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§1. Introduction

Let {x,}, k=11, +2,... be a Poisson point process on the real line with
parameter 1, to which we add the origin x,=0, i.e.

(1.1) e KX, < X_1<Xo=0<Xx; <Xy <0

Then {{,=x;—x;-1}, —0<k<oo, is a sequence of i.i.d. random variables
with exponential distributions of mean one. For each k, we consider a random
motion x,(¢) starting from x,. Suppose that we are given a random process x(f)
satisfying x(0)=0, and that {x,(f)—x,}, — o0 <k< o0, are independent copies of
x(t). Then we can define the collision path y,(¢) as in [4] and [7],

(1.2) yo(?) = lim, ., median of {x(f); —n <k =n}, for t=0.

Our purpose of this paper is to investigate limiting behaviors of the collision
path by taking a suitable space-time scaling.

In case that x(f)is a standard Brownian motion, Harris showed in [4] that the
distribution of t~1/4yy(f) converges to a normal distribution as t—co. On the
other hand, Spitzer [7] treated a uniform motion case, and proved that y,(A?)/ /A
converges to a Brownian motion as A— oo in the sense of weak convergence of pro-
bability distributions on the path space. Also, in case that x(¢) is a symmetric
stable process of index 1<y<2, Gisselquist [3] proved that y,(At)/A!/?? con-
verges to a fractional Brownian motion with mean zero and covariance function

a(t, s) = const (11/7 + st/v — |t — s|1/7), t,s =20,

as A— oo in the sense of finite dimensional distributions.

In the present paper we will discuss limiting behaviors of the collision path
in more general setting. In particular it will be shown that, as far as the con-
vergence of finite dimensional distributions, the limiting behavior of the collision
path is completely determined by the asymptotic behavior of the first order absolute
moments of increments of x(f). Moreover for a certain class of the processes
with stationary increments we will prove that the rescaled process of the collision
path yq(f) converges to a fractional Brownian motion in the sense of weak con-
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vergence of probability distributions on the path space.

In §2 we will give some preliminaries and in §3 we will prove the convergence
of finite dimensional distributions of the rescaled collision path. Finally, in §4
we will prove the tightness of the rescaled collision path under a restrictive
situation.

Acknowledgement: The author would like to thank Professors M. Motoo
and T. Shiga for their hearty encouragements and valuable advices.

§2. Preliminaries

Consider a real-valued random process x(f) with x(0) =0 such that the sample
paths are right continuous and have left limit for any t=0. For our purpose it is
convenient to define the independent system {x,(#)}, k€ Z, by making use of a
Poisson random measure.

Let W be the set of sample paths of x(¢), equipped with the usual o-field #
generated by all cylindrical sets, and we denote by P, the probability distribution
on Winduced by x(¢).

Let M be the set of counting measures on R x W, equipped with the weak
topology and let %,, be the topological Borel field of M. We denote by v the
Lebesgue measure on R.

DerINITION 2.1.  Let p be an (M, %,,)-valued random variable defined on a
probability space (Q, &, P). u is called a Poisson random measure on Qx W
with the intensity measure A=v x P, if
(i) for any Be By x F,

P[u(B)=j] = exp {— AB}{AB)}[j! (j=0,1,2,..),

and
(i) if By,..., B,€ g x & are disjoint, then {u(B,),..., u(B,)} are independent.

We can construct a Poisson random measure p with the intensity measure
A=vx P, and a random process x,(t) whose probability law is identical with x(f),
on the same probability space (2, #, P), so that u and x,(f) are independent.
We write

b= ez \(0} 6(xk;wk) s

where - <x_;<-<x_;<0<x;<x,<: <x,<--- and J,, stands for the
d-measure at (x, w)e Rx W. Then defining random processes {x,(¢)}, k € Z~{0},
by

2.1) X(1) = x; + wi(D), ke Z~{0},
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where wi(t) is the value of w, at time ¢, we can easily see that {x,}, ke Z~{0},
is a Poisson point process on R with parameter 1, {x,(t)—x,}, k € Z, is independent
of {x,}, ke Z~{0}, and {x,(t)—x;}, k € Z, are independent copies of x(t).

By using this construction and a formula of the characteristic functional for
a Poisson random measure (see [5] p. 57), we get

LEMMA 2.2.. For any &, o and xR,
Elexp (it Tz, xx(0sal}] = exp [~ {1-g(0}dx],

E[exp (i& Tit-w x> al}] = exp [ | {1-F00)dx],

where
800 = {exp {iExlx-+w(Sa]} Pofaw),

B = {_exp ligglx+w) > altPo(aw),
and x[B] stands for the indicator function of B.
Let O,w(-)=w(- +1t)—w(t) be the shifted path, and set

Uy = 2k=\=0 5(xk+wk(t),o.wk) for u= Zk#o 6(Xk,Wk) .

Then g, also is a Poisson random measure on R x W with the intensity measure
A, =vX6,P,, where 6,0P, is the image measure of P, by 6,. Therefore if x(¢)
has stationary increments (equivalently 8,0P,= P, for any ¢ =0), g, is a stationary
process taking values in M. This fact reflects the following lemma, which will
be used in §4.

LEMMA 2.3. Suppose that x(t) has stationary increments. Then the
collision path yy(t) also has stationary increments.

ProoF. Similarly to the collision path y,(f) we can define
yi(t) = lim,_,, median of {x,_,(1),..., X,(t),..., Xx1 (D)} (k€Z),

Let any t>0 be fixed, and set L()=2 ;< x[x:{®)>x,(t)] and R, ()= ;"
xIx(H)<x(t)]. Then we see that

2.2 X(8) = Yi- Loy + Recy(D as. (keZ).

Moreover, denoting o(k)=k— L,(t)+ R,(t) for each k, we see that ¢ is a
bijective map from Z onto itself. Let 7 be the inverse map of ¢ and set
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He= ZHFO 5()%(')—}’0(‘),0:%(’()) .

To complete the proof of this lemma it suffices to show that fi, also is a
Poisson random measure on R x W with the intensity measure 1=v x P,, because
0,0(-)=yo(- +t)—yo(?) is constructed by f, in the same procedure as y,(-) is
done from the Poisson random measure u. By (2.2) we see that

P[a(B) = j]

= 3 pez P[Zkez 10y X[((D), 0w i) € B + x,()] = j, yo(t) = x,(D)]

= 2 pez P2 nxo X[(X4(1), 0w,) € B + x,(1)] = j, L,(f) — R, (1) = p]
= 3 pez PLZnxo 2[(x4()), Biw,) € B + x0(1)] = j, Lo(£) — Ro(t) = p]
= P[Zn#o X[(xn(t)’ otwn) €B + xO(t)] =.]]

= P[u(B) = j], where B+ x, = {(x + x,, w); (x, w)€B}.

Here we used the stationarity of y, and the equivalence between {x,(t) — x (1)},
neZ, and {x,(t)—x,.(t)}, neZ. Since it is clear that fi(B,),..., A(B,) are in-

dependent if B,,..., B, are disjoint, fi, is a Poisson random measure on R x W with
the intensity measure A=vx P,. Thus we complete the proof of Lemma 2.3.

Finally we quote an estimate concerning i.i.d. random variables, which will
be used in §4.

LEMMA 2.4. Let {X,}, n=1, 2,... be a sequence of i.i.d. random variables.
Suppose that

EX, =0, and E|X,|*” <0, for an integer p = 1.
Then we have some constant C,>0 such that
Plmax; c,<n |2 %=1 Xil 2 A] < C,NPA722,
for any >0 and N=1.

The proof follows immediately from a maximal inequality and moment esti-
mates of martingales (e.g. see [6] p. 28 and [2] Theorem 9).

§3. Convergence of finite dimensional distributions

Noting that {x,(f)—x;}, k€ Z, is an independent system of random processes
having the identical probability law with x(f), we impose the following assumptions
3.1 E[x(t)] =0, for any t =0, (x(0) = 0),

(3.2) there exist an increasing function y(A4) defined on (0, c0) and a function
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p(t, s) defined on (0, 00)x (0, c0) such that lim,_, y(4)=+00, and for
any t, s=0,
lim 4. Y(A)7'E|x(At) — x(As)| = p(t, 5).

THEOREM 3.1. Under the assumptions (3.1) and (3.2), the process
y(A)"1/2y,(At) converges in the sense of finite dimensional distributions, as
A— o0, to a centered Gaussian process of which covariance function o(t, s) is
given by

(3.3) a(t, s) = (1/2){p(t, 0) + p(s, 0) — p(t, )}, t,520.

Thus, as far as the convergence of finite dimensional distributions of the
rescaled collision path we establish a quite general result. It is easily seen that the
limiting process y®(f) enjoys a self-similarity, i.e., there exists y=0 such that
y*(ct) and c¢?y®(t) have the identical probability law for any ¢>0. Furthermore
it is obvious that any self-similar centered Gaussian process can appear as the
limiting process of a rescaled collision path.

Proor oF THEOREM 3.1. Following Harris [4] and Spitzer [7] we introduce
three vector random variables;

U(t, o) = (u(t;, @)=y = (Zizg x[xult) < D)=y,
V(t, o) = (—u(t;, 2=y = (— Zid-w xlxat) > 0]y,
W(t, o) = (W(ty, 0))f=y = (x[xo(t) < . Di=1s

where t=(t;,- 1), 0<t; <---<t,, a=(a,.., %) €R".

Let Z(t, )=U(t, o)+ V(t, ) + W(t, o).
We now use the equivalence of the following two events observed by Harris
([4] Theorem 5.1):

(3.4) o) <a;;i=1,2,...,n} = {Z(t, 0) = 1},

where 1=(1,..., 1) and we denote «=f when «; > f; for all components.
Let Z ,=Z(At, y(A)'/2a). We will later show that

(3.5) lim 4., E[exp {i-9(4)712Z 3] = ¢(¢, H)exp (i€ o),
where
(3.6) &, ) =exp{—(1/2) X1-; iy &i&a(t, B}

Once we obtain (3.5), Theorem 3.1 follows immediately. Because by (3.5)
we see easily that
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3.7 lim,,, P[Z,21] = lim ., P[Z,20],
and it follows from (3.4) ~(3.7) that
lim ., P[y(A)~V2pyo(At) < a;; i =1, 2,...,n]
= lim,_, P[Z,=0]
= lim P[Y(A)™V?Zy — 0 2 — a]

=§°° dxl-ngw dx,P(xye X,)

= Sal dx,-- Sh dx,P(X{,..., X,),

where P(x,,.... x,) denotes the probability density of the normal distribution with
mean vector 0 and covariance matrix {o(¢;, t)}1 < k<n-
In order to prove (3.5), it is sufficient to show that

(3.8) lim .o E[exp {if - (U(At, y(4)'20) + V(At, y(4)'/?a))/y(A4)*/?}]
= ¢(¢, Dexp (if- )
By Lemma 2.2,
(3.9)  — log E[exp {if- (U(At, y(A)'?x) + V(At, W(A)'*0)[y(4)"/*}]

- S: Sw {1 — exp (iX71 £;(4)71/21 )} dPdx

* S: SW {l — exp (iX}=1 £;(4)7/2J )}dPdx
= M(4, &),
where
I; = ax(A4)) < 9(4)"2a; — x],
Jj = x[x(Aty) > y(A)?a; + x] (G =1,2,...,n).

To evaluate (3.9), we use the following simple formulae which are easily
checked.

LemMA 3.2. Let X and Y be random variables with E|X|<oo and E|Y| < c0.
Then

(i) S:P[X>x]dx=E[X+] (X* =max (X, 0)),

(i) S: (P[X>x]—P[X < —x])dx=E[X],
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(iii) (P[X >x]+P[X < —x])dx=E|X|,

I,
(iv) S: P[X>x, Y>x]dx=E[min (X, V)],
i

(v) (P[X>x, Y>x]+P[X<—x, Y<—x])dx
= (1/2)(E|X|+E|Y|—-E|X-Y]).

Now we decompose M(4, &) of (3.9) as follows:

(3‘10) M(A’ é) = Ml(Aa é) + MZ(A, C) + M3(Aa é)’

where

M4, 0= (=0 Sio ey, -7 apasx,

(=}

8

M4, =D ([ (5 Ly

+ (X1 Ep(A)"Y2T )2 dPdx,

0o

M (A, &) = the remainder term.
Using the inequality |1+ ic—a?/2—exp (io)|<|«¢|3/6 and Lemma 3.2 (iii),

we can estimate M,(4, &) as follows:

M54, O S WO | (S 5os EHA L + S5, E9(A) 1120 )Pl
< (O E 2y £3, (7§ @+ aPdx
o Jw
< UOREI A2 Sy Ex(AL) — 9A) 7).

Therefore from the assumption (3.2) it follows that M;(4, £)—»0 as 4A— 0.
Also by Lemma 3.2 (ii) and the assumption (3.1) we get

M (4, &) = (= i) =1 {1(A)12E[y(A)!?a; — x(At))]
= (=)
To calculate M,(4, &) we use Lemma 3.2 (iii) and (v);

©
o

M4, 9 = (12) B3 80 {7 (1,40 pdxPx

D) E e pin &0 (7§ At d g0
= (12) S G Elx(dt) — 9A) 20,
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+(1/2) Zzi},k=1,j=\=k éjék)’(A)_l(l/z) {Elx(Atj) - V(A)I/Z“ﬂ

+ E[x(At) — y(A)"?a| — E[x(At)) — x(At) — (o — e )p(A)/*(}
= (1/2) =1 &3p(1), 0) + (1/2) 27 k=1, ik £6(1/2)

{p(tj, 0) + p(ty, 0) + p(1), )} (A—0).

Thus we obtain (3.5) and the proof of Theorem 3.1 is completed.

§4. Weak convergence

In this section, in addition to the previous conditions (3.1) and (3.2), we will
assume that x(¢) has stationary increments and that

“4.1) P(A) = A*, for some h >0, and
4.2 E|tx(8)|*m*2 is bounded in ¢ >0,
where m is the smallest integer larger than 1/h.

We note that x(¢) has a continuous modification so that we may assume that
x(t) is a continuous process. Then y,(¢) also is a continuous process. Moreover
it should be noted that h<1 follows automatically from the above assumption.

Under the above assumptions we have

THEOREM 4.1. The process A~"/2y,(At) converges to a fractional Brownian
motion y*(t) as A— oo in the sense of weak convergence of probability dis-
tributions on the continuous path space C([0, 1], R), where y®(t) is a centered
Gaussian process of which covariance function is given by

4.3) E[y=(0)y*(9)] = (1/Dp(1, 0) (|t|" +]|s|* — |t—s|"), 0 =5, 1 S 1.

In order to prove the theorem it suffices to show that the family of probability
distributions on C([0, 1], R) induced by A~"/2y,(At) is tight.

LeMMA 4.2. Under the assumption (4.2) we have some C>0 such that
E(A "2y, (At))>" < Ctm*, 0<t<min(l, 1/4).
ProOF. Let y(A4)=A". Using a Poisson property we can easily check that
P[y(A)~1/2yo(A1) < a]
= P[u(At, A"2a) — v(At, A"?a) + w(At, A" 2a) 2 1]
= o(1) T2 Tizo a(n +K)b(k) + e(0) Ti2o Ting aln+1+k)b(K),



A limit theorem for collision path 143

where

e(1) = Y (@) = P[x(At) £ A"2a], e(0)=1—e(1),

a(k) = P37 x(x(At) £ A*?a) = k]
(4.5) = (1/k!) {g: W,A(a—x)dx}k exp {- S: .//,A(a—x)dx} ,

b(k) = P[ 272 o x(x,(At) > A*2a) = k]

= (1/k!) {S: a ——1/1;‘(oc+x))dx}k exp {— S: a —.p,A(a+x))dx} .
B(A*2yo(A)m = aamaPLya)112yo(dr) < o]
- S°_° a2m 2 T2 b(k) {e(1)da(n +k)/da + e(0)da(n + 1+ k)/da}de

+ S: wm Y2 3@ Lan+k)e(l) + a(n+ 1+ k)e(0)}db(k)/dada

+ S:o a?m 3% o Lo ta(n+1+k)b(k) — a(n+ k)b(k)}de(0)
=1, +1,+1;.
By (4.4) we see that
da(k)/do = {a(k—1) — a(R)} i) (k21),

da(0)/de = — a(O)W (),
@.5)
db(k)/de = — {b(k—1) — b(k)} {L —yHx)} (k21),

db(0)/da = b(0) {1 — Y(@)} .

In order to estimate I,, I,, I;, we use the following inequalities which are
easily checked.

LEMMA 4.3.

(i) Eioatblk+Ds |7 {L-via+x)dx,
(i) Efoalk+Dbs | wta—xds,

i) (° amppda={” a1~y (@) da
< @m+ 1) 1E|A-M2x(A1)| 2+,
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(iv) Sw da Sw dxa?™{1 —y#a+x)}= So da Sw dxo?™y (o —x)
0 0 - 0
S@2m+1)"12m+2)"LE(A~2x(At))*m+2,
Then we have

I = g: a?m 2o Yo b(k) {a(n+1+k) — a(n+ k) i(x)*do
#{7 @ D20 T 0 bR {aln+) — a(n+ 1+ WA {1~ A} do
= S: azm{> = o a(k)b(k+ 1)}y A(a)*da
+ S:, o2m{ 320 a(k)b(R)A(@) {1 — Y (o)} da.
The first term is estimated by Lemma 4.3 (i), (ii), (iv):

(7 ez, albe+ D} Hayde
© © 0
< So do So dxa?m{1 — YA+ x)} + g_m o2y A(@)de
< const {E(A™"/2x(At))?™+2 + E|A~"2x(At)|2m+1} .
The second term is estimated by Lemma 4.3 (iii):
X:, a2m{ 370 a(k)b(k) () {1 — ()} da
o 0
< [Tt —yt@ndn + | amproyda
< const E|A~"/2x(At)|2m1,

Similarly by Lemma 4.3 (ii) ~ (iv),

I, = S: o Yo Lizo a(n+k) {b(k) — bk~ D@ {1 = Y#(@)}de
+ S:) aZm 3o Lizoa(n+1+k) {b(k) — b(k—1)} {1 — y#(e)}?dx
<7 am(S 0 atptoN @) (1 - w0} dn

+ (7 (B, aller Db} {1 - Y#(@) d

< const {E|A~"2x(At)|>"*1 + E(A~/2x(At))2m+2}
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Finally we get easily
I; = Sw a3 iy a(k)b(k)} Ay () < E(A"2x(A1))*™.

From the above arguments we have that if 0=<¢< min (1, 1/4)
E(A™"2yo(An))*™
< const {E(A™"/2x(At))*™ + E(A~"2x(At))>m*2}
< const {E((At)""x(At))2m(At)>mb 4~mh
+ E((At)""x(At))>™*+2(At)2(m+1)h 4~ (m+ 1)k}
< const t™h,

From Chebyshev’s inequality and Lemma 2.3, we obtain

COROLLARY 4.4. Under the assumption (4.2), if x(t) has stationary
increments, for some C>0,

P[|AH2yo(At) — A7"2yo(As)| = €] < Ce™4m(t—s)™,
0<s=<t=<1, 0Zt—s=min(l, 1/4), ¢>0.
On the other hand we will show

LemmA 4.5. Under the assumption (4.2), if x(t) has stationary increments,
for some C>0,

P[|A7"2yo(At) — A™*2yo(As)| 2 €] < Ce™*m(t—s)™,
0<s=<t=<1, min(l, 1/A)St—-s=1, &>0.

In order to show Lemma 4.5 we need the following lemma. Let ()=
Yoo 2[x(0>01, m(t)= X3, x[x((H= 0], n(O)= x[xo(1)>0] and L(t)=1I(t)+
n(t) — m(t).

LeEMMA 4.6. Under the assumption (4.2), for some C>0,
P[|L(At)| = M] £ CM~4m(At)?m» min(1, 1/A)<t<1, M>0.
Proor. We will evaluate the characteristic function of L(At),

E[exp {iCL(4AD}] — 9(O)f(2),  (€R,

where
9(&) = exp (i8)P[x(A4t)>0] + P[x(A1)<0],
S(&) = exp [{exp (i) — 1} E[x(A)*] + {exp (—i&)— L}E[(—x(41))*]].
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Noting that
d*mE[exp {i{L(AN}]/dl*"| = = ())*"E[L(A1)*"],
[g™O) =1 (n=0,1,2,.), f(0)=1 and
max {|fZ»=D(0)|, | f2M(0)|} £ C(E|x(4D)))" (n =1, 2,...), for some C >0,
we easily obtain
4.5) E[L(At)*™] < const max {1, (E|x(At)|)?>™}.
By using Chebyshev’s inequality, (4.6) and the assumption (4.2), we obtain

P[|L(A?)| = M] £ const M~4m(At)2mh,
forany M >0 and min(l, 1/4) <t < 1.

We proceed to the proof of Lemma 4.5. For each t=0, let jp,.(t)=
yi(®), ke Z. Note that j,(¢) is the position of the nonpositive nearest particle

from zero.
For any ¢>0,
P[|A™"2yo(A1)| 2 2]

= P17 Loan(AD)| 2 24%2%, |L(A)| < M]
+ P[J Lcan(AD)] 2 2442, | L(A1)| 2 M]

S P[1JLan(A) — L(A1)| 2 A", |L(A1)| < M]
+ P[|L(A1)| 2 A"?¢] + P[|L(A1)| 2 M]

=J,+J,+Js.

Note that X,=7,,(49)—y,(At), neZ, iid. random variables with ex-
ponentaial distributions of mean one. Let X,=X,—1. By Lemma 2.3 we can
evaluate

Jy S 2P[max, oy |1 Xy + -+ Xo| > AM2].
Noting that EX; =0, and E(X,)?? < o0, for any integer p=1, by Lemma 2.4
we get
J, < const MPA~Phg=2p,
By Lemma 4.6 we get

J, < const t2mbg=4m . < const (Af)2mhM ~4m,

Choosing M =¢A3%4 and p=4m, we get
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Jy + J, + J3 < const tmhgm4m,
By Lemma 2.3 we complete the proof of Lemma 4.5.

LemMA 4.7. Under the assumption (4.2) if x(t) has stationary increments,
then

{A7#2y (A1)}, A >0, istightin C([0, 1], R).
Proor. Combining Corollary 4.4 and Lemma 4.5, we obtain

PAT"2yo(At)— A7*/2yo(As)| 2 €] < const e~4m(t—s)™*,

forany €¢>0,4A>0 and 0<s<ZtL 1.

Following the fundamental theorem for tightness in C([0, 1], R) (see Billingsley
[1], Theorem 12.3), we easily obtain that

{A"’l/zyo(At)}’ A> 0, iS tlght in C([Oa 1]’ R)'

Finally by Lemma 4.7 the proof of Theorem 4.1 is completed.
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