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§ 1. Introduction

Let {xj, fe= ± 1 , ±2, . . . be a Poisson point process on the real line with

parameter 1, to which we add the origin x o = 0, i.e.

(1.1) ••• <x_2 < x_! < x 0 = 0 < Xi < x 2 < •••.

Then {Cfc = Xfc —Xfc-i}, — oo<fc<oo, is a sequence of i.i.d. random variables

with exponential distributions of mean one. For each k, we consider a random

motion xk(t) starting from xk. Suppose that we are given a random process x(t)

satisfying x(0) = 0, and that {xk(t) — xk}9 -oo</c<oo, are independent copies of

x(ί). Then we can define the collision path yo(t) as in [4] and [7],

(1.2) yo(t) = limn_oo median of {xk(t); - n ^ k ^ n}, for t ^ 0.

Our purpose of this paper is to investigate limiting behaviors of the collision

path by taking a suitable space-time sealing.

In case that x(ί) is a standard Brownian motion, Harris showed in [4] that the

distribution of ί~1/4yo(0 converges to a normal distribution as ί->oo. On the

other hand, Spitzer [7] treated a uniform motion case, and proved that yo(At)lyjA

converges to a Brownian motion as A-+ao in the sense of weak convergence of pro-

bability distributions on the path space. Also, in case that x(ί) is a symmetric

stable process of index l < y ^ 2 , Gisselquist [3] proved that yQ{At)jAll2y con-

verges to a fractional Brownian motion with mean zero and covariance function

σ(t, s) = const (t1^ + s1^ - |ί - sl1^), t, s ^ 0,

as A-+GO in the sense of finite dimensional distributions.

In the present paper we will discuss limiting behaviors of the collision path

in more general setting. In particular it will be shown that, as far as the con-

vergence of finite dimensional distributions, the limiting behavior of the collision

path is completely determined by the asymptotic behavior of the first order absolute

moments of increments of x(ί). Moreover for a certain class of the processes

with stationary increments we will prove that the rescaled process of the collision

path yo(t) converges to a fractional Brownian motion in the sense of weak con-
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vergence of probability distributions on the path space.

In §2 we will give some preliminaries and in §3 we will prove the convergence

of finite dimensional distributions of the rescaled collision path. Finally, in §4

we will prove the tightness of the rescaled collision path under a restrictive

situation.

Acknowledgement: The author would like to thank Professors M. Motoo

and T. Shiga for their hearty encouragements and valuable advices.

§ 2. Preliminaries

Consider a real-valued random process x(t) with x(0) = 0 such that the sample

paths are right continuous and have left limit for any ί^O. For our purpose it is

convenient to define the independent system {xk(t)}, fceZ, by making use of a

Poisson random measure.

Let W be the set of sample paths of x(t), equipped with the usual σ-field &

generated by all cylindrical sets, and we denote by P o the probability distribution

on W induced by x(t).

Let M be the set of counting measures on RxW, equipped with the weak

topology and let £8M be the topological Borel field of M. We denote by v the

Lebesgue measure on R.

DEFINITION 2.1. Let μ be an (M, @M)-valued random variable defined on a

probability space (Ω, ^ , P). μ is called a Poisson random measure on Ω x W

with the intensity measure λ = v x Po if

(i) for any ΰ e f R x ^ ,

Pίμ(B)=β = exp {- λ{B)} {λ(B)}J/jl (j = 0, 1, 2,...),

and

(ii) if Bί9...9 Bn e ^ R x &F are disjoint, then {μ(Bί),..., μ(Bn)} are independent.

We can construct a Poisson random measure μ with the intensity measure

λ = v x Po and a random process xo(t) whose probability law is identical with x(ή,

on the same probability space (Ω, a, P), so that μ and xo(0 a r e independent.

We write

^ = ΣfceZUO} δ(xk,wk)>

where ~ <X-k<~<x_ί<0<xί<x2<'-<xk<'- and δ(x>w) stands for the
^-measure at (x, w) e R x W. Then defining random processes {xk(ή}, k e Z\{0},

by

(2.1) xk(t) = xk -
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where wk(t) is the value of wk at time ί, we can easily see that {xk}, fceZ^{0},

is a Poisson point process on R with parameter 1, {xk(t) — x j , keZ, is independent

of {xfc}, /ceZ^{0}, and {xk(i) — xk}, keZ, are independent copies of x(t).

By using this construction and a formula of the characteristic functional for

a Poisson random measure (see [5] p. 57), we get

LEMMA 2.2. For any ξ, α and x e R ,

= exp [ - Γ {1 -φ(x)}dx],
Jo

α]}] = exp [ - ί° {1 - φ(x)}dx],
J — 00

where

φ(x) = ί exp {ί&[x + w(0^

φ(x) = ί exp {iξχlx + w(t)>α
J w

and χ[_E] stands for the indicator function of B.

Let θtw( ) = w( + 0 - w(0 be the shifted path, and set

Then μr also is a Poisson random measure on R x FT with the intensity measure

λt = vxθtoP0, where θtoP0 is the image measure of Po by θt. Therefore if x(t)

has stationary increments (equivalently θtoP0 = P0 for any ί^O), μt is a stationary

process taking values in M. This fact reflects the following lemma, which will

be used in §4.

LEMMA 2.3. Suppose that x(t) has stationary increments. Then the

collision path yo(t) also has stationary increments.

PROOF. Similarly to the collision path yo(t) we can define

yk{t) = lim^oo median of {xk.n(t),...9 xk(t),..., xk+n(t)} (keZ),

Let any ί > 0 be fixed, and set Lk(O = Σi<fcX[*i(O>**(*)] a n d ^ Λ ( 0 = Σi>fc*
χ[x f(ί) < xfc(0]. Then we see that

(2.2) xk(ί) = yk-Lk(t)+Rk{t)(t) a.s. (k e Z) .

Moreover, denoting σ(k) = k — Lk(t) + Rk(i) for each fc, we see that σ is a

bijective map from Z onto itself. Let τ be the inverse map of σ and set
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fit - Σfc^o δ(yk(t)-yo(t),θtwτ(k))

To complete the proof of this lemma it suffices to show that μt also is a

Poisson random measure on R x JFwith the intensity measure λ = v x P o , because

θtyo(') = yo(' + 0 —3Ό(0 i s constructed by μt in the same procedure as yo(-) is

done from the Poisson random measure μ. By (2.2) we see that

, θtwτ(k))eB + xp(ί)] = j , yo(t) = xp(t)l

xp(ί)] = j , Lp(t) - Rp(t) = p]

xo(0] =Λ ^o(0 - *o(0 = rf

xLixJίt), θtwn)eB + χo(0] = 7]

= 7']5 where B + xp = {(x + xp, w); (x, W ) G B } .

Here we used the stationarity of μt and the equivalence between {xn(t) — xp(t)},

n e Z , and {xπ(0-^P+i(0}» weZ. Since it is clear that fi^Bt}9...9 μt(Bn) are in-

dependent if Bί,...,Bn are disjoint, /Z, is a Poisson random measure on R x W with

the intensity measure l = v x ? 0 . Thus we complete the proof of Lemma 2.3.

Finally we quote an estimate concerning i.i.d. random variables, which will

be used in §4.

LEMMA 2.4. Let {Xn}, π = l, 2,... be a sequence of i.i.d. random variables.

Suppose that

EXγ = 0, and E\Xγ\^ < 00, for an integer p ^ 1.

Then we have some constant Cp>0 such that

for any λ>0 and iV^l.

The proof follows immediately from a maximal inequality and moment esti-

mates of martingales (e.g. see [6] p. 28 and [2] Theorem 9).

§ 3. Convergence of finite dimensional distributions

Noting that {xk(t) — xk}9 keZ, is an independent system of random processes

having the identical probability law with x(t), we impose the following assumptions

(3.1) £[x(ί)] = 0, for any t ^ 0, (x(0) = 0),

(3.2) there exist an increasing function γ(A) defined on (0, 00) and a function
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p(t, s) defined on (0, oo)x(0, oo) such that \imA^O0y(A) = + 00, and for

any t, s^O,

\imA^ yiA^E^iAt) - x(As)\ = p(t, s).

THEOREM 3.1. Under the assumptions (3.1) and (3.2), the process

y(A)~1/2y0(At) converges in the sense of finite dimensional distributions, as

A-+00, to a centered Gaussian process of which covariance function σ(t, s) is

given by

(3.3) σ(ί, s) = (1/2) {p(t, 0) + p(s, 0) - p(ί, s)}, t, s ^ 0.

Thus, as far as the convergence of finite dimensional distributions of the

rescaled collision path we establish a quite general result. It is easily seen that the

limiting process y°°(0 enjoys a self-similarity, i.e., there exists y^O such that

y°°(ct) and cyy°°(t) have the identical probability law for any c>0. Furthermore

it is obvious that any self-similar centered Gaussian process can appear as the

limiting process of a rescaled collision path.

PROOF OF THEOREM 3.1. Following Harris [4] and Spitzer [7] we introduce

three vector random variables;

U(t, α) = (11ft, αf))?=1 = (Σ?=i xlxM ύ *J)U,

V(t, α) = (-v(th αf))?=1 = ( - Σϊi-αo xίxM > «J)7-i,

W(t, α) = (w(ίf, ottiU = (Xlxoitd ^ αj)f-i,

where t = ( ί l v . . , tn\ 0 < ίx <•••< ίπ, α = (α l 5 . . . , αn)eR».

Let Z(ί, α) = U(t, α) + F(ί, α) + W(t, α).

We now use the equivalence of the following two events observed by Harris

([4] Theorem 5.1):

(3.4) {yo(tύ < α f; i = 1, 2,..., n) = {Z(ί, α) ^ 1},

where 1=(1,. . . , 1) and we denote α^/? when a f^/? f for all components.

Let ZA = Z(At9 y{Ayi2(£). We will later show that

(3.5) lim^oo E[exp {iξ. y(A)-^ZA}^ = φ(ξ, t) exp (iξ. α),

where

(3.6) 0(£, 0 = exp {-(1/2) Σ j - i ΣZ=i ί^*σ(0, ί*)} •

Once we obtain (3.5), Theorem 3.1 follows immediately. Because by (3.5)

we see easily that
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(3.7) l i m ^ ?\ZA £ 1] = l i m ^ , P\_ZA £ 0 ] ,

and it follows from (3.4) ~ (3.7) that

Q < α,; i = 1, 2,..., n]

Λoo

= \ dx^

= \ dx^'Λ dxnP(xί9...,xn),
J-oo J-oo

where P(x l v . . . xn) denotes the probability density of the normal distribution with
mean vector 0 and covariance matrix {σ(tp tk)}ί^jtk^n.

In order to prove (3.5), it is sufficient to show that

(3.8) lim^co E[exp {iξ (U(At, MY12*) + V(At,

By Lemma 2.2,

(3.9) - log £[exp {iξ. (U(At, y(Ayf2oί) + V(At,

= Γ \ {1 - exp(ιΣ5=i
JO JW

+ Γ ί {1 - exp((Σ3-i ίy
•/ 0 »/ W^

where

^ = Xίx(Atj) > y(Ay'**j + x] (j = 1, 2,..., n).

To evaluate (3.9), we use the following simple formulae which are easily
checked.

LEMMA 3.2. Let X and Ybe random variables with E\X\<oo and E\Y\<oo.
Then

(i) ί P [ I > x ] ώ = £ [ I + ] (X+=msix(X, 0)),
Jo

(ii) Γ (P[X> x] -P[:X < -xj)dx=
Jo
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(iii) Γ (P[Z > x] + P[_X < - χ-])dx = E\X\,
Jo

(iv) Γ P[_X >x,Y>x]dx = £[min (X, Y)],
Jo

(v) [(PlX>x, 7>x] + P[X<-x, Y<-xJ)dx
Jo

= (1/2)(E\X\+E\Y\-E\X-Y\).

Now we decompose M(A, ξ) of (3.9) as follows:

(3.10) M(A, ξ) = MX(A> 0 + M2(A, ξ) + M3(A, ξ),

where

MX(A, 0 = (-0 Γ ί Σ?=i ξjγ(Arv\Ij-Jj)dPdx9
jo Jw

M2(A, ξ) = (1/2)

M3(A, ξ) = the remainder term.

Using the inequality |l + ΐα-α2/2-exp(ΐα)|^|α|3/6 and Lemma 3.2 (iii),

we can estimate M3(A, ξ) as follows:

, ξ)\ ̂  (i/6)Γ \ (\ΣU ξjyiAy^ijl* + lΣ?-i ξjyiA
JO JW

^ Σnj=ι Γ \ (Ij+Jj)dPdx
JO JW

Therefore from the assumption (3.2) it follows that M3(A, ξ)-*0 as A-*oo.

Also by Lemma 3.2 (ii) and the assumption (3.1) we get

MM, 0 = ( - 0 Σj-i

To calculate M2(^, ξ) we use Lemma 3.2 (iii) and (v);

MM, ξ) = (1/2) Σj-i ξjyiA)-1 Γ [ (.Ij + Jj)dxPx
JO JW

+ (1/2) Σ Σ 3 . * - I . Λ * ^ r ( ^ ) " 1 Γ ( (ijh+JjJk)dPdx
JO JIV

3-!
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+ (1/2) ΣΣ5.*«i.i** ξjξky(A)-i(ll2){E\x(Atj) -

+ E\x(Atk) - γ(Ay<2ak\ - E\x(Atj) - x(Atk) - (uj-a

- (1/2) Σ3«i ξjtitj, 0) + (1/2) ΣΣ3.*-i .y^ tj

{p(tj9 0) + p(tk, 0) + p(tp tk)} (A-+co).

Thus we obtain (3.5) and the proof of Theorem 3.1 is completed.

§ 4. Weak convergence

In this section, in addition to the previous conditions (3.1) and (3.2), we will

assume that x(t) has stationary increments and that

(4.1) y(A) = Ah, for some h > 0, and

(4.2) E\Γhx(t)\2m+2 is bounded in t > 0,

where m is the smallest integer larger than l//i.

We note that x(t) has a continuous modification so that we may assume that

x(t) is a continuous process. Then yo(t) also is a continuous process. Moreover

it should be noted that h ̂  1 follows automatically from the above assumption.

Under the above assumptions we have

THEOREM 4.1. The process A~h/2y0(At) converges to a fractional Brownian

motion ^°°(0 as A->co in the sense of weak convergence of probability dis-

tributions on the continuous path space C([0, 1], R), where ^°°(0 is a centered

Gaussian process of which covariance function is given by

(4.3) E\y»(t)y«(sy] = (l/2)p(l,0)(|ί|Λ + |5|Λ - | ί - s | Λ ) , 0 £ s, * £ 1.

In order to prove the theorem it suffices to show that the family of probability

distributions on C([0, 1], R) induced by A-hl2yQ(Ai) is tight.

LEMMA 4.2. Under the assumption (4.2) we have some C > 0 such that

E{A-h'2y0{At))2m ^ Ctmh, 0 ^ t ^ min (1, I/A).

PROOF. Let y{A) = Ah. Using a Poisson property we can easily check that

PLy(Ar^2y0(At) ^ α]

= P[u{At, AHI2OL) - v(At, Ah'2v) + w(At, Ahl2<£) ̂  1]

ΐ=o Σ?=o a{n + k)b(k) + e(0) Σ ^ o Σ£=o<n + 1 + k)b(k),
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where

e(l) = ψϊ(oϊ) = Plx(At) g A*i*ά], e(0) = 1 - e{\),

a(k) = P[ΣΓ= 1 X^At) ί A>l*a) = k]

(4.5) = (1/fc!) {JJ ^(α-x^x^exp {- j " ^ ( α - x

= (l/fc!) {jj (1 -ψtia+x))dxY exp {- JJ (1 -

A-^yo(At)y« = Γ α2m

ίiP[7μ)-1/2j;o(/10 g α]
J-00

= Γ «2m Σί=o ΣΓ=
J-00

+ Γ «2m Σ?=o Σ
J-00

+ Γ α 2 m Σ?=o Σ?-o {β(» + 1 + fc)Kfe) - β(n
J-00

By (4.4) we see that

da(k)ldoc = {α(fc - 1 ) - a(k)}ψf(μ) (k ^ 1),

(4.5)

1 - ψf(*)} (k *t

In order to estimate Iu I2, I3, we use the following inequalities which are
easily checked.

LEMMA 4.3.

( i ) Σ?=oα(fc)b(fc+l)ί£ Γ {ί-φf(a+x)}dx,
J 0

(ii) Σf

(iii) ί ° 0L2mψf(aί)d<x = Γ α 2 m { l - ψf(θL)}dθL
J-oo Jo
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(iv) Γ r f α Γ d x α 2 m { l - ^ ( α + x ) } = ί0 da Γ dx<x2mψf(θί-x)
JO JO J-oo Jo

Then we have

h = Γ «2m Σ?=o Σ*% Hk) {a(n +1 + k) - a(n
J-oo

+ Γ «2"Σ?-oΣ2>-o*(fc){β(« + *:)
J-oo

ύ Γ « 2 m {Σ?- 0 a(k)b(k + l)}ψt(*)2d*
J-oo

+ Γ «2>»{Σΐ=oa(k)b(k)}ΨΪ(«){l-ψt(«)}d«.
J-oo

The first term is estimated by Lemma 4.3 (i), (ϋi), (iv):

Γ «2m{Σ?=oα(fe)ί>(fe+l)}^(α)2

ίία
J-oo

^ Γ dd Γ dxα2m{l - ^ ( α + x ) } + ί° <x2mψf(<x)doc
JO JO J-oo

^ const {E(A-hί2x(At))2m+2 + E\A-V2x(At)\2m+i}.

The second term is estimated by Lemma 4.3 (iii):

Γ α2m{Σ?=o a(k)b(k)}ψΐ(<x) {1 -ψΐ(oί)}doι
J-00

^ ( α2m{l - ^/
JO

^ const E\A-V2x(At)\2m+ί.

Similarly by Lemma 4.3 (ii) — (iv),

= Γ «2m Σ?=
J-00

Γ «2m Σ?=o Σ?=o α(n + l + fe){i,(fe) - b{k-\)} {1 -
J

h

const {£μ- Λ / 2 x(^OI 2 m + 1 + E(A-h'2x(Af))2m+2} .
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Finally we get easily

J3 = Γ α2*{Σ?=i a(k)b(k)}dψΐ(x) g E(A-Wχ(At)y»>.
J-00

From the above arguments we have that if O g ί ^ min(l, I/A)

S const {E(A-h/2x(At))2m + E(A-V2x(At))2m+2}

^ const {E((At)-hx(At))2m(At)2mhA-mh

5Ξ const tmh.

From Chebyshev's inequality and Lemma 2.3, we obtain

COROLLARY 4.4. Under the assumption {A.2), if x(t) has stationary
increments, for some C>0,

Pl\A-hl2y0{At) - A-V2y0(As)\ ^ ε] ^ Cε-4™(ί-s)™*,

O g s ^ ί g l , 0 ^ ί - s ^ m i n ( l , I/A), ε > 0.

On the other hand we will show

LEMMA 4.5. Under the assumption (4.2), if x{i) has stationary increments,

for some C>0,

P[\A-hί2y0(At) - A-h'2y0{As)\ ^ ε] S Cε"4w(ί - s)mh,

O g s g ί ^ l , min (1, I/A) g ί - s g l , ε > 0.

In order to show Lemma 4.5 we need the following lemma. Let l(t) =

Σfci-oo*IX(0>0], m(t)=Σΐ=iXLxk(t)SOl n(0 = X[>o(0>0] and L(t)=l(t) +

n(t)-m(t).

LEMMA 4.6. Under the assumption (4.2), for some C>0,

Pl\L(At)\ ^ M ] S CM-*m(At)2mh, min (1, I/A) ^ ί ^ 1, M > 0.

PROOF. We will evaluate the characteristic function of L(At),

£[exp {iWAί)}] - g(ξ)f(ξ), ί eR,

where

g(ξ) = exp (
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Noting that

= 0,1,2,...), / ( 0 ) = l and

max Uf^-^ΦX l/ ( 2 Λ )(0)|} ^ C(E\x(Aή\)n (n = 1, 2,...), for some C > 0,

we easily obtain

(4.5) £[LG4ί)4m] ^ const max {1, (E\x(At)\)2m}

By using Chebyshev's inequality, (4.6) and the assumption (4.2), we obtain

Pl\L(Λt)\ ^ M] ̂  const M^m(At)2mh,

for any M > 0 and min (1, IIA) ^ t g 1.

We proceed to the proof of Lemma 4.5. For each ί^O, let ίL(ί)+fc(0 =

yk(t), keZ. Note that yo(t) is the position of the nonpositive nearest particle
from zero.

For any ε > 0,

^ 2β]

M*)\ ^ 2A^ε, \L(At)\ < M]

+ Pί\yL(At)(Λt)\ ^ 2A»/%\L(At)\ ^ M]

PL\yL(At)(Λt) - L(At)\ ^ Ah'H, \L{At)\ < M]

+ P[\L{At)\ ^

Note that Zπ = yw+1(>lί) — ίπ(^0» « ε Z , i.i.d. random variables with ex-
ponentaial distributions of mean one. Let Xn = Xn — 1. By Lemma 2.3 we can
evaluate

Noting that EX1=0, and E(Xί)
2p<oo, for any integer p^ l , by Lemma 2.4

we get

Ji ^ const MPA-Phε-2P.

By Lemma 4.6 we get

J2 ^ COnSt ί2m/»ε-4m5 J^ ^ C Q n s t (At)2mhM"4m.

Choosing M = εA3h/4 and p = 4m, we get
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Λ + Ji + J3 ^ const ίmΛε"4m.

By Lemma 2.3 we complete the proof of Lemma 4.5.

LEMMA 4.7. Under the assumption (4.2) if x(t) has stationary increments,
then

{A-V2y0(At)}9 A>0, is tight in C([0, 1], R).

PROOF. Combining Corollary 4.4 and Lemma 4.5, we obtain

PUA-h/2yo(At)-A-V2yo(As)\^ε-] ^ constε-*m(t-s)mh,

for any ε > 0, A > 0 and 0 g s ^ ί ^ 1.

Following the fundamental theorem for tightness in C([0, 1], R) (see Billingsley
[1], Theorem 12.3), we easily obtain that

{A-h'2y0(At)},A>0, is tight in C([0, 1],R).

Finally by Lemma 4.7 the proof of Theorem 4.1 is completed.
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