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with a nonlocal convection
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Abstract. This paper is concerned with stationary solitary wave solutions of a nonlinear
diffusion equation described by

ut = duxx - [{K*u)u\x + ku(l-u).

It is proved that there is no such solution for kernels ΛΓ(A:)GL1(if), and that for some

specific kernel K(x)Q=Lι(R) there is a range of value of the total distribution \ udx for

fixed d and k over which such solutions exist.

1. Introduction

Recently there has been considerable interest in biological models governed

by a class of reaction-diffusion equations. The simplest model describing the

dynamics of one species that moves by diffusion, in one dimension, is expressed by

(1) ut = duxx + /c(l-u/α)u,

in which the Pearl-Verhulst law is employed for the population growth. Here d

is the diffusion constant, fc, α are respectively an intrinsic growth rate, a carrying

capacity for the species. The equation, which is called the Fisher equation, is

also encountered in population genetics. It was analyzed precisely by seeking

traveling wave solutions which take the form u(x, t) = u(x — ct) with the constant

speed c. As boundary conditions, we have u(— oo) = α, w(+oo) = 0. Traveling

wave solutions exist for any fixed c ^ c * = 2λ//c3, and a solution of the initial

value problem for (1) with a fairly wide class of initial functions forms asymptoti-

cally a traveling wave with the minimum speed c = c*. Furthermore, if the

initial function is of compact support, it spreads out with time where the fronts

move in both directions with the asymptotic speed c* (see Uchiyama [4]).

On the other hand, we often meet diffusion-convection equations in the

absence of growth and/or death terms

ut = duxx-(Vu)χ9

where V is the convection velocity of the species. Recently Nagai and Mimura

[3] have studied a nonlinear diffusion equation with a nonlocal convection of the

form
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(2) u, = d(w)π

where m ^ l and K*u = \ K(x — y)u{y)dy. They assume specifically the kernel

K to satisfy

(i) K is an odd function in R

(ii) K is monotone increasing in — oo < x < 0 and in 0 < x < + oo.

A representative example of the kernel is

aeλx (— o o < x < 0 ) ,(3) K(x) = i

-ae~

where α, λ are positive constants. The convection term in (2) provides the

mechanism that u(x, t) moves to the right when

\ e-λ(χ-y) u(y)dy < \ eλ(χ~y>> u(y)dy
J-OO Jx

and to the left when the inequality is reversed. For this reason, the convection

effect satisfying (i), (ii) may be phenomenologically understood to be a kind of

nonlocal aggregation of individuals. Intuitively, one can expect that by an

interplay of the balance between "diffusion" and "aggregation", (2) may exhibit

a pulse-like solution. Indeed, that is verified when λ = 0 in (3) (see [3]). Suppose

u(x, 0) (^0) has compact support. Then a solution w(x, i) of (2) with m = l

evolves into a stationary solitary wave of the form

with / = \ u(x, 0)dx, where s is determined by the initial function u(x9 0). One
JR

finds that such spatially localized standing waves show a great contrast to spreading

waves occurring in (1).

In this paper, we consider a linear diffusion model (2) with m = 1 incorporated

with the population growth in (1),

(4) ut = duxx - l(K*u)ulx + ku(l - u),

which is regarded as a Fisher type equation with a nonlocal convection.

Murray [2] and his coworker Gibbs considered the effect of (local) con-

vection on the Fisher equation from the viewpoint of traveling waves when the

convection in (4) takes the form [H(w)]x. Here we study the existence of

stationary solitary waves of (4) in the case when K(x) possesses the effect of

aggregation. It is emphasized that (4) contains three qualitatively different
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effects of "diffusion", "aggregation" and "growth". The results on (1) and (2)
motivate us to address the question whether an initial distribution of compact
support evolves into a localized standing wave or a spreading wave whose fronts
move in both directions. When K(x) takes the specific form (3), it is numerically
observed that for 0<A^oo an initial distribution of compact support spreads
out in both directions with ||u( , t)\\Lι-+co as t-*co and, on the other hand, for
λ = 0 it tends to a stationary solitary wave and ||u( ,ί)lln approaches some
finite value as ί-»oo. (Fig. 1.)

In Section 2, we show the non-existence of stationary solitary wave solutions
of (4) for any kernels keL^R). We also consider a specific form (3) with λ=0
as an example of k^L^R), although it is very simple and then show the existence
of stationary wave solutions of (4). In Section 3, we give the proofs of the results
shown in Section 2. Finally, in Section 4, we mention some remarks on the
results.
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Figure 1. Time development of [«( , /)JLi of (3), (4) with λ=0 and

Λ = oo. d=5,a = l,k=4Oand

I 0 otherwise

2. Results

We consider the stationary equation of (4),

(5) 0 = du" - l(K*u)uJ + fcu(l -u), x e R,

where ' denotes djdx. We first define a solution of (5) by a nonnegative function
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u such that

(i) u
(ii) u satisfies (5).

LEMMA 1. Let u(x) be a solution of (5) with KeL^fyU L^R). Then

M(+OO) = W'(+OO) = 0. Moreover maxJceΛw(x)>l.

THEOREM A. Suppose KeL^R). Then (5) has no solutions except u=0.

Theorem A suggests that the behavior of solutions of (4) with K e LX

seems to be analogous to that of (1). We will not argue this problem in this

paper.

We next consider the case when K is not of class L±(R). As an example of

such kernels, we specify K(x) with 2 = 0 in (3),

ί a ( - o o < x < 0 )
K(x) =

[ -a (0<x< + oo),

where a is a positive constant. The resulting equation is

(6) 0 = du" + [ Q ^ u{y)dy - £°° u(y)dy)uj + ku(l-u),

where d, k are taken to be dja, k/a, respectively.

LEMMA 2. Let u(x) be a solution of (6). Then there is only onepaoint xoeR

such that w'(xo) = 0, and u(x) is symmetric with respect to x = x0, that is, u{x) =

u(2x0 — x) for any xe R.

THEOREM B. Let d>0 be arbitrarily fixed. For each fc>0, there exists

Id(k)>0such that

( i ) there is no solution of (6) for 0<I<Id(k);

(ii) there is a solution of (6) for Id(k)^I;

(iii) for fixed k, limd40 Jd(fc) = 0, and for fixed d, lim infΛ;0 Id(k)>09

where / = \ u(y)dy and Id(k) is estimated as follows:
J-oo

y/4dk(5-k) ^ IJ,k) ̂  2jdk (4 > fe ̂  2),

2yJ(4+k)d ^ /d(fe) ^ max {2^/dk, 21/4

Λ/3> (2 > fe > 0).

Moreover, for each (I, d, fe), where I^I/k), a solution of (6) uniqeuly exists.
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3. Proofs

PROOF of LEMMA 1.

Define F(x) by

(7) F(x) = du'- (K*u)u + k[X u(y) (1 - u(y))dy,
J-00

where u is a solution of (5). Then F'(x) = Q, that is F(x) = constant = ξ. Since
u(x) is bounded and integrable, u'(x) is also bounded. Then it is easy to see that
M(X)->0 as x->±oo. From (7), ξ = F(— oo) = άu\— oo), and hence u'(— oo) = 0.
On the other hand, we have

0 = F(+ oo) = du'(+ oo) + fc ( φ ) ( l - φ ) ) ^

which implies uϊ+oo)=\ u(y)(l — u(y))dy = O. From this we also see that
JR

max J c e Rw(x)>l. •

PROOF of THEOREM A.

First note that

for any a, b (b>ά). Lemma 1 leads to F(x) = 0, that is

where g{x) = k \ u(y) (1 - u(y))dy. Therefore
J-00

(8) u(x) = exp ( i J* (K*u) (s)ds) x

We note gf(+ oo) = 0 and gf/(x)>0 for sufBciently large x. That is, if α is chosen
to be sufficiently large such that 0<u(α)<l, then g(x)<0 for x>a. Thus from
(8), we obtain

u(x) ^ u ( ( ^ J ] )

( ^ ) (x>a)9
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which contradicts u e LX(R). •

Next we will prove Lemma 2 and Theorem B. To find a solution of (6),

it is convenient to introduce a new variable v(x) defined by

Γx

v(x) = \ u(y)dy.
J-oo

Then (6) becomes

(9) du" + {(2υ-I)uY + ku(l - u ) = 0,

c °°
where / = \ u(y)dy which is a total population number to be determined.

J-oo

Substituting u = υ' into (9) gives

(10) dv'" + {(2t>-/)t>'}# + fcι?'(l-t>') = 0.

We investigate (10) in the three-dimensional phase space so that (10) is written as

v' = p,

(11) p' = q, xeR

q' = (ί/d)-{(I~2v)q - 2? - kp(l-p)}.

The boundary conditions of (11) at x= ± oo are

(12) (v, p, q)\x=^ = (0, 0, 0), (v, p, q)\x=+» = (/, 0, 0).

We are concerned with the eixstence of solutions (v, p, q; I) of (11), (12)

instead of (6).

PROOF of LEMMA 2.

First we show that there is only one point x 0 such that u'(xo) = O. Suppose

the conclusion is not true. Then the following three cases can happen. 1)

M(xo)<maxM = u(x1), or 2) u(xo) = ma.xu(xί) and there exists x2 between x0

and xt such that u(x 2 )<maxu, or 3) there exists an interval [x0, x x ] such that

u(x) = maxM = φ o ) = φ 1 ) for x e [ x 0 , x x ] . Consider the first case. We may

assume x 0 < xx. Let us show t/"(x0) < 0. Suppose to the contrary that u"(x0) ^ 0.

Then it follows from (9) that at x = x0,

(13) 0 ^ - du" - (2υ-I)uf = 2M2 + ku(l-u),

which leads to u(xo) = 0 for 0<fc^2. Considering the initial value problem (10)

subject to the initial conditions
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- 0 0

(14) t/(x0) = 0,

v"(x0) = 0,

we have v(x) = constant, which is a contradiction. Consider the case fe>2.

From the fact that u/(x1) = 0, u 'Xx^O, it follows that 2u2(x1) + fcu(x1)(l--u(x1))

^0, that is, uix^kjik-l). Thus, 2u2(x0) + M*o)(l-w(xo))^0 By (13), we

have w(xo) = 0, which is again a contradiction. Therefore w"(xo)<0. Hence

there exists x* between x0 and Λ^ such that w'(x*) = 0, u"(x*)Ξ^0 and u(x*)<

max u. A similar argument leads to a contradiction. The second and third cases

may be treated analogously, so we omit the proofs.

Next we show the symmetry of a solution u(x). Suppose u(x) is not sym-

metric. We note that if u(x) is a solution of (6), w( — x) is also a solution of (6).

Let us write two solutions of (11) as (v(x), p(x), q(x)) (ϋ(x), p(x), q(x)) corre-

sponding to M(X), U(—X), respectively. Regarding p, q as functions of v, we

rewrite (11), (12) as

dv p7

(15)

-T2- = ~r\(I-2υ)-ί- - k - (2-k)p\ ,
dv d (v p / j r J 'P

(16) p(0) = p(I) = q(0) = ^(/) = 0.

p, q also satisfy (15), (16). Since u(x) is assumed not to be symmetric, we may

assume without loss of generality that q{Iβ)<0<q{Ij2). We note p(//2) =

p(I/2) and j?'(//2) > pr(Ij2). Substituting the first equation of (15) into the second,

we obtain

Integrating (17) with respect to v in [vlt v2~], we have

(18) q(υ2) - q(Vl) = \{{I- 2v2)p(v2)

- {I-lυJpiVi) - fc^-tO + k [V2p(v)dv}.

Put p*=p-p, q* = q-q. Then (18) yields

(19) q*(υ2) - q*(Vι) = \ {(J-2t>2)p*(t>2) - {I-Ίv^p*^) + k ["2 p*(υ)dv}.
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Setting vi = 0, v2 =7/2, in (19), we have

(20) 0 < q*(II2) = \^p*(v)dv.

If p(v)>p(v) for 0<v<I/2, then p*(v)<0 for 0<v<I/2 which contradicts (20).

Therefore there exists v0 (0<vo< 7/2) such that p(v0) = p(v0). Let v* be the largest

one for which p(v*) = p(ϋ*) Setting t ; 1 =0, υ2 = v* in (19), we have g*(t;*) =

-j-\ p*(v)dv>0, that is, g(ϋ*)>α(u*)5 which implies p'(v*) = q(v*)lp(v*)>
a Jo

q(v*)/p(v*) = p'(v*). This contradicts the choice of t;*. •

From now on, we call a solution (p, q, v) of (11), (12) symmetric if only p(x)

is symmetric, and a solution (/?, q) of (15), (16) symmetric if p(v) is symmetric.

PROOF of THEOREM B.

We first show the following results as a consequence of Lemma 2.

COROLLARY 1. For each (7, d, fc), a symmetric solution o/(ll), (12) is unique

PROOF. Suppose that there are two symmetric solutions, say (ρ(v), q(v)),

(p(v), q(v)). We may assume p(7/2) > p(I/2). Putting p* = p — p, q* = q — q,

and then setting v1 = 0, v2=I/2 in (19), we have

Hi

Then, there is v0 (0<vo<I/2) such that p*(vo) = 0. Let ι;* be the largest one for

which p*(v*) = 0. Setting vx = 0, v2 = v* in (19), we find

which means q(v*) <q(v*) or p'(v*)<p'(v*). This is a contradiction. •

Theorem B is proved by employing the "shooting method" (for instance

Dunbar [1]).

If a trajectory (v(x), p(x)9 q(x)) connecting (v(-co), p(-co), q(-co)) =

(0, 0, 0) = O with (v(x*)9 p(x*)9 q(x*)) = (I/2, p0, 0) = P is found for some 7, x*

and jpo, then a function (0, β, q) of the form

(v(x), P(x), q(x)) (

(7 - ι<2x* - x), p(2x* - x), - q(2x* - x)) (x* ^ x < + oo)

becomes a symmetric solution of (11), (12). Thus, we may look for a solution of

(11) connecting O and P for some 7, x* and p0. We consider a trajectory origi-

nating from 0. To do so, we linearize (11) so that the Jacobian matrix of the
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linearized system is

A =

0 1 0

0 0 1

_ 0 -k/d I/d _

The eigenvalues of A are

0 and (I±JP-4dk)/2d = μ± (P-4dk^0)

or

(P-4dk<0).

For P — 4dk<0, O is a node and there is a one-dimensional unstable manifold
U1 corresponding to the largest eigenvalue μ+. In terms of a parameter m,
points on Ut are parametrically represented as

Uι(m) = m

1

μ+

L/4

o(\m\)

in a small neighborhood of O. Also with two parameters there is a two-dimen-
sional unstable manifold U2 of trajectories originating from the origin. It takes
the representation of

U2(m, n) = m

1

μ+ + n

1

μ- o(\m\ + \n\)

in a small neighborhood of O. We note Ux ̂  ί/2. A trajectory on the manifold
Uί approaches tangentially to the eigenvector corresponding to μ+ as x^> — oo.
All trajectories on the manifold U2 except a trajectory on Uί approach O tangen-
tially to the eigenvector corresponding to μ_ as x ^ —oo. For P — 4dk = 0, O
is a degenerate node, where there exists a two-dimensional unstable manifold U
in a neighborhood of O. In this case all trajectories on the manifold U approach
O tangentially to the eigenvector corresponding to μ+=μ_=J/2d as x-* —oo.
For P — 4dk<0, O is a spiral point. Therefore a trajectory originating from the
origin must enter the region p < 0. So we must require J2 — 4dk ̂  0, and in fact we
require P — 4dk>0 until the end of Lemma 11.

We show that a trajectory on the portion of the one-dimensional manifold
Uί in the octant {(v, p, q)\v>0, p>0, q>0} attains the quarter plane D =
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{(v, p, q)\υ = I/2, p>0, q>0} under suitable conditions. We first consider the
case

LEMMA 3. Let k ̂  4. Suppose p(0) > (I/2d) υ(0), q(Q) > (I/2d) p(0). Then
for any x>0 so long as p(x)>0, p(x)>(I/2d)'v(x), q{x)>{Ij2d)p{x).

PROOF. Suppose that there exists the smallest x o >0 such that p(xo) =
(II2d) v(x0), q(xo)>(II2d)'p(xo). Then it is obvious to see p'{xo)-(Ij2d)
v'(x0) 5̂ 0. On the other hand, we have p'(x0) - (I/2d) v'(xo)=q(xo) - (I/2d)
p(xo)>Q which is a contradiction. Next suppose the smallest x o >0 exists such
that p(x0) ^ (I/2d) v(x0), q(x0) = (I/2d) p(x0). Then, it turns out that

- kp(x0) - (2-k)p2(x0)} ~

= Ύ p(Xo) {id " k

which contradicts the inequality q'(x0) — (I/2d) p'(x0)ύ®>

LEMMA 4. Let k^4. Suppose p(0)<sv(O), q(O)<sp(0) with s = {k-2)Iβd.
Then for any x>0 so long as p(x)>0, p(x)<sv(x), q(x)<sp(x).

The proof is almost similar to that of Lemma 3. So we omit it.

L E M M A 5. For fe^4, let V1 be a cone defined by

V1 = {(i?, p , q)\sv ^p^ (Iβd) -v,sp^q^ (I/2d) -p,0^v^ 1/2},

where s is the constant given in Lemma 4. Then for any xe R so long as 0<
φc):gJ/2, a trajectory on the manifold U1 is trapped in V1.

PROOF. We note that in a neighborhood of 0, Ux lies in Vί. Hence, Lemmas
3 and 4 immediately imply the result. •

Thus, we find that for fc^4 a trajectory on U1 attains the plane D = {(v, p, q)\
ι; = J/2, p>09 ^>0}. We next consider the case

LEMMA 6. Let 2^fc<4. Suppose /?(0)>(7/2ί/) t;(0), q(0)>(Ij2d)-p(0).
Then for any x>0 so long as 0<p(x)<(I2-4dk)/(16-4k)d, p(x)>(I/2d)'V(x),
q(x)>{II2d) p(x).

LEMMA 7. LetO<k<4. Suppose p(0)<(I/d) v(0), q(0)<(I/d) p(0). Then
for any x>0 so long as p(x)>0, p{x)<{lld)-υ{x), q(x)<(Ijd)'p(x).
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LEMMA 8. Let 2^k<4. Suppose q(0)>(kjd) {//2-t (O)}. Then for any
x>Oas long as 0<φc)<//2, q(x)>(k/d)>{II2-v(x)}.

As the proofs of Lemmas 6, 7 and 8 can be carried out in a similar way to Lemma
3, we omit them.

We define a cone V2 by

V2 = {(Ό, p, q)\{Iβd) -υ^pύ (Ijd) υ,

^q^ (Ild) p, 0 g p ^ (72 -

We note that Uί lies in V2 in a neighborhood of the origin. Then it follows
from Lemmas 7 and 8 that for 2^fc<4, a trajectory on U1 is trapped in V2 as long
as 0<p^(I2-4dk)l(16-4k)d. Hence it enters S2 = {0, p, q)\p = (I2-4dk)l
(16-4k)d, (dll)'p^v^(2dll)p, (l\2d)-p<>q<>{l\ά)>p}, which is the cross
section of V2. Fix / such that I2 ^ 4dk(5 — k). Then we know that S2 is contained
in {(ι;, q)\q^.k{Iβ — υ)jd} and therefore from Lemma 8, a trajectory on Uί must
enter the plane

D = {(v, p, q)\v = 1/2, p > 0, q ^0}.

We will show that the trajectory never reaches the line

Suppose this is not ture, that is, the trajectory attanins I for the first time at some
x, say x = x0. Define f(x) by

Then one can easily see that/(xo) = 0 and

f'(xo) = (k-2)p2(xo)ld>0 (fc>2),

Λ*o) = /"(*o) = 0, f'"(x0) = 8p2(x0)/^ > o (k = 2),

which is a contradiction. Thus, we find that for 2^fc<4 and I2^.4dk(5 — k),
a trajectory of (11) on Uί enters D.

Finally we consider the case 0<fc<2. We note Lemma 7 also holds in this
case.

LEMMA 9. Let I be fixed such that I2>(16 + 4k)d, and let ε>0 be a suffi-
ciently small number (depending on I, k, and d). Suppose

q(0) > {μ+ -βfc-(2/d) <0)}p(0), j>(0) > (Iβd)

Then for any x>0 as long as p(x)>0, and 0<v(x)<4d/I,
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q(x) > {μ+-εk-(2/d)• v(x)}p(x), p(x) > (I/2d) v(x).

PROOF. Suppose that there exists the smallest x o >0 such that p(xo) =
(II2d) v(x0) and q(xo)>{μ+-εk-(2ld) v(xo)}p(xo). Then p\x0) - (I/2d)
v'(x0) ^ 0. On the other hand, it follows that

P'(xo) --Jj

which is a contradiction. Next suppose that there exists the smallest x0 such that
p(x0)^(Iβd)-v(x0) and q(x0) = {μ+—εk — (2/d) v(xo)}p(xo). Then it follows
that

{ 2μ+ - εk - -jv(

- μ+

7, kP(x0){ε(μ+ - εk - ^ - ) + |

This contradicts the choise of x0 > 0. •

LEMMA 10. Suppose q(0) > (\jd) {k + (2 - /c)K0)} (//2 -1<0)). Then for any
x>0 as long as 0<φc)<7/2, ^(x)>(l/έθ {fc + (2-fc)/<x)}(//2-!<*)).

The proof is carried out in a similar way to that of Lemma 3.
We now define a cone V3 by

V3 = {(v, p, q)\(μ+-εk-2vld)p^q^(I/d).p, (II2d).Ό£p£(Ild) v, 0^pS2}.

Then Lemmas 7 and 9 imply that a trajectory on L^ is trapped in V3 while p
satisfies 0<p(x)^2. Hence it enters the cross section of V3 at p = 2, say S3,

S3 = {(v, p, q)\2d/I^v^4d/I9 p = 29 2(μ+ -εk-

It follows that for (v, p, q)eS3,

- k)p} ( y -«>

>k( - 2 ε - λ
-k\4d U ~ϊ)
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Here we used μ+ - ( 4 - k)I/4d^ fcJ/8d if 72 ^ 64d/(8 - fc). Thus if / is chosen so
that I2 > 16d, and if ε > 0 is sufficiently small, then S3 is on the upside of the surface
q = {k + {2-k)p}{Iβ-ύ)ld. Therefore Lemmas 7, 9 and 10 imply that a tra-
jectory on Ut reaches D if 72>(16 + 4fc)d.

LEMMA 11. Let 7, d, k be fixed such that I2—4dk>0. If a trajectory on
Uι reaches D it is a symmetric solution 0/(11), (12).

PROOF. Let C2 be a curve in which U2 intersects the plane q = 0. Then one
finds that C2 has a portion which lines in the quarter plane {(v, p, q)\v>09 p>0,
q = 0}, and a trajectory leaving any point on this portion immediately enters the
octant of {v>0, p>0, q>0} in a neighborhood of O. Let y be a curve on U2

in a small neighborhood of the origin, connecting a point on Ut and a point on
C2. We introduce a parameter s into y in such a way that y = y(s) (O^sgl),
7(0) E C2 and y(l) e C .̂ Furthermore, let A and £ be

A = {so|a trajectory leaving γ(s0) attains

D* = {(t>, p, q)\0<Ό<II29 p>0, f̂ = 0}} and

B = {so|a trajectory leaving y(s0) attains D},

respectively. The previous discussion shows that 0 e A, leB. Define s* by
sup^4 = s*. Then 0<s*<l . By the continuity of solutions on initial values,
it turns out that if s* eA, then seA, where s>s* and s — s* is sufficiently small,
which is a contradiction. Using a similar argument to the above, we also find
s*^B. By Lemma 4 (or Lemma 7), any trajectory originating from the curve
y must reach D* or D. Thus, we conclude that a trajectory leaving y(s*) attains
the line /, which gives a symmetric solution of (11), (12). •

PROPOSITION 1. Fix d>0. Then for each k>0, the set

Ek = {/|/>0, a solution o/(ll) leaving U2 attains I for 1}

is connected.

PROOF. We first show two lemmas.

LEMMA 12. Consider (15). Fix (I,d,k) under I2>4dk. Let (p^v),
Qiiv)) (resP-(P2(v)> #200)) oe a trajectory which lies on Uί (resp. U2). If there
is sίe(0,II2) such that qί(s1) = 0, then there is also s2e(0, 7/2) such that

PROOF. Let (p2(v), q2(v)) be a trajectory lying on U2 but not on C/1# Since
μ+>μ->0, qί(v)>q2(v) for sufficiently small υ>0. If q2(v)>0 for any ve
(0, 7/2), there is the smallest ϋ(O<t;<s1) such that qι(y) = q2(ϋ). Putting q* =



46 Masayasu MIMURA and Kazutaka OHARA

q1—q2, V* — V\~V2 a n d then setting 1^=0, v2 = v in (19), we have

0 = -1 (/- 2ϋ)p*(ϋ) +

from which, it does not hold that p*(v) > 0 for all v e (0, v). Then, noting p*(u) > 0
for sufficiently small v, we find that there is the smallest v*(0<v*<v) for which
p*(v*) = 0. Again setting vt=09 v2 = v* in (19), we have

and then qι(Ό*)>q2(υ*)9 that is, pΊ(υ*)>p2(v*). This is a contradiction. •

From this lemma, we found that for I2>4dk, a necessary and sufficient
condition for the existence of solutions of (11), (12) is that a trajectory (p(v), q(v))
lying on the unstable manifold U1 satisfies q(v)>0 for any ve(0,1/2).

LEMMA 13. Fix d>0, k>0. Let (p(v), q(v)) (resp.(p(v), q(v))) be a tra-
jectory leaving U1 for I (resp. I) with I>I>2yfdk. If q(v)>0foranyve (0,1/2),
then q(v)>0for any ve(0, 7/2) and q(II2)>q(I/2).

PROOF. First show that p(v) > p(v) holds for any v e (0, 7/2]. We see p(v) >
p(v) for sufficiently small v. Suppose that v0 (0<v0^ 7/2) be the smallest for which
p(vo) = p(vo). Then, when we put υ1=0, v2 = v0 in (18)

Φo) = -J {(I-2vo)p(vo) -kvo + k ^° p(v)dv}

-j {(ϊ-2vo)p(vo) - kvo + k \V0p(v)dv} = q(v0),

which leads to p'(vo)>p'(vo). This is a contradiction. So p(v)>p(v) for 0<
v^ϊ/2. Using this property we can show q(v)>q(υ) for 0<v^I/2, because

q(v) = i {(I-2v)p(v) -kv + k^ p(v)dv}

> -J-{(I-2v)p(v) -kv + k^p(v)dυ}

= q(v).

Finally we show q(I/2)>q(II2). Suppose that this is not true, that is there is
Ό*e(ϊ/2, 7/2] such that q(v*) = q(I/2). Let v* be the smallest one for which
q(v*) = 5(7/2). Then (18) leads to
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0 = q(v*) - q(II2)

-2ι>*)/>(»*) - kυ* + fc

υ*) + k(I/2-v*) + k^\p(υ) - p(v))dυ

If p(v)>l holds for I/l^υSv*, then the right hand side is positive. This is a

contradiction. Thus it suffices to show p(v)>l. If (p, q) is a symmetric solution

with parameters (/, d, k), then p(I/2)>1 by Lemma 1. If it is not a symmetric

solution, Lemma 11 yields a symmetric solution (pl9 qx) ( ^ ( p , <?)) with para-

meters (/, d, k). Then it is easy to see that p(v)>pί(v) for 0<u^//2 . Since

p 1(//2)>l, it follows that p(I/2)>1. Since p(ι ) is monotone increasing for

I/2^v^v*, p(v)>p(I/2) for I/2<v^υ*. Thus, by noting p(I/2)>p(I/2)>1,

p(υ)> 1 holds for I/2£V£Ό*. •

We remark that Lemma 13 also holds for I = 2^[dk if (p, ξ) is taken to be a

symmetric solution of (11) with parameters (/, d, k).

Thus Lemmas 12 and 13 immediately lead to Proposition 1. •

We define Id(k) by Id(k) = inf Ek (in Proposition 1). Then, we find that for

each fixed d, k there is a solution of (11), (12) for I>Id(k) and there is no solution

for

LEMMA 14. The problem (11), (12) has a solution for 1 = 1d(k).

PROOF. Take a decreasing sequence {/„} such that In I I0=Id(k), In<I0 + l.

Let un be a solution of (11), (12) for J = / π (>2λ/5/c) with max un = un(0). It fol-

lows from Lemmas 4 and 7 that uw, u'n are uniformly bounded. Therefore, from

(6) u"n is also uniformly bounded. Furthermore, we find that u"ή is also uniformly

bounded. This information shows that {«„}, {u'n}, {w }̂ are equicontinuous.

Thus, we find that there exist suitable subsequences {uj, {u'n}9 {u'ή} and a function

u such that un-*u, u'n-+uf, u"n-+u" uniformly on compact subsets of R. Using

the property un(x) = un( — x), we find

(* un(y)dy ~ [+a°un(y)dy = 2 [* un(y)dy.
J-oo Jx Jo

Then un satisfies

du: + (2 ^ouΛ(y)dyy
f

H + 2u\ + kun(l-un) = 0,

and then as n->oo,
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du" + (2 [Xu(y)dy)u' + 2M2 + ku(l-u) = 0.

On the other hand, noting

u(y)dy

= \ lim^oo un(y)dy ^ lim inf,,^ \ un(y)dy ^ lim,,^ /„ = Io ,
J—00 J— 00

— 00

we find that MeL1(/?), «(x) = w( —x) and M(0)^1. Thus u(x) becomes a sym-

metric solution. Finally putting / = \ u(y)dy, we have I^I0 = Id(k), so that
J-00

by the definition of Id(k), I=I0. •

Finally we show a non-existence result.

PROPOSITION 2. Lei /, d, k be fixed such that 0<fc<2 and P^Adk. If
I*£2d2

9 then there exist no solutions of (11) and (12).

PROOF. By Lemma 7, a symmetric solution must satisfy q^(I/d) p, p^
(I/d) v9 as long as 0<v^I/2. (Lemma 7 also holds when I2 = 4dk). This
means that u'(x)^/3/2cί2 if u'(x)>0. From Lemma 1, there exists xoe R such
that M(XO) = 1 and M'(XO)>0. Then we have

u(x) ^ max{0, l - (

for x<x 0 . One can easily see that

that is, I4>2d2, which completes the proof. •

Thus, we arrive at Theorem B.

4. Discussion

The paper is mainly devoted to the proof of the existence of stationary wave
solutions when the kernel K takes the specific form. Unfortunately we are unable
to discuss stability of the solutions. It is the main difficiculty that many infinite

r oo

number of solutions u(x) exist for \ u(x)dx>Id(k). Here, we give less rigorous
J-00

and heuristic argument on stability by using singular perturbation techniques.
Let us consider the following initial value problem of (6) with d = ε, k = 1 + 1/e:
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(21) ί 1 (lxK/o/2),
u(x, 0) = «0(x) =

I 0 (|*|>/0/2)
(•oo r x

where I(f) = \ u(y, t)dy, v(x, t)=\ u(y, i)dy. Let us consider in which di-
J — 0 0 J — 00

rection the fronts will move when ε(>0) is sufficiently small. We observe the

movement of the front at x = /0/2 only. Introducing the stretched variables τ =

t/ε, £ = (x-J0/2)/e in (21), we obtain

(22) uτ = uξξ + [(2i;-J(eτ))iι]c + (1 + ε)W(l - u ) .

When ε formally tends to zero, (22) may be approximately reduced to

(23) uτ = uξξ + Iouξ + u(l-u) ξeR.

The initial condition is

f 1 (ί<0),
(24) u(ξ, 0) =

I 0 «>0).
It is well known that there exists a traveling wave solution U(ξ + (I0 — 2)τ)

and a function θ(τ) with 0(τ) = O(logτ) such that the solution u(τ, ξ) of (23), (24)

satisfies

u(ξ, τ) - l/(ξ + (/ 0-2)τ + θ(τ)) > 0 uniformly in ξ, as τ > oo.

This result implies that the front at x=/ 0/2 moves to the left if / 0 > 2 , and if

Io < 2 it moves to the right. On the other hand, Theorem B states that stationary

solutions of (21) with the boundary conditions u(— αo) = u(+ oo) = 0 exist for each

J = J(oo)^2, when ε tends to 0. Thus, we conjecture that a realizable stationary

solution is the one with 1 = 2 (the minimum total population number), if initial

functions are of compact support. This is numerically confirmed, though the

above argument is admittedly far from being rigorous.
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