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Introduction

The concept of ASL (algebra with straightening laws) is an axiomatization

of the "straightening formula" appearing in invariant theory. This axi-

omatization, which is lucid and charming, associates commutative algebras with

combinatorics through partially ordered sets (poset for short) and moreover, with

topology through simplicial complexes.

Many interesting rings which appeared in classical invariant theory, such as

coordinate rings of Grassmann varieties, determinantal and Pfaffian varieties

turned out to be ASL, and we can obtain many informations concerning these

rings by means of corresponding posets.

On the other hand, as far as the authors know, all the examples known when

we started this work, are normal, rational over the base field and are rational

singularities in characteristic zero, and D. Eisenbud has proposed a conjecture

in [3] that every ASL domain on a wonderful poset should be normal with rational

singularities.

However, in the course of classifying Gorenstein ASL domains of dimension 3,

we have discovered examples of non-normal ASL domains on wonderful posets

(cf. example g)). These are examples of non-normal Del Pezzo surfaces (a Del

Pezzo surface is a projective surface X whose anti-canonical sheaf ωj1 is ample)

of arbitrary high degree and we are sure that the theory of ASL will be very helpful

to construct interesting examples of rings or varieties with given properties.

Our final goal is to classify all the three dimensional homogeneous Gorenstein

ASL domains over a field. Toward this goal, in this first part, we will determine

all the posets on which there exist three dimensional homogeneous Gorenstein

ASL domains. Moreover, in this process we will show that every three di-

mensional homogeneous ASL domain over a field is Cohen-Macaulay. Our

fundamental method is quite elementary and its origin is in [5].

The main result in this paper is the following

THEOREM. Let k be a field. The posets on which there exist three di-

mensional homogeneous Gorenstein ASL domains are among the fallowings:
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Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5.

Fig. 6. Fig. 7. Fig. 8. Fig. 9.

Fig. 10.

( n : arbitrary)

Fig. 11. Fig. 12. Fig. 13.

Moreover, if k is infinite, there exist examples of homogeneous Gorenstein

ASL domains on every poset listed above.

We close this introduction with some remarks concerning Hodge algebras

defined in [2]. Though the concept of Hodge algebras is generalized from that

of ASL, the gap between them is remarkable. For example, it is shown in [6]

that every graded ring over a field has a structure of a Hodge algebra. This fact
makes a strong contrast to the fact that the graded rings which can be expressed

as an ASL are very limited ones.

1. Notation and preliminaries

We here summarize basic definitions and terminologies on commutative

algebras and combinatorics. Consult [2], [3] for further informations.

(1.1) All posets (partially ordered sets) to be considered are finite.

The length of a chain (totally ordered set) X is the cardinality #(X) as a set.
The rank of a poset H, denoted by rank(H), is the supremum of length of

chains contained in H.

The height of an element α in a poset is the supremum of length of chains
descending from α, and written by to(α). Note that rank(H) and /ιί(α) in this

paper are one more than those in [1] or [2].
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An ideal in a poset H is a subset / such that αe/, βe//, and j8<α together

imply βe/.
(1.2) Suppose JR is a ring and H, a subset of R9 is a poset. A monomial

is a product of the form α1α2-"αp where o^e//. A monomial α 1 α 2 ---α p is called

standard if α 1<α 2< ---^αp. Now let /c be a field, jR a /c-algebra, H a poset
contained in R which generates # as a /c-algebra. Then we call R an algebra with
straightening laws on /f over /c if the following conditions are satisfied :

(ASL-1) The set of standard monomials is a basis of the algebra R as a

vector space over k.
(ASL-2) If α and β in H are incomparable (written as α^β) and if

where 0 7^ rt- e /c and yα < y ί2 < • • • , is the linear combination of standard monomials,
then yn <α, β for every /.

Note that the right-hand side of the relation in (ASL-2) is allowed to be the

empty sum ( = 0), but that, though 1 is a standard monomial, no y^^ •••}%; can

be 1. The relations (*) are called the straightening relations for R.
(1.3) We denote by [α/?] the set of standard monomials which appear in

the right-hand side of the relation for uβ with α^β. More generally, for a

monomial α1α2---αp, we denote by [α1α2---αp] the set of standard monomials which
appear in the standard monomial expression of α1α2---αp.

It is well known that the dimension of R as a /c-algebra coincides with the

rank of H (see [2]).
(1.4) An ASL R on a poset H over a filed k is called graded if there is a

grading R=®n^oRn such that R0 = k and each element of H is homogeneous of

positive degree.
When H<^Rί we say that R is homogeneous.
(1.5) Throughout the remainder of this paper, we fix a field k. For conven-

tion, unless otherwise stated, we use small letters of Roman alphabet, for example,

ί, ai9 B2, pi,--- to denote the elements of the field /c, and use capital letters, for
example, A, B, T,... or Greek letters, for example, α, /?,... to denote the elements

of the poset H.

2. Every three dimensional homogeneous ASL domain over a field is Cohen-

Macaulay

In this section, unless otherwise stated, let H be a poset of rank 3 with a
unique minimal element Γ, and R be a homogeneous ASL (not necessarily a
domain) on H over a field k.

LEMMA t. // A, B-e H, ht(A) = ht(B) = 2,A^B and Tα e [AB]9 α Φ T, A, B,
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then /ιί(α) = 3 and a>A, a>B (for the definition of [AB~\9 cf. (1.3)).

PROOF. In general, if α, β, γeH, a^β, then α2£[α/?], and moreover,
y2 6 [α/J] implies y <α, y<β.

Now, Γα2 6 \u(AB)~\ since Tαe[y4B]. However, if we assume a* A then
Tα2 £ [(αv4) J5] because ht(B) = 2, B^a, a contradiction. So, α is comparable
with A and, consequently, α>^4 because α^M, T and ht(A) = 2. By the same
argument, α > B. Q. E. D.

NOTATION. Suppose that B, CeH, ht(B) = ht(C) = 2, B^C. Then B/\C
means that there exists XeH such that X>B, X>C. On the other hand, if
Y, ZeH, ht(Y) = ht(Z) = 3, Y^Z, then Y v Z means Y>A, Z>A for some element
A e H with ht(A) = 2. Moreover we write the negation of B Λ C (resp. Yv Z) as
5AC(resp. 7¥Z).

LEMMA 2. If A, XeH, ht(A) = 2, ht(X) = 3, A~X and if Γαe \_AX~],
A, X, then

(i) Λί(α) = 2, α<^:, αΛ^, or

(ii) Λί(α) =

PROOF. As Tα e [AX], we have
(i) If Λί(α) = 2, α?M, then as Γα2e[(αA)X], there exists βe#, with ΓjSe

[αA] and κ2e[_βX~\. This means j8>α and X>a. Moreover, as Tβe[θLA],
β>A by Lemma 1.

(ii) If Λί(α) = 3, α^X and if α^A, then Tα2^[(αA)X]. So, α>A. If
αVX, every standard monomial of [αJf] is of the form Tβ (/Jeff), and Γα2£
[( Tβ)A] . This contradicts the fact that Tα2 e [_(*X)A] . Thus we have α v X.

Q.E.D.

LEMMA 3. // X, YeH, ht(X) = ht(Y) = 39 X^Y, XvY and if
a^T, X, Y9 then either

(i) /ιί(α) = 2, α<X, β>α, βvYfor some βeH with ht(β) = 39 or
α<y, y>α, y v X for some y e H with ht(y) = 3, or

(ii) Aί(α) = 3, *vα, Y v α .

PROOF. As Tα e [AT], X ¥ Y, we have Tα2 e
(i) If Λί(α) = 2, α^X, as Tα2e[(αX)Y], there exists y e H with

and α2e[yY]. This means y>α, F>α. Moreover, as Tye[αJΓ|, yv^ί by
Lemma 2.

(ii) If ht(oΐ) = 3, α¥ 7, then every standard monomial of [α7] is of the form
Tβ (βeH). Hence Tα2 £ [X(α 7)] . This contradicts the fact that Tα2 e [α(X Y)] .
Thus we have α v Y. Similarly, α v X. Q. E. D.

LEMMA 4. If A, X, YeH, ht(X) = ht(Y) = 3, ht(A) = 2, X^Y9 X>A, Y>A
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and if AoiG[XY]9 A<κ, then α = Jf or α= Y.

PROOF. Let / be the subset {αeH; a^A] of H and H' = H-l be the com-
plement of / in H . Note that H' is a subposet of H with a unique minimal element
A. Since / is an ideal of H, [2, Prop. 1.2b)] says that the quotient algebra R' =
R/I is an ASL on H' and that .4αe [ZY] in R implies Aaε [XY] in R'. Now,
in #', as Aa e [X Y], we have Aa2 e [α(X Y)]. If α^ Y, every standard monomial
of [Yα] is of the form Aβ (βeH'). As ,4α2e [JT(Yα)], there exists βeH' with

This means a = X = β. Q.E.D.

PROPOSITION A. Let H be a poset of rank 3 with a unique minimal element
T. Assume that there exist three elements A, B, and Y of H which satisfy the
following conditions:

(i) ht(A) = ht(B) = 29ht(Y) = 39 Y>BandA~Y,
(ii) AAB.and
(iii) X ¥ Yfor any element X e H with X > A.

Then any homogeneous ASL R on H over afield k cannot be an integral domain.

PROOF. By Lemma 1 we have

(1) AB = T(tT+aA + bB}

and moreover

AY= T(cT+dA + eY)

by Lemma 2. We calculate the standard monomial expression of ABY in two

ways, namely

ABY= (AB)Y = TY(tT+aA + bB)

= tT2Y+ aT2(cT+dA + eY) + bTBY

= (AY)B = TB(cT+dA + eY)

= cT2B + dT2(tT+aA + bB) + eTBY.

Now we have b — e from the coefficients of TBY, also t + ae = Q from Γ2Y, hence
t = —ab. If we substitute ί= — ab in (1), then we get

(A-bT)(B-aT) = 0,

which means that the algebra R is not an integral domain. Q. E. D.

Note that Prop. A implies that H — {T} is connected if R is an integral domain.
Since H is of rank 3 with a unique minimal element T, the connectedness of
H — {T} is equivalent to Cohen-Maculayness of the poset H over the field k (see
Baclawski [1]). Combining this result with the fundamental theorem on ASL
[2, Cor. 7.2] we have the following
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COROLLARY. Every three dimensional homogeneous ASL domain over a
field is Cohen-Macaulay.

Let H be a poset of rank 2. An element P e H is called a branch if 1) ht(P) = 2
and there exists a unique element A such that P>A, or 2) /zf(P)=l and there
exists a unique element X such that P<X. Moreover, {P1} P2,..., Pn} (P;£#)
is called a branch sequence of length n if Pw is a branch of H and Pf is a branch of
the subposet H-{Pi+1,..., Pw} for all i (l<i<n-l), in such a way that P.-.j
is a unique element of H - {Pt +1,..., Pn] which is comparable with Pt (2 < i < ή).

Suppose that a poset H is of rank 3 with a unique minimal element T. Then
an element P e //, P^ Γ, is called a branch of H when P is a branch of the rank 2
poset H-{T}.

PROPOSITION B. Let H be a poset of rank 3 with a unique minimal element
T, and R be a homogeneous ASL on H over afield k. Suppose that P is a branch
of H with ht(P) = 3 and that AeH is a unique element with P>A, ht(A) = 2.
If a, βεH — {P}9 α^β, then P does not appear in the right-hand side of the
straightening relation ofaβ, that is, TP, AP, P2φ[uβ~].

Consequently, k[H — {P}] is an ASL subring of R with the same straighten-
ing relations as those of R.

PROOF. Thanks to Lemma 1, Lemma 2 and Lemma 3, we have only to
consider the case of ht(u) = ht(β) = 3 and α v β. In this case it is obvious that
P2 φ [α/J] and moreover, by Lemma 4, APφ [α/Γ] even if α> A and β> A.

Now we shall prove TP φ [αβ]. In general, if y, δ e H, γ < δ, ht(y) < 2, δ Φ P,
then TP2£[(>5)P]. In fact, it is easy to see that TP2 does not belong to [T2P],
[Γ£P], [TZP] (B, ZεH, ht(B) = 29 /*ί(Z) = 3, Z^P), D42P], and \_AZF] (Ze#,
ht(Z) = 39Z>A,Z^P). Moreover, TP2 φ [B2P] and [£ZP] (β, Z e H, ht(B) = 2,
/?i(Z) = 3, B^A9 Z^P, Z>B\ since every standard monomial of [BP~] is of the
form Tβ(βεH).

Accordingly, TP e [αβ] implies TP2e [(αjS)P]. We may assume oc>A
since ΓP2^[β(αP)] if α^^4, and similarly β>A. By Lemma 4, the standard
monomials of [αP] are A2, AP, Aoc and of the form Ty (y e H). But TP2 does
not belong to [(Γy)j8], 042β], [>l(Pj8)] and [Λ(αj8)], hence TP2^[(αP)j?]. This
shows TPφ[uβ~\. Q.E.D.

REMARK. The same result holds for a branch of height 2.

3. Calculation of Poincare series and Gorenstein homogeneous ASL of

dimension 2

Let R = ®nz>oRn be a graded ASL on a poset // over a field k = R0. We
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denote by &R(Θ) the Poincarέ series of R, namely

33

LEMMA 5. ^(θ) = Σ«, <-..<.. (Πιsκ.βd'i(«l)/(l-βd'i('l))),

where αx < ••• <αs ranges over the set of chains of H including the empty set.

PROOF. The k- vector space R has a fc-basis consisting of the standard
monomials. If we fix a chain al < ••• <αs and count all the standard monomials
of the form α^-'-α

Summing up these terms, we get the result.

COROLLARY. If R is homogeneous, then

Q. E. D.

where d = rank(H), ct is the number of the chains of length i in H, and c0 = 1.

DEFINITION. A rank 2 poset H is called a cycle of degree 2n if H is of the form

Fig. 14.

where n is a positive integer.

If R is a homogeneous ASL on a poset H with a unique minimal element T,
then R is Gorenstein if and only if so is R/(T)9 since T is a non-zero divisor on
R ([2, Th. 5.4]) and R/(T) is an ASL on H-{T}. So, for a while, we will study
homogeneous ASL (not necessarily a domain) on a poset H of rank 2.

By Stanley [7, Th. 4.1], if R is Gorenstein, then

for some integer p. By the calculation of Poincare series as above,
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and if 0>R(Θ) satisfies (*), then 0<p<2 and
(a) if p = 2, then c x=2 and c2 = l,
(b) if p = l, then cί = 3 and c2 = 2,
(c) if p = 0, then c± = c2 > 3.

It is obvious that if R satisfies (a) (resp. (b)), then

//= (resp. or

Fig. 15. Fig. 16. Fig. 17.

and it is easy to check that H is a cycle with branch sequences if R satisfies (c).

PROPOSITION C. // R is a Gorenstein homogeneous ASL on a poset H of
rank 2 over afield fc, then H is

Fig. 18. Fig. 19. Fig. 20.

or a cycle with branch sequences which satisfies the following conditions:
(i) the length of branch sequences of H from a cycle is at most 1,
(ii) ifPeHisa branch of H9 then ht(P) = 2.

To prove this, we need some lemmas.

SUBLEMMA 1. If p is as in (*), then p = -a(R)9 where a(R) is defined in
[4, (3.1.4)], that is, if R is Gorenstein9 then the canonical module KR of R is
isomorphic to R( — p) as graded R-modules.

PROOF. We may assume k is infinite. If we take a regular sequence (xl9 x2)
from R19 then ^R/(XίtX2)(θ) = (l-θ)2^R(θ) and on the other hand, a(R/(xl9 x2)) =
a(R) + 2=deg(0>R/(x'i)X2}(θ)) (cf. [4, (3.1.6), (3.1.4)]). From these equalities, we
get α(R) + 2 = 2-p. Q.E.D.

SUBLEMMA 2. Let H be a poset of rank 2, / be an ideal of H and R be
a Gorenstein ASL of a(R) = p = 0. //

H-I α (resp.

Fig. 21. Fig. 22.
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then [0:/]1=(0) (resp. dimfc [0 :/]!=!), where [0: /]x is the vector space of
homogeneous elements of degree 1 of R which is annihilated by /.

PROOF. By [4, (2.2.9)],

KR/I ^ Horn,, (Rjl, KR) ^ Homg (£//, R) ̂  [0 : /]

as graded Λ-modules. On the other hand, if

H-I ~ (resp. \ / ),

Fig. 23. Fig. 24.

then KΛ//~(R//)(-2) (resp. KΛ//c± (£//)( -1)), which implies [0: /]i=(0) (resp.
dimfc[0 :/L = l). Q.E.D.

PROOF OF PROPOSITION C. Suppose that R is a Gorenstein ASL on H with
rαnfc(ίf) = 2. We may assume α(R) = 0, since if a(R)<Q9 our assertion is obvious.

(i) Let {P!,..., Pw} be a branch sequence of length n>2,
1) If PΛ _ 1 > Pn, then / = H - {Pn . t , PJ forms an ideal and

Fig. 25.

But as Pn 6 [0: Γ]ί9 this contradicts Sublemma 2.
2) In case Pn-1<Pn9 let Q be a unique element of H such that β>Pπ_1.

Then I=H-{Q, Pn-ί9 Pn} is an ideal of H and

H-I =

Fig. 26.

But as P,,-!, Pne [0: J]l5 this contradicts Sublemma 2.
(ii) Let P be a branch of height 1 and let Q be a unique element of H such

that Q>P. Then /=#- {β, P} is an ideal and

Fig. 27.
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But as Pe [0: /]15 this contradicts Sublemma 2. Q.E.D.

REMARK. (1) Conversely, if a poset H of rank 2 satisfies the condition of
Prop. C, there exists a homogeneous Gorenstein ASL R on H over /c, if k is
infinite ([8]).

(2) It should be noted that the Poincare series of an ASL on a poset H is
determined by H. IfR is an ASL domain on a poset H, such that H—{T} satisfies
one of the conditions (a), (b), (c), then R is necessarily Gorenstein by Stanley
[7, Th. 4.4]. For example, if R is an ASL on one of the following posets, then
R cannot be a domain.

Fig. 29.

and H2

Fig. 31.

Then, by Prop. A, there exists no ASL domain on 'H1 or H2, although ff f~
(i= 1, 2) satisfy the conditions of Prop. C.

REMARK. Let H be a poset of rank 3 with a unique minimal element T.
If H -{T} is a cycle of length > 10 with branches of height 2, then there exists
no ASL domain on H.

SUMMARY. // R is a homogeneous Gorenstein ASL domain on a poset H
of rank 3, then (H has a unique minimal element T and) H — {T} is one of the
fallowings:
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Fig. 32. Fig. 33.

Fig. 36.

Fig. 37.

Fig. 34. Fig. 35.

with branches of height 2 or

with branches of height 2.

4. The fundamental transformations of a homogeneous ASL

In this section we will define the fundamental transformations of a homo-
geneous ASL, which are indispensable in the following sections.

Let k be a field and R be a homogeneous ASL on an arbitrary poset H over
k. Fix an arbitrary element α e H and define an embedding φΛ: H-+R by

ί cΛ.a+Σβ<*dβ.β if x = α

[ x if x Φ α,

where 0^cα e fc and dβek.

PROPOSITION D. The k-algebra R is a homogeneous ASL with respect to

PROOF. We have

Ifγ,δeH and γ«*δ, φa(y)φa(δ) can be expressed as a linear combination of standard
monomials of φΛ(H) which satisfies the axiom (ASL-2). Hence any non-standard
monomial is a linear combination of standard monomials; in other words, the
set of standard monomials with respect to φΛ(H) spans the fe-vector space jR.
Now the linear independence of the standard monomials follows immediately
from the consideration of Poincare series. Q. E. D.

We call φa as above a fundamental transformation (or linear change) by the
element α e H.
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DEFINITION. Let R1 and R2 be two homogeneous ASL on a poset H with
the embeddings im: H-+Rm (m = l, 2). We say that Rί and R2 are equivalent
if there exists a /c-algebra isomorphism f:R1-^R2 such that/oί x = i2. We say that
R{ and R2 are isomorphic (as ASL) if there exists an embedding φ°ψ: H-+Rί9

where φ is a composition of fundamental transformations and ψ is a poset

automorphism of H, such that (Rί9 φ°ψ) and (Λ2» ^2) are equivalent.
It is easy to see that this isomorphism is an equivalence relation since the

inverse of a fundamental transformation is again a fundamental transformation.

EXAMPLE b) Any homogeneous ASL domain on the poset

X Y Z W

H = A

Fig. 38.

is unique up to isomorphism and isomorphic to the Segre product fc[s2, si, ί2] #
fc[α2, ab, 62]. Here s, t (resp. α, ί?) are indeterminates over k and the ASL
structure of fc[s2, si, i2] (resp. fe[α2, αί?, b2]) is given by

(resp.

ab

Fig. 40.

The k-algebra /c[s2, si, ί2] f k[β2, ab, fc2] is a homogeneous ASL domain on

H by means of

A =

T= sίαft

, D = sib2,

(see [2, III. 10)]).

PROOF OF THE UNIQUENESS. Let R be a homogeneous ASL domain on the
poset H over fc. By lemma 1, we have

AC = T(t2T+b2B + d2D).
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Applying the linear changes

39

we may assume AC= T2, BD = T2. On the other hand, we have

AB = T(t3T+a3A + b3B + x3X)

by Lemma 1. We claim x3^0. Assume x3 = 0. We have

AY = T(t4T+a4A + b4

by Lemma 2. Now if we compare the coefficients of TBY, TBX, TB2

9 and T2B
in (AB) 7= B(AY\ we get

= 0, = t4

Hence

so we have

which contradicts our assumption that R is a domain.
Since x3 ̂ 0, we may assume AB = TX by the linear change

q>x(X)'= *3X -f (t3T+a3A + b3B).

Similarly we may assume BC = T7, CD = TZ, D^ = TW. From these six relations
we can get all the straightening relations of R9 which coincide with those of
/c[52, st, ί2] f /c[α2, aft, ft2].

5. Branches from the cycle of degree 6

Let k be a field and R be a homogeneous ASL domain on the poset

P X Y
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over fc. By Lemma 1 if we put

AB = T

BC = T(

CA = T(

then we have the following

LEMMA 6. jc t Φ 0, z3 ^ 0.

PROOF. Suppose jcj=0. Then

On the other hand,

PB =

by Lemma 2. Comparing the coefficients of TAP and Γ2P in
we have

<*ι = P, *ι+ Pbi = 0,

so, f t + α1f>1=0. Hence (>4-ί>1Γ)(5-α1T) = 0, a contradiction. Thus, x^O.
Similarly, we can prove z3 ̂ 0. Q. E. D.

Since xx ^0, z3 7*0, by the linear changes

φx(X) = XlX + (tlT+

φz(Z) = z3Z + (ί3Γ+

we may assume AB = TX, CA = TZ. On the other hand, if y^O we may also
assume BC = TY. If y2 = 0, by the linear changes φB(B) = B-c2T9φ C(C) = C-b2T
we may assume BC=T2.

Consequently, we can reduce the straightening relations of AB, BC and CA
to the following two types up to isomorphism of ASL:

type [I] AB = TX9 BC = TY, CA = TZ,

type [II] AB=TX, BC=T2, CA = TZ.

Note that in the case of type [I] we have CX=AY=BZ, and in the case of type
[II] we have CX=BZ= TA, XZ = A2.

Also, after a linear change on P, we may assume

PB =

PC =

Case I. Let R be of type [I].
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LEMMA 7. z2 Φ 0.

PROOF. Suppose z2 = 0. Then

PC = T(t2 T+ a2A + c2C + p2P) .

Comparing the coefficients of T2J3, T2X and T2Y in (PB)C = (PC)B, we have
t2 = 02 = c2 = 0, and PC = p2 TP, a contradiction. Q. E. D.

By Lemma 7, applying the linear change <pP(P)=P/z2, we may assume z2 = 1,
that is,

(2) P5 =

(3) PC =

We put

BZ =

Substituting these relations to the standard monomial expression of (PJ3)C
(PC)B, we get the following relations:

= V

c, - α2 = x, -r-c2 == y, αx 4- pt = z.

From these relations we get the following equations

(4) (b + xy)(pι)2 + (-bz + cx + t + ayϊpt + (ac-tz) = 0,

(5) (c + yz) (p2)
2 + (bz - ex + 1 4- ay)p2 + (αb - ίx) = 0

on px and p2.

LEMMA 8. At least one of the coefficients of above equations is not zero.

PROOF. Assume that all the coefficients of (4) and (5) are zero. To begin
with, b + xy = Q9 c + yz = Q, hence bz — cx = 0. Accordingly f + αy=0 since bz —
cx + t + ay = Q. Then

(A-yT)(B-zT)(C-xT) = (a + zx)T2(A-yT).

Since ^L-^T^O, we have (β-zT)(C-xT)~(ίH-zx)Γ2. Thus TY-xTB-
zTC - aT2 = 0, which contradicts the axiom (ASL-1). Q. E. D.

Case II. Let R be of type [II].

Applying a linear change on 7, if necessary, we may put

P7=
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From (PY)B = (PB)Y, we have the following relations:

a' = V = x' = y' = z' = 0, /?' = 0, c' = α^

+ pX = 0, ί' = α^o, ^ + avyQ = 0.

Note that α^O, p^O.

From these relations we get the following equation

(6) b0(Pί)
2 + ίop! + c0 = 0

on pί9 where at least one of fc0, ί0, c0 is not zero.
Consequently, summarizing the above calculations, in both type [I] and

type [II] we have

PROPOSITION E. The number of the branches from A is at most two.

PROOF. Thanks to the equations (4), (5) and (6), we have only to show that

there is no branch P' from A, except P, with

(7) P'B =

and that there is no branch P' from A9 except P, with

(8) P'C =

Firstly, suppose that there exists a branch P' with the relation (7). Then we
have tί = aί =0, and t\ =a( =0, since (PJ3)P' = (P'£)P, a contradiction.

Secondly, suppose that there exists a branch P' with the relation (8). Since
CL4 = ΓZ, we have

PZ = (PC) AIT =t2TA + a2A
2 + c2TZ + p2AP + AZ,

P'Z = (P'QA/T= t'2TA + a'2A
2 + c'2TZ + ̂ AP' + AZ.

As usual, if we compare the coefficients of Γ2P, T2P', TAP and TAP' in (PC)P' =
(P'C)P, we have

a2 = a'2 = - p2, t2 + c2p2 = 0, t'2 + c'2p2 = 0.

Hence

(P-P')C = - p2(c2-c'2)T* + (c2-ci)TC 4- p2T(P~P').

So, we have

{(P-P')-(c2-4)Γ}(C-p2T) = 0,

which is a contradiction. Q. E. D.

PROPOSITION F. // there exists a branch from B (or C), then the number of
the branches from A is at most one.
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PROOF. Let Q be a branch from B. By Lemma 3 we have

PQ = T(ΫT+a'A + VB + x'X + p'P + q'Q).

Note that this case is of type [I] by Lemma 6 applied to the branch Q.
Now PU = T(f1Γ+ a^A + piP) and, without loss of generality, we may also

assume QA = T(t2T+b2B + q2Q). Then, since (PB)Q = (PQ)B and (QA)P =
(PQ)A, we have a' = b' = x' = p' = q' = Q. Hence Pβ = ί'Γ2.

If there exists another branch P' from A, then P'Q = t"T2 in a similar way.
Accordingly we have f'Γ2P' = f"T2P, which means f' = ί" = 0 and we have a
contradiction. Q. E. D.

EXAMPLE c) Let /c[x, y, z]<3) be the Veronese subring of the polynomial
ring k[x, y, z\ which is generated by all the monomials of degree 3. The k-
algebra fc[x, y, z]<3) turns out to be a homogeneous ASL domain on the poset

U X V Y Z W

T

Fig. 42.

by means of

Γ = xyz, A = yz(y-z\ B = zx(z-x\ C = xy(x-y),

X = z(z-x)(z-y), r=x(x-3θ(χ-z), Z = y(y-z)(y-x)9

U = yz2, V=zx2, W=xy2.

EXAMPLE d) Let α and β be non-zero elements of k with α ̂  /?, and x, j, z be
indeterminates over /c. We can construct a homogeneous ASL domain on

P Q X
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over k by means of

Γ = xyz, A = xzO + z), B = x2y, C = yz2,

X = χ2(y + z)9 7= ^x-αz)(x-j9z)/(y + z), Z =

P = xz*(y + z)/(x-αz), β = xz2(y + z)/(x - 0z) ,

whose straightening relations are

AB = TX, EC = Γ2, C^ = TZ,

ΓZ = - (a + β)TC + T2 + aβC2, ZX = A2, PB =

PC = (l/α)Γ(P - Z), PJSΓ = 4(̂ 1 4- αP), P Y = Γ(Γ- j?C) ,

PZ = (l/αM(P-Z), Qβ = T(A + βQ), QC = (l/)?)T(ρ-Z),

~αC), βZ =

Note that this example is of type [II], and α, jff are the roots of the equation (6).

6. Branches from the cycle of degree 4

Let k be a field and R be a homogeneous ASL domain on a poset H which is
of the following type.

Pi Pn * Y Ql β

Our final results in this section are as follows.

PROPOSITION G. // there exists a branch from B9 then the number of the
branches from A is at most four.

PROPOSITION H. If there exist two branches from B, then the number of the
branches from A is at most two.
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Now let R be a homogeneous ASL domain on the poset

P X Y

over k. After applying linear changes on A, B, X, Y, we may assume

(9) AB = T(tT+xX + yY),

(10) XY = T(t'T+a'A + b'B) + a A2 + bB2.

On the other hand, we have

PB =

PX =

PY =

Apply, if necessary,

Then we may assume bi =0, x'2~Q.

LEMMA 9. ΓΛe coefficients xi9 x2, x3, j^2 and y3 are all zero.

PROOF. Comparing the coefficients of TX2, TBX and TBY in (PJ5)X =
(PX)B, we get χ1=χ2 = <y2 = Q. Also, comparing the coefficients of TBX and
ΓBy in (PB)y=(Py)B, we get χ3 = j;3 = 0. Q.E.D.

LEMMA 10. α3 = α3 = 0.

PROOF. Compare the coefficients of TAX and ^2X in (PZ)y=(Py)JSί.
Q. E. D.

LEMMA 11. y'3 Φ 0.

PROOF. Comparing the coefficients of A2Y and TAY in (P^)y^(Py)^, we
have

>3 = 0.
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On the other hand, comparing the coefficients of T2A, TA2, TAY and TAP in
= (PB)A, we have

ti = χa2 = - p2y'3x, «ι = χa'2 = - pi^x, ^ = yy'3, PI = χ/>2 + yp3.

Hence, if y'3 = Q then PB=p1TP9 which contradicts our assumption that R is a
domain. Q. E. D.

Since y'3 ^0, we consider P/j>3 instead of P, and we may assume y3 = 1.
Consequently, we may start from the following relations :

(11) PB = T

(12) PX = T(

(13) PY = T(t3T+b3B + p3P) + A(Y+p'zP).

LEMMA 12. ^ = - xp2, α t = - x/?^ Ji = >% Pi = ̂ 2 +

PROOF. In the proof of Lemma 11, if we put y'3 = 1, then we get

PI = χpf2 + yp'3-

On the other hand, comparing the coefficients of TB2 in (PB)X-(PX)B and
(PB)7=(P7)5, we get

b2 = yb, b3 = — xb.

Also, comparing the coefficients of T27and T2X in (PX)Y=(PY)X, we get

as desired. Q.E.D.

LEMMA 13. t + xp2 -h yp3 = 0, a = p'2p'3, a' = p2p2 + p'2p3,

PROOF. Compare the coefficients of T2P in (AB)P = (PB)A, and 42P, TAP,
T2P in P(X7) = (PX)Y. Q.E.D.

Next, we consider a homogeneous ASL domain on the poset
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P X Y Q

47

over a field fc. By the same argument as above, we may assume that the straight-
ening relations of QA, QY and QX are

QA = Γίϊi

QY = T(l2T+B2B + a2A + q2Q) + B(E'2B + q'2Q) ,

QX = T(t3T+ά3A + q3Q) + B(X + q'3Q).

If we interchange A with B and JΓ with Yin Lemma 12 and Lemma 13, we have

*! = x, tf! = yq'2 + xq'3,

'3a)9 B2 = - ^2, a2 = xa, E2 = - q'29

^3«)» «3 = - y<*>

= 0, ft = q'2q'39 V = ^2^3 + q'2q3,

If we put the straightening relation of PQ to be

PQ = T(ί0Γ+α0^ + M +

then we have

LEMMA 14. α0 = - xp'2, &0 = - ^^2. *o = 0, = 0,

PROOF. Comparing the coefficients of TAX, TAY, TA2 and TAP in (PQ)A

P(QA), we get

*o = 0, y0 = 0, α0 = Xi f l i = - xp'2, p0 = x^i = xp'2.

Also, comparing the coefficients of TB2 and TBQ in (PQ)B=Q(PB), we get

as desired. Q. E. D.
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LEMMA 15. f 0 = - *Pa - *2P2«3 = - J><?2 - y2p'&2-

PROOF. Comparing the coefficients of T2A in (PQ)A = P(QA) and T2B in
(PQ)B = Q(PB), we get

e desired
Q. E. D.

Express this relation by x, 3;, p2, p'29 p'3, q2, $2 and #3> an^ we 8et

result.

Moreover, we consider a homogeneous ASL domain on the poset

P P* X Y

Fig. 47.

over a field k. Suppose that the straightening relations concerning P* are

P*B =

P*X =

P*y =

Then we have

LEMMA 16. // p2 = p2* then p2 = p2* = 0 and a = 0.

PROOF. Comparing the coefficients of A2P and A2P* in (PJr)P* = P(P*X),
we get αi = α^*=0 since p^ = p2*. Hence p'2=0 since αi=— p2. The equality
0 = 0 follows from Lemma 13. Q. E. D.

We have now finished the preliminary steps for the proofs of Proposition G
and Proposition H.

PROOF OF PROPOSITION G. By Lemma 15, we have

(14) χp2 + χ2p2^3 = y<i2 + y2pf3<i2.
If (x, y)=(0, 0), by Lemma 12, PjB = 0 and R is not an integral domain. As x and
y are in symmetric situation, we may assume x^O. Then we may assume x = l.
So, it is sufficient to consider the following two cases, (i) x=j; = l, (ii) x = l, y==0.
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Case (i) x = j> = l.
Substituting x = y = l into (14), we have

(15) P2 + P2<l3 = 42 + Pti*

here we consider q2, q2 and q'3 to be given. Multiplying p'2 to the both sides of
the relation (15), we get

(16) p2p
f

2 + (p'2)
2q'3 = q2p

f

2 + aq'29

since p2p
f

3 = a by Lemma 13. Moreover, since we get

{a-(pf2)2}P2 = t(p'2y + a'p'2

from Lemma 13, we can eliminate p2 from (16) and we have

(17) q'3(p'2)4 - (t + q2)(P2>3 ~ {a' + afa + qMM)2 + aq2p'2 + a2q'2 = 0.

[1] The case

As an equation on p'2, (17) is non-trivial. In fact, if all the coefficients of
the equation (17) are zoro, then ί = 0, ί' = 0, fe=0, fe' = 0 and α' = 0. Thus we get

AB=T(X+Y\ XY=aA2,

QA = TX, QY=aTA, QX = - aTA + BX.

Multiplying Q to the equality AB = T(X + Y\ we have ABQ = Q2A + TQY= Q2A +

aT2A9 hence BQ — Q2 — αT2 = 0, which contradicts the linear independence of the
standard monomials.

Consequently, if α ̂ 0 then, by the equation (17), p2 can take at most four
different values. Thanks to Lemma 16, we get the desired result.

[2] The case α = 0.
In this case, the equation (17) on p'2 becomes

(18) q'3(p'2r + q,(p'2Y - a'(ptf = 0,

which is non-trivial since q'3 = q3 = a' = Q implies QX = BX.

If α'^0, by (18) the number of possible values of p2 except zero is at most
two. If p'2 = 0, from (15) we get

P2P3 =

Substitute ar = p2p
r

3 + p'2Ps( = P2P's)ι an(i we

q2(p'3)2 + q2P* - fl' = 0,

which is a non-trivial equation on p'3 since αVO. Hence the number of possible
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values of p'3 is at most two. If p'3 is determined, then p2 (hence p3) is also deter-
mined by (15).

If α' = 0, the equation (18) on p'2 turns out to be

and the number of possible values of p'2 except zero is at most one. If p'2 = Q
then p2p'3 = Q since α' = 0. When £3 = 0 we get p2 = q2 by (15), so p3=—t — q2.
On the other hand, if p2 = 0 (hence p3 = — ί), we have

b(p'τ)2 + b'p'3 + f = 0

from Lemma 13, which is a non-trivial equation on p'3. Hence the number of
possible values of p3 is at most two. Thus the number of the branches from A is
at most four.

Case(ii) x = l, y = 0.
Substituting x = l, y = 0 to the equations in Lemma 13, and. eliminating p2,

Ps> P'^ we get

(19) b(p'2γ + b'(p'2Y + t'(ptf + a'tp'2 + t2a = 0.

The equation (19) on p'2 is non-trivial. In fact, assume that all the coefficients of
(19) are zero. Then, to begin with, b = b' = t' = Q. By (10), (α, α') = (0, 0) is not
possible, hence f = 0. Accordingly, we have

AB=TX, XY= a'TA + aA2.

So, ABY=TXY=a'T2A + aTA2, that is, BY-a'T2-aTA = Q, which contradicts
the linear independence of the standard monomials. Consequently, by the
equation (19) on p'2, the number of possible values of p'2 is at most four. From
Lemma 13, (12), and }> = 0, we get

PX = tT(A-P) - p'2A(A-P).

Hence P is determined if a value of p2 is determined. Q. E. D.

REMARK. (1) If x = 1, ̂  = 0, then the number of the branches from A is at
most four, regardless of whether there is a branch from B or not.

(2) If x = 1, y = 0 and if there exist branches from both A and B, then both
the numbers of the branches from A and from B are at most one. In fact, by
Lemma 14 we get

PQ= -p'2τ(A-P).

This means that the branch Q from B is uniquely determined by the branch P
from A. Also, the converse follows immediately from the symmetry of the poset
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and the straightening relations of AB and XY.

PROOF OF PROPOSITION H. Let β and β* be branches from B and r2, r2

(resp. r3, r'3) be the coefficients of Tβ*, BQ* in the straightening relations of β* Y
(resp. Q*X).

Thanks to the Remark after the proof of Prop. G, we have only to consider
the case (x, y) = (l, 1). By Lemma 13, we get

(20) p2 + p'2q'3 = q2 + p'3q'29

(21) p2 + p'2r'3 = r2 + p'J2.

Subtracting (21) from (20), we have

(22) (g'3 - r3)p2 = (q2 - r2) + (<? i ~ Γ2)p3.

Moreover, multiplying p2 we have

(23) (^3 - r3) (p2)
2 - (^[2 - r2)p2 - α(^f2 - r2) = 0

since α=p2p3.
[1] The case Λ 7^0.

The equation (23) on p'2 is non-trivial, since q'3 = r3, ^f2 = r2 and ^f2 = r2 (hence
<23 = r3) imply β = β*. So, we have the desired result from Lemma 16.

[2] The case α = 0.
In this case the equation (23) turns out to be

Suppose #3^3 or q2¥=r2. Then the number of possible value of p2 except
zero is at most one. Let p2 = 0. Firstly, if q2 Φ r'2 then p3 is uniquely determined
by (22). Accordingly, p2 (hence p3) is uniquely determined by (20). Secondly,
if q2 = r'2 then q'2 = r2=Q by Lemma 16, so p2 is uniquely determined by (20) and
(21), that is, P2 = q2 = r2. Note that p^O, since p2 = 0 implies ^2 = r2 = 0, thus
Qγ= β* y== α' Γ2. Since j?2 ̂  0, p3 is also determined by a' = p2p'3 + p'2P$-

Suppose β3 = r3 and q2 = r2. Then q'2^r'2 since Q^β*. Hence g'3 = r3 = 0
and fe=0 since fe = #243 = r2r3. In this case we get p3 = 0 by (22). So, we
have p2 = q2 by (20). Accordingly,

py= - τ{b'T+(t + q2)P} + AY

and the branch P from A is uniquely determined if it exists. Q. E. D.

EXAMPLE e) The Veronese subring /c[x, y, z]<3> of /c[x, y, z], treated in
example c), also turns out to be a homogeneous ASL on the poset
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Λ P2 P3 P4 X Y Q

1B

over k by means of

T=x(x2-yz),

Fig. 48.

X =

where α, jβ, 7, β are distinct non-zero elements of fe and £a<b=(a + b~)x — aby — z
is a linear form in fc[x, y, z].

EXAMPLE f ) As usual, let x, y, z be indeterminates over k. We can con-
struct a homogeneous ASL domain on

Λ P2
Qι Q2

T
Fig. 49.

over k by means of

T=x(x2-yz\ A = x{x2+(y-z)x-y*}, B = z(x2-yz), X = y(x2-yz),

F= x{x2+(z-y-)x-z2}, P, = x\y-z), P2 = - χ^(y - z) (2x - y - z)/(z - x),

βi = - (x2-yz)2/(y-z), Q2 = (χ2-^)2/(χ-3;),

whose straightening relations are

AB=T(-T+X+Y), XY=T(-T+A+B), P1B

P2B=T(-A+Y+P2), P1X = T(T-A + P1), P2X

), P2Y=T(-T+P2)+AY, ρ1^
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EXAMPLE g) Let n be an arbitrary positive integer. We can construct a
homogeneous ASL domain R on

Fig. 50.

over fe. In fact, put

T=xz 2, ,4 = xj;z, £ = 0c2 + z2)z, X = x2y, Y= yz2,

Pt = xyz2l(z-x/Pi) (i = l, 2,..., n),

where Q^Pi e fc, Pi^pj if zVΛ and we have the straightening relations as follows:

AB = T(X+ Y), X Y = ^l2, Pβ = T{-

Note that this example is not normal and the normalization of Jί is R[TY/A]

This example was discovered in the following way. Suppose x = l, y = l,
Then by Lemma 13 we get

(24) bξ* + 6'ξ3 + (t'-4ab)ξ2 + (ta'-4ab')ξ + {ί2α-4αί'-f (α7)2} == 0,

where ξ=p2 + α/P2- If this equation (24) on ξ is non-trivial, then the number of
the branches from A is at most eight. Accordingly, only when all the coefficients
of (24) are zero, there is the possibility of having an arbitrary number of the
branches from A. In this case

AB=T(X+Y),
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and we get this example g) if we put α = 1.
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