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Introduction

The concept of ASL (algebra with straightening laws) is an axiomatization
of the “straightening formula’ appearing in invariant theory. This axi-
omatization, which is lucid and charming, associates commutative algebras with
combinatorics through partially ordered sets (poset for short) and moreover, with
topology through simplicial complexes.

Many interesting rings which appeared in classical invariant theory, such as
coordinate rings of Grassmann varieties, determinantal and Pfaffian varieties
turned out to be ASL, and we can obtain many informations concerning these
rings by means of corresponding posets.

On the other hand, as far as the authors know, all the examples known when
we started this work, are normal, rational over the base field and are rational
singularities in characteristic zero, and D. Eisenbud has proposed a conjecture
in [3] that every ASL domain on a wonderful poset should be normal with rational
singularities.

However, in the course of classifying Gorenstein ASL domains of dimension 3,
we have discovered examples of non-normal ASL domains on wonderful posets
(cf. example g)). These are examples of non-normal Del Pezzo surfaces (a Del
Pezzo surface is a projective surface X whose anti-canonical sheaf wx! is ample)
of arbitrary high degree and we are sure that the theory of ASL will be very helpful
to construct interesting examples of rings or varieties with given properties.

Our final goal is to classify all the three dimensional homogeneous Gorenstein
ASL domains over a field. Toward this goal, in this first part, we will determine
all the posets on which there exist three dimensional homogeneous Gorenstein
ASL domains. Moreover, in this process we will show that every three di-
mensional homogeneous ASL domain over a field is Cohen-Macaulay. Our
fundamental method is quite elementary and its origin is in [5].

The main result in this paper is the following

THEOREM. Let k be a field. The posets on which there exist three di-
mensional homogeneous Gorenstein ASL domains are among the followings:
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Moreover, if k is infinite, there exist examples of homogeneous Gorenstein
ASL domains on every poset listed above.

We close this introduction with some remarks concerning Hodge algebras
defined in [2]. Though the concept of Hodge algebras is generalized from that
of ASL, the gap between them is remarkable. For example, it is shown in [6]
that every graded ring over a field has a structure of a Hodge algebra. This fact
makes a strong contrast to the fact that the graded rings which can be expressed
as an ASL are very limited ones.

1. Notation and preliminaries

We here summarize basic definitions and terminologies on commutative
algebras and combinatorics. Consult [2], [3] for further informations.

(1.1) All posets (partially ordered sets) to be considered are finite.

The length of a chain (totally ordered set) X is the cardinality #(X) as a set.

The rank of a poset H, denoted by rank(H), is the supremum of length of
chains contained in H.

The height of an element o« in a poset is the supremum of length of chains
descending from «, and written by ht(x). Note that rank(H) and ht(x) in this
paper are one more than those in [1] or [2].
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An ideal in a poset H is a subset I such that a eI, fe H, and f<a together
imply fel.

(1.2) Suppose R is a ring and H, a subset of R, is a poset. A monomial
is a product of the form «,a,---a, where o;€ H. A monomial a,a,---«, is called
standard if a; <o, <---<a, Now let k be a field, R a k-algebra, H a poset
contained in R which generates R as a k-algebra. Then we call R an algebra with
straightening laws on H over k if the following conditions are satisfied:

(ASL-1) The set of standard monomials is a basis of the algebra R as a
vector space over k.

(ASL-2) If a and fin H are incomparable (written as a~ f) and if

(*) af = X rYi1tVi2* Vipo

where 0#r; € k and y;; <y;, <+, is the linear combination of standard monomials,
then y;, <a, B for every i.

Note that the right-hand side of the relation in (ASL-2) is allowed to be the
empty sum (=0), but that, though 1 is a standard monomial, no y,-ly,-z---yi,,; can
be 1. The relations (*) are called the straightening relations for R.

(1.3) We denote by [aff] the set of standard monomials which appear in
the right-hand side of the relation for af with a~pf. More generally, for a
monomial oy, -+, we denote by [a;a,---a,] the set of standard monomials which
appear in the standard monomial expression of a;a,---a,.

It is well known that the dimension of R as a k-algebra coincides with the
rank of H (see [2]).

(1.4) An ASL R on a poset H over a filed k is called graded if there is a
grading R=@®,>¢R, such that Ro=k and each element of H is homogeneous of
positive degree.

When H =R, we say that R is homogeneous.

(1.5) Throughout the remainder of this paper, we fix a field k. For conven-
tion, unless otherwise stated, we use small letters of Roman alphabet, for example,
t, a,, by, p%,... to denote the elements of the field k, and use capital letters, for
example, A, B, T,... or Greek letters, for example, o, f,... to denote the elements
of the poset H.

2. Every three dimensional homogeneous ASL domain over a field is Cohen-
Macaulay

In this section, unless otherwise stated, let H be a poset of rank 3 with a
unique minimal element 7, and R be a homogeneous ASL (not necessarily a
domain) on H over a field k.

Lemma 1. If A, BeH, ht(A)=ht(B)=2, A#B and Tae€[AB], a#T, A, B,
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then ht(e)=3 and a> A, a> B (for the definition of [AB], cf. (1.3)).

PrOOF. In general, if o, B, ye H, a~p, then o?¢[af], and moreover,
y? € [«f] implies y<a, y<§f.

Now, Tu?2e[a(AB)] since Tue[AB]. However, if we assume a~ A then
Tu2 ¢ [(xA)B] because ht(B)=2, B#a, a contradiction. So, o is comparable
with 4 and, consequently, a> A4 because a# A4, T and ht(A)=2. By the same
argument, «> B. Q.E.D.

NotaTiON. Suppose that B, Ce H, ht(B)=ht(C)=2, B#C. Then BAC
means that there exists X € H such that X>B, X>C. On the other hand, if
Y,ZeH, ht(Y)=ht(Z)=3, Y#Z, then Yv Z means Y> A, Z> A for some element
A€ H with ht(A)=2. Moreover we write the negation of BA C (resp. Yv Z) as
BAC (resp. Y™ 2).

LEMMA 2. If A, Xe H, ht(A)=2, ht(X)=3, A~ X and if Tae[AX], a#T,
A, X, then

(i) ht(@)=2,a<X,anA,or

(i) ht(0)=3, a>A4, av X.

PROOF. As Tue[AX], we have Tu? € [a(4X)].

(i) If ht(x)=2, a# A, then as Ta? € [(x4)X], there exists fe H, with Tfe
[¢A] and a?2e€[BfX]. This means f>oa and X >a. Moreover, as Tpe[aAd],
f>A by Lemma 1.

(i) If ht(a)=3, a# X and if a~A, then Tu2¢[(x4)X]. So, a>A. If
a¥ X, every standard monomial of [aX] is of the form TP (fe H), and Tu?¢
[(TB)A]. This contradicts the fact that Tu? € [(«X)A4]. Thus we have a v X.

Q.E.D.

LEMMA 3. If X, YeH, ht(X)=ht(Y)=3, X#Y, X~¥Y and if Tae[XY],
a#T, X, Y, then either

(i) ht(0)=2, a<X, B>a, BV Y for some Be H with ht(f)=3, or ht(e)=2,
a<Y, y>a, yv X for some ye H with ht(y)=3, or

(i) ht(@)=3, Xva, Yva.

PrROOF. As Tue[XY], XY, we have Ta2 e [a(XY)].

(i) If ht(a)=2, a~ X, as To? e [(xX)Y], there exists ye H with Tye [aX]
and a2e[yY]. This means y>a, Y>a. Moreover, as Tye[aX], yvX by
Lemma 2.

(i) If ht(a)=3, a+ Y, then every standard monomial of [«Y] is of the form
TR (Be H). Hence Tu?¢[X(«Y)]. This contradicts the fact that Tu? e [a(XY)].
Thus we have av Y. Similarly, o v X. Q.E.D.

Lemma 4. If A, X, Ye H, h(X)=ht(Y)=3, ht(A)=2, X#Y, X>A, Y>A
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and if Aue[XY], A<a, then a=X or a=Y.

ProoF. Let I be the subset {a e H; a} A} of H and H'=H —I be the com-
plement of I in H. Note that H' is a subposet of H with a unique minimal element
A. Since I is an ideal of H, [2, Prop. 1.2b)] says that the quotient algebra R' =
R/I is an ASL on H'’ and that Aae[XY] in R implies Aae[XY] in R". Now,
in R’, as Aae[XY], we have Aa2e[a(XY)]. If a#Y, every standard monomial
of [Ya] is of the form AB (Be H'). As Aa?e[X(Yx)], there exists fe H' with
o2 e[fX]. This means a=X=4. Q.E.D.

ProrosiTION A. Let H be a poset of rank 3 with a unique minimal element
T. Assume that there exist three elements A, B, and Y of H which satisfy the
following conditions:

(i) ht(A)=ht(B)=2, h(Y)=3, Y>B and A~Y,

(ii) AAB, and

(ili) X» Y for any element X € H with X > A.
Then any homogeneous ASL R on H over a field k cannot be an integral domain.

ProoF. By Lemma 1 we have
€)) AB = T(tT+aA+bB)
and moreover

AY = T(cT+dA+eY)

by Lemma 2. We calculate the standard monomial expression of ABY in two
ways, namely
ABY = (AB)Y = TY(tT+aA+bB)
=tT?Y + aT*cT+dA+eY) + bTBY
= (AY)B = TB(cT+dA+eY)
= cT?B + dT*(tT+aA+bB) + eTBY.

Now we have b=e from the coefficients of TBY, also t+ae=0 from T2Y, hence
t=—ab. If we substitute t= —ab in (1), then we get

(A-bT)(B—aT) =0,
which means that the algebra R is not an integral domain. Q.E.D.

Note that Prop. A implies that H — {T} is connected if R is an integral domain.
Since H is of rank 3 with a unique minimal element T, the connectedness of
H —{T} is equivalent to Cohen-Maculayness of the poset H over the field k (see
Baclawski [1]). Combining this result with the fundamental theorem on ASL
[2, Cor. 7.2] we have the following
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COROLLARY. Every three dimensional homogeneous ASL domain over a
field is Cohen-Macaulay.

Let H be a poset of rank 2. An element P € H is called a branch if 1) ht(P)=2
and there exists a unique element 4 such that P> A, or 2) ht(P)=1 and there
exists a unique element X such that P<X. Moreover, {P,, P,,..., P,} (P;€ H)
is called a branch sequence of length n if P, is a branch of H and P; is a branch of
the subposet H—{P;, y,..., P,} for all i (1<i<n—1), in such a way that P;_,
is a unique element of H—{P,,,..., P,} which is comparable with P; (2<i<n).

~ Suppose that a poset H is of rank 3 with a unique minimal element 7. Then
an element Pe H, P# T, is called a branch of H when P is a branch of the rank 2
poset H—{T}.

PROPOSITION B. Let H be a poset of rank 3 with a unique minimal element
T, and R be a homogeneous ASL on H over a field k. Suppose that P is a branch
of H with ht(P)=3 and that Ae H is a unique element with P> A, ht(A)=2.
If o, Be H—{P}, a~f, then P does not appear in the right-hand side of the
straightening relation of af, that is, TP, AP, P2¢[af].

Consequently, k[H—{P}] is an ASL subring of R with the same straighten-
ing relations as those of R.

Proor. Thanks to Lemma 1, Lemma 2 and Lemma 3, we have only to
consider the case of ht(a)=ht(f)=3 and av . In this case it is obvious that
P2¢[af] and moreover, by Lemma 4, AP¢[af] evenif a>A and B> A.

Now we shall prove TP¢[af]. In general, ify, e H, y<4, ht(y)<2, 6#P,
then TP2¢[(y6)P]. In fact, it is easy to see that TP2 does not belong to [T2P],
[TBP], [TZP] (B, Ze H, ht(B)=2, ht(Z)=3, Z+# P), [A%P], and [AZP] (ZeH,
ht(Z)=3,Z>A, Z#P). Moreover, TP2¢[B2P] and [BZP] (B, Ze H, ht(B)=2,
ht(Z)=3, B# A, Z# P, Z> B), since every standard monomial of [ BP] is of the
form TP (B e H).

Accordingly, TPe[af] implies TP?>e[(«f)P]. We may assume o>A
since TP2¢[f(aP)] if o~ A, and similarly f>A. By Lemma 4, the standard
monomials of [aP] are 42, AP, Ax and of the form Ty (ye H). But TP? does
not belong to [(Ty)B], [4%8], [A(PB)] and [A(«p)], hence TP?¢[(«P)B]. This
shows TP¢[af]. Q.E.D.

ReMARK. The same result holds for a branch of height 2.

3. Calculation of Poincaré series and Gorenstein homogeneous ASL of
dimension 2

Let R=@®,>9 R, be a graded ASL on a poset H over a field k=R,. We
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denote by Pg(0) the Poincaré series of R, namely
Pr(0) = 3,20 (dim; R,)0".
LemMa 5. ZR(0) = X, << (TT1<ics 0980 /(1 — Gde8(20)),
where o, <---<ag ranges over the set of chains of H including the empty set.

Proor. The k-vector space R has a k-basis consisting of the standard
monomials. If we fix a chain a; <--- <o, and count all the standard monomials
of the form aft1---a%s (n;> 1),

P 1<i<s @rideg(a)+etnsdeg(as)
1 1=

= [Ticics (X iz (B4c8)m)
= [Ticig, 0980 ](1 — G4e8(=0)),

Summing up these terms, we get the result. Q.E.D.
COROLLARY. If R is homogeneous, then
Zr(0) = Tocicaci(6/(1-0)),
where d=rank(H), c; is the number of the chains of length i in H, and c,=1.

DEFINITION. A rank 2 poset H is called a eycle of degree 2n if H is of the form

Xl Xz Xn—l Xn

A| Az An-—l An

where n is a positive integer.

If R is a homogeneous ASL on a poset H with a unique minimal element T,
then R is Gorenstein if and only if so is R/(T), since T is a non-zero divisor on
R ([2, Th. 5.4]) and R/(T) is an ASL on H—{T}. So, for a while, we will study
homogeneous ASL (not necessarily a domain) on a poset H of rank 2.

By Stanley [7, Th. 4.1], if R is Gorenstein, then

(%) Pr(1/60) = 6°Px(6)
for some integer p. By the calculation of Poincaré series as above,

2r(0) = (1+(cy —2)0+(1 —cy +¢,)0%)/(1—6)?
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and if 2,(0) satisfies (%), then 0<p<2 and
(a) if p=2, then ¢;=2and ¢,=1,
(b) if p=1, then ¢;=3 and ¢,=2,
(¢) if p=0, then ¢, =c,>3.
It is obvious that if R satisfies (a) (resp. (b)), then

H= (resp. or )

Fig. 15. Fig. 16. Fig. 17.

and it is easy to check that H is a cycle with branch sequences if R satisfies (c).

ProPOSITION C. If R is a Gorenstein homogeneous ASL on a poset H of
rank 2 over a field k, then H is

VARRWA\

Fig. 18. Fig. 19. Fig. 20.

or a cycle with branch sequences which satisfies the following conditions:
(i) the length of branch sequences of H from a cycle is at most 1,
(ii) if PeH is a branch of H, then ht(P)=2.

To prove this, we need some lemmas.

SUBLEMMA 1. If p is as in (%), then p= —a(R), where a(R) is defined in
[4, (3.1.4)], that is, if R is Gorenstein, then the canonical module Ky of R is
isomorphic to R(—p) as graded R-modules.

ProOF. We may assume k is infinite. If we take a regular sequence (x,, x,)
from R, then Py, x,)(0)=(1—0)22x(0) and on the other hand, a(R/(x;, x;))=
a(R)+2=deg (Pr/(x,,x»(0)) (cf. [4, (3.1.6), (3.1.4)]). From these equalities, we
get a(R)+2=2—p. Q.E.D.

SUBLEMMA 2. Let H be a poset of rank 2, I be an ideal of H and R be
a Gorenstein ASL of a(R)=p=0. If

H—1 ~ (resp. )s

Fig. 21. Fig. 22.
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then [0: I],=(0) (resp.dim,[0: I],=1), where [0: I], is the vector space of
homogeneous elements of degree 1 of R which is annihilated by I.

PROOF. By [4, (22.9)],
Kg)1 =~ Homg (R/I, Kg) ~ Homg (R/I, R) =~ [0: 1]
as graded R-modules. On the other hand, if

H—-] =~ (resp. ),
Fig. 23. Fig. 24.
then Ky, ~(R/I)(—2) (resp. Kg;;~(R/I)(—1)), which implies [0: I]; =(0) (resp.
dimk [O: I]1=1). Q. E. D.

ProOF OF ProOPOSITION C. Suppose that R is a Gorenstein ASL on H with
rank(H)=2. We may assume a(R)=0, since if a(R) <0, our assertion is obvious.
(i) Let {P,,..., P,} be a branch sequence of length n>2.
1) IfpP,_,>P, then I=H—{P,_, P,} forms an ideal and
Pn—l
H-] =

P,
Fig. 25.

But as P,e[0: I],, this contradicts Sublemma 2.
2) In case P,_, <P, let Q be a unique element of H such that Q>P,_,.
Then I=H—-{Q, P,_,, P,} is an ideal of H and

Q P,
H-1 =
Pn—l
Fig. 26.

But as P,_,, P,e[0: I],, this contradicts Sublemma 2.
(ii) Let P be a branch of height 1 and let Q be a unique element of H such
that Q>P. Then I=H—{Q, P} is an ideal and

Q
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But as Pe[0: I],, this contradicts Sublemma 2. Q.E.D.

ReEMARK. (1) Conversely, if a poset H of rank 2 satisfies the condition of
Prop. C, there exists a homogeneous Gorenstein ASL R on H over k, if k is
infinite ([8]). _

(2) It should be noted that the Poincaré series of an ASL on a poset H is
determined by H. If Risan ASL domain on a poset H, such that H — { T} satisfies
one of the conditions (a), (b), (c), then R is necessarily Gorenstein by Stanley
[7, Th. 4.4]. For example, if R is an ASL on one of the following posets, then
R cannot be a domain.

AN

Fig. 28. Fig. 29.

ExaMPLE a) We put

Fig. 30. Fig. 31.

Then, by Prop. A, there exists no ASL domain on H, or H,, although H;—{T?}
(i=1, 2) satisfy the conditions of Prop. C.

REMARK. Let H be a poset of rank 3 with a unique minimal element T.
If H—{T} is a cycle of length >10 with branches of height 2, then there exists
no ASL domain on H.

SUMMARY. If R is a homogeneous Gorenstein ASL domain on a poset H
of rank 3, then (H has a unique minimal element T and) H—{T} is one of the
followings:
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Fig. 32. Fig. 33. Fig. 34. Fig. 35.

with branches of height 2 or

Fig. 36.

with branches of height 2.

Fig. 37.

4. The fundamental transformations of a homogeneous ASL

In this section we will define the fundamental transformations of a homo-
geneous ASL, which are indispensable in the following sections.
" Let k be a field and R be a homogeneous ASL on an arbitrary poset H over
k. Fix an arbitrary element a € H and define an embedding ¢,: H—R by

ca'“""' zﬁ<¢dﬁ'ﬂ if x=a
Pox) =

X if x#a
where O#c, € k and dge k.

ProOPOSITION D. The k-algebra R is a homogeneous ASL with respect to
@ (H).

ProOF. We have
o= c;{o ()= FXp<ads- B}

If y, 6e H and y~ &, ¢,(7)9,(0) can be expressed as a linear combination of standard
monomials of ¢,(H) which satisfies the axiom (ASL-2)." 'Hence any non-standard
monomial is a linear combination of standard monomials; in other words, the
set of standard monomials with respect to ¢, (H) spans the k-vector space R.
Now the linear independence of the standard monomials follows immediately
from the consideration of Poincaré series. Q.E.D.

We call ¢, as above a fundamental transformation (or linear change) by the
element x € H.
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DEFINITION. Let R, and R, be two homogeneous ASL on a poset H with
the embeddings i,: H-R, (m=1,2). We say that R, and R, are equivalent
if there exists a k-algebra isomorphism f: R, »R, such that foi; =i,. We say that
R, and R, are isomorphic (as ASL) if there exists an embedding ¢oy: H-R,,
where ¢ is a composition of fundamental transformations and ¥ is a poset
automorphism of H, such that (R,, @) and (R,, i,) are equivalent.

It is easy to see that this isomorphism is an equivalence relation since the
inverse of a fundamental transformation is again a fundamental transformation.

ExXAMPLE b) Any homogeneous ASL domain on the poset

X Y V4 w
B “
LD
T
Fig. 38.

is unique up to isomorphism and isomorphic to the Segre product k[s?, st, t2]%
k[a2, ab, b*]. Here s, t (resp.a, b) are indeterminates over k and the ASL
structure of k[s2, st, t2] (resp. k[a?, ab, b?]) is given by

52 2 a? b?

(resp. ).

st ab
Fig. 39. Fig. 40.

The k-algebra k[s2, st, t2] # k[a2, ab, b?] is a homogeneous ASL domain on
H by means of

X =522, Y=+ta? Z=1*b2, W= s2b?,
A = s2ab, B = sta?, C = t?ab, D = stb?,
T = stab

(see [2, IIL. 10)]).

PROOF OF THE UNIQUENESS. Let R be a homogeneous ASL domain on the
poset H over k. By lemma 1, we have

AC = T(tlT+a1A+C1C)3 BD = T(t2T+b2B+d2D).
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Applying the linear changes
ouA) =A—c,T, ¢y(B)=B—d,T,
¢c(C) =C—a,T, ¢pD)=D —b,T,
we may assume AC=T2, BD=T2. On the other hand, we have
AB = T(t;T+a3A+b;B+x3X)
by Lemma 1. We claim x;#0. Assume x;=0. We have
AY =T, T+a,A+bB+x,X+y,Y)

by Lemma 2. Now if we compare the coefficients of TBY, TBX, TB2, and T?B
in (AB)Y=B(AY), we get

by =1y4 x4=0, by=0, azb,=1,+ asb;.
Hence
AY = T(t,T+aA+y,Y), ty= —auy,,
so we have
(A=ysT)(Y=a,T) =0

which contradicts our assumption that R is a domain.
Since x;#0, we may assume AB=TX by the linear change

(px(X) = X3X + (t3T+a3A+baB).

Similarly we may assume BC=TY,CD=TZ,DA=TW. From these six relations
we can get all the straightening relations of R, which coincide with those of
k[s2?, st, t2] # k[a?, ab, b?].

5. Branches from the cycle of degree 6

Let k be a field and R be a homogeneous ASL domain on the poset
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over k. By Lemma 1 if we put
AB =T, T+aA+bB+x,X),
BC = T(t,T+byB+c,C+y,Y),
CA = T(t;T+c3C+azA+2z5Z),
then we have the following
LEMMA 6. x; # 0, z; # 0.
PrOOF. Suppose x,=0. Then
AB =T(t;T+a;A+b,B).
On the other hand,
PB = T(tT+aA+bB+ pP+xX)

by Lemma 2. Comparing the coefficients of TAP and T?P in (AB)P= A(PB),
we have
a, =p, t;+pb; =0,

so, t;+a,b,=0. Hence (A—b,T)(B—a,T)=0, a contradiction. Thus, x, #0.
Similarly, we can prove z; #0. Q.E.D.
Since x; #0, z; #0, by the linear changes ‘
ox(X) = x X + (t,T+a,A+bB),
(pz(Z) = 232 + (t3T+ C3C+03A) s
we may assume AB=TX, CA=TZ. On the other hand, if y,#0 we may also
assume BC=TY. If y,=0, by the linear changes ¢g(B)=B—¢,T, ¢ (C)=C—b,T
we may assume BC=T2.
Consequently, we can reduce the straightening relations of AB, BC and CA
to the following two types up to isomorphism of ASL:
type [I] AB=TX, BC=TY, CA=TZ,
type [11] AB=TX, BC=T? CA=TLZ.
Note that in the case of type [I] we liave CX'=AY=BZ, and in the case of type
[II] we have CX=BZ=TA, XZ=A2.
Also, after a linear change on P, we may assume
PB = T(t1T+a1A+p1P),
PC = T(t2T+a2A+C2C+p2P+Zzz)-

Case I. Let R be of type [I].
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Lemma 7. z, #0.
PROOF. Suppose z,=0. Then
PC = T(t2T+a2A+Czc+p2P).

Comparing the coefficients of T2B, T2X and T?Y in (PB)C=(PC)B, we have
t,=a,=c,=0, and PC=p,TP, a contradiction. Q.E.D.

By Lemma 7, applying the linear change ¢ p(P)=P/z,, we may assume z, =1,
that is,

2) PB =T(t,T+a;A+p.P),
3) PC =T(t,T+a,A+c,C+p,P+Z).
We put

BZ = CX = AY = T(tT+aA+bB+cC+xX+yY+2zZ).

Substituting these relations to the standard monomial expression of (PB)C=
(PC)B, we get the following relations: ’

Pitz — Doty =1, pia; —pa;=a, —t,=>b,
tl+p102=c, ?"a2=x, —,‘-C2=y,'a1+pl=z.

From these relations we get the following equations

)] (b+xy)(p)? + (=bz+cx+t+ay)p, + (ac—tz) =0,
) (c+yz)(p2)? + (bz—cx+t+ay)p, + (ab—tx) =0
on p, and p,.

LEMMA 8. At least one of the coefficients of above equations is not zero.

Proor. Assume that all the coefficients of (4) and (5) are zero. To begin
with, b+xy=0, c+yz=0, hence bz—cx=0. Accordingly t+ay=0 since bz —
cx+t+ay=0. Then

(A=yT)(B—zT)(C—xT) = (a+zx)T>(A—yT).

Since A—yT#0, we have (B—:zT)(C—-xT)=(a+zx)T?.  Thus' TY—xTB-
zTC —aT?=0, which contradicts the axiom (ASL-1). Q.E.D.

Case II. Let R be of type [II].

Applying a linear change on Y, if necessary, we may put
AY = T(txT+boB+coC+yoY),
PY=T({'T+a’'A+b'B+c'C+x'X+y'Y+2z'Z+p'P).
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From (PY)B=(PB)Y, we have the following relations:
a=b=x"=y=2=0, pP=0, ¢ =azty+ pit,
aco+pic'=0, t'=a;by, t; +a,y,=0.

Note that a; #0, p,; #0.
From these relations we get the following equation

6) bo(p1)* + topy + o =0

on p,, where at least one of b, t,, ¢q is not zero.
Consequently, summarizing the above calculations, in both type [I] and

type [1I] we have
PROPOSITION E. The number of the branches from A is at most two.

Proor. Thanks to the equations (4), (5) and (6), we have only to show that
there is no branch P’ from A, except P, with

@) P'B = T@t;T+ajA+p.P’)
and that there is no branch P’ from A, except P, with
6) P'C =T{t;T+a3A+c5C+p,P'+2).

Firstly, suppose that there exists a branch P’ with the relation (7). Then we
have t; =a, =0, and ¢} =a; =0, since (PB)P' =(P’'B)P, a contradiction.

Secondly, suppose that there exists a branch P’ with the relation (8). Since
CA=TZ, we have

PZ = (PC)A|T = t,TA + a,A* + ¢,TZ + p,AP + AZ,
P'Z = (P'C)A|T = t;TA + a5A* + ¢,TZ + p,AP’ + AZ.

As usual, if we compare the coefficients of T2P, T2P’, TAP and TAP' in (PC)P’' =
(P'C)P, we have

a, =ay = — Py, ty+¢py =0, t5+ chp, =0.
Hence
(P=P)C = — py(c;—c))T? + (c;—c3)TC + p,T(P—P’).
So, we have
{(P=P)—(c;—c))T}(C—p,T) =0,
which is a contradiction. Q. E.D.

PROPOSITION F. If there exists a branch from B (or C), then the number of
the branches from A is at most one.



Study of algebras with straightening laws 43

ProOF. Let Q be a branch from B. By Lemma 3 we have
PQ =T{t'T+a’A+b'B+x'X+p'P+4q'Q).

Note that this case is of type [I] by Lemma 6 applied to the branch Q.

Now PB=T(t,T+a,A+ p,P) and, without loss of generality, we may also
assume QA=T(t,T+b,B+q,0Q). Then, since (PB)Q=(PQ)B and (QA)P=
(PQ)A, we have a'=b"'=x"=p'=q'=0. Hence PQ=1t'T?2.

If there exists another branch P’ from A, then P'Q=¢"T? in a similar way.
Accordingly we have #'T2P'=t"T2?P, which means t'=t"=0 and we have a
contradiction. Q.E.D.

ExaMpPLE ¢) Let k[x, y, zZ]® be the Veronese subring of the polynomial
ring k[x, y, z] which is generated by all the monomials of degree 3. The k-
algebra k[x, y, z]® turns out to be a homogeneous ASL domain on the poset

Uu X v Y zZ W

by means of
T = xyz, A=yz(y—z), B=zx(z—x), C=xy(x—y),
X = 2z-x)(z—y), Y=x(x—y)(x—2), Z=yy—-2)(y—x),
U = yz2, V=zx2 W= xy2

ExaMPLE d) Let o and f be non-zero elements of k with a+# 8, and x, y, z be
indeterminates over k. We can construct a homogeneous ASL domain on
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over k by means of
T = xyz, A=xz(y+z), B=x2y, C=yz?
X =x¥y+2), Y=yx—az)(x—p2)(y+2), Z=1z%(y+2),
P = xz2(y+2)/(x—az), Q= xz%(y+2z)/(x—Bz),

whose straightening relations are
AB =TX, BC=T?, CA=TZ, AY= T{—(a+p)T+B+afC},
BZ=TA, CX=TA, XY= — (a+B)TB + B> + afT?
YZ = — (a+B)TC + T? + afC?, ZX = A2, PB = T(A+aP),
PC = (1/)T(P-Z), PX = A(A+aP), PY= T(T—BC),
PZ = (1/))A(P-2), QB=T(A+BQ), QC = (1/p)T(Q-2),
QX = A(A+Q), QY=T(T-«C), QZ = (1/pAQ-2),
PQ = (1/(a—BNAP—-Q).

Note that this example is of type [II], and «, B are the roots of the equation (6).

6. Branches from the cycle of degree 4

Let k be a field and R be a homogeneous ASL domain on a poset H which is
of the following type.

Fig. 44.

Our final results in this section are as follows.

PROPOSITION G. If there exists a branch from B, then the number of the
branches from A is at most four.

ProPOSITION H. If there exist two branches from B, then the number of the
branches from A is at most two.
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Now let R be a homogeneous ASL domain on the poset

P X Y

T
Fig. 45.
over k. After applying linear changes on A, B, X, Y, we may assume
) AB = T(T+xX +yY),
(10) XY=T{#T+a'A+b'B) + aA? + bB2.
On the other hand, we have
PB =T, T+a,A+b;B+x,X+y,Y+p,P),
PX = T(t,T+a,A+b,;B+x, X+ y, Y+ p,P) + A(ayA+x2X + pyP),
PY = T(t3T+a3A+b3sB+x3X +y3 Y+ p3P) + A(a34A+ y3Y+ psP).
Apply, if necessary,
@p(P) =P — x3A — b,T.
Then we may assume b; =0, x5, =0.
LEMMA 9. The coefficients x,, x,, X3, ¥, and y5 are all zero.

Proor. Comparing the coefficients of TX2, TBX and TBY in (PB)X =
(PX)B, we get x;,=x,=y,=0. Also, comparing the coefficients of TBX and
TBY in (PB)Y=(PY)B, we get x;=y;=0. Q.E.D.

LemMMA 10. a; =a3=0.

Proor. Compare the coefficients of TAX and 42X in (PX)Y=(PY)X.
Q.E.D.

LemMMA 11. y3 # 0.

Proor. Comparing the coefficients of 42Y.and TAY in (PX)Y=(PY)X, we
have

a + pay3 =0, a, + p,y3 =0.
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On the other hand, comparing the coefficients of T24, TA2, TAY and TAP in
(AB)P=(PB)A, we have

t, =Xa, = — py)3X, a; = Xay = — p3y3X, Y; =YY3 P1=Xp3+ ypi.

Hence, if y3=0 then PB=p, TP, which contradicts our assumption that R is a
domain. Q.E.D.

Since y3#0, we consider P/yj; instead of P, and we may assume y;=1.
Consequently, we may start from the following relations:

(11) PB =T, T+a;A+y,Y+p,P);
(13) PY = T(t;T+b;3B+p;P) + A(Y+p5P).
LEMMA 12. t; = — xp,, a; = — Xpy, y; =1y, Py =XDs+ yp5

t, = y(b'+xp3b+ypsb), a, = —p,, b, =yb, a,= —p;,
ty = — x(b'+xp3b+ypsb), bz = — xb.

PrOOF. In the proof of Lemma 11, if we put y5=1, then we get
fy = —Xpy, Gy = —Xp3, Y1 =Y, 4= —DPy, a3= —Pj,
Py = xp>2 + yp3.

On the other hand, comparing the coefficients of TB2? in (PB)X =(PX)B and
(PB)Y=(PY)B, we get

b, = yb, by = — xb.
Also, comparing the coefficients of T?Y and T2X in (PX)Y=(PY)X, we get
t; = y(b'+xp3b+ypsb), t3 = — x(b'+xp3b+ypsb)
as desired. Q.E.D.

LemMMA 13. ¢+ xp, + yp3 =0, a = pyp5, a’ = p,p5 + paps,
' = pyps — (xp2+yp3) (b +xp3b+ yp3b).

Proor. Compare the coefficients of T2P in (AB)P=(PB)A, and A2P, TAP,
T2P in P(XY)=(PX)Y. Q.E.D.

Next, we consider a homogeneous ASL domain on the poset
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P X Y Q

T
Fig. 46.

over a field k. By the same argument as above, we may assume that the straight-
ening relations of QA4, QY and QX are

QA = T(E,T+b,B+%,X+q,0),
QY = T(i,T+b,B+ad,A+q,Q) + B(b3,B+q50),
0X = T(i;T+a;A+q;0) + B(X +450).

If we interchange A with B and X with Yin Lemma 12 and Lemma 13, we have

iy = —yq, b= —yq5 Xi=2x, q,=yq5+ xq5,
i, = x(a'+yqa+xq3a), b, = —gq,, a,=xa, b)= — g,
iy = — y(a'+yqra+xqza), as= — ya,

t+yq;, +xq93 =0, b=4q3q5, b =4q,q5 + q24;,
' = q,q9; — (y42+xq3) (@' + yq2a + xq3a).
If we put the straightening relation of PQ to be
PQ = T(toT+agA+boB+x0X +yoY+poP+400),
then we have
LEMMA 14, ag = — xpy, by = —yq3 x0=0, y,=0,
Po = XP2, 4o = Y42

Proor. Comparing the coefficients of TAX, TAY, TA%? and TAP in (PQ)A=
P(QA), we get

Xo =0, yo=0, ao=X;a3=—xp), po=X,p> = xp5.
Also, comparing the coefficients of TB? and TBQ in (PQ)B=Q(PB), we get

bo = y1by = — ya3, 4o = y14> = ¥4
as desired. Q.E.D.
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LEMMA 15. ty = — xp, — x2p3qs = — Y4, — Y*Pids.

Proor. Comparing the coefficients of T24 in (PQ)4A=P(QA) and T?B in
(PQ)B=Q(PB), we get

to = bya, + %10, + q,a0 = a,b, + y,b, + pybo.

Express this relation by x, y, p,, p5, p3, 42, 95 and g3, and we get the desired
result. Q.E.D.

Moreover, we consider a homogeneous ASL domain on the poset

P P X Y

T
Fig. 47.
over a field k. Suppose that the straightening relations concerning P* are
P*B = T(tfT+atA+ yFY+ p¥P*)
P*X = T(t3T+ a3 A+ b3B+ p3P*) + A(as*A+ p5*P*)
P*Y = T(t¥T+b3B+ p3P*) + A(Y+ p3*P*).
Then we have
LEMMA 16. If p5 = p5* then p,=p* =0 and a=0.

Proor. Comparing the coefficients of 42P and A2P* in (PX)P*=P(P*X),
we get ay=a5*=0 since p,=p>*. Hence p,=0 since a,=—pj. The equality
a=0 follows from Lemma 13. Q.E.D.

We have now finished the preliminary steps for the proofs of Proposition G
and Proposition H.

PROOF OF PROPOSITION G. By Lemma 15, we have
(14) Xpy + X?p3q3 = yq, + y*piq;.

If (x, ¥)=(0, 0), by Lemma 12, PB=0 and R is not an integral domain. As x and
y are in symmetric situation, we may assume x#0. Then we may assume x=1.
So, it is sufficient to consider the following two cases, (i) x=y =1, (ii) x=1, y=0:
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Case (i) x=y=1.
Substituting x=y =1 into (14), we have

(15) P2 + P293 = 4, + p3q5,

here we consider q,, g5 and g5 to be given. Multiplying p5 to the both sides of
the relation (15), we get

(16) 2Pz + (P2)°q3 = 4203 + aqs,
since p,p3=a by Lemma 13. Moreover, since we get
{a—(p2)?}p, = Up2)* + a'p)
from Lemma 13, we can eliminate p, from (16) and we have
(17 q5(P2)* — (t+92)(p2)* — {a’+a(q>+4q3)} (p3)* + aq,p; + a*q; = 0.

[1] The case a#0.
As an equation on p5, (17) is non-trivial. In fact, if all the coefficients of
the equation (17) are zoro, then t=0, t'=0, b=0, b'=0 and a’=0. Thus we get
AB=T(X+Y), XY= aA?,
QA =TX, QY=aTA, QX = — aTA + BX.
Multiplying Q to the equality AB=T(X +Y), we have ABQ=024+TQY=0Q24+
aT?4, hence BQ—Q?—aT?=0, which contradicts the linear independence of the
standard monomials. '
Consequently, if a#0 then, by the equation (17), p, can take at most four
different values. Thanks to Lemma 16, we get the desired resulit.

[2] The case a=0.
In this case, the equation (17) on p’ becomes

(18) q5(p2)* + q3(p3)® — a'(p)* =0,

which is non-trivial since g3 =¢;=a’=0 implies QX =BX.
If a’#0, by (18) the number of possible values of p, except zero is at most
two. If p,=0, from (15) we get

P2P3 = q2P3 + (P3)*q5.
Substitute a’=p,ps + p>p3(=p,p3), and we have
q2(p3)* + q2p5 — a' =0,

which is a non-trivial equation on pj since a’#0. Hence the number of possible
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values of pj is at most two. If pj is determined, then p, (hence p,) is also deter-
mined by (15).
If a’ =0, the equation (18) on pj turns out to be

(p2)3*(q3p2+4q3) =0,

and the number of possible values of p); except zero is at most one. If p5=0
then p,p3=0 since a’=0. When p5=0 we get p,=g, by (15), so p;=—1t—q,.
On the other hand, if p, =0 (hence p;= —1), we have

b(p3)* + b'ps+1t =0

from Lemma 13, which is a non-trivial equation on p;. Hence the number of
possible values of pj is at most two. Thus the number of the branches from 4 is
at most four.

Case (ii)) x=1, y=0.

Substituting x=1, y=0 to the equations in Lemma 13, and, eliminating p,,
P3» P3, We get

19) b(p2)* + b'(p2)* + t'(p)* + a'tp; + t2a = 0.

The equation (19) on p5 is non-trivial. In fact, assume that all the coefficients of
(19) are zero. Then, to begin with, b=b"=¢t'=0. By (10), (a, a’)=(0, 0) is not
possible, hence t=0. Accordingly, we have

AB=TX, XY=d'TA + aA>.

So, ABY=TXY=a'T?A+aTA?, that is, BY—a’'T?—aTA=0, which contradicts
the linear independence of the standard monomials. Consequently, by the
equation (19) on p5, the number of possible values of p) is at most four. From
Lemma 13, (12), and y=0, we get

PX =tT(A—P) — pbA(A—P).
Hence P is determined if a value of p} is determined. Q.E.D.

ReEMARK. (1) If x=1, y=0, then the number of the branches from A is at
most four, regardless of whether there is a branch from B or not.

(2) If x=1, y=0 and if there exist branches from both A and B, then both
the numbers of the branches from A and from B are at most one. In fact, by
Lemma 14 we get

PQ = — pyT(A—-P).

This means that the branch Q from B is uniquely determined by the branch P
from A. Also, the converse follows immediately from the symmetry of the poset
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and the straightening relations of AB and XY.

PROOF OF PROPOSITION H. Let Q and Q* be branches from B and r,, r)
(resp. r3, r3) be the coefficients of TQ*, BQ* in the straightening relations of Q*Y
(resp. 9*X).

Thanks to the Remark after the proof of Prop. G, we have only to consider
the case (x, y)=(1, 1). By Lemma 13, we get

(20) P2 + P295 = 9, + DP3q5,
(#2)) P2 + Doy =1y + pir.

Subtracting (21) from (20), we have

(22) (@5=r3)p2 = (q2—12) + (42— r2)p5.

Moreover, multiplying p5 we have
(23) (45—r3)(p2)* — (q2—712)ps — a(gz—13) =0

since a = p,p3.

[1] The case a#0.

The equation (23) on p5 is non-trivial, since g3 =rj, g,=r, and g5=r} (hence
q3=r,) imply Q=0*. So, we have the desired result from Lemma 16.

[2] The case a=0.

In this case the equation (23) turns out to be

(45—r3)(P2)* — (g2 —72)p> = 0.

Suppose g3 #r3 or g,#r,. Then the number of possible value of p except
zero is at most one. Let p,=0. Firstly, if g5+ r; then pj is uniquely determined
by (22). Accordingly, p, (hence p5) is uniquely determined by (20). Secondly,
if g5=r, then g5=r;=0 by Lemma 16, so p, is uniquely determined by (20) and
(21), that is, p,=g,=r,. Note that p,+#0, since p,=0 implies g,=r, =0, thus
QY=Q*Y=a'T?. Since p,#0, p; is also determined by a’= p,p5+ p>p;.

Suppose g3=r3 and g,=r,. Then g5#r, since Q#Q*. Hence g5=r;=0
and b=0 since b=g5g93=r3r;. In this case we get p3=0 by (22). So, we
have p,=gq, by (20). Accordingly,

PY= — T{b'T+(t+q,)P} + AY
and the branch P from A is uniquely determined if it exists. Q.E.D.

ExampLE €) The Veronese subring k[x, y, z]®® of k[x, y, z], treated in
example c), also turns out to be a homogeneous ASL on the poset
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P, P, PP, X Y 0

T
Fig. 48.

over k by means of
T=x(x2—yz), A=x6,48,5 B=(x2—y2)lp X =120,40,,
Y=y0l,pb,5 Py=x8,50p, Py=x0,5055 P3=x8,,0,s
Py=x0p,0,5 Q= y(x*—yz),

where a, B, y, 6 are distinct non-zero elements of k and 4,,=(a+b)x—aby—z
is a linear form in k[x, y, z].

ExaMpLE f) As usual, let x, y, z be indeterminates over k. We can con-
struct a homogeneous ASL domain on

Pl PZX YQI Q2

Fig. 49.
over k by means of
T=x(x*-yz), A=x{x*+(y—2z)x—y*}, B=z(x*-yz), X =y(x2—yz),
Y=x{x2+(z—y)x—2%}, P, =x¥y—z), P, = —x¥(y—2)(2x—y—2)/(z—Xx),
Q= —(P=y2)*/(y—2), Q;=(x*—yz)*/(x—y),
whose straightening relations are
AB=T(-T+X+7), XY=T(—T+A+B), P,B=T(—~T+Y+P,),
P,B=T(—A+Y+P,), P X=T(T-A+P,), . P,X=T?>+A(—A+P,),
P Y=—T*+A(Y+P,), P,Y=T(—T+P,)+AY, QA=T(-T+X+Q,),
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0,A=T(-B+X+0,), 0,Y=T(T-B+Q,), Q,Y=T?+B(—-B+Q,),
0:X=-T?+B(X+Qy), Q:.X=T(-T+Q,)+BX, P,Q,=—-T?,
PiQ;=T(-T—B+Q,), P,0,=T(-T—A+P,;), P,0,=T(—A—-B+P,+0Q,),
PP,=T(P;—P;)+ APy, 0,0,=T(Q; —Q,)+BQ;.

ExaMPLE g) Let n be an arbitrary positive integer. We can construct a
homogeneous ASL domain R on

over k. In fact,‘ put
T=xz?, A=xyz, B=(x2+2z2?z, X =x2y, Y= yz?,
P, = xyz%/(z—x|p;) (i=1,2,..,n),
where 0# p; e k, p;# p; if i#j, and we have the straightening relations as follows:
AB=T(X+Y), XY= A2, PB=T{—pA+Y+(p;+1/p)P;},
P,X = — pA(A—P), P,;Y= A(Y+P;]p),
P.P; = A(p;P;—p;P)/(p;—p;) @i#)).

Note that this example is not normal and the normalization of R is R[TY/A]=
R[z3].

This example was discovered in the following way. Suppose x=1, y=1,
a#0. Then by Lemma 13 we get

(24)  b&* + b'E3 + (' —4ab)t? + (ta’—4ab")¢ + {t2a—4at'+(a’)?} =0,

where é=p,+a/p;. If this equation (24) on £ is non-trivial, then the number of
the branches from A is at most eight. Accordingly, only when all the coefficients
of (24) are zero, there is the possibility of having an arbitrary number of the
branches from 4. In this case

AB=T(X+Y), XY=aA?
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and we get this example g) if we put a=1.
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