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Introduction

A group is said to satisfy the weak minimal condition on subgroups if it

has no infinite descending chains of subgroups in which all neighbouring indices

are infinite. Groups satisfying such a condition were first studied by D. I. Zaϊcev

[17].

The purpose of this paper is to introduce analogously in Lie algebras the weak

minimal conditions (wmin) relaxing the minimal conditions, and to investigate

the properties of Lie algebras satisfying the weak minimal conditions on various

subalgebras. The aspects of Lie algebras satisfying the weak minimal conditions

are not similar to those of groups satisfying the corresponding conditions. One

of the main reasons seems to be the following: In group theory every subgroup

of finite index contains a normal subgroup of finite index, while in the theory of

Lie algebras a subalgebra of finite codimension does not necessarily contain an

ideal of finite codimension. Moreover, we define the weak maximal conditions

(wmax) and develop the results on them in the course of the study of the weak

minimal conditions.

The main results of this paper are as follows.

(1) An ideally soluble, hypoabelian Lie algebra satisfying the weak minimal

condition on ideals is soluble (Theorem 2.4).

(2) A non-abelian ideally finite Lie algebra satisfying the weak minimal

condition on non-abelian 2-step subideals satisfies the minimal condition on

ideals (Theorem 3.6).

(3) If %i 0 = 1, 2, 3) is one of the classes of abelian, nilpotent and soluble

Lie algebras, then the following conditions are equivalent: (a) wmin on 3£±-

subideals (resp. ascendant 3£1-subalgebras); (b) wmax on X2-subideals (resp.

ascendant ϊ2-subalgebras); (c) the minimal condition on 3£3-subideals (resp.

ascendant 3E3-subalgebras) (Theorem 4.2).

(4) Each of the following Lie algebras is finite-dimensional: (a) a nilpotent

algebra satisfying wmin or wmax on abelian ideals; (b) a supersoluble algebra

satisfying wmin or wmax on abelian 2-step subideals; (c) a hyperabelian algebra

satisfying wmin or wmax on abelian 3-step subideals; (d) an έ(si)9I-algebra

satisfying wmin or wmax on abelian subideals; (e) an έ9I-algebra satisfying wmin

or wmax on abelian ascendant subalgebras; (f) an EL(wasc)(E9I U
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satisfying wmin or wmax on abelian subalgebras (Theorem 5.8).

(5) There exist Lie algebras satisfying the following (a), (b) and (c) re-

spectively : (a) wmin and wmax on ideals but neither the minimal nor the maximal

condition on ideals, (b) wmin on ideals but neither the minimal condition nor

wmax on ideals and (c) wmax on ideals but neither the maximal condition nor

wmin on ideals (Theorem 6.5).

The author would like to express his hearty thanks to Professor S. Togo for

his valuable comments and encouragement in preparing this paper.

1.

Throughout the paper Lie algebras are not necessarily finite-dimensional

over a field I of arbitrary characteristic unless otherwise specified. We mostly

follow [2] for the use of notations and terminology.

We begin with the definitions of ascendant subalgebras, weakly ascendant

subalgebras ([15]), serial subalgebras and weakly serial subalgebras ([3]) of Lie

algebras. Let L be a Lie algebra over ϊ and let H be a subalgebra of L. For an

ordinal σ, H is a σ-step ascendant (resp. weakly ascendant) subalgebra of L,

denoted by H<i σ L (resp. H<σL), if there exists an ascending series (resp. chain)

(Ha)a£7 of subalgebras (resp. subspaces) of L such that

(1) H0=H and Hσ = L,

(2) Hα<ι Ha +! (resp. [HΛ+1, H~\ s Ha) for any ordinal α < σ,

(3) Hλ=\Ja<λHa for any limit ordinal λ<σ.

H is an ascendant (resp. a weakly ascendant) subalgebra of L, denoted by H asc L

(resp. H wasc L), if H^σL (resp. H<σL) for some ordinal σ. When σ is finite,

H is a subideal (resp. weak subideal) of L and denoted by H si L (resp. H wsi L).

For a totally ordered set Σ, a series (resp. weak series) from H to L of type Σ is

a collection {Λσ9 Vσ: σeΣ} of subalgebras (resp. subspaces) of L such that

(1) H^Vσ^Λσf

(2) L\H = \JσeΣ(

(3) Λτc:Vσifτ<σ,

(4) Vσ^Λσ (resp. [Λβ9 H\<= Vσ) for all σeΣ.

H is a serial (resp. weakly serial) subalgebra of L, denoted by //serL (resp.

H wser L), if there exists a series (resp. weak series) from H to L of type Σ for

some Σ. His a. local subideal (resp. locally ascendant subalgebra) of L, denoted by

H lsi L(resp. H lasc L), if whenever X is a finite subset of L we have

H si < # , X} (resp. H asc <if, X}).

For an ordinal α we denote by L ( α ) (resp. Lα, ζΛ(L)) the α-th term of the transfinite

derived (resp. lower central, upper central) series of L. For H < L w e put HL =
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Let X be a class of Lie algebras and let A be any of the relations < , si, wsi,

asc, wasc, <3σ, < σ , lsi, lasc, ser, wser. A Lie algebra L is said to lie in L(A)X if

for any finite subset X of L there exists an X-subalgebra K of L such that X ^

KΔL. In particular we write tX for L(<)3E. When LEL(^)X (resp. L £), L is

called an ideally (resp. a locally) X-algebra. gm, g, (5, SI, % 3 and 3 ω are the

classes of Lie algebras which are of dimension < m , finite-dimensional, finitely

generated, abelian, nilpotent, hypercentral and hypercentral of central height < ω

respectively. RX is the class of Lie algebras L having a collection {/α}αê  of ideals

such that Γ\aeA Ia = 0 and L//α e X for any α e A. If HAL (resp. H e X and HAL),

we say that H is a J-subalgebra (resp. dX-subalgebra) of L. Eσ(Λ)3E (resp. Eσ(Λ)3E)

is the class of Lie algebras L having an ascending (resp. a descending) series

(Lα)α<σ of 24-subalgebras such that

(1) L o = 0 and Lσ = L (resp. L o = L and Lσ = 0),

(2) L α <iL α + 1 and L α + 1 /L α eX (resp. L α + 1 <iL α and Lα/Lα + 1eX) for any

ordinal α < σ,

(3) Lλ = \JΛ<λLa (resp. L λ = A α < λ L α ) for any limit ordinal λ<σ.

We define 6 ( 4 ) S = U σ > o ^ ) S , i ( 4 ) I = W<r>0Eσ(^)3E and E ( J ) £ = Wπ < ω ^ ( 4 ) 1 .

In particular we write έ σ ϊ , EσX, iX, ΈX and E Ϊ for έ σ ( < ) ϊ , E σ ( < ) ϊ , έ(<)3E, E ( < ) 3 £

and E ( < ) £ respectively. When LeEί^])^ ! (resp. E(<I)SI, ESI, ESI), L is called a

supersoluble (resp. hyperabelian, hypoabelian, soluble) Lie algebra. Min-J

(resp. Min-AX) is the class of Lie algebras satisfying the minimal condition on

J-subalgebras (resp. 2l£-subalgebras). In particular we write Min (resp. Min-ϊ)

for Min-< (resp. M i n - < ϊ ) . Max-J and Max-AX are similarly defined. ^3E-Fin

is the class of Lie algebras in which every JX-subalgebra is finite-dimensional.

A local system for a Lie algebra L is a collection {LJ i e I of subalgebras of L

which generate L and have the property that whenever i, jel there exists keI

such that <Lf, L, > < Lk.

We shall now introduce the new concept in the following

DEFINITION. Let X be a class of Lie algebras and let A be any of the relations

< , <i σ , si, asc, ser. A Lie algebra L is said to satisfy the weak minimal condition

on Jϊ-subalgebras if it does not possess an infinite descending chain

of 2Jΐ-subalgebras satisfying the condition that the codimension of the subspace

Hi+ί in the space Ht is infinite, or equivalently if for every descending chain (*)

of ΛX-subalgebras of L there exists reN such that the dimension of the vector

space HJHi+1 is finite for any i>r. The weak maximal condition on JX-sub-

algebras is similarly defined. We denote by wmin-ΛX (resp. wmax-Jϊ) the class

of Lie algebras satisfying the weak minimal (resp. weak maximal) condition on

ΛX-subalgebras. When X is the class of all Lie algebras, we simply write wmin-J
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(resp. wmax-J) instead of wmin-AX (resp. wmax-AX). Moreover we write

wmin (resp. wmax) for wmin-< (resp. wmax-<).

Now as elementary properties of the classes wmin-A and wmax-A we have

LEMMA 1.1. Let A be any of the relations < , o σ , si, asc. Then wmin-J

and wmax-J are {E, o}-closed.

PROOF. Let / be an ideal of a Lie algebra L and suppose that / and L/I

satisfy the weak minimal condition on J-subalgebras. For any descending chain

H12 H 2 2 of Λ-subalgebras of L, we have two descending chains HίnI^H2Γ\

J ^ of J-subalgebras of/ and {H1+ϊ)II^{H1-\-I)jI^." of >d-subalgebras of

Ljl. Then there exists n e N such that the dimensions of (Hk n I)l(Hk+ί Π /) and

(Hk + I)I(Hk+i + /) are finite for any k > n. Since

dimHk/Hk+ί = όim(Hkf]I)/(Hk+1f)I) + dim (Hk + I)l(Hk+ί+1),

the dimension of Hk/Hk+ί is also finite for any k>n. Hence Le wmin-J. This

implies that wmin-J is E-closed. Similarly we can prove that wmax-J is E-closed.

Q-closedness of wmin-^1 and wmax-Λ is trivial.

In group theory, there exists an infinite abelian group satisfying the weak

minimal condition on subgroups (e.g. an infinite cyclic group). For Lie algebras,

however, we have

LEMMA 1.2. An abelian Lie algebra satisfying the weak minimal or the

weak maximal condition on subalgebras is finite-dimensional.

PROOF. Let L be an infinite-dimensional abelian Lie algebra. Then there

exists a linearly independent subset {e^: ί, j e N} of L. Now we define

In = ®iϊn(®jeN<eij», Jn = θi<Ln(® jeN<eij» for any

Evidently / 0 > / 1 > and J o < / 1 < , and furthermore IJIn+ι and Jn+ί/Jn

are infinite-dimensional. Therefore L satisfies neither the weak minimal nor

the weak maximal condition on subalgebras.

From Lemma 1.2 we deduce

PROPOSITION 1.3. (1) Let L be a Lie algebra satisfying the weak minimal

or the weak maximal condition on ideals. Then ζn(L) is finite-dimensional for

any neN.

(2) A nilpotent Lie algebra satisfying the weak minimal or the weak

maximal condition on ideals is finite-dimensional.

(3) A soluble Lie algebra satisfying the weak minimal or the weak maximal

condition on 2-step subίdeals is finite-dimensional.
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PROOF. (1) We use induction on n. Since Ci(L) e wmin U wmax it follows

from Lemma 1.2 that ζί(L)e<^. Let n>l and suppose that ζn_ί(L)e'$. By

Lemma 1.1 L/ίn_ t(L) e wmin-^ U wmax-<. As CW/C- t(L) = CiίL/C- i(L)) e

(2) is a direct consequence of (1).

(3) Let L6E^lΠ(wmin-<ι2Uwmax-<i2). Then L<"> = 0 for some neN.

Since L(ί>ewmin-<i U wmax-< it follows from Lemmas 1.1 and 1.2 that

e(wmin-<ι U wmax-<) n 91 < 55

for 0 < i < n. Therefore we have Le g.

Hypercentral Lie algebras satisfying the weak minimal and the weak maximal

conditions on ideals need not be finite-dimensional (see Example 6.2). On

the other hand for hypercentral Lie algebras of central height < ω we have the

following

COROLLARY 1.4. Let L be a Lie algebra satisfying the weak minimal or

the weak maximal condition on ideals. Then L is hypercentral of central

height <ω if and only if L is locally nilpotent and ideally finite.

PROOF. The 'if part is clear since L(<I)(91 n 5 ) = L 9 1 Π L ( < 0 g < 3 ω by [13,

Theorem 3.6]. Let Le3ω. Then L= \Jn<ωζn(L). Using Proposition 1.3(1)

we have ζn(L) e 91 Π g for any n e N. Therefore Le L(<I)(5R n S).

In this section we shall consider several conditions under which Lie algebras

satisfying the weak minimal condition on ideals are soluble. To do this we

need the following key lemma.

LEMMA 2.1. Let L be a Lie algebra belonging to L(O)E2I and let {Ai}f=0 be

a descending chain of ideals of L such that ΓΛ?=oAi = 0 and that Ai+ί is of

finite codimension in A{for any z>0. If Ao is non-soluble, then L has a non-

soluble ideal of infinite codimension in Ao.

PROOF. Assume that AQ^BW. We put fc(0) = l. Since Ai/Ai+ίe
<S there

exist finitely many elements a[°, aψ,..., α ^ of Ax such that

Put Xi = {a[i),..., a^}. Owing to LGL(<I)E9I we can choose an ideal S1 of

L such that Xo £ St ^ Ao and that St is soluble of derived length s(l). Now there

exists an integer k(ΐ) such that fc(l)>fc(0) and 4 J k ( 1 ) φi4 k ( 1 ) + 1 + S 1 . Indeed, if

such an integer does not exist then for any j>k(O) we have Aj^AJ+i + Sί and so
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Aj + Sί=Aj+ί + Sί. In particular Aj + Sί = Ak(0) + 1 + Sί. Consequently,

This means that Ak(0) + ί/Aj is soluble of derived length <s(l) for any j>k(O).
As Γ\j>k(O)Aj = 0, ^4Λ(0)+i is imbeddable into the direct sum ® j>k{0) Ak^O)+ JAj.
It follows that Ak(0)+ί is soluble of derived length <s(l). On the other hand
^o/4(O)+i is soluble since L(<I)E2I is {s, Q}-closed. Therefore Ao is soluble.
This is contrary to the assumption. Thus there exists an integer k(l) as desired.
We select an element hί such that

"1 6^fc(l)\(^Jt(l)+l + ̂ l)

Furthermore there exists an integer ί(l)>fc(l) such that ( I k ( 1 ) + l v . . , I ί ( 1 ) ) is
soluble of derived length >s(l). Indeed, if such an integer does not exist, then
for any Z>fc(l) we see that <XΛ(1)+1,..., Xt} is soluble of derived length <s(l).
Since i4Jk(1) + 1 = i 4 | + 1 + <^ΓJk(1)+1,..., Xt} we have

*̂Jfe(l) + l/^/+l = \^Λ(l)+l5 j Xl/l\Aι+ί Π \-Xjfc(l) + l5 5 Xl/)

This implies that Ak(1) + ί/Aι+1 is soluble of derived length <s(l) for any />fc(l).
It is impossible for the same reason above. Thus there exists an integer /(I) as
desired. Then we can choose an ideal S2 of L such that

and that 5 2 is soluble of derived length s(2)>s(l). Furthermore we can find
an integer k(2)>k(l) such that

Λ(2) $ Λ(2)+l + St + 5 2 .

The existence of fc(2) is shown similarly to that of the integer k(l). We select
an element h2 such that

Furthermore we can find an integer ί(2)>fc(2) such that (Xk(2) + ι>' > Xi{iy> ι s

soluble of derived length >s(2). The existence of 1(2) is proved in the same way
as that of the integer 1(1). Then we choose an ideal 5 3 of L such that

and that S3 is soluble of derived length s(3)>s(2).
Continuing this procedure, we obtain two sequences of positive integers

s ( l ) < 5 ( 2 ) < . . . < s ( 0 <
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a sequence of ideals

" 1 » ^ 2 > * " ? ^ i ?

of L, and a sequence of elements

h ί 9 h 2 , ", h h •••

of L, satisfying the following requirements:

(1) MΛ ( ί )\(Λ(o + i+Si + +Si)>
(2) Si^Ak(i_ί) + 1 for Ϊ > 2 and SX^AO9

(3) St is soluble of derived length s(i).
From the requirement (2) we deduce that

S j ^ A m + ί for j > i > 1. (*)

Now we define

Then it follows from the requirements (2) and (3) that A is a non-soluble ideal
of L contained in Ao. We shall show that A is of infinite codimension in Ao.
First we see that each ht does not belong to A. In fact, if ht e A then using (*)
we have

M Λ ( o + i + A = Λ(o+i + s i + ••• + St,

which is contrary to the requirement (1). Now it is enough for our purpose to
prove that {hi + A: i = l, 2,...} is linearly independent in Ao/A. Furthermore to
do this it is enough to prove that hm(ί)-\-A, hm(2) + A,..., hm(i) + A(m(ϊ)<m(2)<
••• <m(i)) are linearly independent in Ao/A. We use induction on i. It is clear
for ι = l. Let i>\ and suppose that the result holds for i — 1. Assume that
Σί=i α, frm(, ) e A with α, e f. Since Ak{m(i)) <Ξ ^ Ak(m(2)) c ^ ( m ( 1 ) ) + x we have

using (*). Therefore OL1 = 0 from the requirement (1). By the inductive hypothesis
α2 = = αf = 0. This completes the proof of the lemma.

From Lemma 2.1 we deduce

LEMMA 2.2. Let LeL(o)E2I Π wmin-<] and let {A^Q be a descending
chain of ideals of L with rλ?=0 -4 — 0. Then An is soluble for some n e N.

PROOF. Since L satisfies the weak minimal condition on ideals, there is
n e N such that At is of finite codimension in An for any j ;> n. Suppose that An

is non-soluble. By Lemma 2.1 there exists an ideal Lx of L such that Lx is
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non-soluble and of infinite codimension in An. Now {Lx fϊ A^f=n is a chain of

ideals of L such that ΓΛf=n(Lί n Ai)=O and that Lt n At is of finite codimension

in L1 for any i>n. By Lemma 2.1 again there exists an ideal L 2 of L such that

L 2 is non-soluble and of infinite codimension in Lv By continuing this procedure,

we obtain a strictly descending chain

of ideals of L such that L ί + 1 is of infinite codimension in Lt for any i > 1. This

contradicts Le wmin-o. Thus An is soluble.

Let L be a Lie algebra and let σ be an ordinal. It is easy to see that Le Eff9I

if and only if L ( σ ) = 0. Defining L<*> = n α ^ 0

 L(a) w e have the following

COROLLARY 2.3. // Le L(<:)E9Ϊ n wmin-<α then

PROOF. In the quotient algebra L = LjLSω) we see that

L > L^ > LW > > L(f) >••• and n Γ = o ί ( ί ) = 0.

Since LeL(o)E3I n wmin-<ι, in virtue of Lemma 2.2 there is neN such that

L<") is soluble. Hence (!<">)« = 0 for a suitable m e N, i.e., L<π+m) = L<ω) = L<*>.

Thus L/L<*> is soluble.

Obviously if LeέSI then L( ί |e) = 0. So as an immediate consequence of

Proposition 1.3(3) and Corollary 2.3 we have the following main theorem in

this section.

THEOREM 2.4. An ideally soluble, hypoabelian Lie algebra satisfying the

weak minimal condition on ideals is soluble, that is to say,

( ) n E21 n wmin-<3 < E31.

Moreover

L(<I)E9I n E21 Π wmin-<32 < E9Ϊ n δ

As a special case of Theorem 2.4 we have

COROLLARY 2.5. Let X be one of the following classes:

n Rg, L(O)E« n Max-o, L(<])E91 n ί(<)(«n

n E% έ(^)(^i n 5) n έω(<3)ar,

Then

3E n wmin-<] < E2I and X Π wmin-<ι2 <
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PROOF. The results follow from the facts that LESI Π R5<RE91<E51, LE2I n

Max-<i<E9I (using [2, Lemma 8.6.2]), E(O)(SI n g)<έ2l ([6, Corollary 3.8])

and έω(^)(9ί n 5 ) < L ( ^ ) ( E 2 I n d)<i(^)(<Ά n δ) ίl έω(<3)2l ([16, Lemma 4.2]).

REMARK. The classes

Π E3I Π wmin-<], L(O)E$1 n R?5 Π wmin-o,

Π Max-o n wmin-<3, L(<I)E2I n E(<α)(2lnδ) Π wmin-<ί,

έω(<03I Π E3I Π wmin-<i, Eω(o)?I n έ(

are not subclasses of E?l n 5 (Examples 6.1 and 6.2).

3.

In this section we shall consider several conditions under which Lie algebras

satisfying the weak minimal conditions on various subalgebras satisfy the minimal

condition on ideals or non-abelian ideals.

DEFINITION. Let H be a proper subalgebra of a Lie algebra L. As in group

theory we say that H is finitely separable from an element x of L, not belonging

to H, if there exists a homomorphism φ of L to a finite-dimensional Lie algebra

such that φ(x)^φ(H). We say that H is finitely separable from L if H is finitely

separable from at least one element of L.

Now we require the following result for our aim.

LEMMA 3.1. Let a Lie algebra L have a local system {La}aeΛ consisting of

ideals (resp. subalgebras) which are finitely separable from L. Then there

exists in L a family {Xi}ieN+ (iV+ = {l, 2,...}) of elements such that for N±^

\N2\Nt\ < aim H%jH{ (resp. dimHJH^

with iί J = <L#, xf: ϊ*eiVj> 0* = l, 2), where L* is 0 or any member of {Lα}.

PROOF. First we shall show the existence in L of three infinite sequences:

a sequence

* 1 > *2> '"9 Xni
 Xn+U •*" (X)

of elements of L, an ascending sequence

L 1 < L 2 < . . < L n < L n + 1 < . . . (2)

of ideals (resp. subalgebras) in the local system {LJ, and a descending sequence
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At >A2> :>An>An+ί > (3)

of ideals of finite codimension, where the sequences must be connected by the
relation

L=An+ί+Ln + 1, xne(An\(An+ί+Ln)) n (Ln+ί\Ln) (n>l) . (4)

We put At=L and choose an arbitrary subalgebra L1 in the local system {Lα}.
Then there exists in L an ideal A2 of finite codimension such that L^A2 + L1.
In fact, since Lx is finitely separable from L there exist an element x of L, not
belonging to Lί9 and a homomorphism φ of L to a finite-dimensional Lie algebra
such that φ(x)^φ(L1). Hence x^Ker φ -\- Lt. We may put A2 = Keτ φ.
Therefore we can choose an element xίeAι\(A2 + Lί). Furthermore, as A2

is of finite codimension in L we can find finitely many elements y ί9...9 yk of L such
that L = ̂ 42 + <y1?..., yk}. Since {Lα} is a local system there exists a subalgebra
L2 in {Lα} such that

Thus we deduce that L = A2 + L2, Lί<L2 and v4x >A2.
Suppose that for n > 1 we have constructed the initial segments of the sequence

(1) up to the tt-th term and of the sequences (2), (3) up to the (n + l)-th term, and
that they are connected by the relation (4). Since Ln + ί is finitely separable
from L, as above there exists in L an ideal / of finite codimension such that LΦ
/ + Ln + 1. Put An+2 = An+ί Π /. Then An+1<£An+2 + Ln+1. For, if not, we have

L = An+ί + L n + 1 c An+2 + Lπ + 1 c / + Ln+ί * L,

which is impossible. Consequently we can choose an element

Furthermore, taking into account that {Lα} is a local system and that L/An+2 is
finite-dimensional, as above we can find in the system {Lα} a subalgebra Ln+2

such that

<xΛ+1, Lπ+1> <Ln+2 and L = ^ π + 2 + Ln+2.

Thus we have shown the existence in L of the infinite sequences (l)-(3) connected
by the relation (4).

We shall show that {Xi}ieN+ is a desired sequence. Here we prove this for
the case where Lα's are ideals of L. Another case is similarly proved. Let Nί ^
N2^N+ and Hj = (L*, xt: ίe Nj} 0 = 1, 2), where L* is 0 or L±. To verify the
inequality |ΛΓ2\N1|<dim/ί2

:/iίf' it is enough to show that for nl9 n2,..., nkeN2\
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x^ + Jϊf , •", xnk + HΪ

are linearly independent in H\\H\. We use induction on k. For k = 0 there is
nothing to prove. Let fc>0 and assume that the result holds for k — 1. Suppose
that

where α fef ( l<ί<fc) . Letjl9...9jι be all the positive integers which are contained
in Nx and do not exceed n = n1. Since n£ξNl9 we have jl9...9jι<n. From the
sequence (3) and the relation (4) it follows that xseΛs<An+ί for all s>n. Then
we have

since <x</ 1,..., x y ί > < L π using (2) and (4). Hence we have

Σ*=i <*!*,,,£ 4,+1 + ^ n

But as n < n 2 < * * * < nk w e s e e t n a t x/ϋ 6 ^ n i ^ ^«+ I f° r all i > 2. Therefore

which implies in virtue of (4) that a x =0. By inductive hypothesis we have
α2 = = αk = 0. This completes the proof of the lemma.

Now Lemma 3.1 yields the following

LEMMA 3.2. (1) Let Le L(<I)(5. If either (a) L satisfies the weak minimal
condition on ideals or (b) L is non-abelian and satisfies the weak minimal
condition on non-abelian ideals, then there exists a finitely generated ideal of
L which is finitely inseparable from L.

(2) If either (a) L satisfies the weak minimal condition on subalgebras or
(b) L is non-abelian and satisfies the weak minimal condition on non-abelian
subalgebras, then there exists a finitely generated subalgebra of L which is
finitely inseparable from L.

PROOF. (1) Let {La}aeA be the set of all finitely generated ideals of L. Then
{Lα} becomes a local system for L. If all ideals Lα are finitely separable from L,
then by Lemma 3.1 there exists a family of elements {Xi}ieN+. Put Ni = 2iN+
for al i i > 1 . Then

Nt => N2 3 . 3 Nt z> 7Vi+1 =>••• and |JVANi+1| = oo.

We define Hj = (Xi: ieNj}L for the case (a) and Hj = (Lβ, xt: ieΛ^ >L, where
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Lβ is a non-abelian subalgebra in {LJ, for the case (b). Again by using Lemma
3.1 we have

Ht > H2 >•••> Ht > Hi+ί >••• and dimHJHi+ί = oo,

which contradicts the weak minimal conditions. Thus there exists an ideal Lα

finitely inseparable from L.
(2) is similarly proved by letting {L<x}aeΛ be the set of all finitely generated

subalgebras of L and defining H^^x^. ieNj} for the case (a) and Hj =
(Lβ, xt\ ie Nj} for the case (b).

By making use of Lemma 3.2 we have the following

PROPOSITION 3.3. (1) Let L be an ideally finite Lie algebra.
a) // L satisfies the weak minimal condition on 2-step subideals then L

satisfies the minimal condition on ideals.
b) IfL satisfies the weak minimal condition on non-abelian 2-step subideals

then L satisfies the minimal condition on non-abelian ideals.
(2) Let L be a locally finite Lie algebra.
a) IfL satisfies the weak minimal condition on subalgebras then L satisfies

the minimal condition on ideals.
b) // L satisfies the weak minimal condition on non-abelian subalgebras

then L satisfies the minimal condition on non-abelian ideals.

PROOF. (1) Let LeL(<α)g and let J ^ ^ ^ be a descending chain of
ideals (resp. non-abelian ideals) of L. Since L satisfies the weak minimal con-
dition on ideals (resp. non-abelian ideals) there is a positive integer n such that
IJIn+ke% for all fc>0. Now / Π G L ( < ] ) 5 and /„ satisfies the weak minimal
condition on ideals (resp. non-abelian ideals). So from Lemma 3.2 it follows
that there exists a finite-dimensional subalgebra K of/„ which is finitely inseparable
from /„. Considering the natural homomorphism of In onto the finite-dimensional
quotient algebra IJIn+k we have

IJIn+k = (K + In+k)/In+k^KI(Knln+k) for any k > 0.

Thus we conclude that In+m = In+m+ι = ••• for a suitable meN.
(2) is similarly proved.

REMARK. In general Lie algebras satisfying the weak minimal condition
on 2-step subideals (resp. non-abelian 2-step subideals) do not necessarily satisfy
the minimal condition on ideals (resp. non-abelian ideals) (Example 6.6). How-
ever, we do not know a Lie algebra satisfying the weak minimal condition on
subalgebras (resp. non-abelian subalgebras) but not the minimal condition on
ideals (resp. non-abelian ideals), still less an infinite-dimensional Lie algebra satis-
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fying the weak minimal condition on subalgebras.

Let A be any of the relations < , si, asc, < α (α an ordinal >1). Next we

shall consider a condition under which Lie algebras satisfying the minimal (resp.

weak minimal) condition on non-abelian A -subalgebras satisfy the minimal (resp.

weak minimal) condition on ideals.

LEMMA 3.4. Let A be one of the relations <, si, asc, < α ( α α n ordinal > 1).

// L satisfies the minimal (resp. weak minimal) condition on non-abelian A-

subalgebras and contains a non-abelian A-subalgebra H satisfying the minimal

(resp. weak minimal) condition on ideals, then L satisfies the minimal (resp.

weak minimal) condition on ideals.

PROOF. Let I1 Ώ.I2 ̂  ••• denote an arbitrary descending chain of ideals of L.

Then it is clear that

, H + ItAL and H + Jf $ 21 for all i > 1.

By the hypothesis we can find a positive integer n such that

dim (H Π Ii)l(H n Ii+1) = 0 (resp. < oo) and

ί) = O (resp. <oo)

for all i > n. Therefore

dim Jf//ί+1 = dim(H n/*)/(# n/,+ i) + dim(H + /f)/(H + / l + 1 ) = 0 (resp. <oo)

for all ί>n. This implies that LeMin-<i (resp. wmin-o).

PROPOSITION 3.5. Let A be one of the relations < , si, asc, <iα (α an ordinal

>1) and let L be a non-abelian Lie algebra belonging to L(J)g. If L satisfies

the minimal (resp. weak minimal) condition on non-abelian A-subalgebras,

then L satisfies the minimal (resp. weak minimal) condition on ideals.

PROOF. Since L is not abelian we can choose two elements x, y of L such

that [x, >>]^0. By LEL(A)% there exists a finite-dimensional subalgebra F

of L such that <x, y}<FAL. As F is not abelian we deduce from Lemma 3.4

that L satisfies the minimal (resp. weak minimal) condition on ideals.

Finally we extend Proposition 3.3(1) in the following main theorem in this

section, which corresponds to Zaϊcev's result [18, Corollary 1] that a non-abelian

locally finite group satisfying the weak minimal condition on non-abelian sub-

groups satisfies the minimal condition on subgroups.

THEOREM 3.6. Let L be a non-abelian ideally finite Lie algebra. If L

satisfies the weak minimal condition on non-abelian 2-step subideals, then
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L satisfies the minimal condition on ideals.

PROOF. Employing Proposition 3.3(1) we see that L satisfies the minimal

condition on non-abelian ideals. Furthermore, by using Proposition 3.5 we

conclude that L satisfies the minimal condition on ideals.

4.

Let A be any of the relations si, asc, < α (α an infinite ordinal) and let X be

any of the classes 21, 91, E21. In this section we shall study Lie algebras satisfying

the weak minimal or the weak maximal condition on Jϊ-subalgebras. We first

prove

LEMMA 4.1. Let A be one of the relations si, asc, <αα (α an infinite ordinal)

and let X be an ι-closed subclass O/ESΆ. Then

wmin-AX = wmax-JX = Min-AX = AX-Fin.

PROOF. It is trivial that

AX-Fin < Min-AX < wmin-̂ 3E and AX-Fin < v/max-AX.

Therefore we show that wmin-ΛX U wmsix-AX< AX-Fin. Let Lewmin-AX\J

wm&x-AX and let H be any Jϊ-subalgebra of L. If A is a subideal of H then

A is a Jϊ-subalgebra of L by i-closedness of X. Hence H e (wmin-si U wmax-si) Π

E$ί and so in view of Proposition 1.3(3) H is finite-dimensional. Thus Le AX-Fin.

From this we deduce the following

THEOREM 4.2. (1) Let A be one of the relations si, asc, < α (α an infinite

ordinal). Then the classes

wmin- A 2t, wmin- A 91, wmin- A E2I,

Min-A%

AM-Fin, A9l-Fin,

coincide with each other. Furthermore, over fields of characteristic zero the

classes

Max-J 21, Max- A 91, Max-2JE2I

coincide with the classes above.

(2) Let X be any class of Lie algebras such that 2 1 < £ < E 2 1 . Then the

classes
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wmin-siX, Γ\ *= i wmin-<j nX9 Min-siϊ, Γ\ ™= i Min-<ι nX9

wmax-siX, ΓΛJL ± wmax-<nX, si9t-Fin, Λ * = i < π

coincide with each other. Furthermore, over fields of characteristic zero the

classes

Max-siX, ΓΛ JL x Max-o nX

coincide with the classes above.

PROOF. (1) The first half of the assertion comes from Lemma 4.1 and

[2, Corollary 9.2.2]. The second half comes from [2, Corollary 9.1.10].

(2) By (1) we have wmin-siX = wmax-siX = Min-si3E = si?l-Fin. Let Le

wmin-<in+13£u wmax-on+13E for any n>\ and let 4̂ be any <i"91-subalgebra

of L. As 91 < X we have A e (wmin U wmax) Π 51 < g. Hence Le <ι "9ί-Fin.

Therefore

si5ί-Fin < (Λ^ = 1 wmin-<i/I3E) Π (AJL_

Thus the result follows from [2, Proposition 9.2.3(b) and Corollary 9.1.11].

REMARK. Corresponding to the result [2, Proposition 9.1.12] we have

wmin-ascX = Π α > 0 wmin-oα3£ and wmax-asc3E = Λ α > 0 wmax-<3αΐ

for any class X of Lie algebras.

5.

In the first section we observed that every infinite-dimensional Lie algebra

satisfying the weak minimal or the weak maximal condition on subalgebras

possesses no infinite-dimensional abelian subalgebras. On the other hand, it is

well known that every infinite-dimensional locally nilpotent Lie algebra possesses

an infinite-dimensional abelian subalgebra. Concerning these facts above

we raise the following question: In what classes containing that of locally

nilpotent Lie algebras does an infinite-dimensional Lie algebra possess an infinite-

dimensional abelian subalgebra? Recently Kashiwagi [7] showed that every

infinite-dimensional Lie algebra belonging to the class of locally supersoluble

Lie algebras, which is larger than that of locally nilpotent Lie algebras, possesses

an infinite-dimensional abelian subalgebra. Thus in this section we shall show

that every infinite-dimensional Lie algebra which belongs to a class Xo containing

that of locally supersoluble Lie algebras possesses an infinite-dimensional abelian

subalgebra, and that 3E0-algebras satisfying the weak minimal or the weak maximal

condition on abelian subalgebras are finite-dimensional.
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First we shall give several characterizations of Baer algebras, Gruenberg

algebras and locally nilpotent Lie algebras. A Lie algebra L is called a Baer

(resp. Gruenberg) algebra if <x> is a subideal (resp. an ascendant subalgebra)

of L for any element x in L. SB (resp. (δr) is the class of Baer (resp. Gruenberg)

algebras. We need a characterization of Gruenberg algebras, due to Amayo.

LEMMA 5.1 ([1, Theorem 4.6]). (5r = E2I n L 9 1 = E « Π <S.

REMARK. We can show that 93<έ(si)2I by following the proof of [1,

Theorem 4.6]. Furthermore from [2, Theorem 7.1.5(b)] and Examples 6.2 and

6.7 we have

95 < έ(si)9ί n L91 = έ(si)2I n <S < ©r.

Now we state a characterization of locally nilpotent Lie algebras.

LEMMA 5.2. Let L be a Lie algebra. Then the following conditions are

equivalent:

(1) L is locally nilpotent.

(2) <x> is a local subideal of L for any element x in L.

(3) <x> is a locally ascendant subalgebra of L for any element x in L.

PROOF. (l)>=ί>(2): For any element x of L and any finite subset X of L we

have <x, X} e 9i, as Le L91. SO <X> si <x, X}. Therefore we have <x> lsi L.

(2)«=o(3) is trivial.

(3)ct>(l): Let X be any finite subset of L. For any element x of <Z> we see

that <x> asc <x, X} = <X> since <x> is a locally ascendant subalgebra of L.

Hence <Z> is a Gruenberg algebra. From Lemma 5.1 we derive <Jf>eL9in

(5 < 91. Therefore we have Le L91.

Let A and A' be any of the relations < , si, asc, lsi, lasc, etc. and let X be a

class of Lie algebras. We introduce a new class Έ(A)X of Lie algebras as follows:

A Lie algebra L belongs to F(A)X if for any finite-dimensional subalgebra F

of L there exists an X-subalgebra H of L such that F<HAL. In particular we

write F Ϊ for F ( < ) Ϊ . Clearly L(A)X<Έ(A)X. We also write A<A' if HAL

implies HA'L for any Lie algebra L.

As a first step in this section we have the following proposition which includes

[16, Theorem 5.3].

PROPOSITION 5.3. (1) For any class X of Lie algebras such that 91 n

3E<95, we have

<S n L(si)g = L(si)ϊ = F(si)ϊ = 95.

(2) For any class X of Lie algebras such that 91 n 3<3£<©r, we have
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6 n L(asc)g = L(asc)X = F(asc)3E = ©r.

(3) Let A and A' be any of the relations such that \si<A and lsi<Λ'<lasc.

For all classes X and X' of Lie algebras such that 9t n 5 < £ < L 9 1 and 9t Π δ <

3£'<©r, we have

<£ n L(A)% = L(A)X = Έ(A')X' = L91.

PROOF. Let A be any of the relations < , si, asc, lsi, lasc, etc. By EngeΓs

theorem we easily see that (E n L(Z1)S = L(J)(5Π n 5).

Suppose that Le F(si)© (resp. F(asc)(5r). Then for any element x of L there

exists a subalgebra H of L such that

H e 95 (resp. ©r) and <x> < H si L (resp. H asc L ) .

By the definition of Baer (resp. Gruenberg) algebras we have <x> si H (resp. <x>

asc H). Hence <x> si L (resp. <x> asc L). So Le 3J (resp. (5r). Thus we

observe that F(SI)© = 93 and F(asc)(5r = ©r.

(1) Obviously we have

L(si)(5RnS)<L(si)ϊ<L(si)9?

IΛ IΛ

F(si)(9l n 5 ) < F(si)3£ < F(si)93 = 95.

The result follows from the fact that 95=L(si)(9l n g) by [16, Theorem 5.3(1)].

(2) Similarly we have

L(asc)(9i Π S) < L(asc)X < L(asc)©r

IΛ IΛ

F(asc)(9 t Π g ) < F(asc)3E < F(asc)©r = © r .

It is enough to show that ©r<L(asc)(9t n S) Assume that Le©r and let X be

any finite subset of L. By [1, Corollary 4.7] we have <X> asc L. Furthermore

by Lemma 5.1 we see that <Z> e 91 n 5. Therefore Le L(asc)(9t Π g).

(3) Assume that Le L91 and let X be a finite subset of L. For any finite

subset Y of L we have <X, Y> e 91. Hence {X} si <X, Y>. So <X> lsi L and

<Z> e 91 Π g. Therefore Le L(lsi)(9l ΓΊ 5). From this it follows that

Π g) < L(A)X

Π S) < F(A')X' < F(lasc)©r.

Finally we show that F(lasc)©r<L9l. Assume that LeF(lasc)©r. For any

element x in L there exists a Gruenberg subalgebra F of L such that <x> < F lasc L.

Hence for any finite subset X of L we have F asc <F, Z>. As <x> asc F we have

<x> asc <F, Xy and so <x> asc <x, Z>. Therefore <x> lasc L. By using Lemma
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5.2 we conclude that Le L91.
This completes the proof of the proposition.

Next we shall search for several classes of Lie algebras which have an infinite-
dimensional abelian subalgebra whenever the whole algebras are infinite-di-
mensional. We recall the two classes Q and 91 of Lie algebras:

Le Ώ if Le g or if L has an infinite-dimensional abelian subalgebra.

Le 9ί if Le g or if there exists a non-zero element x of L with CL(x)<^ gr-

it is trivial that C < JR. Now we have a result which is useful in this section.

LEMMA 5.4. Let X = {s, 0}X be a class of Lie algebras. Then X<Q if and
only ifX<9{.

PROOF. See [2, Lemma 10.1.2].

Let H be a subalgebra of a Lie algebra L. We note that if H wsi <H, x>
for each xeL then H<ωL. Using this and [3, Corollary 2.4] we see that in
locally finite Lie algebras every finite-dimensional weakly serial subalgebra is an
ω-step weakly ascendant subalgebra. Hence by Proposition 5.3(3) we obtain

n 5) < L(<ω)ft = L(wser)8r.

The fact that there exists a locally finite Lie algebra not belonging to L(wser)g
is shown by Honda ([4, Example 4.3]).

We can now find a subclass of & which is larger than L91.

LEMMA 5.5. Every infinite-dimensional L(wser)%-algebra has an infinite-
dimensional abelian subalgebra.

PROOF. First we note that L(wser)g=L(<ω)g is {s, Q}-closed by [15,
Lemma 2]. Let LeL(<ω)g and assume that L is infinite-dimensional. Then
for any finite subset X of L there exists a finite-dimensional subalgebra Fx of
L such that X^Fx<

ωL. By [3, Lemma 2.10] we have F$<ιL. If F$ = 0 for
any finite subset X of L, then FxeSSί and so LeiM. Since L 9 1 < Q < 5 R by [2,
Theorem 10.1.3], we have Left. If F$*F0 for some finite subset X of L, then
we can pick O^xe F%. As F$ is a finite-dimensional ideal of L we have Lj
CL(F$) e % by [2, Corollary 1.4.3]. It follows that CL(Ff )<ξ g and so CL(x)^ g.
Hence Le9t. This implies that L(<ω)g<9i. Thus we can use Lemma 5.4
to conclude that

Concerning the class Q we have the following

PROPOSITION 5.6. (1) L(wser)Q=Q.
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(2) Let X = {s, Q}X be a class of Lie algebras. If X<Q then EX<Q.

PROOF. (1) Let LeL(wser)Q. Then for any finite subset X of L there
exists a subalgebra Hx of L such that

X c Hx wser L and Hx e O.

If Hx e 5 for any finite subset X of L then Le L(wser)g. So by Lemma 5.5 we
have LeQ. If H x ^ g for some finite subset X of L, then by the definition of
£} there exists an infinite-dimensional abelian subalgebra of Hx. Therefore

(2) Let LetX and suppose that L is infinite-dimensional. Then there
exists a strictly ascending series {La}a^σ of L such that

0 = L0<i L t <]••• Lα<i Lα + 1 <a Lσ = L and La+ίILaeX for any α < σ.

By transfinite induction on σ we shall show that L f feQ. It is trivial for σ < l .
Let σ > l and assume that the result holds for all ordinals α<σ. Now there
exists the minimal ordinal β<σ with respect to L ^ g . If β<σ then by the
inductive hypothesis Lβ has an infinite-dimensional abelian subalgebra, and
so Lσ e Q. Hence we suppose that β = σ. If σ is a limit ordinal then

L = \Ja<σ La, Lα e g and Lα asc L for any α < σ.

This means that LeL(asc)g, and so LeQ by Lemma 5.5. If σ is a non-limit
ordinal then we have

0 ^ Lσ_! <ι L and Lσ_ x e g.

Hence LjCL{La_l)e<^ and so C^L^.^^g . Since there is a non-zero element
x of Lσ_1 with CL(x)^g w e s e e that Le5R. Therefore we conclude that EσX<9t.
Since EσX is {s, Q}-closed it follows from Lemma 5.4 that EσX<Ώ. Thus our
induction has been completed.

Over fields of characteristic zero from [2, Theorems 10.1.1 and 10.2.1]
we see that L(E$I U 3f)^& So as a consequence of Proposition 5.6 we have

COROLLARY 5.7. (1) Every infinite-dimensional EL(wasc)(E$I U ffl-algebra
has an infinite-dimensional abelian subalgebra.

(2) Every infinite-dimensional EL(E2Ϊ U %)-algebra over a field of char-
acteristic zero has an infinite-dimensional abelian subalgebra.

REMARK. By [7, Lemma 5.4] and Example 6.1 we have LE(<0(5I<(L9*)2L

Since (L9t)2I<EL9t<EL(wasc)g we obtain LE(<a)g1<EL(wasc)(E9i U 5).

Now we shall give several conditions under which Lie algebras satisfying the
weak minimal or the weak maximal conditions on various subalgebras are finite-
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dimensional.

THEOREM 5.8. The following Lie algebras are finite-dimensional:

(1) nilpotent algebras satisfying the weak minimal or the weak maximal

condition on abelian ideals,

(2) supersoluble algebras satisfying the weak minimal or the weak

maximal condition on abelian 2-step subideals,

(3) hyperabelian algebras satisfying the weak minimal or the weak

maximal condition on abelian 3-step subideals,

(4) έ(sϊ)<Ά-algebras satisfying the weak minimal or the weak maximal

condition on abelian subideals,

(5) t%-algebras satisfying the weak minimal or the weak maximal

condition on abelian ascendant subalgebras,

(6) έL(wasc)(E9ί U ̂ -algebras satisfying the weak minimal or the weak

maximal condition on abelian subalgebras.

PROOF. (1) Let Le 91 Π (wmin-<i$l U wmax-<ι$Γ) and let A be a maximal

abelian ideal of L. Then A=A Πζn(L) for some neN. Let X/(A Π ζf(L)) <

(A n ζi+ i(L))/(^ n d(L)). Then X is an abelian ideal of L, since [_X, L] c A n d(L)

c X, Thus {A n ζi+ί(L))l(A Π ζi(L)) e (wmin U wmax) Π 9ί < 5, whence A = A Π

Cπ(L)e5. Therefore L/CL(^)e5 and since CL(A) = A by [2, Lemma 9.1.2(a)],

we have Le g.

(2) Let L e έ ί ^ ) ^ n(wmin-<=π22Iu wmax-<329ϊ). If L£=g then by [7,

Corollary 5.3] there exists an infinite-dimensional abelian ideal A of L. On

the other hand we have A e (wmin U wmax) n 2l<3r> a contradiction. Therefore

we have Le g.

(3)-(6) can be shown by using [2, Theorem 10.1.1] and Corollary 5.7(1) as

in the proof of (2).

As a special case of Theorem 5.8 we have the following

COROLLARY 5.9. The following Lie algebras are finite-dimensional:

(1) hypercentral algebras satisfying the weak minimal or the weak

maximal condition on 2-step subideals,

(2) ideally soluble algebras satisfying the weak minimal or the weak

maximal condition on 3-step subideals,

(3) Baer algebras satisfying the weak minimal or the weak maximal

condition on subideals,

(4) Gruenberg algebras satisfying the weak minimal or the weak maximal

condition on ascendant subalgebras,

(5) locally nilpotent algebras satisfying the weak minimal or the weak

maximal condition on subalgebras.
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6.

In this section we shall observe several examples concerning the weak minimal

conditions and the weak maximal conditions on various subalgebras.

EXAMPLE 6.1. Let X be a vector space with basis {x0, xί9 x2,...} a n ( l l e t

σ be the upward shift on X, that is, xfσ = x i + 1 for all z>0. Think of X as an

abelian Lie algebra and form the split extension L = X + <σ>. Then it is well

known (e.g. see [9, Theorem 3]) that every non-zero ideal of L is of finite co-

dimension. Hence LeMax-< Πwmin-<ι. Put ln = (xn9 xn + 1,...> for all n > l .

Then /„ is an abelian ideal of L. Now since Iί>I2>' 9 Ljlne g and Λ?=i /ft = 0,

we see that Le Rg but L ^ Min-<i 31. If Le wmin-<3 29Ϊ, then X e $1 n wmin < 5,

and so L^wmin-<i22I. By the way, as L=<x 0 , σ> we have L^LJJ. SO L ^

L E ί o ) ^ from the fact that LE(^)<Sί<L(E<ϋ n 5) ([7, Proposition 3.1]). Thus

we have

Min-o < wmin-<i, Min-<ί$l < wmin-<i9ϊ,

wmin—=α,

n Rg Π Max-o Π

EXAMPLE 6.2. Let X be a vector space with basis {x0, xl9 x2,. } and let

σ be the downward shift on X, that is, x oσ = 0 and x iσ = x i _ 1 for all i>0. Think

of X as an abelian Lie algebra and form the split extension L=X + (σy. It is

evident that the proper ideals of L are X and ζπ(L) = <x0,..., xw_i> (n = l, 2,...).

Therefore Le Min-o n wmax-< but L^Max-<α9I. If Le wmax-<]23l then X e

91 Π wmax< 5? and so L ^ wmax-<329l. Thus we have

Max-o < wmax-<5 Max-<j9I < wmax-<α9ί,

wmax-<2 < wmax-<, wmax-<3291 < wmax-<ι9I.

On the other hand, L is hypercentral and <σ> is not a subideal of L ([2, p. 119]),

and hence

Le3< ί(<a)« n L91 < E(si)2T n L « but L ^ 95.

Thus93<E(si)5TnL91.

EXAMPLE 6.3. Let c be an infinite cardinal with successor c+ and let c{

(i = l, 2,...) be infinite cardinals such that

c i < ci <"' a n d ct< c for all / > 1.

Select a vector space Fof dimension c. For any infinite cardinal d<c+

9 L(c9 d)
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is defined to be the Lie algebra of all linear transformations α: F-»Fsuch that the
image of α has dimension <d. From [12, Theorem A] it follows that L = L(c, c+)
eMin-<i, /f = L(c, cf)<iL (i = l,2,...), I1<I2<- and dim/I + 1//i = oo (i = l,
2,...). Therefore we have L ̂  wmax-<.

EXAMPLE 6.4. Let X be a vector space with basis {xtj: ι, J e TV} and think
of X as an abelian Lie algebra. We define two derivations/and g of X as follows:

a n d x o 0 = xi+ i,y f o r a 1 1 *> J ^ °

It is easy to see that [/, #] = (). We form the split extension L = X + </, g}.
Then L = <x00,/, #>e2ί 2 n©. From [2, Corollary 11.1.8] we deduce that
LeMax-<α. Put /„ = <xι7: i>n,jeN} for each n> 1. Then /„ is an ideal of L.
Furthermore we have

dimIJIn+ί = oo for all n > 1,

which implies that L^wmin-<i.

THEOREM 6.5. (1) There exists a Lie algebra satisfying the weak minimal
and the weak maximal conditions on ideals but neither the minimal nor the
maximal condition on ideals.

(2) There exists a Lie algebra satisfying the weak minimal condition
on ideals but neither the weak maximal nor the minimal condition on ideals.

(3) There exists a Lie algebra satisfying the weak maximal condition on
ideals but neither the weak minimal nor the maximal condition on ideals.

PROOF. Let Lf be the Lie algebra in Example 6.i for i = 1, 2, 3, 4.
(1) SetL = L 1 0L 2 . Then

LjL2 = Lx e wmin-<] n Max-<α and L2 e Min-o n wmax-<.

By using Lemma 1.1 we have Le wmin-<] n wmax-<. But

LjL2 = Lί ^ Min-<d and L/Lί = L2 ^ Max-<α.

Therefore we have L^Min-<ι U Max-<α.

(2) SetL=L 1 ΘL 3 .
(3) Set L =

EXAMPLE 6.6. Let W be the Witt algebra, that is, JFbe a Lie algebra over a
field of characteristic zero with basis {wu w2,...} and multiplication [wi9 wy] =
(i—j)wi+J . From WE Max ([8, Theorem]) we can deduce that every ascendant
subalgebra of W is a subideal of W. Since every subideal of W is of finite codi-
mension ([2, Theorem 8.7.1]) we see that JFewmin-asc. However, we notice
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that W^wmin. In fact, let Ht be the subspace of W spanned by all w2i/t with

k> 1 (i = 1, 2,...). Then clearly Ht is a subalgebra of W, and we see that

H1> H2>" and dim HilHi+ί = oo for all i > 1.

Furthermore we have W^>W^2)>- , and so W does not satisfy the minimal

condition on non-abelian ideals. Therefore using [2, Theorem 8.1.4] and

[14, Theorem] we see that over fields of characteristic zero

wmin < wmin-asc, Min-asc = Min-si = M i n - o 2 < wmin-asc,

Min-<i5ϊ,

where wmin-<ι23ϊ (resp. Min-<j5ϊ) is the class of Lie algebras satisfying the

weak minimal (resp. minimal) condition on non-abelian 2-step subideals (resp.

non-abelian ideals).

EXAMPLE 6.7. Let U=U(L) be the universal enveloping algebra of a Lie

algebra L and let V= V{L) be the (associative) ideal in U which is generated by

L. Suppose that L is nilpotent of class n — 1 (n>2). By means of the lower

central series we develop a totally ordered basis {wf: ίel} in L. The weight

s = s(Ui) of an element u{ is the positive integer s with Uj6L s\L5 + 1. The weight

of a standard monomial Y\ieI uψ1 is Σ i e / mtsi9 where sf is the weight of uf. The

weight of an arbitrary element in Fis the minimum of the weights of the standard

monomials which occur in the linear combination of the element. The set of

elements of V with weight >n forms an ideal in V9 which we designate S = S(L).

Then JV = N(L) = VIS is an associative nilpotent algebra of class n and can be

considered as a right L-module in the usual way. Thus we form the split ex-

tension E = E(L) = N + L. Since

£f = (.. ((N>L)>L)-)-L+Li for 1 < i < n + 1,
ί- l times

we see that E is nilpotent of class n.

Let L t be a one-dimensional Lie algebra. By defining L 2 = £(Li), L3 = E(L2),

and so on, we obtain an ascending chain of nilpotent Lie algebras

L x < L 2 < < L M < L W + 1 < » . .

Set L = vjJLt Ln (the direct limit of {Lπ}). Then by [11, Theorem 4] we know

that Le L91 Π E21 and that L has no non-zero bounded left Engel elements.

Assume that Le έ(si)$l. Then there exists a non-zero abelian subideal A of L.

If we take a non-zero element z in 4, then <z> is a subideal of L. Hence z is

a bounded left Engel element, a contradiction. Thus we have L^έ(si)9I. From

this we deduce that έ(si)2I Π
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We put No = Lx and Nt = N(Lt) for all i > 1. Then

So L = Σ£=o Nn. It is easy to see that V = \J™=0 L£+ 1. Since

i - l

we have

f o r a n y i ^ L

Therefore Li/Li+1<$<ft and so L^wmin-<3. From the paragraph above L has

no non-zero soluble ideals. Therefore LeMin-<iE2l n Max-<iE2l. So we have

wmin-<i <wmin-<iE$l.

REMARKS. (1) The two Lie algebras constructed in [5, Theorems 1 and 2]

show that

SR and wmax-<iE$ί < wmax-<i9Ί

(2) The Lie algebra constructed in [10, Theorem] shows that over the

rational number field

wmin-<]9t < wmin-<]2ί.

(3) The Lie algebra constructed in [2, pp. 167-170] shows that over a

field of characteristic p>0

wmin-<ί3 < wmin-<i2, wmin-o 39ί < wmin-<i29I,

wmax-< 3 < wmax-< 2, wmax-<]39ί < wmax-<25l.
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