fc-^oo. Set

uh = Jλ,hv and uKk = J\thvk

for /?>0 and fc = l, 2,.... By (i) of Lemma 4.1, there exists a null sequence

{h(n)} such that, for each k, uh(nhk converges a.e. and in Lι(Rd) to some limit

uk e L^R*) as rc->oo. Then, it follows from Lemma 4.1 (ii) that

(4.7) ukeD(Λ0) and λ'\uk-vk) = Aouk

for /c= 1, 2,.... By (i) of Proposition 2.2, we have

\\Uk-Uj\li = Km,,-.*, \\JλMn)
vk-Jvh

for /c, 7 = 1, 2,.... Hence, there exists ueLι(Rd) such that t/fc-»M in

as fc->oo. Since yl is the closure of Ao, it follows from (4.7) that ueD(A) and

λ~\u — v)eAu. Obviously, this implies that u + λAusv and u — (I — λΛ)"1v.

By Proposition 2.2 (i), we also have

Hence

II«Λ — "IIi S \\u-uhjx + Hv-

Let h — h{ή) and let n tend to the infinity. Then,

) —uiU g \\u-uk\\x

for fc=l, 2,.... Consequently, ua(M) + M = (/ — AA)~1ι; in L\Rd) as n->oo. Since

the ..limit is uniquely determined by ι>, we can conclude that uh itself converges to

(/ — λA)~tv in L\Rd) as /i J, 0. Thus the proof of the Theorem is completed.

In the above proof of the Theorem we did not use the fact that operator A

satisfies (c2), although we proved it. Thus, we have the following result due to

Crandall [4].



First order quasilinear equations 505

COROLLARY 4.1. Let veL\Rd) and λ>0. Then there exists ueD(A)

such that u — λAu e v.

As we observed before, it is known that u(t, x) = (T(i)uo)(x) is an entropy

solution of (CP) if u0 eL^R*) n L\Rd). We here show it through the product

formula (0.1).

COROLLARY 4.2. Let {T(t)}t^0 be the semigroup determined by (1.3).

Let UoeL^R*) n L°°(Rd) and let u(t, x) = (T(t))(x). Then, u(ί, x) is the entropy

solution of (CP) with initial value u0.

PROOF. Set

uh(t, x) = (C[tIhh0)(x) for (t, x)e(0, oo) x Rd.

Then, it follows from the Theorem that uh{t, ) converges to u(t, •) in Lι(Rd)

as ft J, 0. Using (iii) of Proposition 2.1, we see that

Therefore, u(t, )eL°°(/?d) and IKί, )lloo< ||MO||'« 'for t^O. Furthermore,

t-*T(t)u0 is continuous on [0, oo) into L\Rd) and so condition (α2) is satisfied.

It remains to check condition (a3). Let keR and feC^OO, co)xRd) with

Notice that

uh(t + h, x) = (CΛwΛ

Hence, Proposition 3.1 implies that

h-\\uh(t + h, x)-k\-\uh{u x)-fc|)/(ί, x)dx

g\ sign(uΛ(ί, x)-k)\ h-\f(t,x + hφ'{ξ))-f{t,x))dξdx.

JRd Jk

Set /(ί, x) = 0 for xeRd and ί^O. Integrating both sides of the above ine-

quality over 0 < t < oo and using a change of variables, we have

(4.8) Γ ( \uh(U x)-/c|ft"1(/(ί-ft, x)-/(f,
Jo JH<*

Jo J
g ( Λ ( , ) ^ ) ^ (/(, φ(ί))-/(ί, x))dξdxdL

Rd Jk

Let {ft(n)} be a null sequence such that uh(rt^t, x) converges a.e. to u(t, x)

as w~>oo. Put h = h(n) in (4.8) and let n tend to the infinity in the resultant

inequality. Then the Lebesgue convergence theorem yields
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g Γ f sign (u(t, x)-k) [U(''X) φ'(ξ)fx(t, x)dξdxdt,
JO JRd Jk

from which the inequality (1.1) follows. Q. E. D.

As mentioned before, it is proved in [9] that there exists a unique entropy
solution u of (CP) even if initial value u0 lies in L°°(Rd). By virtue of the hyper-
bolic nature of (CP), the Theorem can be used to construct for u0 e Lco(Rd)
the entropy solution u of (CP) via the iteration scheme (0.1). In fact, we have
the following corollary, which precisely gives an answer to the problem proposed
by Giga and Miyakawa [7]. In the remainder part of this paper, let Chu be the
function defined by (0.2) for u e L°°(Rd) and ft>0.

COROLLARY 4.3. Let UQEL^R*). Then there exists a function w(ί, •) on
[0, oo) into L^R*) such that, for r>0 and T>0,

(4.9) limΛio [ UU x)-(Cψrtuo)(x)\dx = 0,

uniformly in ie [0, Γ] and the function u is an entropy solution of (CP) with initial
value u0.

For the proof, we first show a few properties of the operator Ch on L°°(/?d)
which reflect the hyperbolic nature of the problem. (See also Lemma 2.1 and
Lemma 2.2 in [7].)

PROPOSITION 4.1. Let h>0. Then:

(i) Ch is an operator on L^R*) into itself and

(4.10) IIQ|L< ||ιι||«, for ueL*(R*).

(ii) Ifu, i eL^Λ^flπdM^supdφ'ίίJI lίl^maxdliilL, \\v\\J}9then

(4.11) [ \(Chu)(x)-(Chv)(x)\dx
J\x\>r

{ \u(x)-v(x)\dx

for any r>0.

PROOF. The assertion (i) can be shown in the same way as the proof of
Proposition 2.1 (iii). Let u, v e L^GR*) and ra^maxdluH^, IHL). Let
M^sup {\φ'(ξ)\; \ξ\^m} and r>0. Then, by (iii) of Proposition 1.1?
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\(Chu)(x)-(Chvχx)\dx

'g[ \[ \F(u(x-hφ'(ξ)),ξ)-F(v(x-hφ'(ξ)),ξ)\dξ\dx
J\x\£r UK )

= L <r 15 <m \F(u(χ-h<t>'(^> ξ)-F(v(x-hφ'(ξ)), ξ)\dξ}dx.

Hence, the application of Fubini's theorem yields

χ J(Chu)(x)-{Chυ)(x)\dx

^ ί \[ \F(u(x-hφ'(ξ)), ξ)-F(v(x-hφ'(ξ)), ξ)\dx\dξ
J\ξ\£m U |JC| ^ r )

" L i S « lj|*l<r+**f | F ( U ( X )' ξ)~F(V(X)' ^ d X ) d ^

= \ \[ \F{u{x), ξ)-F(v(x), ξ)\dx\dξ.

We now apply (iii) and (iv) of Proposition 1.1 to get (4.10). Q. E. D.

Proof of Corollary 4.3. Let UoEL^iR^ and M = sup{\φ'(ξ)\\ |ξ|g||ttollαo}

For each r > 0 and T>0, define a function ur^τ on Rd by

uo(x) if |x| -g r + TM\

0 otherwise.

Obviously, ur

0>
τeL\Rd) n L™(Rd) and ||M&-X||«, ^ ||M0I1 αo f o r r>® and T > 0 .

Therefore, (4.9) implies that

(4.12) | |Q W o IU^II"o lU and | |Cinfr r |Ug| | i ifrTIU^I|w 0IU

for r, T, /7>0 and n = l , 2,.... Hence, using (ii) of Proposition 4.1 inductively,

we have

(4.13) [
)\x\<r

\u0(x)-u'0
 τ(x)\dx = Ό

for ί e [ 0 , Γ] and r, Tyh>0.

Let {T(t)}t^Ό be the semigroup on Lι{Rd) constructed through (1.3). Since

ur

0>
τ e L\Rd), the Theorem implies that

sup ί6[OίΓ] ( \{Cψh^τ){x)^{T{m^τ){x)\dx — 0 as h j 0
J\x\>r
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for /y T>0. Hence we infer from (4.12) that

(4.14) sup,e [ 0,Γ ] [ |(Cf//Λ ]uo)W-(nθwδ'Γ)WI^ — * 0 as h I 0
J\x\<r

for r, T > 0 . Therefore, in view of (4.11), we see that there exits a function u(t, •)

on [0, oo)into L°°(/?d) which satisfies (4.9) and ||n(f, )lloo^ HwolL Furthermore,

(4.14) implies that for each fixed r, T > 0 and each t e [0, T],

(4.15) ι/(ί,x) = ( Γ ( ί K ' Γ ) W

for a.a. x e Rd with |x| <r. Since T(0)u{/Γ = w|; τ and T{t)ur

0>
τ is continuous in

ί e [0, oo) with respect to the norm || | | l 5 we see that (α3) holds for the function

u(U x).

Let keR and /eCo

x((0, oo)xRd) with / ^ 0 . Then Corollary 4.2 states

that the inequality (1.1) holds for the function ur>τ(t, x) = (T(t)ur

0>
τ)(x). Choose

r>0 and T>0 so that the support of/ is contained in the set (0, T)x{xeRd;

\x\ ̂ r} . Then(4.15) implies u(t9 x) = ur>τ(t9 x) for (ί, x) belonging to the support

of/, and consequently the inequality (1.1) holds for the function u. Thus the

function u(t9 x) is an entropy solution of (CP) with the initial value u0. Q. E. D.
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