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Semilinear elliptic eigenvalue problems in RN
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1. Introduction

The primary objective is to characterize numbers λ e R such that the semilinear
problem

{ — Δu -f p(x)u — /(x, ύ) = λu, x e RN

ueL2(RN)

has a positive solution u(x) for all x e RN, N ̂  2, where p(x) is locally Holder
continuous and bounded below in RN and the nonlinearity satisfies hypotheses
(/i)— (Λ) below. For example, /(x, t) can have the form

/(*,0= £/,(*)*",

where

1 < s, < oo, N = 2,

and each/; is a locally Holder continuous function
Let A* = limπ_00 A(n), where A(n) is the lowest eigenvalue of the linear problem

- Δv + p(x)v = λv, \x\ < n

v(x) = 0, \x\ = n

for n = l, 2,... . The main Theorem 4.1 establishes, for all A<λ*, the existence
of a positive solution u e JF£>2(/?*) of (1.1) with locally Holder continuous second
partial derivatives in RN. The sharpness of this result is indicated in Examples 4.4
and 4.5: A positive solution of (1.1) does not exist in general if λ^λ*.

Theorems 4.2 and 4.3 give estimates for the exponential decay at infinity of
the positive solution obtained in Theorem 4.1. In the case that p(x) in (1.1) is
specialized to X2|x|2m for positive constants K and m, the estimate is

1 Support from NSERC (Canada) is acknowledged with gratitude.



128 Ezzat S. NOUSSAIR and Charles A. SWANSON

(
1ΓΛ
^-τ-|x|m

m+ί

for some positive constants C and R. This result is essentially the best possible
since the asymptotic behavior in (1.2) corresponds to that for Thome's classical
local radial solution of the linearized equation (1.1) (if a = (N + m-l)/2).

By our techniques here and in [12], similar conclusions can be obtained for
the elliptic eigenvalue problem arising when A in (1.1) is replaced by a general
linear uniformly elliptic operator of second order. This will not be done to avoid
technical questions outside the essential framework. Also, as in [12], an analogue
of (1.1) can be treated in which RN is replaced by an unbounded domain ΩaRN

9

and the boundary condition u\6Ω = Q adjoined. Our procedure applies to a large
class of unbounded domains Ω, in particular to exterior domains and quasiconical
domains.

Nonlinear eigenvalue problems in bounded domains have been extensively
investigated [1, 2, 8, 14-16,18, and References therein], but results for unbounded
domains are either limited to special structures or do not aim at positivity and
exponential decay of the solutions [4 -7]. Our method is to first construct
solutions un(x) of Dirichlet problems for the differential equation (1.1) in bounded
domains {xe RN: |x|<n}, n = l, 2,... from the critical point theory of Ambrosetti
and Rabinowitz [2]. We then prove that there exists a subsequence of {un}
which converges both weakly in W^2(RN) and locally uniformly in C2(RN) to a
positive solution of (1.1). Finally, the exponential decay at infinity is established
via Lp-estimates, interior estimates, Sobolev embedding, and the maximum
principle.

2. Preliminaries

For integers m^O and p>l, and a bounded domain M in RN, Wm>p(M)
denotes the Banach space of all (equivalence classes of) functions with generalized
derivatives up to order m all belonging to LP(M). The Sobolev space W$>p(RN)
is defined as the completion of the set C$(RN) of all infinitely differentiate
functions with compact support in RN with respect to the Wm>p(RN) norm, i.e.

~H/P
\Dσu(x)\*dx

in multi-index notation.
Holder spaces on bounded domains MeRN are denoted by Cm+α(M), with

norms || • ||m+α,M, 0<α<l; m = 0, 1,2,.... The notation Cψ+c*(RN) is used for
the set of all u e Cm+Λ(M) for every bounded subdomain M of RN.
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The conditions (p), (fι)-(f4) below are to be imposed on equation (1.1)
throughout the sequel :
(p) peCfoc(RN) for fixed αe(0, 1), and p(x) is bounded from below in RN;
without loss of generality p(x)^0 for all x e RN since λ in (1.1) can be translated
if necessary.
(fi) feCfoc(RNx R) and/(x, t) is locally Lipschitz continuous with respect to
t for all x e RN.
(f2) There exist constants s f> 1 and nonnegative bounded functions fae LSi+ί(RN),
i = l, ...,/, such that

\f(x, 01 ^ Σ fi(*)\t\sι, xeRN,teR,
i=ί

where

1 < si < oo if N = 2 ,

if ^^ 3 -

(f3) lim,.^ > *) = + oo locally uniformly in RN.

(f4) There exists a positive constant ε such that (2 + ε)F(x, t)^tf(x, t) for all
ί^O, xeRN, where

Condition (f2) implies in particular that/(x, t) = o(t) as ί-»0 uniformly in RN.
For functions φeWfr2(RN) with compact support in RN, define

), where

(2.1) /.(φ) = -f f
^ JΛ N

(2.2)

3. Local solutions and a priori bounds

We use the notation

(3.1) i2n = {x6*":|x|

(3.2) Sn = {χ e jR":|x| = n}, n = l,2,....

Let λ(n) denote the smallest eigenvalue of the linear problem
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(3.3) - Av + p(x)v = λv, xe Ωn

"k = o,

as guaranteed by the Krein-Rutman theorem. Since Ωnc:Ωn+i for n = l, 2,...
it is well known that λ(ri)>λ(n + ϊ) for n = l, 2,... and (A(n)} is bounded below.
Then we can define

λ* = lim^^n).

LEMMA 3.1. Ifλ<λ*, there exists a constant C such that

(3.4) Iι(Φ)*C\\φ\\l29Λ»

for all φeW&2(RN) with compact support in RN.

PROOF. For any such φ, there exists an integer n such that supp
It follows from the variational characterization of λ(ή) that

A(n)( φ\X)dx = A(n) f
JΛ^ JΩ

and hence that

λ(n)

Therefore, since λ*^A(n) for all n,

(A* + 1) f 02(x)dx ^ [A(n) + 1] f φ2(x)dx
JR" JRN

Then the definition (2.1) gives

+ (p(x)

which implies the conclusion (3.4) since p(x)^0 throughout RN and λ<λ*.
For p>0 define

LEMMA 3.2. Ifλ<λ*, there exist positive constants v and p such that
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I(φ)>0 for all φeBp\{0};

v for all φeEp.

PROOF. For arbitrary ε>0 and arbitrary φeWfr2(RN), assumption (f2)
easily leads to the estimate

(3.5) \I2(Φ)\£\
JRN

for some positive constant C l5 where

5 = max{sl5..., Sj}9 so s > l .

Since 2<s + l<2N/(N-2\ ΛΓ^3, by (f2), an embedding theorem of Aronszajn
and Smith [3] (see also Berger and Schechter [6, p. 264]) shows that there exist
positive constants C2 and C3, independent of φ, such that

and

( \φ\*dx ^ C3\\φ\\l)2t
JR"

Then (3.5) implies that

for all φeBp\J Ep. Let C be as in Lemma 3.1 and choose ε and p such that

Then

(3.6)

Let v = Cp2/2. Then the conclusions of Lemma 3.2 follow from (3.4) and (3.6).

THEOREM 3.3 (Ambrosetti and Rabinowitz [2, p. 365]). // λ<λ*, there
exists a sequence of nonnegative functions une Wfr2(Ωn\ n = l, 2,..., with the
following properties:

(A) un ε C2+«(SB), α as in (p), (f t) ;

(B) - Jun(x) + X*K(x) = Aun(x) + /(x, uπ(x)), x ε Ωn ;

(C) tι,,(x) = 0 if |x |^n;
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(D) ua(x)>0 if χeΩn.

Furthermore, the sequence vn = I(un), n = l, 2,..., is nonincreasίng and satisfies
all n, where v is as in Lemma 3.2.

A slight modification of the proof given by Ambrosetti and Rabinowitz [2,
p. 364] shows that there exists an element et e Wfr2(Ωι) such that 7(^^ = 0 and

Iki II 1,2,0! >0- Therefore \\e1\\lt2,Ωί> P by Lemma 3.2 above. We can then
define an element en e W^2(Ωn) to be the extension of e± to Ωn which is identically
zero outside Ω l 5 and consequently \\en\\lt2>Ωn> p. The nonincreasing property of
{vn} follows from the variational characterization of vn in [2] since ΩnaΩn+ί for
each n = l, 2,.... The property vn^>v>0 is implied by Lemma 3.2 and the
above fact that Ep separates en and the zero element in W^2(Ωn).

LEMMA 3.4. The sequence {un} in Theorem 3.3 is uniformly bounded in the
W1'2(RN)norm.

This can be proved routinely from Lemma 3.1, Theorem 3.3, Green's theorem,
and Assumption (f4).

LEMMA 3.5. For any bounded domain G in RN there exists a positive
integer m = m(G) and positive constants K and α, 0<α<l, independent of n,
such that the sequence {un} in Theorem 3.3 satisfies

(3.7) \\un\\2+Λ,e ^ K for all n^m.

PROOF. Let m be a positive integer for which Gcβm, so also GaΩn for
all n ̂  m. Let s be as in Lemma 3.2 and define

(3-8) '- 7F-25Γ' = "

The proof will be given for the case p^.N/2, N^.3.
Let M and Q be smooth bounded domains such that GcM, Meg, and

QaΩm. In view of (3.8), a standard embedding theorem [9, p. 43] states that
there exists a constant C, independent of n, such that

(3.9) \\un\\o,ps,Ωm ^ C||ιιJ|lf2f0m, n ̂  m .

Then Lemma 3.4 shows that ||wJ0,ps,Ωm is uniformly bounded with respect to n.
Define

Fn(x) = λun(x) +/(*, MM(X)), n = 1, 2,... .

It follows from the growth hypothesis (f2) that ||FM||0jp)βm is uniformly bounded
for nΞ>m. Since un satisfies the differential equation ( — Δ+p)un = Fn in Ωm for
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n^.m by Theorem 3.3, application of the a priori estimate [10, Theorem 371,
p. 169]

yields the uniform estimate

for some positive constant C2, independent of n. Use of LΓ(β)-estimates again
[9, p. 43], as in (3.9), shows that ||wJo,r,<2 is uniformly bounded for arbitrary r
in l<r<oo, and hence also ||FJ0>IS<2 is uniformly bounded by (f2). Another
application of the a priori estimate for the differential equation ( — A+ p)un — Fn

[10, p. 169] gives

for another positive constant C3 independent of π, and for arbitrary r>l.
Sobolev embedding [9, p. 43] then implies that | |ww | | ι+ α jM is uniformly bounded
for any α in 0<α< 1. Since /eCfoc from (fr), the conclusion (3.7) follows from
an interior Schauder estimate [9, p. 110].

The proof of Lemma 3.5 for the case N '== 2 is essentially the same. The proof
for .p<NJ29 N^3 is a modification with more steps in the bootstrap procedure.

4. Existence of positive solutions in RN

For A<A*, a positive solution of (1.1) with exponential decay at oo will be
obtained as the limit in Cfoc(RN) of a convergent subsequence of the sequence
{un} guaranteed by Theorem 3.3.

THEOREM 4.1. Suppose that (p) and (fiMQ are satisfied and /L<A*, where
λ* is as in §3. Then (1.1) has a positive solution u(x) inRN with the following
properties :

(i) ueW^2(RN)ί]C^(RN);

(ii) lim^^oo u(x) = lim^^^ (Γw)(x) = 0

uniformly in RN.

PROOF. Let (un(x)} be the sequence in Theorem 3.3, and let G be any
bounded domain in RN. The procedure in [11, 12] shows in view of Lemma 3.5
and the compactness of the injection C2+α(G)->C2(G) that {un} has a subsequence
{M*} which converges in the C2(G) norm to a function weC2(G). It follows
from Theorem 3.3(B) that u satisfies the differential equation (1.1) on G, and



134 Ezzat S. NOUSSAIR and Charles A. SWANSON

hence u e C2+α(G) by a standard Schauder estimate. Then u e Cft*(RN), and weak
convergence in W &'2(RN) of a subsequence of {u*} to ueW&>2(RN) follows from
the uniform boundedness of ||M*||1>2,ιι* (Lemma 3.4). Evidently u = u in any
bounded domain G by the convergence of {u*} in C2(G).

The next step is to show that u(x) is not the zero function. By Theorem 3.3
(B, C), Green's theorem applied to u* gives, since w* has support Ωn9

(4.1) 0 < v g /(«?) = K/(x, U*n(x))u*n(x)dx - I2(u*}

for n = 1, 2,... . Then assumption (f2) and Holder's inequality lead to

(4.2) 0 < V ̂  j£ IIΛU* ||o..l + lfJ|ir||tt*||R.<+lfΛιr-/2(uί) .

Since

9Λ/"
2<5,+ 1 <-j~,N^3,i= !,...,/

by (f2), there exists a positive constant C, independent of M, such that

for all ue'WWR") [3, 6, p. 264], and clearly this also holds if TV =2. Then
Lemma 3.4 implies that the sequence of norms ||u*||o,s<+ι fjιw is uniformly bounded.
It can also be shown without difficulty [12] because of the compactness of the
multiplication operator u-+ftu from Wfr2(RN) into LSi+ί(RN) [6, p. 264] that
{u*} has a subsequence {#„} such that both

and

where u is the solution of (1.1) constructed above. Then (4.2) implies that there
is a positive constant K such that

showing that u(x) is not identically zero.
To prove properties (ii) of the theorem, we use the notation

N(x) = jμeΛ": \y-x\< , xeRN;
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σ =

The proof of (ii) will be given in the case N=2. The case N^3 is similar, along
the lines presented in Lemma 3.5.

A standard estimate in Lr(M(x)) is, if N = 2 [9, p. 43],

(4.3) ll«lloΛMW^C||u| | l i 2 f M ( j e ), xeR*

for some positive constant G independent of u, and for arbitrary r>l. Since
the constant K in Lemma 3.5 depends only on N9 s, and the volume of G (not on
its location), we can take G in Lemma 3.5 to be M(x) and conclude that (un(x)}
is uniformly bounded in RN

9 from which u(x) also is bounded in RN. Then

|M(x)|rs,/σ ^ constant |M(X)|Γ, x e RN

for i = 1,. . ., J since each st ̂  σ. By assumption (f2) there exists a positive constant
G! such that

( \f(y,u(yW/σdy^cΛ \u(y)\'dy.
JM(JC) JM(x)

Let F(y)=f(y, «(y)). Then

for another positive constant C2, and (4.3) yields

(4.4) \\F\\0,r/a,M(x)ίίC2C*\\u\\l2,MM.

Then a standard a priori interior estimate for equation (1.1) gives [10, p. 169]

MGO + I|W||0,2,M(X)]

for another constant G4, upon use of (4.3), (4.4), σ>l, and the finiteness of
H M l l ι ,2 ,Λ^- The Sobolev embedding lemma [9, p. 43] therefore shows that

for a positive constant G5 and for arbitrary αe(0, 1)̂  proving property (ii) of
Theorem 4.1 in the case N= 2.

To prove the positivity of u(x) throughout RN

9 notice from (1.1), assumption
(f2), and property (ii) that u(x) satisfies a linear elliptic inequality — Ju-f yw^O
in RN for some constant y>0. Since u(x) is a nontrivial nonnegative solution of
this inequality in Ωn9 the strong maximum principle [13] applied to Ωn shows that
u(x)>0 throughout Ωn, w = 1, 2,..., and therefore throughout RN.
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THEOREM 4.2. If the hypotheses of Theorem 4.1 are satisfied and in addition
lim^i^oo p(x) = .+ °°v there exist positive constants C0 and δ such that the solution
u(x) of (1.1) in Theorem 4.1 satisfies

(4.5) 0 < u(x) ^ 'C0έΓ*l*l for all xeRN.

PROOF. Choose a positive number p large enough so that γ > 0, where

(4.6) y = infw^Xx)- A .

Define L=—A+ —γ, φc) = Cexp(-(5|x|) for positive constants C and δ to be

determined. An easy calculation gives

where r = |x|. Therefore there exists a sufficiently small positive number <5 such
that

(4.7) (Lv) (x) ^ 0 for all x e RN with |x| ^ p .

By assumption (f2) and Theorem 4.1(ii) there exists a number R^p such that

\f(x,u(x))\^-ίu(x) for | χ | £ Λ .

Then Theorem 4.1 and (4.6) show that u(x) satisfies the differential inequality

(4.8) (Lu)(x)=[λ-p(x)+-^u(x)+f(x,u(x))

for all \x\^R. We can assume that u(x)<^l for all \x\^R by Theorem 4.1(ii).
Let C = eδR in the definition of v(x). Then on |x| =R9

v(x) = Ce-δ\x\ = I ^ M(X).

It follows from (4.7) and (4.8) that L(v-u)^Q for |x| ̂ R and v-u^Q on |x| =R.
Since ι;(x)— w(x)-^0 as |x|~>oo uniformly in RN, the maximum principle shows
that v- w^O throughout {x e /?*: |x| ̂ J?}. This proves (4.5), where

C0 = max {C, sup eδ\x\u(x)} .
\χ\*R

Sharper estimates for the exponential decay at oo of positive solutions of
(1.1) will now be Obtained when (1U) -is specialized to the form
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(4.9) LOM = - Δu + k2\x\2mu = λu

ueL2(RN),

where k and m are positive constants and/(x, ύ) satisfies hypotheses (f1)-(f4).

THEOREM 4.3. If λ<λ*9 problem (4.9) has a positive solution u(x) in RN

such that

w(x) ^ C|x|-< exp - - - |xr * , \x\ * R

for some positive constants C and R, and for any a<(N + m — l)/2.

PROOF. Let p0 = (2\λ\/k2)1/2m and let L1 be the linear elliptic operator
defined in Ωc

po by

(4.10) Liii = L0w - 2λu = -Δu + k2\x\2mu -2λu.

For a constant a to be determined, define

v(x) = r

Calculation gives

1 - 2λ

showing, if a<(N + m — 1)/2, that there exists a number ρ^p0 such that

(4.11) (Iαi;)0ί) ^ 0 for all x e Ω£ .

By assumption (f2) and Theorem 4.1(ii), there exists R^p such that both

(4.12) 0 < u(x) ^ 1 and |/(x, w(x))| g Aw(x)

for all |x| ^ R. Therefore, by Theorem 4.1, w(x) satisfies the inequality

(4.13) CMXx) = -λu(x) +/(x, w(x)) g 0,

Define

(4.14) V(x) = Ct;(x), C = R* exp t1

Then K(x) satisfies (4.11) and F(x) = l^w(x) on |x|=.R. We conclude from
(4.11H4.14)that

L1(F-w)^0 in ΩC

R
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V(x) - M(» ^ 0 on |x| = R

V(x) - u(x) -» 0 as |x| -> oo .

Hence V(x) — u(x)^.ΰ throughout ΩC

R by the maximum principle, i.e., u(x)^Cv(x)
for all |x| ^R9 completing the proof of Theorem 4.3.

EXAMPLE 4.4. An example of a problem (1.1) which does not have a positive
solution in RN for any λ>λ* is

— Au + p(x)u — q(x)u3 = λu, xe R3

(4.15)
ueL2(R3)9

where p(x) satisfies hypothesis (p), q(x) is positive, bounded, and locally Holder
continuous, and q e L4(/?3).

To prove this, suppose to the contrary that (4.15) has a positive solution in
R3 for some λ>λ*. Let λ(n) denote the smallest eigenvalue of the linear problem
(3.3), λ(n) > λ(n + 1) > λ* for every n = 1, 2,. . ., and let vn(x) be a positive normalized
eigenfunction of (3.3) in Ωn corresponding to λ(ή). Then

(4.16) ( (\rvn\
2+p(x)υ2)dx = λ(n)( v2dx.

jΩn JΩn

Integration of Picone's identity over Ωn gives

ii = 1,2,....

By (4.15), (4.16), and the divergence theorem, this reduces to

(4.17) 0 < ί u2 V (^)\2dx = \ l(λ(n) - λ)v2

n - q(x)u2v2

tt-]dx .
j Ω n \ U / I JΩn

If /ί>/ί*, we can choose an integer n such that λ(n)<λ, for which the right side of
(4.17) is negative, a contradiction.

EXAMPLE 4.5. If lim]x^aop(x)= +00 in addition to the other hypotheses,
(4.15) is an example of a problem (1.1) with no positive solution in RN for any

In view of Example 4.4, it is enough to show this if λ = λ*. Let the normalized
eigenfunction vn(x) of (3.3) corresponding to λ(n) be extended to R3 by defining
Ωn to be its support. Since lim^,.^ p(x)= + oo, it is known [17] that λ* is the
smallest eigenvalue of the linear problem

(4.18) - Δv + p(x)v = λ*ι?, v € L2(R3)
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and that

(4.19) A* = Itav.αoλOi), lim^oo \\υn-v\\L2(R3) = 0,

where v is a normalized eigenf unction for (4.18) corresponding to λ*. Let

6 = sup^na q(x)u2(x) .

Then by the Schwarz inequality

Since ||t;w-f v\\L2(R3) is uniformly bounded in n, this implies that

(4.20) lim

If λ=λ*, it follows from (4.17), (4.19), and (4.20) that

0 ^ - ( q(x)u2(x)v2(x)dx,
JR3

which is a contradiction.
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