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Introduction

In the previous paper [6] we determined all the partially ordered sets (poset
for short) on which there exist three dimensional homogeneous Gorenstein ASL
(algebra with straightening laws) domains over a field. Now, in this second part,
we shall analyze normality and rationality of these algebras.

Our main purpose in this paper is to prove the following

THEOREM. Let k be an algebraically closed field of arbitrary characteristic.

(i) The non-normal three dimensional homogeneous Gorenstein ASL
domain over k is, up to isomorphism as ASL, either [6, Example g)] or Example b)
in §3.

(i) Every three dimensional homogeneous Gorenstein ASL domain over k
is rational, that is, the quotient field of this algebra is a purely transcendental
extension of the base field k.

The basic methods in our proof are the calculations of singularities and the
theory of ‘‘branches’ (see §4). The former is useful to find out the non-normal
ASL domains, while the latter plays an essential role for the proof of rationality.

Moreover, the calculations of singularities enable us to classify all the homo-
geneous ASL domains on the poset C¢ (§1). This classification is accomplished
by means of some expressions of these algebras as subalgebras of the Veronese
subring k[x, y, z]® (see (2.4) in §2). We will continue our classification in
our further work.

Apart from the above results, this paper contains several lemmas, especially
Lemma 10 in §4, which give criteria for a quasi-ASL (§1) to be an ASL. Using
these lemmas it is easy to see that all the examples appeared in [6] are ASL.

§1. Notation and preliminaries

We shall refer to [6] for the basic definitions and terminologies on com-
mutative algebras and combinatorics and, unless otherwise stated, keep the
notation in [6]. We here summarize additional notation and results which are
not contained in [6].
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(1.1) Let k be a field and H a finite poset. We denote by k[v(H)]=k[v,;
o€ H] the polynomial ring in #(H) variables over k. Suppose that R=®,>0R,
is a homogeneous ASL on H over k and that a~ 8, af=3" r;y,0; (y:<9;, 0#r;€ k).
Then we define

faﬁ = Uavﬂ - Z r,-vy'.v,;i.

We have R=k[v(H)]/(f,s; «~p). By abuse of notation, we say that R is an
ASL defined by af=3 riy:6; (a~ B) if R=k[v(H)1/(f,5; 2~ p) (cf. §2, Lemma 3).
Now, if R is a domain we denote by Proj(R) the projective variety in the projective
space P{(¥)~1 defined by the prime ideal (f,5; a~p) in k[v(H)]. Also, if 6e H
and Uj is the affine open set v;7#0 in P{(¥)~1  then we denote by o7(R) the affine
variety U, N Proj(R) in the affine space Af#)~1. Let (f,5)5-; be the polynomial
obtained by substituting v;=1 in f,;. Then we denote by R;—, the k-algebra
k[v(H—{6})]/((f.p)s=1; 2~ B). For simplicity we sometimes write a instead of
v, if there is no confusion.
(1.2) We give names to the posets, which appear frequently, as follows:

Y O WIS

A, B, B, Cs Cs Cs

It is easy to see that every homogeneous ASL domain on the poset A, B,
and B, over k is normal and rational. Moreover, by [6, Example b)] the homo-
geneous ASL domain on the poset Cg is unique up to isomorphism as ASL and
isomorphic to the Segre product k[s2, st, t*]#k[a?, ab, b?], which is normal and
rational. So, our investigation will be on the ASL domains on the posets C4 and
C, with branches of height 3.

(1.3) Let k be a field, R a k-algebra and H a poset contained in R which
generates R as a k-algebra. Then we call R a quasi-ASL on H over k if, for
every o and f with a~f, af8 is expressed as a linear combination of standard
monomials which satisfies the axiom (ASL-2).

(1.4) If R is a homogeneous quasi-ASL on H and R’ is an ASL on H, then
dim, R, <dim, R}, for every n>0 and R is an ASL if and only if dim, R,=dim; R;,
for every n.

(1.5) When a quasi-ASL turns out to be an ASL? The following lemmas
are partial answers to this problem.
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LEMMA 1. Let H be a poset with a unique minimal element T and R a
quasi-ASL on H over a field k. Suppose that T is a non-zero divisor of R and
that the quotient algebra R/(T) is an ASL on the poset H—{T}. Then R is,
in fact, an ASL on H over k.

For the proof we must check the axiom (ASL-1), but it is almost obvious.

LeMMA 2. Let R=®,5o R, be a noetherian graded ring and xeR, for
some n>0. Assume the following conditions:

(i) R, is of pure dimension d.

(ii) R/(x) is of pure dimension d—1.

(iii) Assg (R) N Assg (R/(x))=g.
Then R is of pure dimension d and x is a non-zero divisor of R. (we say that R
is of pure dimension d if dim R[p=d for every p € Assg (R).)

Proor. Considering the primary decomposition of (0) in R, we can put
(0)=a nb, where R/a is of pure dimension d and dim R/b<d. By condition (ii),
x is not contained in any associated prime ideals of R/a. Hence x is a non-zero
divisor of R/a. On the other hand, by (iii), dim R/(b, x)<d—1. By the exact
sequence

00— a— R— R/a—>0
and the ‘“‘snake lemma’’, we get the exact sequence
0 — a/xa — R/(x) — R/(a, x) — 0,

which implies Assg (a/xa)=Assg (R/(x)). But as Supp (a/xa) = Supp (R/(b, x)),
dimg a/xa<d—1, hence Assg(a/xa)=¢. So, a/xa= (O) and by ‘‘Nakayama’s
lemma’’, a=(0). Q.E.D.

§2. Gorenstein ASL domains on the poset Cq

In this section, we will classify the homogeneous ASL domains on the poset
C,. For this purpose, we first proceed with the discussions in [6, §5].
(2.1) We will begin with

LEMMA 3. If R is a homogeneous ASL domain on the poset Cg over a field
k, then R is isomorphic to an ASL defined by the equations:

type[I] AB=TX, BC=TY, CA=TZ,
AY = BZ = CX = T(tT+aA+bB+cC),
XY =1tTB + aTX + bB? + ¢TY, YZ = tTC + aTZ + bTY + cC?,
ZX =tTA + aA? + bTX + cTZ,
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type[ll] AB = TX, BC=T?, CA=TZ,
AY = T(toT+ boB+CoC), BZ = TA, CX = TA,
XY = toTB + boB2 + COTZ, YZ = toTC + boTz + COCZ, ZX = A2.

Conversely, every quasi-ASL defined by the equations of type[l] or type[ll] is
an ASL, although it might not be a domain.

Proor. (i) We have shown in [6, §5] that we can put

case[1] AB=TX, BC=TY, CA=TZ, or

case[II] AB=TX, BC=T? CA=TZ.
In [6, §5], we assumed the existence of the branch P from A. But if we assume
that R is a domain, it is not difficult to show that the existence of the branch is
not necessary.

(ii) Next, we will show that in the case[I], we may put x=y=2z=0 in the
equation

AY=BZ =CX = T(tT+aA+bB+xX+yY+zZ).

In fact, firstly, if we continue the linear changes

0dC) =C —xT, ¢y(Y)=Y—xB, ¢iZ)=1Z— x4,
then we get x=0. Secondly, by the linear changes

oA =A—-yT, ¢Z2)=Z—-yC, o¢x(X)=X - yB,
we have y=0. Finally, we also have z=0 by

¢p(B) =B — zT, ¢x(X) =X —zA4, ¢y(¥Y)=Y-zC.
Also, in the case[II], we can show that we may put y,=0 in

AY = T(taT+boB+coC+yoy)

by the similar method.

(iii) If R is a quasi-ASL of type[I] or type[II] on the poset Cs, it is easy to
see that R/(T) is a homogeneous ASL on the poset C4—{T}. Also, for every
a e H, R, is of pure dimension 3. So, if R has an embedded prime ideal p, then p
should contain all xe H. Thus R satisfies the conditions of Lemma 2 in §1 and
T is a non-zero divisor of R. So, R is an ASL on H by Lemma 1. Q.E.D.

LEMMA 4. Let R be a homogeneous ASL of type[l] or type[ll] on Cg4 in
Lemma 3. Then

(i) if R is of type[l], R is a domain if and only if either t#0 or at least
two of the coefficients a, b and c are not zero,
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(ii) if R is of type[lL], R is a domain if and only if (ty, by, ¢o)#(0, 0, 0).

ProoF. Since Tis a non-zero divisor of R, R is a domain if and only if so is
Ry-;. If Ris of type[l] (resp. type[lI]),

Ry, = k[A, B, C]/(ABC—(t+aA+bB+cC))
(l‘esp. RT=1 = k[A, B, C, Y]/(BC - 1, AY— (t0+ boB+COC))).
Our result follows immediately from these expressions. Q.E.D.

(2.2) Now, let k be an algebraically closed field and R a homogeneous ASL
domain on the poset Cg over k. We will study the singularities on the projective
variety Proj(R)cP¢. Recall that a singular point P on a surface X is of (4,)-
type (or an (4,)-singularity) if the local ring @p is analytically isomorphic to
the local ring at the origin (0, 0, 0) on the surface xy=z"*!in Aj.

Case I.  Firstly, suppose that R is of type[I] and
AY=BZ =CX = T(tT+aA+bB+cC).

Then Proj(R) is non-singular if and only if t2#4abc. If t?=4abc, then Proj(R)
has a unique singular point

(T,A,B,C, X, Y, Z) =(t, —2bc, —2ca, —2ab, ct, at, b)

in case char(k)#2 and

(y/abc, be, ca, ab, c\/abc, a\/abc, b\/abc)
in case char(k)=2. This singular point is an (A4,)-singularity.

Case II. Secondly, if R is of type[II] and
AY = T(t,T+byB+¢,C),
then Proj(R) has always a singularity of (4,)-type at the point
P=(0,000,0,1,0).

If t2#4bycy, then the set of singular points Sing(Proj(R)) on Proj(R) is {P}.
On the other hand, if t3=4byc,, then Sing(Proj(R))={P, Q}, where

Q = (—to, O, 2(:0, 2b0, O, 0, 0)
in case char(k)#2 and
Q = (\/bOcO’ 0’ cOs bOs 0’ 0, 0)

in case char(k)=2. The singularity at Q is also of (4,)-type.
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(2.3) Let H be a poset of rank 3 with a unique minimal element T and R a
homogeneous ASL domain on H over an algebraically closed field k. Since R/(T)
is an ASL on H—{T}, R/(T) is reduced. Hence R is normal if and only if the
localization Ry is normal, that is, R;_, is normal. Note that R;_, is normal if
and only if the set of singular points Sing(2/;(R)) on &7 (R)cAf()~1 is finite,
since R is Cohen-Macaulay (see [6, §2]).

Consequently, summarizing the above calculations of singularities, we can
conclude that every homogeneous ASL domain on the poset Cg over an algebrai-
cally closed field is normal.

(2.4) Now, we will classify all the homogeneous ASL domains on the poset
C, over an algebraically closed field k. Our classification is not based on the view-
point of ASL (see [6, §4]) but of graded k-algebras.

To classify homogeneous ASL domains on C4 we use the expression of R
as a subring of the Veronese subring S=k[x, y, z]® or S’'=k[x, y, w]® (in
S’, we put deg(x)=deg(y)=1 and deg(w)=2).

Case I. Let R be of type[I] with

AY=BZ =CX = T(tT+aA+bB+cC).
If (a, b, ¢)=(0, 0, 0), then we may assume ¢t=1 and we can embed R into S by
T=xyz, A=x%, B=y?z, C=z2x,
X =xy?, Y=yz?, Z=:zx2
On the other hand, if (a, b, ¢)#(0, 0, 0) then we may assume c¢#0. Hence there
exist p, g, u, vek such that

qu +cpv=t, pu=b, qv=a,
and R can be embedded into S by
T=xyz, A=xyl,, B=yzl, C=zxl,,
X =y0,0,, Y=120,05, Z=x0544,
where
by =x+py, €,=cz+qy, £;3=uz+ vx.

Now, suppose that Proj(R) is non-singular, namely #2#4abc. Then the
determinant
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is not zero. So, we define a k-automorphism ¥ of k[x, y, z] by
Y(x) =uy —pz, Y(y)=cx+z, Y(z)=—gx—oy.
The image Y(R) of R by this automorphism ¥ is
R, = k[xyz, x?2y, x2z, y*z, y*x, z2x, z2y].
On the other hand, if ?=4abc then R is isomorphic to
R, = k[xyz, xy(x+y), x*z, y*z, z2x, z%y, z3],
as graded rings over k.
Case II. Let R be of type[II] with
AY = T(t,T+boB+¢,C).
Then R can be embedded into S by
T=xyz, A=xz4;, B=x%, C=yz?
X =x%4,, Y=y, Z=1z%4,,
where ¢, ¢, are linear polynomials such that
818, = box? + toxz + cyz2.
As in Case I, we can show that R is isomorphic to
Ry = k[xyz, x%y, x2z, y?z, z2x, z%y, x3],
if t3#4byc, and isomorphic to
R4 = k[xyz, x2y, x?z, y*x, z2x, z2y, x3],
if t3=4byc,.

If R is an ASL domain of type[II], R can also be embedded into
§'=k[x, y, w]® (deg(w)=2) by

T=xyw, A =xyl, B=x%w, C=y3w,
X=x%, Y=w? Z=y,
where
£ = toxy + box? + coy?.

However, it can be checked that the ASL domains of type[I] cannot be embedded
into S’. :
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Hence, in particular, the ASL domains of type[I] and type[II] are not
isomorphic to each other.

SumMARY. We summarize the above discussions in the following table.

type | 1) | (1]
singular locus of Proj(R) ' ("] l one point ‘ one point ‘ two points
condition of coefficients t*+4abc ) t*=4abc ' t2#4boco t3=4byc,
subring of k[x, y, z]® Z, 1 Z, { R, ) Z,
embedding into k[x, y, w] impossible ‘ possible

ExAMPLE a) Assume char(k)#2.
Let R, (resp. R,) be a homogeneous ASL domain of type[I] on C4 over k

with
AY=BZ =CX =T?
(resp. AY=BZ = CX = T(—A—-B-C)).
Then, R, =R, as graded rings over k by the above arguments. Now [6,

Example c)] shows that R, has three branches of height 3; however, there exists
no branch from R,. Hence R, is not isomorphic to R, as ASL.

§3. Gorenstein ASL domains on the poset C,

In this section, we will find out all the non-normal homogeneous ASL domains
on the poset C, over an algebraically closed field k.
(3.1) We will begin with two lemmas which correspond to Lemma 3 and

Lemma 4 in §2.

LeMMA S. Let k be a field and R=k[v(C,)]/I a homogeneous quasi-ASL
on C, defined by

AB — T(tT+xX+yY), XY—T({#'T+a’A+b'B) — aA? — bB>.
Then R is an ASL on C, over k.
ProoF. Since R is a complete intersection the Poincaré series of R is
(*) (1420+6%)(1-06)3

by Stanley [7, Cor. 3.3]. On the other hand, the Poincaré series of homogeneous
ASL domains on C, is also () by [6, §3]. Hence the set of standard monomials
in R is linearly independent over k (see (1.4)). Q.E.D.
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LEMMA 6. In the same notation as in Lemma 5, R is a domain if and only
if one of the following conditions is satisfied:

(i) x,»)=(0,0),t#0,(t,a’,b',a, b)#(0,0,0,0,0),
(i) x,»#@©,0),xy=0,t#0,(t,a’,b",a,b)#(0,0,0,0,0),
(i) (x, ) #(0,0),xy=0,t=0,¢ #0,
iv) (x,»)#(0,0),xy=0,t=0,t=0,(a,a’) #(0,0),(b,b") # (0,0),
(v) xy#0,(t,a’,b",a,b)#(0,0,0,0,0).
Proor. If x=0, y=0 then
Rr_y 2 k[A,B, X, Y]/(AB—1t, XY— (t'+a’A+ b’ B+aA?+bB?)),
if x=0, y#0 then
R;_; = k[A4, B, X]/((AB—1)[y)X — (t'+a’A+b'B+aA*+ bB?)),
and if x50, y#0 then
Rr_; @ k[A, B, X]/((x/y)X? — (AB—1)/y)X + (' +a’A+b'B+aA*+ bB?)).

Since T'is a non-zero divisor of R, R is a domain if and only if R;_; is a domain.
Hence our result follows from the above expressions. Q.E.D.

(3.2) Now, we shall show that the non-normal homogeneous ASL domain
on the poset C, over an algebraically closed field k is, up to isomorphism as ASL,
either [6, Example g)] or

ExAMPLE b) The k-algebra
R = k[v(C,)]/(AB—TY, XY— A2—B?)

is a non-normal homogeneous Gorenstein ASL domain on the poset C,, whose
normalization is R[TB/A]. This algebra can be represented as a subalgebra of
the Veronese subring k[x, y, z]®® by putting T=yz, A=xy, B=zx, X=y?+ 22
and Y=x2, whose normalization is k[x, y, z]®.

Let R be a homogeneous ASL domain on C, over an algebraically closed field
k. Among these ASL, we will find out all which are not normal. Recall that as
T'is a non-zero divisor and R/(T) is reduced, R is normal if and only if so is Ry-;.

As in [6, §6], we have only to consider the cases (x, y)=(0, 0), (x, y)=(0, 1)
and (x, y)=(1.1) in the expression of Lemma 5. Before treating each case
separately, we will state some lemmas.

LEMMA 7. Let R be a noetherian normal domain which satisfies Serre’s
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condition (S;). Let r, s be non-zero elements of R and put a=(r, s) and R'=
R[X]/(rX —s), where X is an indeterminate over R. Then,

(i) R’ is a domain if and only if ht(a)>2,

(i) if R’ is a domain, R’ is normal if and only if, for every prime ideal
m of R with ht(m)=2 and m>a, R,, is regular and aR,, & m?R,,.

ProOF (i) If p is a prime ideal of height 1in R, p>a, and if pR, =7nR (n € p),
then rX —s is divisible by 7 in R,[X]. Hence R’ is not a domain. Conversely,
if ht(a)=2, then (r, s) is an R-regular sequence and it is easy to see that the R-
algebra homomorphism ¢: R[X]—R[s/r] defined by ¢(X)=s/r has (rX —s) as
its kernel.

(ii) We want to check Serre’s conditions (S,) and (R,) for R’. By our as-
sumption, R’ obviously satisfies (S,). Let q be a prime ideal of height 1 in R’.
If ht(qnR)=1, then R zy=R; and as R g, is a discrete valuation ring,
Riory=R;. If ht(qnR)=2, m=qnR>a. If we put R[X],rx;=Ru(X),
R, =R (X)/(rX—s). If R, is regular and aR,¢m?R,,, R,(X) is regular and
rX —se&(mR,(X))?, hence R; is regular. Conversely, if R; is regular, then so
is R, (X) and rX —s & (mR,(X))>=m?R (X). Q.E.D.

Note that Lemma 7 (ii) is a special case of S. Goto and K. Yamagishi [4],
in which the normality of blowing up by parameter ideals is discussed.

LEMMA 8. Let R be a noetherian normal domain, in which 2 is a unit and
R'=R[Y]/(Y?—r). Then R’ is normal if and only if r is not a square in R and
for every prime ideal p with ht(p)=1, ré&ep®. In particular, if R is a unique
factorization domain, R’ is normal if and only if r is square-free.

ProoF. In the case R is a unique factorization domain, we refer to Harts-
horne [9,II, Ex. 6.4, P. 147]. 'The general case can be proved similarly. Q.E.D.

Case I. (x, y)=(0, 0).
In this case,
Ry, = (k[A4, B]/(AB—0)[X, Y]/(XY— ('+a’A+b'B+aA?+bB?)),
which is easily seen to be normal.

Case II. (x, y)=(0, 1).
In this case,

Ry_, = k[A, B, X]/(X(AB—1t) — (t'+a’A+ b'B+aA?+ bB?)).

We will use Lemma 7 for k[A, B] and X.
If t#0, then there is no maximal ideal m in k[4, B] with AB—tem2. Hence
Ry, is normal by Lemma 7.
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If t=0, then only maximal ideal m with ABe m?is m=(4, B). As t'+a’'A+
b’'B+aA%+bB?e (A, B)? if and only if t'=a’=b"=0, R is not normal if and only
if R is isomorphic to the ASL in Example b) as ASL.

Case III. (x, y)=(, 1).
In this case,

Ry, = k[A, B, X]/(X?*—(AB—t)X+(t'+a’A+b'B+aA?+ bB?)).
(i) If char(k)#2, Ry-, is normal if and only if the polynomial
F(A, B) =(AB—1t)> — 4(t'+a’A+b'B+aA%?+bB?)

does not have a square factor by Lemma 8. If F=G? and deg(G)=2, then the
polynomial G must be AB—t, and we have (¢, a’, b’, a, b)=(0, 0, 0, 0, 0). This
contradicts our assumption that R is a domain. Let {=aAd+BB+y (o, B, y€k)
and assume that F is divisible by ¢2. If a#0, we may assume £=A—fB—}.
Then we have

F(BB+7, B) = (0F|0A)(BB+7, B) = 0

in k[B]. From F(fB+7y, B)=0, we have =0 and from (0F/0A)(y, B)=0, we
have y=0. So, F(A4, B) is divisible by A? and this implies (¢, ¢, a’, b’, b)=
(0,0,0,0,0). In the same manner, if %0 in {=aA+fB+7, we have =B
and (¢, ¢, a’, b, a)=(0, 0, 0, 0, 0).
The non-normal ASL domains we have got are defined by
AB = T(X+Y) AB = T(X+7Y)
and
XY= A2 XY= B2 ,

which are isomorphic to the one in [6, Example g)].
(i) In case char(k)=2, we will consider the following simultaneous
equations:

(1) F=X2+(@#—AB)X +({#t'+a’A+b'B+aA?*+bB?) =0,
(2) OF/oX =t— AB =0,
(3) OF/0A=a" —BX =0,
(4) O0F/oB=Db"—AX =0.

By (2), (3) and (4), we can eliminate B and X in (1) and we get
(5) ad*+a'A3+ 1 A2+ b'tA+ (b')* + b2 =0.

Similarly, we have
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(6) bB*+ b'B?+ t'B2 + a'tB + (a')* + at?> = 0.

Hence we have #(Sing(«/(R))) <o if (¢, t,a’,b’,a)#(0,0,0,0,0) and (¢, ¢,
a’, b’, b)#(0,0, 0,0, 0).

RemMARk. The method in Case III (ii) is also valid in case char(k)#2.

SumMaRry. If R is an ASL domain on the poset C, over an algebraically
closed field k, and if R is not normal, then R is isomorphic as ASL to the one
defined by

AB=TY, XY= A% + B? (Example b))
or

AB=T(X+Y), XY= 4>  ([6, Example g)]).

As it is easy to see that the latter example is not isomorphic to a subring of
k[x, y, z]®, these two examples are not isomorphic to each other as graded
rings over k.

§4. Possibility of extensions as ASL domains

Let R be an ASL domain on a poset H of rank 3 over a field k. In this section,
we will find the condition for R to have an extension R’, which is an ASL domain
on H U {P}, where P is a branch of height 3.

We denote by Ind(R) the set of standard monomials which appear in the right-
hand sides of the straightening relations in (ASL-2). For a homogeneous element
r of R, [r] is the set of standard monomials appearing in the standard monomial
expression of r as in [6, (1.3)].

(4.1) We will begin with

LEMMA 9. Let H be a poset of rank 3 with a unique minimal element T,
and Ae H an element of height 2 which has a branch P of height 3. Suppose
that R is a homogeneous ASL on H over a field k. Then, applying adequate
fundamental transformations to R, we have T?, TA, A2&Ind(R’), where R’ is the
ASL subring on H— {P}.

Proor. Let ae H be an element with a~P. Suppose that tTP and aAP
(t, a € k) appear in the right-hand side of the straightening relation of Pa. Note
that a=0if a~A. Now apply the fundamental transformation

@ 0) =0 —tT— aAd

and we have TP, AP¢=[Pa]. If we continue this operation for every a € H with
o~ P, then we have the desired result. In fact, if «, fe H—{P}, a~f and a~ P,
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then T2P, TAP, A2P&=[(Pa)f], which mean T2, TA, A%< [af]. Q.E.D.

ReMARK (4.2) The following conditions are easily seen to be equivalent.

(1) T?, TA, A>&Ind(R").

(2) The ideal p of R’ generated by {a € H—{P}; a# T, A} is a prime ideal
of height 1.

(3) The ideal P of k[v(H—{P})] generated by {v,; a#T, A, P} contains
Jap for every a, fe H—{P}, a~p.

(4) If p and P are as in (2) and (3), then k[v(H—{P})]/P and R’[p are
isomorphic to the polynomial ring of two variables.

The following corollary is deduced from the proof of Lemma 9.

COROLLARY. Let R be as in Lemma 9 and p be the prime ideal defined in
Remark (4.2) (2). Then, after suitable fundamental transformations on R,
we may assume that PpcR'.

ExAMPLE ¢) As an application of Lemma 9 we shall prove that the homo-
geneous ASL domain R in Example b) has no branch of height 3.

Suppose, on the contrary, that there exists a branch P of height 3 from C,
under the relation

AB=TY, XY= A%+ B2
We may assume P is a branch from A. Then, by the proof of Lemma 9, after
suitable linear changes:
@og(B)=B —sT, ¢ox(X)=X—aA—-bB—1tT, ¢y(Y)=Y—a’'A—b'B-1T,
we have T2, TA, A2¢Ind(R). Hence

’

s=a', tt=0, aa’' =1, ta’ +ta=0, tt =s?
but s=a’, t'=0 and tt'=s? imply a’=0, which contradicts aa’=1. Q.E.D.

(4.3) The following lemma is useful to construct a homogeneous ASL domain
on a poset H of rank 3 with branches of height 3.

LemMA 10. Let H be a poset of rank 3 with a unique minimal element T
and P a branch from A, where ht(A)=2 and ht(P)=3. Suppose that R is a
homogeneous quasi-ASL on H over a field k and that the subring R'=k[H — {P}]
is an ASL on H—{P} over k. Then, if T, A, P are algebraically independent
over k, R is, in fact, a homogeneous ASL on H over k.

Proor. Let {ay,..., a,} be the subset of H consisting of the elements which
are incomparable with P, namely,
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{otg5..., 0.} = H— {T, A, P}.
Since R is a homogeneous quasi-ASL on H over k, we have

P+fyy fiz o fiw 1 g1
fg1 P":fzz"' f:2n %L (=|92
fnl fn2 "'P+fnn

where each f;; (resp. g;) is a linear combination of T, A (resp. T2, TA, A?).
Since T, A, P are algebraically independent over k, the determinant of the matrix

in the left-hand side is not zero. Hence, by ‘“Cramer’s formula’, each ¢; is
expressed as

K

R ...

n gn Py

gi)Pn—l +qgi)Pn—2+ e +q5'1_21
P +p, P+ -+ p,

*) o =4 ,
where p;, qg-i) are linear combinations of TJ, Ti=14,..., AJ.

Now we shall show that R satisfies the axiom (ASL-1). Assume that we have
a relation

(**) ¢iPm_i+"'+ ¢m-—1P+¢m=0 (m>l)’

where ¢; e k[T, A] is a linear combination of T/, Ti714,..., A’ and y,€R,, is
a linear combination of standard monomials in R’. If we substitute (*) in the
equality (xx) and clear the denominators, then we see that ¢;=0 since T, A, P are
algebraically independent over k and ¢; is the coefficient of the highest degree in
P. Continuing this process, we have ¢;=:--=¢,,_, =0and then y,,=0. Q.E.D.

(4.4) Now, we will show that the condition in Remark (4.2) is a sufficient
condition for a normal ASL domain R’ on H—{P} to be a subring of an ASL
domain R on H.

If S is a Cohen-Macaulay domain and a is an ideal in S, it is known that there
exists xe=S in the quotient field of S such that ax<S if and only if ht(a)<1.
In our case such an element x can be chosen to be homogeneous of degree 1.

LeMMA 11. Let R=@®,>o R, be a graded Gorenstein domain over a field
k=R, and put Q(R)=®,.zQ,, where

OR) = {y/x; yeR, 0 # xe R, for some n}.

If a is a graded ideal in R of pure height 1, then the minimal number n such that
there exists an element x € Q,— R, with xa<R is a(R)—a(R/a), where a(R) is
defined in [3, (3.1.4)].

PrOOF. An element xe @Q=Q(R) with xacR induces an element ¢ €
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Homyg (R/a, Q/R) and x<ER if and only if ¢ #0. As Q is an injective object in the
category of graded R-modules, the exact sequence
0—R—Q— Q/R—0
implies
Homg (R/a, Q/R) = Extg (R/a, R).

By our assumption, the canonical module Ky of R is isomorphic to R(a(R)) as
graded R-modules. Hence we get

Extk (R/a, R) = Extk (R/a, Kr(—a(R)) = K(g;q)(—a(R))

by [3, (2.2.9)]. By the definition of a(R/a), the minimal degree of non-zero
homogeneous element of K g,,)(—a(R)) is —a(R/a)+a(R). Q.E.D.

COROLLARY. If R’ is a homogeneous Gorenstein ASL domain with a(R)=
—1, and the ideal p=(a; a € H—{P}, a# T, A) satisfies the condition of Remark
(4.2), then there exists an element ne€ Q(R’)—R’ of degree 1 such that np<R’.

ProofF. In our case, a(R)= —1 and a(R/p)= —2. Q.E.D.

REMARK. (1) Every homogeneous ASL domain R on the poset C,, Cq
(may have branches) or Cg is Gorenstein and a(R)= —1.

(2) The element 7 as in the corollary is unique up to constant multiplication
and modulo R, since by the proof of Lemma 9,

Homg (R/p, Q/R) = Kr/p»(1) = (R/p)(—1).

Now we can state the main result in this section.

PrOPOSITION 1. Let H be a poset of rank 3 with a unique minimal element
T, P a branch of height 3 from A with ht(A)=2 and R’ a homogeneous ASL
domain on H—{P} over a field k which is normal Gorenstein with a(R)= —1.
Then, there exists a homogeneous ASL domain on H preserving the ASL struc-
ture of R’ on H—{P} if and only if, after suitable fundamental transformations,
the ideal p=(0e H—{P}; a# T, A) satisfies the condition in Remark (4.2).

ProoF. The ‘“‘only if”’ part is already stated in Cor. to Lemma 9 in (4.1).
To prove “‘if”’ part, we first prove R=R’[#5] (1 is as in Cor. to Lemma 11) is a
quasi-ASL domain on H over k.

In the following, we denote by B, f',... the elements of height 2 which are
different from A4 and &, &',... the elements of height 3 in H—{P}. We proceed in
several steps. We assume that nf, n£e R’. As usual, let [nf], [#£] denote the
set of standard monomials appearing in nf, n¢ € R’ respectively.
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(i) If B2e[np], then taking n'=n—cP (c € k) instead of #, we may assume
B2 [np] for every B e H, ht(B)=2, B+ A.

(ii) Now, we fix £e H, ht({)=3 and assume that f<¢& and S&e[np].
Then taking ' =n—c& for some c € k, we may assume B&ée=[nf].

(iii) If B, B'<& and if BEe[np], then p'é[np’]. For, if f'ée[np'], then
B'&2elmB)E1=[(&)P] and E2e[nl]. As (nP)é=(n¢)p, this implies Ble [nf],
which is a contradiction.

(iv) Thus we may assume B&d&=[nf] for every f<¢&.

(v) ¢&*&[np] for ht(f)=2 and ht(&)=3.

For, if €2 e [#p], then & e [(nB)E]=[(n€)B], which is impossible.

(vi) P72, p'Enp] for ht(B)=2, p#p, p'<<.

For, p2e[np] (resp.p'{e[np]) implies B>¢e[(nB)]=[n)B] (resp.p'&e
[(#&B]), which is impossible.

(vii) (i) ~(vi) show that every standard monomial in [#f] is divisible by T.

(viii) B¢, &2, p*eE[n&] for ht(&)=ht({')=3, ht(f)=2, <.

For, if B& (resp. &2, f2)e[né], then B2&' (resp. BE'2, B3) e [(nB)E], which is
impossible by (vii).

(ix) If ht(¢)=3, E~A, then A2, AE'&[nE] (A<E).

In fact, if A2 (resp. AE') e [n&], then A2E' (resp. AE'2) e [(nE)E'1=[(n&")E], which
is impossible since &~ A4.

This shows that R=R’[#] is a quasi-ASL on H by putting #=P. Now, n=
P& R’ implies P is not integral over R’ since R’ is normal. Then, by the first part
of the proof of Lemma 10, the quotient field of R’ is k(T, A, P), and hence T, A, P
turn out to be algebraically independent over k since dim(R)=dim(R")=3.
Note that we can use ‘“‘Cramer’s formula’’ if P is not integral over k[T, A4].

So, thanks to Lemma 10, we have the desired result. Q.E.D.

ExampLE d) The condition of normality in Prop. 1 is indispensable. In
fact, the non-normal homogeneous Gorenstein ASL domain R with straightening
relations

AB=T(X+Y), XY=B?

on the poset C, satisfies the condition in Remark (4.2). However, as we have
seen in the proof of Prop. G in [6], there cannot exist a branch from A under
these relations.

In this example, #=TY/B e Q(R)— R satisfies

nB=TY, nX =TB, nY= — TB + AY,
while, we have

n? — An + T? =0,
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namely, # is integral over k[T, A].

§5. Rationality and normality of three dimensional homogeneous Gorenstein
ASL domains

In this final section, we will prove the rationality of three dimensional homo-
geneous Gorenstein ASL domains over an algebraically closed field and we will
find out all non-normal three dimensional homogeneous Gorenstein ASL domains.

(5.1) We begin with a general criterion of rationality for every homogeneous
ASL domain on certain type of posets.

PROPOSITION 2. Let R be a homogeneous ASL domain on a poset H of rank
nover a field k. Assume that H has a chain a; <a,<---<a, of length n satisying
the condition

€)) ifpeH and B<a; then B=o forsome i<j.
Then R is rational over k. In fact, the quotient field of R is k(a,,..., &,).

Proor. If H={uay,..., %, Bis-.., B}, then B;~a, for every i and as in (4.3),
Lemma 10, we have the system of linear equations

o, + /11 fiz - Sim By 91
fg1 oCn'*_'fzz“' fz_m /3_2 =|92

fml fm2 <xn'*-.fmm Bm Im

’

where f;; (resp. g;) is a linear form (resp. homogeneous element of degree 2) of
k[ay,..., o, 1], which shows that B,,..., B,, € k(ay,..., &,). Q.E.D.

CoroLLARY. If H is a poset of rank 3 and if H has a branch of height 3,
then every homogeneous ASL domain on H over k is rational.

THEOREM 1. Every three dimensional homogeneous Gorenstein ASL domain
over an algebraically closed field is rational.

Proor. Let R be a homogeneous Gorenstein ASL domain on the poset H
over an algebraically closed field k. If H has a branch of height 3, then R is
rational over k by Cor. to Prop. 2. Also, our classification of ASL domains on Cg
and Cq ([6, Example b)] and (2.4)) shows that every homogeneous ASL domain on
Cg or Cg is rational. So, we may assume H=C, and R is defined by

AB=T(@T+xX+yY), XY=T{'T+a’A+b'B) + ad? + bB2.

As we have seen in the proof of Lemma 6, R is rational if one of x, y, a or b
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is 0. If xyab#0, then we may assume x=y=1. Now, we will check the con-
dition of Prop. 1 for R. Let P be the ideal in k[v(C,)] generated by

vp — Bor, vx — &g — &vp, vy — N104 — Na07

Then, modulo P,

v p — vr(toptox+oy) = (B—E—ny)vor — (E+E+n)08,

vxvy — p(t'vr+a’'v,+b'vg) — avy — bvg

= (& —a) + (Eumy+ oty —a' Yoo + (Eaa —t' = b'B— BB}
Thus, R satisfies the condition of Prop. 1 if and only if we can choose f, &;, &,,
M1, N, € k so that
B=C&+m, t+&+m, &n=a,
Simt+&m=a’, Em—b'B—bp*=1r.

As k is algebraically closed and a#0, we can find the solutions of (¥) in k. By
Prop. 1, R is birational to an ASL domain on H U {P}, which is rational by Cor.
to Prop. 2. Q.E.D.

(*)

(5.2) Next we will consider the normality of R. As we have shown that all
homogeneous ASL domains on Cg, C¢ and C, are normal except for Example b)
and [6, Example g)], we have only to consider the case where the poset H has
a branch P.

So, let H be a poset of rank 3 with a unique minimal element Tand P a branch
of height 3 from 4. Suppose that R is a homogeneous ASL domain on H over
a field k and that R'=k[H —{P}] is the ASL subring of R. By Cor. to Lemma 9,
we may assume oP € R’ for every ae H, a# T, A, P.

REMARK. By our assumption
R,=1 = Ri=
for every ae H—{T, A, P}, since PeR,_;.

LeMMA 12. Let P, be the closed point in Proj(R), defined by the prime ideal
(ee H; a#P). Then P, is a smooth point.

Proof. From the proof of Lemma 10, the local ring of Rp- at the maximal
ideal (a; o € H—{P}) has (T, A) as its maximal ideal. Q.E.D.

(5.3) Now, we will show that the normality of R’ implies the normality of R.
We will state the result in more general situation.

PROPOSITION 3. Let H be a poset of rank n which contains a maximal chain
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oy <a, <---<a, satisfying the condition (#) in Prop.2. Let R be a homogeneous
ASL domain on H over a field k which satisfies Serre’s condition (S,) and R’ =
k[H—{a,}] (which is an ASL domain on H—{a,}). Then, if R’ is normal, so
is R.

Proor. First, we show that R’ is an ASL on H—{«,}. In fact, if o, €
[oB] for some «, f € H—{a,}, a~ B, then we may assume B ~a, and a,a2 € [a(fa,)],
which is impossible.

After suitable fundamental transformations, we may assume o,f€ R’ and
Ry- =R’y for every fe H—{a,,..., a,}.

Now, assume that R is not normal. Then the singular locus Sing(Proj(R))
of Proj(R) is a closed subvariety of codimension 1 of Proj(R). Let V be an
irreducible component of codimension 1 of Sing(Proj(R)). Then, as R’ is normal
and as Proj(R) and Proj(R’) are isomorphic outside

W= V+(b)a b= (ﬁ» ﬂGH - {al:"', an})’

we have V= W. But as in the proof of Prop. 2, W is contained in some quadric
hypersurface of Proj(k[a,,..., a,]) defined by g, where g is some quadric form in
k[ay,..., ,_ ;1. If g is irreducible, then V=W and if g is reducible, then Vis a
hyperplane defined by a linear form in k[«;,..., ®,_,]. In either case, V contains
the closed point P, € Proj(R) defined by the ideal (Be H; f#a,). As P, is a
smooth point, this is a contradiction. Q.E.D.

Summarizing our results for normality, we have

THEOREM 2. Any non-normal three dimensional homogeneous Gorenstein
ASL domain over an algebraically closed field is, up to isomorphism as ASL,
either [6, Example g)] or Example b) in (3.2).

REMARK. Let k be a field and k an algebraic closure of k. If R is an ASL
domain on H over k and R=R®,k is a normal ASL domain on H over k, then R
is also normal by faithfully flat descent of normality.
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