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Let P be a preordering of a field F of finite index and K = F{s[a) be a radical
extension of F(i.e. a is an element of Kaplansky's radical of F). We denote by n
the number of the connected components of X(F/P). In [4], we showed that
n = άimHF(P)/P ([4], Theorem 2.5) and the number of connected components of
X(K/P') is 2n, where P' = ΣPK2 ([4], Theorem 3.10).

The main purpose of this paper is to study a relation between X(F) and*
X(K), where F is a quasi-pythagorean field whose Kaplansky's radical R(F) is of
finite index and K = F(yJa) is a quadratic extension of F. In §2, we show that if
aeHF, then X(K) is equivalent to HF(a)®HF(a) (Theorem 2.9). In §3, we
assume that X(F) is connected and show that the following results. If a e BR(F)9

then X(K) is equivalent to X(F), where BR{F) is the set of i£(F)-basic elements of
F (Theorem 3.3). If aeBR(F)\±R(F) and DF<1, 0>DF<1, -a} = BR(F), then
X(F) is equivalent to a group extension of HXl(a)®HXl(a), where the space
HXι(a) is defined in §3 (Theorem 3.5).

§ 1. Valuations on quasi-pythagorean fields

In this section, we state some results on valuations on quasi-pythagorean
fields. By a field F, we shall always mean a field of characteristic different from
two. We denote by F the multiplicative group of F. Let v be a valuation on F.
The value group Γ will always be written multiplicatively. The objects: the
valuation ring of v, the maximal ideal of v, the group of units and the residue class
field of v will be denoted by A, M, U and F respectively. For a subset B £ A,
we put B = {x + MeF\xeB}.

We write v' for the composition F-JL+Γ-+Γ/Γ2. For simplicity, we also
write υ' for the induced homomorphism FjF2-^ΓjF2. There is a natural short
exact sequence

1 > UF2/F2 >F/F2 - C Γ/Γ2 > 1.

Since the three groups involved are all elementary 2-groups, this is a split exact
sequence. We shall choose and fix a splitting λ: F/F2-+UF2IF2. Composing λ
with the natural maps l/F2/F2^l//t7 n F2->(F)7(F)*2, we get asurjective homo-
morphism λ': F/JF 2 ->(F)7(F)* 2 . By abuse of notation, the composition of this
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map with F^FjF2 will again be denoted by λ'. Throughout this section, we

assume that char FΦ2. We consider the group ring of the group Γ/Γ2 over

the Witt ring W(F), denoted by W(F)[Γ/Γ2] a typical element of this ring will

be written in the form Σφ^g^ where ψiE W(F), and gteΓjΓ2.

PROPOSITION 1.1 ([6], Proposition 2.4). Let a be an element of F. The

rule at-+(λ'(a)y[υ'(a)'] e W{F)[ΓIΓ2~\ induces a well-defined, surjective ring homo-

morphism f of W(F) to FF(F)|T/Γ2]. Kerf is an ideal of W(F) generated by the

seί {<1, -r>|rel+M}.

PROPOSITION 1.2. Let au...,an be elements of UF2. Then we have B —

DF(λr(ai\..., λ'(an)}, where B = DF(al9...9 an> n U.

PROOF. We first show that SsDF<A/(a1),...,A/(aII)>. We may assume

that al9...,aneU. Let x = a1z\-\ Vanz
2 be an element of B. If zteA for

any i, then x = aίzl-\ {-cίnZleDp^λXa^..., λ'(an)y. Next we consider the

case when z^A for some i. Say v(z1) = mm{v(zi)} in Γ. Then zi/z1eA for
all i, and z\2x = a1 + a1{z1\z^)2Λ Yan(zn\z^)2. From this, we have 0 =

aί + a2y
2

ι-\ \-anyl (yi — zilzi^^)^ and so the form <δ 1 , . . . , «„> is isotropic.

It implies xeDF(aί9..., απ> = (F) . Hence in any case we have 5c/) i?</l'(α1),...,

^ (αn)) The reverse inclusion is clear. Q. E. D.

A field F is called quasi-pythagorean if R(F) = DF(2), where R(F) is

Kaplansky's radical of F. It was proved in [2], Corollary 2.9, that a field F is

quasi-pythagorean if and only if I2F is torsion free. A field F being quasi-

pythagorean is also equivalent to the condition that <1, α><l, — ry = 0eW(F)

for any aeF and reDF{2). Let υ be a valuation on a quasi-pythagorean field F.

Then for any a et and re DF(2)9 / « 1 , α><l, - r » = Oe W (F)[Γ/Γ2], namely

PROPOSITION 1.3. Let F be a quasi-pythagorean field and v be a valuation

on F. Then F is quasi-pythagorean. Moreover if TΦT2, then F is pythag-

orean.

PROOF. For any element xeU9 we have D f ( 2 ) g D f ( l , x ) , so

DF<1, x> by Proposition 1.2. This implies R(F) = DF(2); hence F is quasi-

pythagorean. If TΦT2, then there exists aeF\UF2. For this a and for any

element reDF(2)f\U, (*) holds. Since v'(a)Φl and ι/(r)=l, (*) implies

<1, - λ'(r)> = 0 e JF(F). So λ'(r) = re (F)*2, and we have DF(2) = (DF(2) n U)~ =

(F) 2 . Hence F is pythagorean. Q. E. D.

We call K=F(yfa) a non-radical (quadratic) extension if a&R(F). For a

valuation i; on F, we consider the condition 1 + M^R(F). This is equivalent to
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the condition that, for any non-radical extension K = F(yfa), there is a unique

extension of v to a valuation v' on K.

LEMMA 1.4. Let v be a valuation on F. If 1+M^R(F), then the restriction

/ |/2 F of the ring homomorphism f: W(F)^> W(F)[ΓjΓ2] to I2F is injective.

PROOF. Let J be the ideal of W{F) generated by the set {<1, - r}\r e R(F)}.

Since the form <1, — r>, reR(F) is universal, it can easily be shown that J is

precisely the set {<1, - r > | r e £ ( F ) } . So J 2 F n J = {0} by [1], Hauptsatz. On

the other hand, Proposition 1.1 implies K e r / ^ J , hence K e r / n / 2 F = {0}.

Q.E.D.

Let v be a valuation on F. If 1 + M c R(F) and (*) holds for any a e F and

reDF(2), then we have <1, α><l, - r > = 0 by Lemma 1.4, and so F is quasi-

pythagorean.

PROPOSITION 1.5. Let v be a valuation on F with 1 + M^R(F). Then the

following statements hold.

(1) If Γ = Γ2 and F is quasi-pythagorean, then F is quasi-pythagorean.

(2) If\Γ/Γ2\=2 and F is pythagorean, then F is quasi-pythagorean.

(3) //|/YΓ2I=4 and F is formally real pythagorean, then F is quasi-

Pythagorean.

PROOF. TO show (1), we note F=UF2 since Γ = Γ2. By Proposition 1.2,

λ'(r) e DF(2) = R(F) for any r e DF(2). Hence <1, λ'O)><l, - A;(r)> = 0 e W(F)

and (*) holds for any a e F and r e DF(2). Next we prove (2) and (3). First

we show that if |Γ/Γ 2 | ^2 and F is formally real pythagorean, then F is quasi-

pythagorean. Since F is formally real, DF(oo)^UF2 by [7], Lemma 3.7. So

λ'(r)eDF(2) = (F) 2 and ι/(r)=l for any reDF(2). This implies (*) and F is

quasi-pythagorean. Now, to complete the proof, we have to show that if |Γ/Γ2 | =

2 and F is non-real pythagorean, then F is quasi-pythagorean. In this case we

have IF = {0} and this shows (*) since \FjΓ2\ = 2. Q. E. D.

LEMMA 1.6. Let F be a non-real quasi-pythagorean field. Then there is
no valuation on F such that

PROOF. Suppose on the contrary that there is a valuation on F with |Γ/Γ2 | ^

4. Let a, r be elements of F such that t/ (α)#l , v'(r)Φl and v'(ar)Φl. Then

(*) is not valid. Since F is non-real quasi-pythagorean, l + Mgi?(F) = F, and

so <1, α><l, - r> Φ0 e JF(F). This contradicts the fact r e #(F). Q. E. D.

Combining Proposition 1.3, Proposition 1.5 and Lemma 1.6, we have the

following theorem.

THEOREM 1.7. Let v be a valuation on F with 1 + M^R(F). Then F is
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quasi-pythagorean if and only if one of the following statements holds.

(1) Γ = Γ2 and F is quasi-pythagorean.

(2) \Γ/Γ2\ =2 and F is pythagorean.

(3) \Γ/Γ2\^4 and F is formally real pythagorean.

PROOF. By Proposition 1.3 and Proposition 1.5, it suffices to show that

if F is quasi-pythagorean and |Γ/Γ 2 |^4, then F is formally real. Lemma 1.6

implies F is formally real, and υ is compatible with the weak preordering R(F) =

DF(oo). Hence F is formally real, by [7], Proposition 3.8. Q. E. D.

EXAMPLE 1.8. Let k be a non-real pythagorean field and &((*)) be the power

series field in one variable x over k. Then fe((x)) is quasi-pythagorean by Theorem

1.7, (2) but is not pythagorean because x is not a square. The field k((x))((y)) is

not quasi-pythagorean by Lemma 1.6.

§ 2. Spaces of orderings

In this section, we shall study an equivalence of finite spaces of orderings.

Let (Xl9 Gx) and (X2, G2) be finite spaces of orderings in the terminology of

[8] or [9]. A morphism φ of (Xί9 G t) to (X2, G2) is a group homomorphism

Ψ' x(Gi)->x(G2) which carries Xt into X2. A morphism φ is called an equi-

valence if φ: χ(Gi) = χ(G2) and φ(Xί) = X2. Two spaces (Xl9 G J and (X2, G2)

are called equivalent (denoted (Xl9 Gί)~(X2, G2)) if there exists such an equi-

valence. Let Xί = {σί,...,σn} and Vγ be an n-dimensional vector space over

Z 2 = Z/2Z. Let {eί9..., en) be a basis of Vx and let Wt be a subspace of Vt

generated by the set {eiι + ei2 + eh-\-ei4\σiίσi2σhσu = l}. Since Xt is finite, the

group homomorphism fXί: Vί-*χ(G1), defined by fXl{e^ = σΛ, i = l,...,n, is sur-

jective.

PROPOSITION 2.1. In the above situation, we have KeτfXi = W1.

PROOF. It is clear that KcτfXί ^ Wt. For the reverse inclusion, it is sufficient

to show that if σ ί l σim = l, then eh-\ \-eimeWί. The proof proceeds by

induction on m. We may assume m^6 and σh,..., σim_ί are linearly independent.

Consider the subspace Yof Xλ generated by σfl,..., σirn_x. By [8], Basic Lemma

3.1, it must consist of more than σh,..., σim. Thus there exists an ordering

Gj which is the product of at least 3 and at most m —3 of σfl,..., σ i m_Γ We

may assume σ,- = σfl σ i s (3 <; s ̂  m - 3). Then σ,σ i s+x σim = 1, and by inductive

assumption, ej + eh-\ \-eis and £/ + £;s+1H \-eim are elements of Wί. Thus

we have eh + ••• + eime Wγ. Q. E. D.

We denote by fXί the isomorphism VίIWί-+χ(Gί) which is induced by/ X l .
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PROPOSITION 2.2. Let (Xί9 Gx) and {X2, G2) be finite spaces of orderings.

Then the following statements are equivalent:

(1) (XUG1)^(X29G2).

(2) There exists a bijection f: Xί-^X2 which satisfies the condition that

σ 1 σ 2 σ 3 σ 4 =l if and only iff(σ1)f(σ2)f(σ3)f(σ4) = l.

PROOF. The assertion (1)=>(2) is clear. For (2)=>(1), let n = \X1\ = \X2\,

and Vt (resp. V2) be an n-dimensional vector space with a basis {el9..., en} (resp.

{e\,..., e'n}). Let Wt (resp. W2) be a subspace of Vt (resp. V2) generated by the

set {eh + ei2 + eh + eiΛ\σhσi2σi2σiA = 1} (resp. {e'tί + e\2+ e'h + eU/( σ i i )/(O/( σ i 3 )

/(σ i 4 )=l}). Then the isomorphism ft: VX-^V2, defined by h(e^ = e'i9 induces an

isomorphism E: V1IW1-+V2/W2 by the assumption (2). By Proposition 2.1,

two morphisms fXt: VJWi-^χiG^ i = ί9 2, are isomorphisms and so there exists

an isomorphism φ: χ(Gί)^>χ(G2) such that φfx^fxji. It is clear that φ(Xι)

= X2, so the assertion (2)=>(1) is proved. Q. E. D.

Let P be a preordering of F. We denote by X(F) the space of all orderings

of F and by X(F/P) the subspace of all orderings σ with P(σ) 2 P, where P(σ) is

the positive cone of σ. For a subset Y of X(F), we denote by Y1 the preordering

ΠP(σ), σe Y. For a form/=<α 1,..., απ> over F, if there exist pl9...9 pneP\J {0}

such that α1p1H \-cιnρn = b and (pi,. > P«)#(0,..., 0), then we say that the

form / represents b over P. We put DF(//P) = {fceF|/ represents b over P}.

The topological structure of X(F) is determined by Harrison sets HF(a) = {σe X(F)\

a e P(σ)} as its subbasis, where a ranges over fi9 An arbitrary open set in X(F)

is thus a union of sets of the form HF(aί9..., ar) = HF(a1) Π ••• Π HF(ar). We write

= HF(α 1,...,απ)nX(F/P), where a^F. We put H F = {xeF |

- X > ) = F } and HF(P) = {xeF|DF(«x»/P)DF(«-x»/P) = F}.

Let K = F(y/a) be a radical extension of F. We denote by ε and N the

inclusion map F-+K and the norm map K-+F respectively. If P is of finite index,

then there is a short exact sequence

1 — > F/HAP) - i - £//£(/>') - £ * F/HF(P) —^ 1

where P' = ΣPK2 and έ, JV are induced maps of ε and N respectively ([4],

Theorem 3.10). We generalize this as the following theorem.

THEOREM 2.3. Let P be a preordering of F of finite index, and K=F{yjΊi)

be a quadratic extension of F with aeHF and α<£ — P. Then the sequence

1 > F/HF(T) - I * K/HK(P') JL+ F/HF(T) > 1

is exact, where T=D F «1, α>/P) and P' = ΣPK2.
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For the proof of Theorem 2.3, we need some lemmas. First we note that

? ' n f = i) f(«α))/P) and P' = (X'Y where X' = {τe X(K)\the restriction of τ to F

belongs to HF(a/P)} ([4], Lemma 3.1). The proofs of the following Lemma 2.4

and Corollary 2.5 are similar to those of [4], Lemma 3.4 and Corollary 3.5,

and will be omitted.

LEMMA 2.4. In the situation of Theorem 2.3, let σ and τ be arbitrary

orderings ofHF(a/P) and σh τt (i = 1, 2) be the extensions to K ofσ, τ respectively.

Then {σu σ2, τί9 τ2} is not a fan of index 8.

For an ordering τ of K, we denote by τ the ordering of K with the positive

cone P(τ)~, where the bar means the conjugation of K over F. For a subset

ΰ ς Γ , we also write B = {τ\τeB}.

COROLLARY 2.5. In the situation of Theorem 2.3, let Y be a connected

component of X'= X(K/P'). Then Yf]Ϋ = φ.

In [9], Marshall introduced the notion of direct sum of spaces of orderings

([9], Definition 2.6). Let {Xi9GjA^) i = l,..., fc be subspaces of (X, G), and

suppose X= U Xi9 and that the product i7[ZJ = χ(G) is a direct product. Then

(X9 G) is called the direct sum of the subspaces (Xi9 G/A^, i = l,..., k and written

as X = X1@

LEMMA 2.6. In the situation of Theorem 2.3, let Z be a fan of index 8 in

HF(a/P). Then Y={τeX(F)\τ\FeZ}9 the extension of Z to K, is a direct sum

of two fans Yl9 Y2 of index 8 such that Yi\F = Z, i = l, 2.

PROOF. We put P0 = Z1 and P'o= Y1. By [4], Corollary 3.3, the sequence

J^ F/Po

is exact. From the facts Z s HF{ajP) and a e HF, it follows that D F « α > / P 0 ) = Po

and ImN=P0DF(l9 — α>/P0 = F/P 0 . So the exactness of the sequence implies

that dim£/Pό = 6. Let Y=Yt<B ~(BYn be the decomposition of Y to the con-

nected components. Since | Y\ = 8, the following two cases can occur.

Case 1. n = 2 and Yi9 i = l, 2 are fans of index 8.

Case 2. n = 3 and \Yx\ = \Y2\ = l9 | 7 3 | = 6.

In the case 2, y3 must contain a fan of index 8 that is an extension of two orderings

of F. This contradicts Lemma 2.4. Thusn = 2and Yi9 i = l, 2 are fans of index 8.

By Lemma 2.4, we have Yt\F = Z9 ί = 1,2. Q. E. D.

PROPOSITION 2.7. In the situation of Theorem 2.3, we fcαi e HF(T) = HK(P')

Of.
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PROOF. First we show the inclusion HF(T)^HK(P')Γ\F. Let x be an

element of F such that x(£Hκ(Pf). We must show x^HF(T). We note that

P' is of finite index by [4], Corollary 3.3. Since x&Hκ(Pf), there exists a fan of

index 8, {τls τ2, τ 3, τ4}, in X{KjP') such that τl9 τ2eHκ{-xjP') and τ3, τ 4 e

Hκ(xlP') by [4], Proposition 2.4. Let σh i = l,..., 4 be the restrictions of τ, to

F. Then it is clear that σ1σ2σ3σ4 = l and orderings σ1,...,σ4 are distinct by

Lemma 2.4. Thus {σl5 σ2, σ3, σ4} is a fan of index 8, where σl9 σ2 e HF{ — xjT)

and σ3, σ4eHF(x/T). This implies x£i ί F (Γ) by [4], Proposition 2.4.

Next we show the reverse inclusion HF(T) Ώ. HK(P') n F. Let x be an element

of F with x(£HF(T). We must show xt£Hκ(Pf). Since x ί H f ( T ) , there exists

a fan of index 8, Z = {σ1? σ2, σ3, σ4}, in X{FjT) such that σ l 5 σ2eHF{-xjT)

and σ3, σAeHF{xjT). By Lemma 2.6, the extension of Z to X is a direct sum

of two fans Zί9 Z2 of index 8 such that Z f | F =Z, ι = l, 2. From the facts Zf Π

Hκ{xlP')Φφ and Zf n Hκ(-xlP')Φφ (ί = l, 2), it follows that x $ # K ( P ' ) by [4],

Proposition 2.4. Q. E. D.

The proof of the following proposition is similar to that of [4], Proposition

3.9, and will be omitted.

PROPOSITION 2.8. In the situation of Theorem 2.3, N{HK{P'))^HF{T).

Now we shall prove the exactness of the sequence

1 — F/HF(T) -^ KIHK(F) Λ+ PIHP(T) — • 1

in Theorem 2.3. By Proposition 2.7, έ is injective and by Proposition 2.8, N

is well-defined. ΪV is surjective since aeHF and it is clear that Im έ ̂  Ker N.

It remains to prove that Imέ^KerϊV. For this, we have only to show that

dimX/iίκ(F)^2dimF///F(Γ). By [4], Corollary 3.3, the sequence

1 > FjT > KfP' • FIT > 1

is exact, and so dim KIP' = 2 dim FjT. Thus it suffices to show that dim HK(P')I

P' ^ 2 dim HF(T)/T. The number n of connected components of X(F/T) equals

dimH(T)/T by [4], Theorem 2.5. Let Xl9...9 Xn be the connected components

of X(FIT). By [4], Proposition 2.4, there exist a fG/fF(T), z = l,..., n such that

X^Hpiai/T). Let Yi9 i = l,...,n be the extensions of Xt to K. Then Yt =

Hκ(dilPf) and each Yt is a full subspace of X(K/Pf) since ctieHAP'). It is clear

that the sets Yi9 i = l9...,n are pairwise disjoint. By Corollary 2.5, Yt is not

connected for any i, and hence the number of connected components of X(K/P')

is at least In. Thus, it follows from [4], Theorem 2.5 that dim HK(P')/P'^

2 dim HF(T)/Tand the proof of Theorem 2.3 is completed.

Let n be the number of the connected components of X(F/T); then that of

X(K/P') equals 2n by Theorem 2.3. Moreover we have the following theorem.
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THEOREM 2.9. In the situation of Theorem 2.3, the space X(K/P') is equi-

valent to X{FjT)®X(FjT).

P R O O F . S i n c e N(yJa)eHF^HF(T), t h e r e e x i s t s a n e l e m e n t g e t s u c h t h a t

g^fae Hκ(Pf) by Theorem 2.3. We put Yx = Hκ{g^jPf) and Y2 = Hκ(- g^lP').

Then Y± and Y2 are full subspaces of X(K/P') and we have X(KIP')=Yi u 7 2

(disjoint). We shall show Y1 ~ Z(F/T). For σ e Yt, we denote by f(σ) e X(F/T)

the restriction of σ to F. It is clear that the mapping/: Yx^X{FjT) is bijective,

and that if σ 1 σ 2 σ 3 σ 4 = l (σ fe Y^, then/(σ 1 )/(σ 2 )/(σ 3 )/(σ 4 )=l . Conversely let

Z = {/OO, /(<x2), /(σ 3), /(σ4)} be a fan of index 8 in X(F/T). Then the extension

o f Z t o X is a direct sum of two fans Zί9 Z2 of index 8 and Z f | F = Z, ι = l ,2 by

Lemma 2.6. We may assume that Zi^Yi,i = l,2 since Yi9i = 1,2 are full subspaces

of X(K/P'). Hence {σl9 σ2, σ3, σ4} = Yί9 and so σ 1 σ 2 σ 3 σ 4 = 1. This shows that /

satisfies the condition of Proposition 2.2, (2) and we have Yγ ~X(F/T). Similarly,

Y2~X(FtT). Q.E.D.

EXAMPLE 2.10. We give an example of a quadratic extension K o f a field F

such that K is S.A.P. and F is not S.A.P. Let F be a quasi-pythagorean field

whose Kaplansky's radical R(F) is of finite index. Let Xi9 i = l9...9n be the

connected components of X(F). Suppose | X t | > 1 and |Xil = l for i = 29...9n.

By [4], Proposition 2.4, there exists aeHF such that HF(a)= U Xi9 ι = 2,..., n.

Put K = F(yJ~a). Then by Theorem 2.9, K is S.A.P., but F is not S.A.P. because

§ 3. Quadratic extensions of quasi-pythagorean fields

In [9], Definition 3.6, a space of orderings (Z, G) is called a group extension of

(X'9 G') if G' is a subgroup of G and X = {σeχ(G)|σ|G,e X'}. We call (X9 G)

an n-dimensional group extension of (X'9 G') if dim G/Gf = n. Let P be a pre-

ordering of a field i\ We say xet is P-rigid if £ F « 1 , x>/P) = PΌxP. If

FΦP\J — P we will say x e F is P-basic if either Λ; or — x is not P-rigid. In case

F = P U — P, we consider all elements of F to be P-basic. We denote by BP the

set of P-basic elements of F.

Throughout this section, we assume that F is a formally real quasi-pythag-

orean field and X(F) is a finite connected space. Then we have gr(X(F))Φ{l}

by [8], Theorem 4.7. Also we have BR(F) = n Ker α, ocegτ(X(F)) by [10],

Theorem 6.6. Let Xx be the set of all restrictions σ | B Λ ( F ) , σ e Ι ( F ) . Then(Z 1 ?

BR(F)) i s a space of orderings by [8], Theorem 4.8 and X(F) is an n-dimensional

group extension of (Xl9BR{F))9 where n = άimgr(X(F)). For α e gr (X(F))9 let

Z α be the set of all restrictions σ|Kerα, σeX(F). Then the same arguments hold

for the case (Xa9 Kerα); so (Xa9 Kerα) is a space of orderings and X(F) is a

1-dimensional group extension of (Xa, Ker α).
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LEMMA 3.1. Let a be an element of F\BR(F). Then X(F) is equivalent to

a 1-dimensional group extension of HF{a).

PROOF. By the assumption a&BR(F)9 there exists ocegτ(X(F)) such that

cc(a)= — 1. Let/: HF{a)^Xa be the map defined by/(σ) = σ|Kerα. It is clear that

/ i s bijective and satisfies the condition that if σ1σ2σ3σ4 = l and σιeHF(a), then

/(σ1)/(σ2)/(σ3)/(σ4) = l. Conversely let {Kσί)J(σ2)J(σ3)J(σ4)} be a fan

ofindex8inXα. Then {σh ασi|i = l,..., 4} is a fan of index 16andsoσ1σ2σ3σ4 = l.

By Proposition 2.2, HF(a) is equivalent to Xa. Thus X(F) is equivalent to a

1-dimensional group extension of HF(a). Q. E. D.

LEMMA 3.2. Let K = F(yJa) be a quadratic extension of F where aeF^

BR(F) Then for any fan Yin HF(a), the extension of Y to K is also a fan.

PROOF. We put P=Y± and P' = ΣPK2. Then by [4], Corollary 3.3, the

sequence

1 > F/P -Ϊ-+ K/P' -*-+ FjP

is exact. From the fact α φ β Λ ( f ) , it follows that — a is JR(F)-rigid, and so dim Im

(JV) = dim(I>F<l, -α>P/P) = l. Hence we have n = dimF/P+l, where n =

dim KIP'. Now the fact \X(K/P')\ = 2 | Y\ =2n~1 implies that X(K/P') is a fan.

Q.E.D.

THEOREM 3.3. Let X = F(λ/α) be a quadratic extension of F, where a e ί \

BRiFy Then X(K) is equivalent to X(F).

PROOF. We fix an ordering σeX(K) and put β = σσ, where the bar means

the conjugation of K over F. Then β(^fa)= -1 and β = ττ for any τ e X(K) by

Lemma 3.2. Hence βτ = τ and this shows that β e gr (X(K)). X(K) is equivalent

to a 1-dimensional group extension of (Xβ, Ker β) and Xβ is equivalent to Hκ(yfa).

So it is sufficient to show that Hκ(y/a) is equivalent to HF(a) by Lemma 3.1. Let

/ : Hκ(y/a)^HF(a) be the map defined by/(σ) = σ|F. Then / is a bijection and

satisfies the condition that σ1σ2σ3σ4 = l if and only if /(σ1)/(σ2)/(σ3)/(σ4) = l

by Lemma 3.2. Hence Hκ(j~a) ~HF(a) by Proposition 2.2. Q. E. D.

Now we consider the case K = F(yJa), aeBR(F). If a eR(F), then X(K)~

X(F)®X{F) by Theorem 2.9. In the rest of this section, we assume that

aeBR(F)^±R(F) and Z)F<1, -α>DF<l,α> = £ Λ ( F ) (DF<1, -α>DF<l, a}^BR(F)

always holds by [8], Lemma 4.9). We note that X(F) is not a fan since
βR(F)^ ±R (JO By [5]> Theorem 3.4, there exists a valuation t; on F such that v is

compatible with #(F) and X(F) is not connected. Moreover X(F) is equivalent

to an n-dimensional group extension of X(F), where n = dim ΓjΓ2 = dim gr



30 Tatsuo IWAKAMI and Daiji KIJIMA

(X(F)) (see [5], Proposition 1.1). So (Xu BR(F)) is equivalent to X(F). The

bijective map/: X1->X(F) is defined as follows; for τeXί,f(τ) = σ, where τ is

the restriction of σ to BR{F). We put HXί(a)={σe X1\σ(a) = 1}. Then/(if^ 00)

= H/r(λ'(α)), and so HXί(a) is equivalent to HF(λ'(a)). By Theorem 1.7, F is a

formally real pythagorean field.

LEMMA 3.4. In the above situation, the following statements hold.

(1) UF2 = BR(Fy

(2) Λ'(α)etfF (i.e. DF<

PROOF. The inclusion UF2^BR(F) follows from [7], Proposition 4.10.

For the reverse inclusion UF2 c # Λ ( F ) , it suffices to show that U £ Ker α for any

αegr(X(F)). Since t? is compatible with R(F), we have l+M^R(F)nU^

Kerα n I/, and Kerα Π U/l+M is a subgroup of (F)# of index at most 2. We

consider ά = Kerα Π 1//1 + M as an element of χ((F)7(F)'2) then it is easy to see

that αegr(X(F)), and so we have Kerα ΠX//1+M = (F) since gr(X(F)) = l. It

implies that (7^Kerα and the assertion (1) is proved. Now the assertion (2)

follows from Proposition 1.2. Q. E. D.

THEOREM 3.5. Let F be a formally real quasi-pythagorean field which

has a finite space of orderings X(F). Let K = F(y/a) be a quadratic extension

of F where a is an element of BR(F)\±R(F) such that I>F<1, α>DF<l, - α > =

BR(Fy Then X(K) is equivalent to an n-dimensional group extension ofHXί(a)®

HXi(a) where n = dim gr (X(F)).

PROOF. The valuation υ can be uniquely extended to a valuation v on K,

as we noted before Lemma 1.4. We denote by Γ and K the value group and

the residue field of v respectively. The facts a<£R(F) and (1 + M)U2^R(F)

imply that λ'(a)<£(F)'2, and so K = F(y/λ'(a)) is a quadratic extension of F.

Since [K: F]^[Γ: Γ][K: F], we have Γ = Γ. We put Y={σeX(K)\v is com-

patible with σ}. Then \Y\=2n\X(K)\=2n+1\HF(λ'(a))\. Since ae 0 Kerα, αe

gr(X(F)), we have 2»\HXί(a)\ = \HF(a)\ and so \X(K)\=2\HF(a)\=2»+i\HXί(a)\.

As is noted before Lemma 3.4, HXι(a) is equivalent to HF(λ'(a)). Thus |X(X)| =

2n+ί\HF(λ'(a))\. This shows that | Y\ = \X(K)\, hence v is compatible with Dκ(oo),

the weak preordering of K. By Lemma 3.4, λ'(a) e HF, so X(K) is equivalent

to HF(λ'{a))®HF(λ'(a)) by Theorem 2.9. Now the assertion follows from

HXί(a)~HF(λ'(a)). Q.E.D.
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