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Introduction

A group is said to satisfy the weak minimal condition on subgroups if it
has no infinite descending chains of subgroups in which all neighbouring indices
are infinite. Groups satisfying such a condition were first studied by D. 1. Zaicev
[17].

The purpose of this paper is to introduce analogously in Lie algebras the weak
minimal conditions (wmin) relaxing the minimal conditions, and to investigate
the properties of Lie algebras satisfying the weak minimal conditions on various
subalgebras. The aspects of Lie algebras satisfying the weak minimal conditions
are not similar to those of groups satisfying the corresponding conditions. One
of the main reasons seems to be the following: In group theory every subgroup
of finite index contains a normal subgroup of finite index, while in the theory of
Lie algebras a subalgebra of finite codimension does not necessarily contain an
ideal of finite codimension. - Moreover, we define the weak maximal conditions
(wmax) and develop the results on them in the course of the study of the weak
minimal conditions.

The main results of this paper are as follows.

(1) An ideally soluble, hypoabelian Lie algebra satisfying the weak minimal
condition on ideals is soluble (Theorem 2.4).

(2) A non-abelian ideally finite Lie algebra satisfying the weak minimal
condition on non-abelian 2-step subideals satisfies the minimal condition on
ideals (Theorem 3.6).

(3) If X, (i=1, 2, 3) is one of the classes of abelian, nilpotent and soluble
Lie algebras, then the following conditions are equivalent: (a) wmin on X,-
subideals (resp. ascendant X,-subalgebras); (b) wmax on X,-subideals (resp.
ascendant X,-subalgebras); (c) the minimal condition on X;-subideals (resp.
ascendant X;-subalgebras) (Theorem 4.2).

(4) Each of the following Lie algebras is finite-dimensional: (a) a nilpotent
algebra satisfying wmin or wmax on abelian ideals; (b) a supersoluble algebra
satisfying wmin or wmax on abelian 2-step subideals; (c) a hyperabelian algebra
satisfying wmin or wmax on abelian 3-step subideals; (d) an E(si)U-algebra
satisfying wmin or wmax on abelian subideals; () an E-algebra satisfying wmin
or wmax on abelian ascendant subalgebras; (f) an ErL(wasc)(EU U &)-algebra
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satisfying wmin or wmax on abelian subalgebras (Theorem 5.8).

(5) There exist Lie algebras satisfying the following (a), (b) and (c) re-
spectively: (a) wmin and wmax on ideals but neither the minimal nor the maximal
condition on ideals, (b) wmin on ideals but neither the minimal condition nor
wmax on ideals and (c) wmax on ideals but neither the maximal condition nor
wmin on ideals (Theorem 6.5).

The author would like to express his hearty thanks to Professor S. T6go for
his valuable comments and encouragement in preparing this paper.

1.

Throughout the paper Lie algebras are not necessarily finite-dimensional
over a field T of arbitrary characteristic unless otherwise specified. We mostly
follow [2] for the use of notations and terminology.

We begin with the definitions of ascendant subalgebras, weakly ascendant
subalgebras ([15]), serial subalgebras and weakly serial subalgebras ([3]) of Lie
algebras. Let L be a Lie algebra over f and let H be a subalgebra of L. For an
ordinal o, H is a o-step ascendant (resp. weakly ascendant) subalgebra of L,
denoted by H<a°L (resp. H<°L), if there exists an ascending series (resp. chain)
(H,),<, of subalgebras (resp. subspaces) of L such that

(1) Hy=H and H,=L,

(2 H,<H,,, (resp.[H,+,, HI=H,) for any ordinal a <o,

(3) H;=\U,<,H, for any limit ordinal A<o.

H is an ascendant (resp. a weakly ascendant) subalgebra of L, denoted by H asc L
(resp. H wasc L), if H<a°L (resp. H<°L) for some ordinal . When o is finite,
H is a subideal (resp. weak subideal) of L and denoted by H si L (resp. H wsi L).
For a totally ordered set Z, a series (resp. weak series) from H to L of type X is
a collection {A,, V,: o € X} of subalgebras (resp. subspaces) of L such that

(1) HeV,cA,foralloeX,

(2 L\H=\,c;(4,\V,),

(3) A,¢V,ifr<ao,

@) V,<A, (resp.[A4,, HIcV,) foralloel.

H is a serial (resp. weakly serial) subalgebra of L, denoted by H ser L (resp.
H wser L), if there exists a series (resp. weak series) from H to L of type X for
some 2. H is alocal subideal (resp. locally ascendant subalgebra) of L, denoted by
H Isi L(resp. H lasc L), if whenever X is a finite subset of L we have

Hsi(H, X) (resp.Hasc(H, X)).

For an ordinal « we denote by L) (resp. L%, {,(L)) the a-th term of the transfinite
derived (resp. lower central, upper central) series of L. For H< L we put HL =

ZnZO [H’ nL]
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Let X be a class of Lie algebras and let 4 be any of the relations <, si, wsi,
asc, wasc, <1%, <9, Isi, lasc, ser, wser. A Lie algebra L is said to lie in L(4)X% if
for any finite subset X of L there exists an X-subalgebra K of L such that X &
KAL. In particular we write LX for L(<)X. When LeL(<)X (resp. LX), L is
called an ideally (resp. a locally) X-algebra. &,., &, ©, U, N, 3 and J,, are the
classes of Lie algebras which are of dimension<m, finite-dimensional, finitely
generated, abelian, nilpotent, hypercentral and hypercentral of central height <w
respectively. RX is the class of Lie algebras L having a collection {I,},., of ideals
such that N\, I,=0and L/I,e X for any ae A. If HAL (resp. H e X and HAL),
we say that H is a A-subalgebra (resp. 4X-subalgebra) of L. £,(4)X (resp. E,(4)%)
is the class of Lie algebras L having an ascending (resp. a descending) series
(Lpy<s of A-subalgebras such that

(1) Ly=0and L,=L (resp. L,=L and L,=0),

2 L,<L,,, and L,,,/L,eX (resp.L,,,<L, and L,/L,,,€¥) for any
ordinal a<a,

(3) L,=\U,<,;L, (resp. L,="\,<,;L,) for any limit ordinal 1<o.

We define B(A)X =\U,s ¢ B, (4)X, B(A)X=\U,s 0 El(4)X and E(A)X=\U, <, E,(4)X.
In particular we write £,X, E X, X, EX and EX for £,( <)X, E,(L)X, &)X, B(L)X
and B(<)X respectively. When Le &(<), (resp. £(<)U, A, gA), L is called a
supersoluble (resp. hyperabelian, hypoabelian, soluble) Lie algebra. Min-4
(resp. Min-4X) is the class of Lie algebras satisfying the minimal condition on
A-subalgebras (resp. 4X-subalgebras). In particular we write Min (resp. Min-X)
for Min-< (resp. Min-<¥X). Max-4 and Max-4X are similarly defined. A4X-Fin
is the class of Lie algebras in which every 4%-subalgebra is finite-dimensional.

A local system for a Lie algebra L is a collection {L;},.; of subalgebras of L
which generate L and have the property that whenever i, jeI there exists kel
such that {L;, L;><L,.

We shall now introduce the new concept in the following

DerINITION.  Let X be a class of Lie algebras and let 4 be any of the relations
<, <a%si, asc, ser. A Lie algebra L is said to satisfy the weak minimal condition
on AX-subalgebras if it does not possess an infinite descending chain

H 2H,2---2H;,2H;,,2- (%)

of AX-subalgebras satisfying the condition that the codimension of the subspace
H;,, in the space H; is infinite, or equivalently if for every descending chain (%)
of AX-subalgebras of L there exists r € N such that the dimension of the vector
space H;/H;, is finite for any i>r. The weak maximal condition on AX-sub-
algebras is similarly defined. We denote by wmin-AX (resp. wmax-4X) the class
of Lie algebras satisfying the weak minimal (resp. weak maximal) condition on
AX-subalgebras. When X is the class of all Lie algebras, we simply write wmin-4



54 Takanori SAKAMOTO

(resp. wmax-4) instead of wmin-AX (resp. wmax-4X). Moreover we write
wmin (resp. wmax) for wmin-< (resp. wmax-<).

Now as elementary properties of the classes wmin-4 and wmax-4 we have

LeMMA 1.1. Let A4 be any of the relations <, <a°, si, asc. Then wmin-A4
and wmax-A4 are {E, Q}-closed.

Proor. Let I be an ideal of a Lie algebra L and suppose that I and L/I
satisfy the weak minimal condition on 4-subalgebras. For any descending chain
H,2H,2--- of 4-subalgebras of L, we have two descending chains H; NI=2H, n
I>--- of A-subalgebras of I and (H,+I)/I=2(H,+I)/I=--- of A-subalgebras of
L/I. Then there exists n € N such that the dimensions of (H, n I)/(H,, NI) and
(H,+ D|(Hy 41 +]1) are finite for any k>n. Since

dim Hy/Hy 4y = dim (H, N D)/(Hy 41 N 1) + dim (Hy+ D/(Hy 1 1 +1),

the dimension of H,/H,, , is also finite for any k>n. Hence Le wmin-4. This
implies that wmin-4 is e-closed. Similarly we can prove that wmax-4 is E-closed.
Q-closedness of wmin-4 and wmax-4 is trivial.

In group theory, there exists an infinite abelian group satisfying the weak
minimal condition on subgroups (e.g. an infinite cyclic group). For Lie algebras,
however, we have

LeMMA 1.2. An abelian Lie algebra satisfying the weak minimal or the
weak maximal condition on subalgebras is finite-dimensional.

Proor. Let L be an infinite-dimensional abelian Lie algebra. Then there
exists a linearly independent subset {e;;: i, je N} of L. Now we define

I, = @i>n(D@jen<ei)), Jn= @icn(® jenei;)) for any neN.

Evidently I,>I,>--- and Jo<J;<---, and furthermore I,/I,,, and J,./J,
are infinite-dimensional. Therefore L satisfies neither the weak minimal nor
the weak maximal condition on subalgebras.

From Lemma 1.2 we deduce

ProrosITION 1.3. (1) Let L be a Lie algebra satisfying the weak minimal
or the weak maximal condition on ideals. Then {,(L) is finite-dimensional for
any neN.

(2) A nilpotent Lie algebra satisfying the weak minimal or the weak
maximal condition on ideals is finite-dimensional.

(3) Asoluble Lie algebra satisfying the weak minimal or the weak maximal
condition on 2-step subideals is finite-dimensional.
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ProofF. (1) We useinduction on n. Since {,(L) € wmin U wmax it follows
from Lemma 1.2 that {;(L)e&. Let n>1 and suppose that {,_,(L)e§. By
Lemma 1.1 L/{,_;(L)e wmin-<a U wmax-<a. As {,(L)/{,-(L)={,(L/{,-(L))e
& we have (, (L)€ §.

(2) is a direct consequence of (1).

(3) Let LeBUAN(wmin-<a? U wmax-<a?). Then L™ =0 for some neN.
Since L e wmin-<1 U wmax-< it follows from Lemmas 1.1 and 1.2 that

LOLG+D e (wmin-< U wmax-<9) N A< §
for 0<i<n. Therefore we have Le §.

Hypercentral Lie algebras satisfying the weak minimal and the weak maximal
conditions on ideals need not be finite-dimensional (see Example 6.2). On
the other hand for hypercentral Lie algebras of central height < we have the
following

COROLLARY 1.4. Let L be a Lie algebra satisfying the weak minimal or
the weak maximal condition on ideals. Then L is hypercentral of central
height <w if and only if L is locally nilpotent and ideally finite.

Proor. The ‘if* part is clear since L(<)(N N F)=LNNL(<)F<L 3, by [13,
Theorem 3.6]. Let Le3,. Then L=\,.,{(L). Using Proposition 1.3(1)
we have {(L)e RN & for any ne N. Therefore Le L(<)(N N F).

2.

In this section we shall consider several conditions under which Lie algebras
satisfying the weak minimal condition on ideals are soluble. To do this we
need the following key lemma.

LeMMA 2.1. Let L be a Lie algebra belonging to L(<a)EU and let {A;}2, be
a descending chain of ideals of L such that "2, A;=0 and that A;., is of
finite codimension in A; for any i>0. If A, is non-soluble, then L has a non-
soluble ideal of infinite codimension in A,.

ProoF. Assume that 4,&EU. We put k(0)=1. Since A4;/A4;,, €& there
exist finitely many elements a{”, a,..., a{¥;, of 4, such that

AilAiey = aP+Api g, af."&)+A;+1>-

Put X;={a{,..., al))}. Owing to LeL(<)EA we can choose an ideal S, of
L such that X, =S, = 4, and that S, is soluble of derived length s(1). Now there
exists an integer k(1) such that k(1)>k(0) and A,)% Axy+s+S;- Indeed, if
such an integer does not exist then for any j > k(0) we have 4, 4;,,+S; and so
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A;+S;=A4;,,+S;. In particular 4;+S,=A;y+1+S;. Consequently,
Ayoy+1/4; < (A;+5)]A; = S,/(S. N 4)).

This means that A, 1/A4; is soluble of derived length <s(1) for any j> k(0).
As N jsk0) A;j=0, Ayo)+1 is imbeddable into the direct sum @ j, 0y 4koy+1/4;-
It follows that Ay, is soluble of derived length <s(1). On the other hand
Ao/Ay0y+1 is soluble since L(<)EU is {s, Q}-closed. Therefore A4, is soluble.
This is contrary to the assumption. Thus there exists an integer k(1) as desired.
We select an element h,; such that

he Ak(l)\(Ak(1)+ 1+81).

Furthermore there exists an integer I(1)>k(1) such that {(Xyy+1,..., X;1)) 18
soluble of derived length >s(1). Indeed, if such an integer does not exist, then
for any I>k(1) we see that {X;(y+1,..., X;) is soluble of derived length <s(1).
Since Ay1y+1=414+1+<{Xkay+15---» X;) We have

Ak(1)+1/AI+1 = <Xk(1)+1a---a XpD[(Ai41 N <Xk(l)+15'~'s Xp).

This implies that Ay, 1/A4,+, is soluble of derived length <s(1) for any /> k(1).
It is impossible for the same reason above. Thus there exists an integer /(1) as
desired. Then we can choose an ideal S, of L such that

<Xk(1)+1""’ Xl(l)) o= SZ = Ak(1)+1

and that S, is soluble of derived length s(2)>s(1). Furthermore we can find
an integer k(2)> k(1) such that

Ay € Aky+1 + S+ S,

The existence of k(2) is shown similarly to that of the integer k(1). We select
an element h, such that

hy € Ay 2)\(Arzy+1+S1+S5).

Furthermore we can find an integer /(2)>k(2) such that {X;y+1,---» Xy2)> 8
soluble of derived length >s(2). The existence of I(2) is proved in the same way
as that of the integer /(1). Then we choose an ideal S; of L such that

Xyt 1500 Xi2)) € 83 S Aiay+1

and that Sj; is soluble of derived length s(3)> s(2).
Continuing this procedure, we obtain two sequences of positive integers

k(0) < k(1) <--- < k(i) <--,
s(1) < s(2) << (i) <+,
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a sequence of ideals

Sy, Sy v, S
of L, and a sequence of elements

hy, hy, -, h,

of L, satisfying the following requirements:
(1) hie Ap\(Aky+1+ S+ +S)),
(2) S;SAyi-y)+, fori>2and S, A,
(3) S, is soluble of derived length s(i).
From the requirement (2) we deduce that

Sj < Ak(i)+1 fOI‘ j > i 2 1. (*)
Now we define
A= 2?11 Si .

Then it follows from the requirements (2) and (3) that 4 is a non-soluble ideal
of L contained in 4,. We shall show that A is of infinite codimension in A,.
First we see that each h; does not belong to A. In fact, if h;e A then using (*)
we have

hie Ayiys1 + A= Ayysr1 + S+ + S,

which is contrary to the requirement (1). Now it is enough for our purpose to
prove that {h;+ A: i=1, 2,...} is linearly independent in 4,/A. Furthermore to
do this it is enough to prove that h,,+ A, hyo)+A4,..., hpe+A(M(1)<m(2) <
---<m(i)) are linearly independent in 4o/A. We use induction on i. It is clear
for i=1. Let i>1 and suppose that the result holds for i—1. Assume that
hei aihy € A with a; €. Since Ayimey) S -+ S Akm2y) S Arm(1)y+1 We have

% Pm(1) € Akgmryy+1 + A = Agmayy+1 + S1 + -+ Smary,

using (*). Therefore a; =0 from the requirement (1). By the inductive hypothesis
a,=---=a;=0. This completes the proof of the lemma.

From Lemma 2.1 we deduce

LeEMMA 2.2. Let LeL(<)EU N wmin-<a and let {A;}2, be a descending
chain of ideals of L with N2y A;=0. Then A, is soluble for some ne N.

ProoOF. Since L satisfies the weak minimal condition on ideals, there is
n e N such that A4, is of finite codimension in A, for any i>n. Suppose that A4,
is non-soluble. By Lemma 2.1 there exists an ideal L; of L such that L, is
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non-soluble and of infinite codimension in 4,. Now {L; n 4;}%, is a chain of
ideals of L such that "2, (L; n 4;)=0 and that L, n 4; is of finite codimension
in L, for any i>n. By Lemma 2.1 again there exists an ideal L, of L such that
L, is non-soluble and of infinite codimension in L;. By continuing this procedure,
we obtain a strictly descending chain

Li>L,>>L;>:

of ideals of L such that L;,, is of infinite codimension in L; for any i>1. This
contradicts Le wmin-<1. Thus A, is soluble.

Let L be a Lie algebra and let o be an ordinal. It is easy to see that Le E,2
if and only if L(®=0. Defining L) =\,5, L(* we have the following

COROLLARY 2.3. If Le L(<a)EW N wmin-<a then L/L™ e g.
Proor. In the quotient algebra L=L/L(® we see that
L>LW)>LA® >...> LM >... and "o LO = 0.

Since L e L(<)BA N wmin-<, in virtue of Lemma 2.2 there is ne N such that
L™ is soluble. Hence (L) =0 for a suitable m e N, i.e., L(**™ =L@ =L,
Thus L/L™) is soluble.

Obviously if LeEU then L =0. So as an immediate consequence of
Proposition 1.3(3) and Corollary 2.3 we have the following main theorem in
this section.

THEOREM 2.4. An ideally soluble, hypoabelian Lie algebra satisfying the
weak minimal condition on ideals is soluble, that is to say,

L(<)EY n EA N wmin-< < EN.
Moreover
L(<)EA n EA N wmin-<? < A n §.
As a special case of Theorem 2.4 we have
COROLLARY 2.5. Let X be one of the following classes:
L(<)EU N R, L(<)EU N Max-<, L(<)EUA n E(<)(ANF),
E(<)¥U n EA, E<)(ANF) n E,(<)Y,
() EANF), E(<)(ANF).
Then
X n wmin-<s« < W and X n wmin-<a? < U n §.
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Proor. The results follow from the facts that LE N RF < REU<EU, LEA N
Max-<a<EU (using [2, Lemma 8.6.2]), &< )(An F)<EU ([6, Corollary 3.8])
and £,(<)(U N F)<U(<)EAN F)<E<)UAN F) nE,(<)U ([16, Lemma 4.2]).

ReMARK. The classes
L(<)EA n EA N wmin-<a, L(<)EA N RF N wmin-<,
L(<)EY N Max-<a N wmin-<a, L(<)E¥ n B(<)(UNF) N wmin-<,
Eo(<=)¥U n EU n wmin-<a, E,(<)W N B(<)(WNF n wmin-<,

are not subclasses of E% n & (Examples 6.1 and 6.2).

3.

In this section we shall consider several conditions under which Lie algebras
satisfying the weak minimal conditions on various subalgebras satisfy the minimal
condition on ideals or non-abelian ideals.

DEFINITION. Let H be a proper subalgebra of a Lie algebra L. As in group
theory we say that H is finitely separable from an element x of L, not belonging
to H, if there exists a homomorphism ¢ of L to a finite-dimensional Lie algebra
such that ¢(x)& @(H). We say that H is finitely separable from L if H is finitely
separable from at least one element of L.

Now we require the following result for our aim.

LemMa 3.1. Let a Lie algebra L have a local system {L,},.4 consisting of
ideals (resp. subalgebras) which are finitely separable from L. Then there
exists in L a family {x;};n, (N ={1, 2,...}) of elements such that for N;<
N, N,

IN,\N,| < dim H}/H} (resp.dim H,/H,),
with H;={Ly, x;: i€ N;) (j=1, 2), where Ly is 0 or any member of {L,}.

Proor. First we shall show the existence in L of three infinite sequences:
a sequence

X1s Xz5 v Xpy Xpy1s (1)
of elements of L, an ascending sequence
L1<L2 <"‘<L"<Ln+1 < oo (2)

of ideals (resp. subalgebras) in the local system {L,}, and a descending sequence
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Ay >A4;> > A4,> Apyq > 3)

of ideals of finite codimension, where the sequences must be connected by the
relation

L= An+1 + Ln+1’ xne(An\(An+l+Ln)) n (Ln+1\Ln) (nZl). (4)

We put A, =L and choose an arbitrary subalgebra L, in the local system {L,}.
Then there exists in L an ideal A, of finite codimension such that LxA4,+L,.
In fact, since L, is finitely separable from L there exist an element x of L, not
belonging to L, and a homomorphism ¢ of L to a finite-dimensional Lie algebra
such that ¢(x)& @(L;). Hence x&Kero + L,. We may put A,=Kero.
Therefore we can choose an element x, € A;\(4,+L,). Furthermore, as A4,
is of finite codimension in L we can find finitely many elements y,,..., y, of L such
that L=A,+ {(yy,..., yi». Since {L,} is a local system there exists a subalgebra
L, in {L,} such that

<x1’ L1> < <x1’ Viseeos Yio L1> < LZ‘

Thus we deduce that L=A,+L,, L, <L, and 4, > A4,.

Suppose that for n>1 we have constructed the initial segments of the sequence
(1) up to the n-th term and of the sequences (2), (3) up to the (n+1)-th term, and
that they are connected by the relation (4). Since L,,; is finitely separable
from L, as above there exists in L an ideal I of finite codimension such that L#
I+L,,,. PutAd,,,=A,,;nI. Then A4,,,%A,,,+L,,,. For,if not, we have

L=A,y1 + Lyvy S Api2t Ly ST+ Lyyy ¥ L,
which is impossible. Consequently we can choose an element

Xn41€Aps1\(Aps2+Lysy).

Furthermore, taking into account that {L,} is a local system and that L/A4,,, is
finite-dimensional, as above we can find in the system {L,} a subalgebra L, ,
such that

1y Lnv1? < Ly, and L= A,y + Lyy .

Thus we have shown the existence in L of the infinite sequences (1)-(3) connected
by the relation (4).

We shall show that {x;},.n, is a desired sequence. Here we prove this for
the case where L,’s are ideals of L. Another case is similarly proved. Let N, <
N,=N, and H;={Ly, x;: ie N;» (j=1, 2), where L, is 0 or L,. To verify the
inequality |[N,\N|<dim H%/H% it is enough to show that for n,, n,,..., n, e N,\
N;(n=n,<n;<---<mny)
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xru + HIL’ ) xnk + H{‘

are linearly independent in HY/H}. We use induction on k. For k=0 there is
nothing to prove. Let k>0 and assume that the result holds for k—1. Suppose
that

K L
i oyx,, € HY,

where o; et (1<i<k). Letj,,...,j, beall the positive integers which are contained
in N; and do not exceed n=n,. Since n& N, we have j,...,j,<n. From the
sequence (3) and the relation (4) it follows that x,e 4,< A4, ,, for all s>n. Then
we have

An+1 + Hf = An+1 + <L*, xi: iEN1>L
= An+1 + <L*’ x.il""’ x.il>L = An+1 + Lm

since {x x;,> <L, using (2) and (4). Hence we have

j1oeees
k
2i=1 aixn.- e‘4n+1 + Ln'

But as n<n,<:--<m we see that x,,, € 4,, <A, for all i>2. Therefore

ny =
oy X, e‘An+1 + Lm

which implies in virtue of (4) that «; =0. By inductive hypothesis we have
o, =---=a,=0. This completes the proof of the lemma.

Now Lemma 3.1 yields the following

LemMa 3.2. (1) Let LeL(<)®. If either (a) L satisfies the weak minimal
condition on ideals or (b) L is non-abelian and satisfies the weak minimal
condition on non-abelian ideals, then there exists a finitely generated ideal of
L which is finitely inseparable from L.

(2) If either (a) L satisfies the weak minimal condition on subalgebras or
(b) L is non-abelian and satisfies the weak minimal condition on non-abelian
subalgebras, then there exists a finitely generated subalgebra of L which is
finitely inseparable from L.

Proor. (1) Let {L,},.4 be the set of all finitely generated ideals of L. Then
{L,} becomes a local system for L. If all ideals L, are finitely separable from L,
then by Lemma 3.1 there exists a family of elements {x;},n,. Put N;=2!N,
foralli>1. Then

Ny>N; 22 N; 2 Niyy 2+ and  [N)\Nyyy| = oo.

We define H;=(x;: ie N;>- for the case (a) and H;={L;, x;: i€ N;>L, where
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L, is a non-abelian subalgebra in {L,}, for the case (b). Again by using Lemma
3.1 we have

H >H,>--->H;>H;,{>-+ and dimH;/H;, = o0,

which contradicts the weak minimal conditions. Thus there exists an ideal L,
finitely inseparable from L.

(2) is similarly proved by letting {L,},., be the set of all finitely generated
subalgebras of L and defining H;=<{x;:ie N;) for the case (a) and H;=
{Lg, x;: i€ N;) for the case (b).

By making use of Lemma 3.2 we have the following

ProposiTION 3.3. (1) Let L be an ideally finite Lie algebra.

a) If L satisfies the weak minimal condition on 2-step subideals then L
satisfies the minimal condition on ideals.

b) If L satisfies the weak minimal condition on non-abelian 2-step subideals
then L satisfies the minimal condition on non-abeliani ideals.

(2) Let L be a locally finite Lie algebra.

a) If L satisfies the weak minimal condition on subalgebras then L satisfies
the minimal condition on ideals.

b) If L satisfies the weak minimal condition on non-abelian subalgebras
then L satisfies the minimal condition on non-abelian ideals.

Proor. (1) Let LeL(<)@ and let I,21,2--- be a descending chain of
ideals (resp. non-abelian ideals) of L. Since L satisfies the weak minimal con-
dition on ideals (resp. non-abelian ideals) there is a positive integer n such that
IL/I,..€®& for all k>0. Now I,eL(<)@F and I, satisfies the weak minimal
condition on ideals (resp. non-abelian ideals). So from Lemma 3.2 it follows
thet there exists a finite-dimensional subalgebra K of I, which is finitely inseparable
from I,. Considering the natural homomorphism of I, onto the finite-dimensional
quotient algebra I,/I, ., we have

Ll = (K+ Ly )l = KK N 1ypp) forany k >0.

Thus we conclude that I, ,,,=I,,,,+,=" for a suitable me N.
(2) is similarly proved.

ReMARK. In general Lie algebras satisfying the weak minimal condition
on 2-step subideals (resp. non-abelian 2-step subideals) do not necessarily satisfy
the minimal condition on ideals (resp. non-abelian ideals) (Example 6.6). How-
ever, we do not know a Lie algebra satisfying the weak minimal condition on
subalgebras (resp. non-abelian subalgebras) but not the minimal condition on
ideals (resp. non-abelian ideals), still less an infinite-dimensional Lie algebra satis-
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fying the weak minimal condition on subalgebras.

Let 4 be any of the relations <, si, asc, <«* (« an ordinal >1). Next we
shall consider a condition under which Lie algebras satisfying the minimal (resp.
weak minimal) condition on non-abelian 4-subalgebras satisfy the minimal (resp.

weak minimal) condition on ideals.

LemMMA 3.4. Let A be one of the relations <, si, asc, <a*(« an ordinal >1).
If L satisfies the minimal (resp. weak minimal) condition on non-abelian A-
subalgebras and contains a non-abelian A-subalgebra H satisfying the minimal
(resp. weak minimal) condition on ideals, then L satisfies the minimal (resp.
weak minimal) condition on ideals.

PrOOF. Let I, 21,2--- denote an arbitrary descending chain of ideals of L.
Then it is clear that

Hnl;<H, H+ ;AL and H+ ;&% for all i > 1.
By the hypothesis we can find a positive integer n such that

dim(HnI)/(HnI;;,)=0 (resp. <o) and
dim(H+I)/(H+1;y ;) =0 (resp. <o)

for all i>n. Therefore
dimL/L;,, =dimHnL)/HNI;4 ) + dim(H+1)/(H+1;4+,) =0 (resp. <o)
for all i>n. This implies that Le Min-<a (resp. wmin-<a).

PROPOSITION 3.5. Let A be one of the relations <, si, asc, <a® (« an ordinal
>1) and let L be a non-abelian Lie algebra belonging to L(4)§. If L satisfies
the minimal (resp. weak minimal) condition on non-abelian A-subalgebras,
then L satisfies the minimal (resp. weak minimal) condition on ideals.

ProoF. Since L is not abelian we can choose two elements x, y of L such
that [x, y]50. By LeL(4)F there exists a finite-dimensional subalgebra F
of L such that (x, y)<FAL. As F is not abelian we deduce from Lemma 3.4
that L satisfies the minimal (resp. weak minimal) condition on ideals.

Finally we extend Proposition 3.3(1) in the following main theorem in this
section, which corresponds to Zaicev’s result [18, Corollary 1] that a non-abelian
locally finite group satisfying the weak minimal condition on non-abelian sub-
groups satisfies the minimal condition on subgroups.

THEOREM 3.6. Let L be a non-abelian ideally finite Lie algebra. If L
satisfies the weak minimal condition on non-abelian 2-step subideals, then
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L satisfies the minimal condition on ideals.

Proor. Employing Proposition 3.3(1) we see that L satisfies the minimal
condition on non-abelian ideals. Furthermore, by using Proposition 3.5 we
conclude that L satisfies the minimal condition on ideals.

4.

Let 4 be any of the relations si, asc, <u* («x an infinite ordinal) and let X be
any of the classes A, N, EW. In this section we shall study Lie algebras satisfying
the weak minimal or the weak maximal condition on AX-subalgebras. We first
prove

LEMMA 4.1. Let A be one of the relations si, asc, <a* (« an infinite ordinal)
and let X be an 1-closed subclass of EN. Then

wmin-4X = wmax-4X = Min-4X = AX-Fin.
Proor. It is trivial that
AX-Fin < Min-4X < wmin-4X and A4X-Fin < wmax-4X.

Therefore we show that wmin-A4X U wmax-4X < AX-Fin. Let Le wmin-4X U
wmax-4X and let H be any AX-subalgebra of L. If A4 is a subideal of H then
A is a AX-subalgebra of L by i-closedness of X. Hence H € (wmin-si U wmax-si) N
EU and so in view of Proposition 1.3(3) H is finite-dimensional. Thus Le 4%-Fin.

From this we deduce the following

THEOREM 4.2. (1) Let A be one of the relations si, asc, < (« an infinite
ordinal). Then the classes

wmin-AU, wmin-AN, wmin-AE¥,

wmax-AU, wmax-AN, wmax-4e,

Min-4%, Min-4A%N, Min-4e¥,

AU-Fin, AN-Fin, AeU-Fin,
coincide with each other. Furthermore, over fields of characteristic zero the
classes

Max-4A, Max-AN, Max-4eA

coincide with the classes above.
(2) Let X be any class of Lie algebras such that A< X<EWU. Then the

classes
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wmin-siX¥, Nj-; wmin-<<"¥X, Min-siX, N%; Min-<a"X,

wmax-siX, N, wmax-<a"X, siUA-Fin, N2, <x"A-Fin,
n=1 n=1

coincide with each other. Furthermore, over fields of characteristic zero the
classes

Max-siX¥, Nj; Max-<a"X
coincide with the classes above.

ProoF. (1) The first half of the assertion comes from Lemma 4.1 and
[2, Corollary 9.2.2]. The second half comes from [2, Corollary 9.1.10].

(2) By (1) we have wmin-siX=wmax-siX¥=Min-siX=siU-Fin. Let Le
-wmin-<a"*1X U wmax-<1"*'X for any n>1 and let A be any <"U-subalgebra
of L. As A<X we have Ae(wminU wmax)NUA<F Hence Le <"A-Fin.
Therefore

siU-Fin < (N, wmin-<a"X) N (N, wmax-<a1"¥) < "%, <"W-Fin.
Thus the result follows from [2, Proposition 9.2.3(b) and Corollary 9.1.11].

ReMARK. Corresponding to the result [2, Proposition 9.1.12] we have
wmin-ascX = N,. o, wmin-<1*X¥ and wmax-ascX = N,,, wmax-<a*¥X

for any class X of Lie algebras.

5.

In the first section we observed that every infinite-dimensional Lie algebra
satisfying the weak minimal or the weak maximal condition on subalgebras
possesses no infinite-dimensional abelian subalgebras. On the other hand, it is
well known that every infinite-dimensional locally nilpotent Lie algebra possesses
an infinite-dimensional abelian subalgebra. Concerning these facts above
we raise the following question: In what classes containing that of locally
nilpotent Lie algebras does an infinite-dimensional Lie algebra possess an infinite-
dimensional abelian subalgebra? Recently Kashiwagi [7] showed that every
infinite-dimensional Lie algebra belonging to the class of locally supersoluble
Lie algebras, which is larger than that of locally nilpotent Lie algebras, possesses
an infinite-dimensional abelian subalgebra. Thus in this section we shall show
that every infinite-dimensional Lie algebra which belongs to a class X, containing
that of locally supersoluble Lie algebras possesses an infinite-dimensional abelian
subalgebra, and that X,-algebras satisfying the weak minimal or the weak maximal
condition on abelian subalgebras are finite-dimensional.
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First we shall give several characterizations of Baer algebras, Gruenberg
algebras and locally nilpotent Lie algebras. A Lie algebra L is called a Baer
(resp. Gruenberg) algebra if (x> is a subideal (resp. an ascendant subalgebra)
of L for any element x in L. B (resp. ®r) is the class of Baer (resp. Gruenberg)
algebras. We need a characterization of Gruenberg algebras, due to Amayo.

LeMMA 5.1 ([1, Theorem 4.6]). Gr=fAnLR=£AN E.

REMARK. We can show that B <E(si)U by following the proof of [1,
Theorem 4.6]. Furthermore from [2, Theorem 7.1.5(b)] and Examples 6.2 and
6.7 we have

B < EsHUA N LR = E6HA N € < Gr.
Now we state a characterization of locally nilpotent Lie algebras.

LEMMA 5.2. Let L be a Lie algebra. Then the following conditions are
equivalent:

(1) L is locally nilpotent.

(2) <x) is a local subideal of L for any element x in L.

(3) (x) is a locally ascendant subalgebra of L for any element x in L.

Proor. (1)=(2): For any element x of L and any finite subset X of L we
have (x, X>eMN, as LeLN. So {x)si{x, X)>. Therefore we have {(x) Isi L.

(2)=(3) is trivial.

(3)=>(1): Let X be any finite subset of L. For any element x of (X we see
that {x)asc{(x, X)=<X) since {x) is a locally ascendant subalgebra of L.
Hence {X) is a Gruenberg algebra. From Lemma 5.1 we derive (X)eLRn
®<N. Therefore we have Le LR.

class of Lie algebras. We introduce a new class F(4)X of Lie algebras as follows:
A Lie algebra L belongs to F(4)X if for any finite-dimensional subalgebra F
of L there exists an X-subalgebra H of L such that F<HAL. In particular we
write FX for F(<)X. Clearly L(4)X<F(4)X. We also write 4<A4’ if HAL
implies HA'L for any Lie algebra L.

As a first step in this section we have the following proposition which includes
[16, Theorem 5.3].

Let 4 and 4’ be any of the relations <, si, asc, Isi, lasc, etc. and let X be a

PrOPOSITION 5.3. (1) For any class X of Lie algebras such that Rn F<
X< B, we have

€ N LGDF = L(si)E = F(si)X = B.

(2) For any class X of Lie algebras such that # n F< X< Gr, we have
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€ nL(asc)F = L(asc)X = F(asc)X = Gr.

(3) Let 4 and A’ be any of the relations such that 1si< 4 and Isi< A’ <lasc.
For all classes ¥ and X' of Lie algebras such that RN F<XLLNR and RN F<
X' <Gr, we have

€ NLA)F = L(A)X = F(4)¥X = L.

ProoF. Let 4 be any of the relations <, si, asc, Isi, lasc, etc. By Engel’s
theorem we easily see that € N L(A)F=L(A)(N n F).
Suppose that Le F(si)B (resp. F(asc)®r). Then for any element x of L there

exists a subalgebra H of L such that
He®B (resp. ®r) and {x)> < HsiL (resp. HascL).

By the definition of Baer (resp. Gruenberg) algebras we have (x> si H (resp. {x)

asc H). Hence {x)si L (resp. {x) asc L). So LeB (resp.®r). Thus we

observe that F(si)B =B and F(asc)Gr=6r. '
(1) Obviously we have

L(si) (R N §) < L(sD)X < L(s))B
A IA
FG) (RN §) < F(s)¥ < F(si)B = B.

The result follows from the fact that B=L(si)(N n §F) by [16, Theorem 5.3(1)].
(2) Similarly we have

L(asc)(N N F) < L(asc)X < L(asc)Gr
IN IA
F(asc)(M N F) < F(asc)X < Flasc)®r = Gr.

It is enough to show that Gr<r(asc)(M N F). Assume that Le Gr and let X be
any finite subset of L. By [1, Corollary 4.7] we have (X) asc L. Furthermore
by Lemma 5.1 we see that (X)>eRnF. Therefore Le L(asc)(N N F).

(3) Assume that Le LR and let X be a finite subset of L. For any finite
subset Y of L we have (X, Y>eR. Hence (X)si{X, Y). So (X)IsiL and
X>eNng. Therefore Le L(lsi)(M N F). From this it follows that

LR < LIs))(R N F) < L(A)X < L(AHLR = LR,

LN < FIsi)(N N §) < F(4)¥X’ < F(lasc)Br.
Finally we show that F(lasc)®r<L. Assume that LeFr(lasc)®r. For any
element x in L there exists a Gruenberg subalgebra F of L such that (x> < F lasc L.

Hence for any finite subset X of L we have F asc{(F, X). As {(x)ascF we have
{x)asc (F, X)> and so {(x)asc (x, X). Therefore (x)lascL. By using Lemma
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5.2 we conclude that Le L.
This completes the proof of the proposition.

Next we shall search for several classes of Lie algebras which have an infinite-
dimensional abelian subalgebra whenever the whole algebras are infinite-di-
mensional. We recall the two classes Q and R of Lie algebras:

Le Q if Le § or if L has an infinite-dimensional abelian subalgebra.

Le R if Le § or if there exists a non-zero element x of L with C;(x)& §.
It is trivial that Q<R. Now we have a result which is useful in this section.

LemMA 5.4. Let X={s, Q}X be a class of Lie algebras. Then X< if and
only if X<9R.

PrOOF. See [2, Lemma 10.1.2].

Let H be a subalgebra of a Lie algebra L. We note that if H wsi (H, x>
for each xe L then H<®L. Using this and [3, Corollary 2.4] we see that in
locally finite Lie algebras every finite-dimensional weakly serial subalgebra is an
w-step weakly ascendant subalgebra. Hence by Proposition 5.3(3) we obtain

LR =L(K)YNNF) < L(L)F = L(wsenF.

The fact that there exists a locally finite Lie algebra not belonging to L(wser)%
is shown by Honda ([4, Example 4.3]).
We can now find a subclass of Q which is larger than L9R.

LemMA 5.5. Every infinite-dimensional L(wser)§-algebra has an infinite-
dimensional abelian subalgebra.

Proor. First we note that L(wsern)F=L(<?)F is {s, Q}-closed by [15,
Lemma 2]. Let LeL(<“)& and assume that L is infinite-dimensional. Then
for any finite subset X of L there exists a finite-dimensional subalgebra Fy of
L such that X< Fy<“L. By [3, Lemma 2.10] we have F¢<L. If F¢=0 for
any finite subset X of L, then FyeN and so Le LN. Since LRV <R by [2,
Theorem 10.1.3], we have Le R. If Fg =0 for some finite subset X of L, then
we can pick Oxxe Fg. As F¢ is a finite-dimensional ideal of L we have L/
C(F$)e § by [2, Corollary 1.4.3]. It follows that C (Fg)& & and so C,(x)& §.
Hence LeR. This implies that L(<®)F<R. Thus we can use Lemma 5.4
to conclude that L(<9)F< Q.

Concerning the class Q we have the following

PROPOSITION 5.6. (1) L(wser)Q=RQ.
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(2) Let X={s, Q}X be a class of Lie algebras. If X< then EX<Q.

Proor. (1) Let Ler(wser)Q. Then for any finite subset X of L there
exists a subalgebra Hy of L such that

X c HywserL and HyeQ.

If Hy e & for any finite subset X of L then Le L(wser)§. So by Lemma 5.5 we
have Le Q. If Hy& & for some finite subset X of L, then by the definition of
Q there exists an infinite-dimensional abelian subalgebra of Hy. Therefore
Le Q.

(2) Let LetX and suppose that L is infinite-dimensional. Then there
exists a strictly ascending series {L,},<, of L such that

0=Ly<L,<--L,<L,,,<---L,=L and L,,,/L,eX for any o < a.

By transfinite induction on ¢ we shall show that L, e Q. It is trivial for a<1.
Let 0>1 and assume that the result holds for all ordinals a<o. Now there
exists the minimal ordinal <o with respect to L,&§. If f<o then by the
inductive hypothesis Ls has an infinite-dimensional abelian subalgebra, and
so L,eQ. Hence we suppose that f=0. If ¢ is a limit ordinal then

L= \U,<,L,, L,e¥ and L,ascL forany a <o.

This means that LeL(asc)F, and so Le Q by Lemma 5.5. If ¢ is a non-limit
ordinal then we have

OxL,_;,<L and L,_,€§.

Hence L/C,(L,_,)€ & and so C,(L,_,)&§. Since there is a non-zero element
x of L,_, with C;(x)& & we see that LeR. Therefore we conclude that £, X <R.
Since E,X is {s, Q}-closed it follows from Lemma 5.4 that E,X<Q. Thus our
induction has been completed.

Over fields of characteristic zero from [2, Theorems 10.1.1 and 10.2.1]
we see that LEA U F) <. So as a consequence of Proposition 5.6 we have

COROLLARY 5.7. (1) Every infinite-dimensional EL(wasc)(EU U §)-algebra
has an infinite-dimensional abelian subalgebra.

(2) Every infinite-dimensional EL(EW U §)-algebra over a field of char-
acteristic zero has an infinite-dimensional abelian subalgebra.

ReMARK. By [7, Lemma 5.4] and Example 6.1 we have LE(<)F; <(LI)U.
Since (LMN)UA <ELM < EL(wasc)F we obtain LE(<a)F; <EL(wasc)(EA U F).

Now we shall give several conditions under which Lie algebras satisfying the
weak minimal or the weak maximal conditions on various subalgebras are finite-
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dimensional.

THEOREM 5.8. The following Lie algebras are finite-dimensional:

(1) nilpotent algebras satisfying the weak minimal or the weak maximal
condition on abelian ideals,

(2) supersoluble algebras satisfying the weak minimal or the weak
maximal condition on abelian 2-step subideals,

(3) hyperabelian algebras satisfying the weak minimal or the weak
maximal condition on abelian 3-step subideals,

(4) E(si)U-algebras satisfying the weak minimal or the weak maximal
condition on abelian subideals,

(5) EU-algebras satisfying the weak minimal or the weak maximal
condition on abelian ascendant subalgebras,

(6) Er(wasc)(EU U §)-algebras satisfying the weak minimal or the weak
maximal condition on abelian subalgebras.

Proor. (1) Let Le N n(wmin-<aA U wmax-<aW) and let A be a maximal
abelian ideal of L. Then A=A n{,(L) for some neN. Let X/(An{(L)<
Ang 1 (L)Y/(ANE(L). Then X is an abelian ideal of L, since [X, L]= A n {(L)
cX. Thus (4Nn¢.(L)/(ANL{(L)e(wmin U wmax) N A< F, whence A=A4n
{(L)e . Therefore L/C;(A)e & and since C,(A)=A4 by [2, Lemma 9.1.2(a)],
we have Le §.

(2) Let Lef(<)F, N (Wmin-<a?A Y wmax-<a?W). If L&F then by [7,
Corollary 5.3] there exists an infinite-dimensional abelian ideal A of L. On
the other hand we have 4 e (wmin U wmax) n W< &, a contradiction. Therefore
we have Le §.

(3)~(6) can be shown by using [2, Theorem 10.1.1] and Corollary 5.7(1) as
in the proof of (2).

As a special case of Theorem 5.8 we have the following

COROLLARY 5.9. The following Lie algebras are finite-dimensional:

(1) hypercentral algebras satisfying the weak minimal or the weak
maximal condition on 2-step subideals,

(2) ideally soluble algebras satisfying the weak minimal or the weak
maximal condition on 3-step subideals,

(3) Baer algebras satisfying the weak minimal or the weak maximal
condition on subideals,

(4) Gruenberg algebras satisfying the weak minimal or the weak maximal
condition on ascendant subalgebras,

(5) locally nilpotent algebras satisfying the weak minimal or the weak
maximal condition on subalgebras.
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6.

In this section we shall observe several examples concerning the weak minimal
conditions and the weak maximal conditions on various subalgebras.

ExAMPLE 6.1. Let X be a vector space with basis {xg, X, X,,...} and let
o be the upward shift on X, that is, x;0=x;,, for all i>0. Think of X as an
abelian Lie algebra and form the split extension L=X 4 {(¢). Then it is well
known (e.g. see [9, Theorem 3]) that every non-zero ideal of L is of finite co-
dimension. Hence Le Max-< nwmin-<a. Put I,={x,, X,+,...p for all n>1.
Then I, is an abelian ideal of L. Now since I,>1,>---, L/I, e & and "\, I,=0,
we see that LeRE but L& Min-<W. If Le wmin-<a2, then X e A n wmin< §,
and so L&wmin-<2. By the way, as L={x,, 6) we have L&LE. So L&

LE(<1)@, from the fact that LE(<)F, <L(EU N &) ([7, Proposition 3.1]). Thus
we have

Min-<a < wmin-<a, Min-<sW < wmin-<a,
wmin-<a1? < wmin-<a, wmin-<1?% < wmin-<a1?l,
EY N RF N Max-< N wmin-<X§, LE(<)F; < @IR)U.

ExAMPLE 6.2. Let X be a vector space with basis {x,, X;, X,,...} and let
o be the downward shift on X, that is, xo6 =0 and x;,6=x;_, for all i>0. Think
of X as an abelian Lie algebra and form the split extension L=X 4 {a). It is
evident that the proper ideals of L are X and {,(L)=<{Xg,..., X,—1» (n=1,2,...).
Therefore Le Min-< N wmax-<1 but L& Max-<1.  If Le wmax-<a? then X €
A nwmax<F, and so L& wmax-<1?W. Thus we have

Max-<a < wmax-<a, Max-<1U < wmax-<1,

wmax-<1? < wmax-<1, wmax-<1?U < wmax-<a1l.

On the other hand, L is hypercentral and (o) is not a subideal of L ([2, p. 119]),
and hence

Le3 < B(<)W n LN < Es)A n LN but L& B.
Thus B <E(s))A N LRK.

ExAMPLE 6.3. Let ¢ be an infinite cardinal with successor ¢t and let c;
(i=1, 2,...) be infinite cardinals such that

c;<c; <+ and ¢ <c forall i>1.

Select a vector space V of dimension ¢. For any infinite cardinal d<c*, L(c, d)
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is defined to be the Lie algebra of all linear transformations a: V-V such that the
image of a has dimension<d. From [12, Theorem A] it follows that L=L(c, c*)
eMin-<, I;=L(c, ¢)<L (i=1,2,..), I,<I,<--- and dim[I,,,/I;=00 (i=1,
2,...). Therefore we have L& wmax-<a.

ExAMPLE 6.4. Let X be a vector space with basis {x;;: i, j€ N} and think
of X as an abelian Lie algebra. We define two derivations fand g of X as follows:

xijf= xi’j+1 and xijg = x,-+1’j fO!‘ all i,] 2 0.

It is easy to see that [f, g]=0. We form the split extension L=X 4<{f, g>.
Then L=<{xq0,f, 9)€UA*nNG. From [2, Corollary 11.1.8] we deduce that
LeMax-<. PutI,={x;;:i>n,jeN) for each n>1. Then I, is an ideal of L.
Furthermore we have

I,>I1,>-- and dimI,/I,,,=c0 forall n>1,
which implies that L& wmin-<a.

THEOREM 6.5. (1) There exists a Lie algebra satisfying the weak minimal
and the weak maximal conditions on ideals but neither the minimal nor the
maximal condition on ideals.

(2) There exists a Lie algebra satisfying the weak minimal condition
on ideals but neither the weak maximal nor the minimal condition on ideals.

(3) There exists a Lie algebra satisfying the weak maximal condition on
ideals but neither the weak minimal nor the maximal condition on ideals.

Proor. Let L; be the Lie algebra in Example 6.i for i=1, 2, 3, 4.
(1) Set L=L,®L,. Then

L/L, ~ L, e wmin-< N Max-<« and L,eMin-<x N wmax-<.
By using Lemma 1.1 we have Le wmin-<a1 | wmax-<1. But
L/L, 2 L, & Min-« and L/L, = L, & Max-<.

Therefore we have L& Min-<1 U Max-<.
(2) Set L=L,@®L,.
(3) Set L=L,®L,.

EXAMPLE 6.6. Let W be the Witt algebra, that is, W be a Lie algebra over a
field of characteristic zero with basis {w,, w,,...} and multiplication [w;, w;]=
(i—j)w;+;. From WeMax ([8, Theorem]) we can deduce that every ascendant
subalgebra of W is a subideal of W. Since every subideal of W is of finite codi-
mension ([2, Theorem 8.7.1]) we see that We wmin-asc. However, we notice
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that W& wmin. In fact, let H; be the subspace of W spanned by all w,;, with
k>1(i=1,2,...). Then clearly H; is a subalgebra of W, and we see that

H,>H,>-- and dimH;/H;,, = forall i>1.

Furthermore we have W >W @) >.... and so W does not satisfy the minimal
condition on non-abelian ideals. Therefore using [2, Theorem 8.1.4] and
[14, Theorem] we see that over fields of characteristic zero

wmin < wmin-asc, Min-asc = Min-si = Min-<1? < wmin-asc,

wmin-<a1? £ Min-<t, wmin-<1?W £ Min-< ¥,

where ‘wmin-<12% (resp. Min-<a®) is the class of Lie algebras satisfying the
weak minimal (resp. minimal) condition on non-abelian 2-step subideals (resp.
non-abelian ideals).

ExampLE 6.7. Let U=U(L) be the universal enveloping algebra of a Lie
algebra L and let V=V(L) be the (associative) ideal in U which is generated by
L. Suppose that L is nilpotent of class n—1 (n>2). By means of the lower
central series we develop a totally ordered basis {u;: ieI} in L. The weight
s=s(u;) of an element u; is the positive integer s with u;e Ls\Ls*1. The weight
of a standard monomial [],.; u? is X ;; m;s;, where s; is the weight of u;. The
weight of an arbitrary element in V is the minimum of the weights of the standard
monomials which occur in the linear combination of the element. The set of
elements of V with weight>n forms an ideal in V, which we designate S=S(L).
Then N=N(L)=V/S is an associative nilpotent algebra of class n ‘and can be
considered as a right L-module in the usual way. Thus we form the split ex-
tension E=E(L)=N 4 L. Since

E'=(-((N-L)-L)y--)-L+ L for 1<i<n+1,
R —

i—1 times

we see that E is nilpotent of class n.
Let L, be a one-dimensional Lie algebra. By defining L, =E(L,), Ly=E(L,),
and so on, we obtain an ascending chain of nilpotent Lie algebras

Li<L,<-<L,<Ljy <--.

Set L=\U%., L, (the direct limit of {L,}). Then by [11, Theorem 4] we know
that Le LM N EA and that L has no non-zero bounded left Engel elements.
Assume that Le £(si). Then there exists a non-zero abelian subideal 4 of L.
If we take a non-zero element z in A, then {z) is a subideal of L. Hence z is
a bounded left Engel element, a contradiction. Thus we have L&E(si)2. From
this we deduce that £(si)2 n LN < Gr.
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We put Ng=L, and N;=N(L,)) for all i>1. Then
Liyy = N;i + (Ni-1 (- +Np)-).

So L=Y%,N,. Itis easy to see that Li=\U%,Li,,. Since

we have
Li=3Y2% (N, Ly L) for any i>1.
5_,—/

Therefore L{/Li*'&§ and so L&wmin-<t. From the paragraph above L has
no non-zero soluble ideals. Therefore Le Min-<te n Max-<te2. So we have
wmin-<a < wmin-<t1g.

REMARKS. (1) The two Lie algebras constructed in [S, Theorems 1 and 2]
show that

wmin-<tBA < wmin-<a<<N and wmax-<tBU < wmax-<<MN < wmax-<a?l.

(2) The Lie algebra constructed in [10, Theorem] shows that over the
rational number field

wmin-<aN < wmin-<aW.

(3) The Lie algebra constructed in [2, pp. 167-170] shows that over a
field of characteristic p>0

wmin-<13 < wmin-<a1?, wmin-<a13% < wmin-<129l,

wmax-<1?® < wmax-<1?, wmax-<13¥U < wmax-<i?22.

References

[1] R.K. Amayo: Ascendant subaigebras of Lie algebras, preprint, Universitit Bonn, 1975.
[2] R.K. Amayo and I. N. Stewart: Infinite-dimensional Lie algebras, Noordhoff, Leyden,

1974.

[3] M. Honda: Weakly serial subalgebras of Lie algebras, Hiroshima Math. J. 12 (1982),
183-201.

[4] ——: Joins of weak subideals of Lie algebras, Hiroshima Math. J. 12 (1982), 657-
673.

[5] T.Ikeda: Chain conditions for abelian, nilpotent and soluble ideals in Lie algebras,
Hiroshima Math. J. 9 (1979), 465-467.

[6] Hyperabelian Lie algebras, Hiroshima Math. J. 15 (1985), 601-617.

[7]1 Y. Kashiwagi: Supersoluble Lie algebras, Hiroshima Math. J. 14 (1984), 575-595.

[8] F.Kubo: On an infinite-dimensional Lie algebra satisfying the maximal condition for




[91
[10]

[11]
[12]
[13]
(14]
[15]
[16]
[17]

[18]

Lie algebras satisfying the weak minimal condition on ideals 75

subalgebras, Hiroshima Math. J. 6 (1976), 485-487.
———: A note on Witt algebras, Hiroshima Math. J. 7 (1977), 473-477.

Finiteness conditions for abelian ideals and nilpotent ideals in Lie algebras,
Hiroshima Math. J. 8 (1978), 301-303.
L. A. Simonjan: Certain examples of Lie groups and algebras, Sibirsk. Mat. i 12
(1971), 837-843, translated in Siberian Math. J. 12 (1971), 602-606.
I. N. Stewart: The Lie algebra of endomorphisms of an infinite-dimensional vector space,
Compositio Math. 25 (1972), 79-86.
—: Lie algebras generated by finite-dimensional ideals, Pitman, London-San
Francisco-Melbourne, 1975.

The minimal condition for subideals of Lie algebras implies that every as-
cendant subalgebra is a subideal, Hiroshima Math. J. 9 (1979), 35-36.
S. T6gd: Weakly ascendant subalgebras of Lie algebras, Hiroshima Math. J. 10 (1980),
175-184.
S. T6g6, M. Honda and T. Sakamoto: Ideally finite Lie algebras, Hiroshima Math.
J. 11 (1981), 299-315.
D. 1. Zaicev: Groups which satisfy a weak minimality condition, Ukrain. Mat. Z.
20 (1968), 472482, translated in Ukrainian Math. J. 20 (1968), 408-416.
—: Groups that satisfy the weak minimum condition for non-abelian subgroups,
Ukrain. Mat. Z. 23 (1971), 661-665, translated in Ukrainian Math. J. 23 (1971), 543-546.

Department of Mathematics,
Hiroshima University of Economics








