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Let P be a preordering of a field F of finite index and K=F (\/7) be a radical
extension of F(i.e. a is an element of Kaplansky’s radical of F). We denote by n
the number of the connected components of X(F/P). In [4], we showed that
n=dim Hx(P)/P ([4], Theorem 2.5) and the number of connected components of
X(K/P’) is 2n, where P’ =XPK?2 ([4], Theorem 3.10).

The main purpose of this paper is to study a relation between X(F) and
X(K), where F is a quasi-pythagorean field whose Kaplansky’s radical R(F) is of
finite index and K = F| (\/E) is a quadratic extension of F. In §2, we show that if
ae€ Hg, then X(K) is equivalent to Hp(a)®Hg(a) (Theorem 2.9). In §3, we
assume that X(F) is connected and show that the following results. If a € By,
then X(K) is equivalent to X(F), where Bgr, is the set of R(F)-basic elements of
F (Theorem 3.3). If aeBgy)\+R(F) and Dp(l, a)Dg{l, —a)=Bg), then
X(F) is equivalent to a group extension of Hy (a)®Hy (a), where the space
Hy (a) is defined in §3 (Theorem 3.5).

§1. Valuations on quasi-pythagorean fields

In this section, we state some results on valuations on quasi-pythagorean
fields. By a field F, we shall always mean a field of characteristic different from
two. We denote by F the multiplicative group of F. Let v be a valuation on F.
The value group I' will always be written multiplicatively. The objects: the
valuation ring of v, the maximal ideal of v, the group of units and the residue class
field of v will be denoted by 4, M, U and F respectively. For a subset BcA,
we put B={x+M e F|x € B}.

We write v for the composition F-2,I',I'/I'?. For simplicity, we also
write v’ for the induced homomorphism F/F2—I'/I'2. There is a natural short
exact sequence

1 — UF?/F? —, F/F2 2, I, 1,

Since the three groups involved are all elementary 2-groups, this is a split exact
sequence. We shall choose and fix a splitting A: F/F2—UF?/F2. Composing A
with the natural maps UF2/F2=U/U n F2—(F)'/(F)2, we get a surjective homo-
morphism A': F/F2—(F)'/(F)2. By abuse of notation, the composition of this
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map with F—F/F? will again be denoted by A’. Throughout this section, we
assume that char F#2. We consider the group ring of the group I'/T'? over
the Witt ring W(F), denoted by W(F)[I'/T'?]; a typical element of this ring will
be written in the form X¢,[g;], where ¢, W(F), and g, I'/T"2.

PROPOSITION 1.1 ([6], Proposition 2.4). Let a be an element of F. The
rule a— {1 (a))[v'(a)] e W(F)[I'/T'?] induces a well-defined, surjective ring homo-
morphism f of W(F) to W(F)[I'|/T'?]. Ker fis an ideal of W(F) generated by the
set {1, —r)lrel+M}.

ProposSITION 1.2. Let ay,..., a, be elements of UF2. Then we have B=
DplA'(ay),..., A'(a,)), where B=Dgay,..., a,y N U.

Proor. We first show that B<=Dg{i'(a,),..., A'(a,)). We may assume
that a,,...,a,eU. Let x=a,z?+---+a,z2 be an element of B. If z;e A for
any i, then X=a,z?+-.-+a,z2e Dg<A/(ay),..., A'(a,)>. Next we consider the
case when z;& A for some i. Say u(z,)=min {v(z;)} in I'. Then z;/z, € A for
all i, and zy2x=a;+a,(z,/z,)®+---+a,(2,/2z,)>. From this, we have 0=
a,+a,y2+-++a,y2 (y;=zjz, € A), and so the form {a,,..., a,» is isotropic.
It implies X € D{a;,..., a,y=(F). Hencein any case we have B<Dp{A'(ay),...,
A'(a,)). The reverse inclusion is clear. Q.E.D.

A field F is called quasi-pythagorean if R(F)=Dg(2), where R(F) is
Kaplansky’s radical of F. It was proved in [2], Corollary 2.9, that a field F is
quasi-pythagorean if and only if I?F is torsion free. A field F being quasi-
pythagorean is also equivalent to the condition that {1, a){1, —r>=0e€ W(F)
for any ae F and re D¢(2). Let v be a valuation on a quasi-pythagorean field F.
Then for any a € F and r € Dx(2), f({1, a){1, —r))=0€ W(F)[I'/T'?], namely

O] + (@) [v'(@)] — KA(1)> [v'(N] — (A'(ar)) [v'(ar)] = 0:-(+).

PROPOSITION 1.3.  Let F be a quasi-pythagorean field and v be a valuation
on F. Then F is quasi-pythagorean. Moreover if I'#I2, then F is pythag-
orean.

Proor. For any element xe U, we have Dg(2)<Di(l, x>, so Dp(2) <
Dp{1, ¥) by Proposition 1.2. This implies R(F)=Dg(2); hence F is quasi-
pythagorean. If I'#I2, then there exists ae F\UF2. For this a and for any
element reDg(2)nU, () holds. Since v'(a)#1 and v'(r)=1, (x) implies
1, =X(r))=0e W(F). SoA'(r)=re(F)?, and we have Dp(2)=(Ds(2) nU) =
(F)2. Hence F is pythagorean. Q.E.D.

We call K =F(\/E) a non-radical (quadratic) extension if a¢ R(F). For a
valuation v on F, we consider the condition 1+ M < R(F). This is equivalent to
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the condition that, for any non-radical extension K =F(,/a), there is a unique
extension of v to a valuation »' on K.

LemMA 1.4. Let v be a valuation on F. If 1+ M < R(F), then the restriction
fli2r of the ring homomorphism f: W(F)—W(F)[I'/I'?] to I?F is injective.

Proor. Let J be the ideal of W(F) generated by the set {{1, —r)|r e R(F)}.
Since the form {1, —r), re R(F) is universal, it can easily be shown that J is
precisely the set {{1, —r)|re R(F)}. So I*F nJ={0} by [1], Hauptsatz. On
the other hand, Proposition 1.1 implies Ker f<J, hence Ker f n I?F ={0}.

Q.E.D.

Let v be a valuation on F. If 14+ M <= R(F) and () holds for any ae F and
r € Dg(2), then we have (1, a){l, —r)=0 by Lemma 1.4, and so F is quasi-
pythagorean.

PROPOSITION 1.5. Let v be a valuation on F with 1+ M= R(F). Then the
following statements hold.

(1) If'=r? and F is quasi-pythagorean, then F is quasi-pythagorean.

(2) If|I|r? =2 and F is pythagorean, then F is quasi-pythagorean.

(3) If|l/r? 24 and F is formally real pythagorean, then F is quasi-
pythagorean.

ProOF. To show (1), we note F=UF? since '=I"2. By Proposition 1.2,
A (r)e Dp(2)=R(F) for any reDg2). Hence <1, A'(a)){1, —A'(r))=0e W(F)
and (x) holds for any ae F and re Dg(2). Next we prove (2) and (3). First
we show that if [I'/I'?|22 and F is formally real pythagorean, then F is quasi-
pythagorean. Since F is formally real, Dg(c0)< UF? by [7], Lemma 3.7. So
A(r)e Dp(2)=(F)? and v'(r)=1 for any re Dg(2). This implies (*) and F is
quasi-pythagorean. Now, to complete the proof, we have to show that if |I'/T'?|=
2 and F is non-real pythagorean, then F is quasi-pythagorean. In this case we
have IF ={0} and this shows (*) since |I'/['?|=2. Q.E.D.

LEMMA 1.6. Let F be a non-real quasi-pythagorean field. Then there is
no valuation on F such that |'|['?| =4.

PrOOF. Suppose on the contrary that there is a valuation on F with |I'/['?| 2>
4. Let a, r be elements of F such that v'(a)#1, v'(r)#1 and v'(ar)#1. Then
(*) is not valid. Since F is non-real quasi-pythagorean, 1+ M = R(F)=F, and
so 1, a){1, —r)#0e W(F). This contradicts the fact r € R(F). Q.E.D.

Combining Proposition 1.3, Proposition 1.5 and Lemma 1.6, we have the
following theorem.

THEOREM 1.7. Let v be a valuation on F with 1+ M<R(F). Then F is
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quasi-pythagorean if and only if one of the following statements holds.
(1) I'=Tr? and F is quasi-pythagorean.
(2) |I/T? =2 and F is pythagorean.
(3) |I'/T? =4 and F is formally real pythagorean.

Proor. By Proposition 1.3 and Proposition 1.5, it suffices to show that
if F is quasi-pythagorean and |I'/T?|=4, then F is formally real. Lemma 1.6
implies F is formally real, and v is compatible with the weak preordering R(F)=
Dg(0). Hence F is formally real by [7], Proposition 3.8. Q.E.D.

ExampLE 1.8. Let k be a non-real pythagorean field and k((x)) be the power
series field in one variable x over k. Then k((x)) is quasi-pythagorean by Theorem
1.7, (2) but is not pythagorean because x is not a square. The field k((x))(y)) is
not quasi-pythagorean by Lemma 1.6.

§2. Spaces of orderings

In this section, we shall study an equivalence of finite spaces of orderings.
Let (X4, G,) and (X,, G,) be finite spaces of orderings in the terminology of
[8] or [9]. A morphism ¢ of (X, G,) to (X,, G,) is a group homomorphism
¢: x(G,)-x(G,) which carries X, into X,. A morphism ¢ is called an equi-
valence if ¢: (G;)=x(G,) and ¢(X,)=X,. Two spaces (X,, G,) and (X5, G,)
are called equivalent (denoted (X, G,)~(X,, G,)) if there exists such an equi-
valence. Let X,;={0y,...,0,} and ¥V, be an n-dimensional vector space over
Z,=2Z2Z. Let {e,,..., e,} be a basis of V; and let W, be a subspace of V,
generated by the set {e; +e;,+e;,+e,l|0,0;,,0,0;,=1}. Since X, is finite, the
group homomorphism fy : V;->x(G,), defined by fy (e)=0;, i=1,..., n, is sur-
jective.

PROPOSITION 2.1. In the above situation, we have Ker fy, =W;.

ProOF. Itis clear that Ker fy, 2 W;. For the reverse inclusion, it is sufficient
to show that if o,---0;, =1, then ¢, +---+e, € W;. The proof proceeds by
inductionon m. We may assume m>6and o;,,..., 6;,,_, are linearly independent.
Consider the subspace Y of X, generated by o;,,...,0;,_,. By [8], Basic Lemma
3.1, it must consist of more than 0:;,---,0;-,,.- Thus there exists an ordering
o; which is the product of at least 3 and at most m—3 of g;,...,0;,_,. We
may assume 0;=0;,---0;, (3<s<m—3). Then g,0,,,0; =1, and by inductive
assumption, e;+e; +---+e;, and e;+e; , +---+e¢; are elements of W;. Thus

we have ¢; +---+¢; e W,. Q.E.D.

We denote by fy, the isomorphism V,/W,—x(G,) which is induced by fx,.
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PRrROPOSITION 2.2. Let (X,, G,) and (X ,, G,) be finite spaces of orderings.

Then the following statements are equivalent:

O &y, GI)N(XZa Gy).

(2) There exists a bijection f: X,—X, which satisfies the condition that
06106,030,=1 if and only if f(0,)f(02)f(03)f(04)=1.

Proor. The assertion (1)=>(2) is clear. For (2)=>(1), let n=|X,|=|X,|,
and V, (resp. V,) be an n-dimensional vector space with a basis {e,,..., e,} (resp.
{€},..., e,}). Let W, (resp. W,) be a subspace of V, (resp. V,) generated by the
set {e;, +e,,+ e, +,00,0,0,01, = 1} (resp. {e}, + e}, + e}, + €L, (6,)(@,)f (51
f(o;)=1}). Then the isomorphism h: V;—V,, defined by h(e;)=e;, induces an
isomorphism h: V,/W,—V,/W, by the assumption (2). By Proposition 2.1,
two morphisms fy,: Vi/W;—x(G), i=1, 2, are isomorphisms and so there exists
an isomorphism ¢: y(G,)—x(G,) such that @fy =fx,h. It is clear that ¢(X,)
=X,, so the assertion (2)=>(1) is proved. Q.E.D.

Let P be a preordering of F. We denote by X(F) the space of all orderings
of F and by X(F/P) the subspace of all orderings ¢ with P(6)2 P, where P(o) is
the positive cone of 6. For a subset Y of X(F), we denote by Y+ the preordering
nP(6), ceY. For a form f=<a,,..., a,y over F, if there exist p,,..., p,€ P U {0}
such that a;p,+---+a,p,=b and (py,..., p,) #(0,..., 0), then we say that the
form f represents b over P. We put Dg(f/P)={be F|f represents b over P}.
The topological structure of X(F) is determined by Harrison sets Hg(a)={o€ X(F)|
a € P(0)} as its subbasis, where a ranges over F, An arbitrary open set in X(F)
is thus a union of sets of the form Hy(a,,..., a,)=Hg(a,) n--- N Hy(a,). We write
Hgay,..., a,/P)=Hgay,..., a,) N X(F/P), where a,eF. We put Hp={xeF|
DH{x)D( —xY)=F} and H(P)={x € FIDHKx)/P)D( —x})/P)=F}.

Let K=F(,/a) be a radical extension of F. We denote by ¢ and N the
inclusion map F— K and the norm map K— F respectively. If P is of finite index,
then there is a short exact sequence

1 — F/Hp(P) -5 K/Hp(P') N FIHu(P) — 1

where P'=XPK? and & N are induced maps of ¢ and N respectively ([4],
Theorem 3.10). We generalize this as the following theorem.

THEOREM 2.3. Let P be a preordering of F of finite index, and K=F(\/E)
be a quadratic extension of F with ae Hi and acc — P. Then the sequence

1 — FIH(T) -5 K/ Hy(P') N BIHA(T) —> 1

is exact, where T=Dg(1, a)/P) and P' =XPK?2.
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For the proof of Theorem 2.3, we need some lemmas. First we note that
P'nF=Dg{a)/P) and P'=(X")t where X'={r e X(K)|the restriction of 7 to F
belongs to Hy(a/P)} ([4], Lemma 3.1). The proofs of the following Lemma 2.4
and Corollary 2.5 are similar to those of [4], Lemma 3.4 and Corollary 3.5,
and will be omitted.

LEMMA 2.4. In the situation of Theorem 2.3, let ¢ and t be arbitrary
orderings of Hg(a/P) and o, t; (i=1, 2) be the extensions to K of o, T respectively.
Then {04, 0,, Ty, T,} is not a fan of index 8.

For an ordering © of K, we denote by 7 the ordering of K with the positive
cone P(tr)~, where the bar means the conjugation of K over F. For a subset
Bc X', we also write B={7|t € B}.

COROLLARY 2.5. In the situation of Theorem 2.3, let Y be a connected
component of X'=X(K/P'). Then YnY=¢.

In [9], Marshall introduced the notion of direct sum of spaces of orderings
([9], Definition 2.6). Let (X;, G/4;,) i=1,...,k be subspaces of (X, G), and
suppose X = U X;, and that the product II[ X;]=x(G) is a direct product. Then
(X, G) is called the direct sum of the subspaces (X;, G/4,), i=1,..., k and written
as X=X,®---®X,.

LEMMA 2.6. In the situation of Theorem 2.3, let Z be a fan of index 8 in
Hg(a/P). Then Y={te X(F)|t|r€Z}, the extension of Z to K, is a direct sum
of two fans Y,, Y, of index 8 such that Y}|p=2Z, i=1, 2.

PrOOF. We put P,=Z* and Py=Y*. By [4], Corollary 3.3, the sequence
1 — F|Dy(Kay/Po) < K| Py X F[ P,

is exact. From the facts Z < Hy(a/P) and a € Hy, it follows that D({a)/Py)=P,
and Im N=P,D{1, —a)/P,=F/P,. So the exactness of the sequence implies
that dim K/P;=6. Let Y=Y, ®---@Y, be the decomposition of Y to the con-
nected components. Since |Y|=38, the following two cases can occur.

Case 1. n=2and Y, i=1, 2 are fans of index 8.

Case 2. n=3and |Y{|=|Y,|=1, | Y;]|=6.
In the case 2, Y; must contain a fan of index 8 that is an extension of two orderings
of F. This contradicts Lemma 2.4. Thusn=2and Y;, i=1, 2 are fans of index 8.
By Lemma 2.4, we have Y;|,=Z, i=1, 2. Q.E.D.

PROPOSITION 2.7. In the situation of Theorem 2.3, we have Hy(T)=Hg(P")
nF.
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Proor. First we show the inclusion HT)SH(P)NnF. Let x be an
element of F such that xee Hg(P'). We must show xéee H(T). We note that
P’ is of finite index by [4], Corollary 3.3. Since xe= Hg(P’), there exists a fan of
index 8, {ty, 7, T3, T4}, in X(K/P') such that 7, 7, € Hx(—x/P’) and 73, 74€
Hg(x/P') by [4], Proposition 2.4. Let o;, i=1,..., 4 be the restrictions of z; to
F. Then it is clear that ¢,0,0;0,=1 and orderings o,,..., 6, are distinct by
Lemma 2.4. Thus {o,, 0,, 63, 6,} is a fan of index 8, where o, 6, € He(—x/T)
and a3, 0,€ Hi(x/T). This implies xec Hi(T) by [4], Proposition 2.4.

Next we show the reverse inclusion H{T)2 Hg(P') n F. Let x be an element
of F with xee H{(T). We must show x& H(P’). Since xe¢s Hi(T), there exists
a fan of index 8, Z={o0, 0,, 03, 04}, in X(F/T) such that o, 6,€ H(—x/T)
and 03, 0,€ Hi(x/T). By Lemma 2.6, the extension of Z to K is a direct sum
of two fans Z,, Z, of index 8 such that Z;|;=Z, i=1,2. From the facts Z; n
Hy(x/P)#¢ and Z;n H(—x[P)#¢ (i=1, 2), it follows that xe= Hx(P’) by [4],
Proposition 2.4. Q.E.D.

The proof of the following proposition is similar to that of [4], Proposition
3.9, and will be omitted.

PROPOSITION 2.8. In the situation of Theorem 2.3, N(H(P"))= Hi(T).
Now we shall prove the exactness of the sequence
1 — F/He(T) - K/ He(P') N\ FIH(T) — 1

in Theorem 2.3. By Proposition 2.7, & is injective and by Proposition 2.8, N
is well-defined. N is surjective since a € Hy and it is clear that Im é=Ker N.
It remains to prove that Imé=Ker N. For this, we have only to show that
dim K/H(P')<2dim F/HK(T). By [4], Corollary 3.3, the sequence

1— F/T— K/P' — F|T—1

is exact, and so dim K/P'=2dim F/T. Thus it suffices to show that dim H(P’)/
P'22dim Hi(T)/T. The number n of connected components of X(F/T) equals
dim H(T)/T by [4], Theorem 2.5. Let X,,..., X, be the connected components
of X(F/T). By [4], Proposition 2.4, there exist a;€ Hi(T), i=1,..., n such that
X;=Hg(a;/T). Let Y, i=1,...,n be the extensions of X; to K. Then Y;=
Hg(a;/P") and each Y, is a full subspace of X(K/P’) since a;e Hg(P’). It is clear
that the sets Y;, i=1,..., n are pairwise disjoint. By Corollary 2.5, Y; is not
connected for any i, and hence the number of connected components of X(K/P')
is at least 2n. Thus, it follows from [4], Theorem 2.5 that dim Hx(P')/P’'=
2dim Hi(T)/T and the proof of Theorem 2.3 is completed.

Let n be the number of the connected components of X(F/T); then that of
X(K/P') equals 2n by Theorem 2.3. Moreover we have the following theorem.
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THEOREM 2.9. In the situation of Theorem 2.3, the space X(K/P') is equi-
valent to X(F|T)®X(F/T).

PrOOF. Since N(\/a)e Hr< Hi(T), there exists an element g e F such that
g/ae Hy(P') by Theorem 2.3. We put Y, =H(g\/a/P’) and Y, =H(—g./a/P’).
Then Yy and Y, are full subspaces of X(K/P") and we have X(K/P)=Y,U Y,
(disjoint). We shall show Y, ~X(F/T). For o€ Y,, we denote by f(o) e X(F/T)
the restriction of o to F. It is clear that the mapping f: Y; > X(F/T) is bijective,
and that if 6,0,0;0,=1 (6,€ Y,), then f(6,)f(6,)f(063)f(0,)=1. Conversely let
Z={f(0,), f(03), f(03), f(6,)} be a fan of index 8 in X(F/T). Then the extension
of Zto K is a direct sum of two fans Z,, Z, of index 8 and Z;|;=Z, i=1,2 by
Lemma 2.6. We may assume that Z;c Y, i=1, 2 since ¥}, i=1, 2 are full subspaces
of X(K/P'). Hence {g,,0,,03,0,}=Y;,andso 0,0,0650,=1. This shows that f
satisfies the condition of Proposition 2.2, (2) and we have Y; ~X(F/T). Similarly,
Y, ~X(F[T). Q.E.D.

ExaMpLE 2.10. We give an example of a quadratic extension K of a field F
such that K is S.A.P. and F is not S.A.P. Let F be a quasi-pythagorean field
whose Kaplansky’s radical R(F) is of finite index. Let X;, i=1,...,n be the
connected components of X(F). Suppose |X,|>1 and |X,;|=1 for i=2,..., n.
By [4], Proposition 2.4, there exists a € Hp such that Hp(a)= U X;, i=2,..., n.
Put K=F(,/a). Then by Theorem 2.9, K is S.A.P., but F is not S.A.P. because
|X,|>1.

§3. Quadratic extensions of quasi-pythagorean fields

In [9], Definition 3.6, a space of orderings (X, G) is called a group extension of
(X', G") if G’ is a subgroup of G and X={o€ x(G)|o|c- € X'}. We call (X, G)
an n-dimensional group extension of (X', G') if dim G/G'=n. Let P be a pre-
ordering of a field F. We say xeF is P-rigid if Dg({l, x)/P)=PuU xP. If
F#PU —P we will say x € F is P-basic if either x or —x is not P-rigid. In case
F=PU — P, we consider all elements of F to be P-basic. We denote by B, the
set of P-basic elements of F.

Throughout this section, we assume that F is a formally real quasi-pythag-
orean field and X(F) is a finite connected space. Then we have gr (X(F))# {1}
by [8], Theorem 4.7. Also we have Bgyy= NKera, aegr(X(F)) by [10],
Theorem 6.6. Let X, be the set of all restrictions o|p,,.,, 0 € X(F). Then(X,,
Bg(r)) is a space of orderings by [8], Theorem 4.8 and X(F) is an n-dimensional
group extension of (X, Bg(r), where n=dim gr (X(F)). For aegr(X(F)), let
X, be the set of all restrictions o|x.,,, 0 € X(F). Then the same arguments hold
for the case (X,, Kera); so (X,, Kera) is a space of orderings and X(F) is a
1-dimensional group extension of (X,, Ker a).
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LEMMA 3.1. Let a be an element of F\Bg,. Then X(F) is equivalent to
a 1-dimensional group extension of Hg(a).

ProoF. By the assumption ad:= By, there exists aegr(X(F)) such that
a(a)=—1. Letf: Hi(a)— X, be the map defined by f(6)=0]g.,,. Itis clear that
f is bijective and satisfies the condition that if ¢,6,06;6,=1 and ¢;€ Hg(a), then
f(e)f(02)f(03)f(64)=1. Conversely let {f(o,), f(c2), f(03), f(04)} be a fan
of index 8in X,. Then {0}, ao;li=1,..., 4} isa fan of index 16 and so 6,0,030,=1.
By Proposition 2.2, Hg(a) is equivalent to X,. Thus X(F) is equivalent to a
1-dimensional group extension of Hg(a). Q.E.D.

LeMMA 3.2. Let K=F(,/a) be a quadratic extension of F where ae F~
Bgr(r)- Then for any fan Y in Hg(a), the extension of Y to K is also a fan.

PrROOF. We put P=Y! and P'=XPK2. Then by [4], Corollary 3.3, the
sequence

1— kP, K/P N, Fp/p

is exact. From the fact ad= By, it follows that —a is R(F)-rigid, and so dim Im-

(N)=dim (Dg{1, —a)dP/P)=1. Hence we have n=dim F/P+1, where n=

dim K/P’. Now the fact | X(K/P’)|=2|Y|=2""1 implies that X(K/P’) is a fan.
Q.E.D.

THEOREM 3.3. Let K=F(\/E) be a quadratic extension of F, where a € F~
Brr)- Then X(K) is equivalent to X(F).

ProOOF. We fix an ordering ¢ € X(K) and put =065, where the bar means
the conjugation of K over F. Then ﬁ(\/a)= —1 and f=17 for any 7€ X(K) by
Lemma 3.2. Hence ft=7 and this shows that f e gr (X(K)). X(K) is equivalent
to a 1-dimensional group extension of (X4, Ker ) and X is equivalent to H K(\/E).
So it is sufficient to show that H K(\/E) is equivalent to Hg(a) by Lemma 3.1. Let
f+H K(\/a_)—>H r(a) be the map defined by f(6)=0|r. Then f is a bijection and
satisfies the condition that ¢,0,050,=1 if and only if f(6,)f(0,)f(63)f(c,)=1
by Lemma 3.2. Hence Hg(,/a) ~ Hp(a) by Proposition 2.2. Q.E.D.

Now we consider the case K =F(\/5), a € Bg). If aeR(F), then X(K)~
X(F)®X(F) by Theorem 2.9. In the rest of this section, we assume that
a € Briry~ £t R(F) and Dg(1, —a)Dg(1, a)> =By, (D1, —adDg{l, a) S B
always holds by [8], Lemma 4.9). We note that X(F) is not a fan since
By # £ R (F).By [5], Theorem 3.4, there exists a valuation v on F such that v is
compatible with R(F) and X(F) is not connected. Moreover X(F) is equivalent
to an n-dimensional group extension of X(F), where n=dim I'/[>=dim gr
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(X(F)) (see [5], Proposition 1.1). So (X, Bg() is equivalent to X(F). The
bijective map f: X,—X(F) is defined as follows; for 7€ X,, f(t)=&, where 7 is
the restriction of o to Bgr). We put Hy (a)={o€ X,la(a)=1}. Then f(Hy (a))
=Hp(A'(a)), and so Hy,(a) is equivalent to Hp(A'(a)). By Theorem 1.7, F is a
formally real pythagorean field.

LeMMA 3.4. In the above situation, the following statements hold.
(1) UF2=BR(F)- _
(2) A(a)eHp (i.e. D<l, A'(a))Dp<1, —A'(a))=F).

Proor. The inclusion UF 22Bg(r) follows from [7], Proposition 4.10.
For the reverse inclusion UFZEBR(F), it suffices to show that U < Ker a for any
aegr(X(F)). Since v is compatible with R(F), we have 1+ MSR(F)nUc
KeranU, and KeranU/1+ M is a subgroup of (F) of index at most 2. We
consider &=Ker a n U/1+M as an element of x((F)'/(F)'2); then it is easy to see
that & e gr (X(F)), and so we have Kera n U/1+ M =(F)" since gr (X(F))=1. It
implies that U< Kera and the assertion (1) is proved. Now the assertion (2)
follows from Proposition 1.2. Q.E.D.

THEOREM 3.5. Let F be a formally real quasi-pythagorean field which
has a finite space of orderings X(F). Let K=F(\/E) be a quadratic extension
of F where a is an element of B\ R(F) such that Dp{l, a)Dg(l1, —a)=
Bgrry- Then X(K) is equivalent to an n-dimensional group extension of Hy (a)®
Hy (a) where n=dim gr (X(F)).

Proor. The valuation v can be uniquely extended to a valuation & on K,
as we noted before Lemma 1.4. We denote by " and K the value group and
the residue field of & respectively. The facts ag=R(F) and (1+M)U?<R(F)
imply that A'(a)é(F)2, and so K=F(,/A(a)) is a quadratic extension of F.
Since [K: F1=[I': I'l[K: F], we have I'=I'. We put Y={o € X(K)|# is com-
patible with ¢}. Then |Y|=2"|X(K)|=2"*|Hp(A'(a))|. Since ae n Kera, a€
gr (X(F)), we have 27|Hy,(a)|=|H(a)| and so |X(K)|=2|Hga)|=2""1|Hy,(a)l.
As is noted before Lemma 3.4, Hy (a) is equivalent to Hp(4'(a)). Thus |X(K)|=
2"+ Hp(A'(a))]. This shows that |Y|=|X(K)|, hence # is compatible with Dg(o0),
the weak preordering of K. By Lemma 3.4, A'(a)e Hp, so X(K) is equivalent
to Hp(A'(a))®@Hp(A'(a)) by Theorem 2.9. Now the assertion follows from
Hy (a)~Hp(A'(a)). Q.E.D.
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