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1. Introduction

Fefferman [2] proved that if u is a continuously differentiable function on
R" with gradient in LP(R") and 1<p<n, then

€)) lim, ., u(x’, x,) = const.

holds for almost .every x'e€ R*~!. The author improved his result in [8] by
showing that the set of (x’, 0) for which (1) does not hold is of Bessel capacity of
index (1, p) zero (see Meyers [6] for the definition of Bessel capacities).

In this paper we deal with Beppo Levi functions of general order (cf. [1])
and discuss the existence of radial and perpendicular limits. For this purpose
we establish an integral representation of Beppo Levi functions as a generalization
of [7; Theorem 4.1], and apply the technique of [5] to study the behavior at
infinity of potential type functions.

2. Integral representation of Beppo Levi functions

Let R" denote the n-dimensional euclidean space. For a multi-index A=
(A1s---5 4y), We set

A=Ayt Ay A= Aleed,l, XA = xhiexin
D* = (0/0x)*1---(0]0x,)*n,

where x=(xy,..., x,) is a point of R*. Following Deny-Lions [1], we use the

notation BL,(LP(R")) to denote the space of all functions u € L?,.(R") such that

D*u e LP(R") for any A with |A|=m, where 1 <p<o0, m is a positive integer and

the derivatives are taken in the sense of distributions. A function u € BL,(L?(R"))

is called a Beppo Levi function of order m attached to the space L?(R"), or briefly

an (m, p)-BL function on R*, if u is (m, p)-quasi continuous in the sense of [7].
Let k,, denote the Riesz kernel of order 2m, which is defined by

|x]|2m=n if 2m < norif 2m > n and n is odd,
km(x) =
—|x|>™"log|x| if 2m = n and n is even.
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For a nonnegative integer £ and a multi-index A, we set

km,i.(x) = D lkm(x)
and
kma(x—=y) = Zjuse W) x4 Dk, ) (—y) if |yl 21,
Km,l,ll(x’ y) = .
kma(x—y) if |yl <1.

We first state some properties of functions K, ; ,, which can be proved by
elementary calculus (cf. [3; Lemma 4.2], [10; Lemma 4]).

LemMA 1. (i) The function K, ; (-, y) is polyharmonic of order m in
R"—{y}, that is,

A"K,y70(-5 ) =0 on R"—{y}.
(i) If2m—n—|A|—£=<0, then
|Km,a,0(%, p)| < const. |x|#+1]y|2m=n=ldl=2-1

whenever |y| 22|x|=1.
(iii) If|A|l=m and m—n— £ <0, then

log (4|x|/ly]) in case ¢ =m —n,
| Km,2,0(%, Y)I < const. |x|* x
|yjm—n=t incase £>m—n,

whenever 1<|y|<2|x| and |x—y| =|x|/2.

Let a, be constants so chosen that
)] P(x) = Xjz1=m s S kma(x—y)D*¢(y)dy  forany ¢eCF(R")

(see Wallin [12; p. 71]).
THEOREM 1. If u e BL,(LP(R")) and mp=n, then

UC) = psom @z | Ksslx, DOy + P(x)

holds for almost every x € R®, where £ is a nonnegative integer such that ¢<
m—n/p<{4+1 and P, is a polynomial of degree at most m—1. If u is an
(m, p)-BL function on R", then the equality holds for x € R* except those in a
set whose Bessel capacity of index (m, p) is zero.

ReMARK. Kurokawa [4] has obtained an integral representation of Beppo
Levi functions different from ours, and applied it to the discussion of weighted
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Lr estimates of Beppo Levi functions.
To prove Theorem 1, we prepare the following lemma.

LEMMA 2. Let mp=n and ¢ be the integer such that {<m—n[p<{4+1.
If fe LP(R™) and |A|=m, then

S K s(%, ) D)ldy < const. [x|=/2| £,
{v;lyl22]x]}

whenever |x|>1.

PrOOF. By Lemma 1 (ii) we have for x € R*—B(0, 1),

|Kp 240%, 1)F Oy

< const. [x|**! 5 Lym="=2=1| £ ()|dy.

(y;lyl22]x]}

S{v;lyIEZIXI)

By our assumptions, p'(m—n—¢—1)+n<0, so that the required assertion
follows from Hoélder’s inequality, where 1/p+1/p’'=1.

From this lemma, we can easily derive the following two facts.

COROLLARY 1. Under the assumptions in Lemma 2 we have

lim o] 727 | Ko, 1(%, D) (0)dy = 0.

tyslyiz2lx]}

COROLLARY 2. Under the assumptions in Lemma 2, if ¢ € CF(R"), then

[§1Knax, 2)70I9Ndydx < oo.

PrOOF OF THEOREM 1. In view of the facts in [12; p. 71], for ¢ € CF(R™)
we find

©) (K, Amg(x = c0(= D0,

where c,, is a constant independent of 1, £ and ¢. Hence, 4™=c,, X|;,=m a,D**
by (2) and (3). In view of Corollary 2 to Lemma 2 we can apply Fubini’s theorem
to obtain

[{S1a12m 02 Ko s, 3)Du()ay} amgx)a
= (= 1" Zpijomaz [ DOOIDAGy

= G [U0) Bpag-m a:0700)dy = (u(r)amg(3)dy



390 Yoshihiro Mizuta
for ¢ € CF(R™), which implies
A7 (4 = Fjsyam 05 (K- DAY ) = O,
Now Theorem 1 follows from Lemma 4.1 in [7] and the following result.

Lemma 3. If fe LP(R"), then SK"”“(X’ nf()dy are (m, p)-BL functions

on R"™ whenever m, p, A and ¢ are given as in Lemma 2.

ProoF. Set v(x)=\K,, .,x, »f(y)dy. For r>0, we write v,(x)=
o0 K,2,0(x, ) f(»)dy, where B0, r)={yeR"; Iyl <r}. Then it is easy to see
that v—v, is continuous on B(0, r). Since v, (x)= - (D) (x—y) f(n)dy +
a polynomial, Lemma 3.3 (iii) in [7] implies that v,Bg”()m, p)-quasi continuous

on R*. Thus v is (m, p)-quasi continuous on R”.
On the other hand, for ¢ € CP(R") and a multi-index g with length m, we

have
fo0pgdx = [ {{Ksutx, )D#4CIx] £y
= [ { Vs = D295} £ 1)y

< const. ¢, f1l,

on account of Lemma 3.3 (ii) in [7], where 1/p+1/p’=1. This implies that
ve BL,(LP(R")), and hence v is an (m, p)-BL function on R".

3. Radial limits

We denote by B(a, r) the open ball with center at a and radius r, and by S
the boundary 0B(0, 1). By using the integral representations in [7] and the same
method as in the proof of Corollary 4.7 in [5], we can establish the following
result.

THEOREM 2. If mp<n and u is an (m, p)-BL function on R", then there
exist a polynomial P of degree at most m—1 and a set Ec S such that B, ,(E)=0
and

lim,_ , r*=m2)/p{u(r®)—P(rO®)} =0  for every O@€S — E,
where B,, , denotes the Bessel capacity of index (m, p) (see [6]).

Our main aim in this section is to extend Theorem 2 to general cases. For
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that purpose we need some lemmas.

LEMMA 4. Suppose there exists a nonnegative integer ¢ such that {<m—
n/p<f+1. If|A=m and fe LP(R"), then

fimyy o {027 | K15 ) Sy = 0.
{v;1x=ylz|x]/2}

Proor. By Corollary 1 to Lemma 2 we have only to prove

lim g (X025, 9 3)dy =0,

where E(x)={y; [x—y|=]|x|/2, [y|<2|x]}. If |x|>1 and yeE(x), then
[Km,a,0(x, Y)IS const. [x|*|y|™"*log (4|x|/|y]) on account of Lemma 1 (iii).
Hence we obtain for n>1,

le(n—MP)/P SE(x) |Km,1’g(x’ y)f()’)ldy

< const. |x[(»~mp)/p+L S [ylm=n=2{ £ ()| log (4]x|/|y])dy

B(0,2]x])

< const. |x|("mp)/p+e S ) [yIm==2f(»)] log (4]x|/|yDdy
n

B(O,

+ const. {S |f(y)|”dy}l/p,

R"—B(0,n)

so that
iy 100§ (K45, 9SOy

< const. {{ fledy}”

R"~B(0,1n)

Letting n— oo, we derive the desired equality.

LEMMA 5. Suppose £=m—n/p is a nonnegative integer. If |}|=m and
fe Lp(R™), then

fimyy-.p 1217 (log [x]) 7" | Ko 116 S ()dy = 0.

(vilx—ylz[x|/2}

ProOF. In view of Lemma 1 (iii), we have
el og 1) 2§ Ko 4(, 9O

< const. (log |x|)~1/#" S 1)y

E(x)—-B(0,1
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+ const. [ ~4(og [x) % | x—ylmr1f()] log @+ =y dy

with. E(x) defined as above. Here the second term of the right hand side clearly
tends to zero as |x|— oo, and the first term of the right hand side can be evaluated

as in the previous proof.
Following [5], we say that a set E in R” is (m, p)-thin at infinity if
;'o=1 Bm,p(Ej") < 0,

where E;={xeR";2/xeE, 1<|x|<2}. In case mp>n, we find easily that
B,, ,(4)2 B,, ,({0})>0 whenever 4 is not empty, so that E is (m, p)-thin at infinity
if and only if E is bounded.

LEMMA 6. Let mp<n. IffeLP(R"), |A|=m and ¢ is a nonnegative integer,
then there exists a set E, which is (m, p)-thin at infinity, such that

limlxl-’m.xeR"—E lxl("_mp)/pg Ko a,0(x, y)f(y)dy=0.
v;lx=yl<|x|/2}
ProOOF. Since m<n, |K, ,; ,(x, y)|< const. |x—y|™" whenever 1=|x|/2=<
|y]|=2|x|. Now, applying Lemma 4.4 i) in [5], we obtain the required assertion.

LEMMA 7. Suppose mp>n. Iff, A and ¢ are as in Lemma 6, then

li-vc ] 707 | K115, ) f(3)dy =0.

(r;lx=y|<|xl/2}
ProOF. From the definition of K,,, ; ,, it follows that

[x — y|m=» if m<n,
[Km,2,0(%, y)| < const. .

|x—y|™ " log(Ix|/|x—yl) if mzn
whenever |x|=1 and |[x—y|<|x|/2. Now Holder’s inequality yields the desired
equality.

For simplicity, define

r(n=mp)/p if m — n/p is not a nonnegative integer,

A(r) =
r-mp)/p(logr)~1/P"  if m — n/p is a nonnegative integer.

THEOREM 3. Let u be an (m, p)-BL function on R".
(i) If mp>n, then there exists a polynomial P of degree at most m—1

such that lim ., A(|x) {u(x)—P(x)} =0.
(ii) If mp=n, then there exists a polynomial P of degree at most m—1
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and a set E such that E is (m, p)-thin at infinity and
Hm (- o, xern - £ (108 |%[) 71/ {u(x) — P(x)} = 0.

Applying the contractive property of Bessel capacities (cf. [9; Lemma 5]),
we can prove the following radial limit theorem; we also refer to Theorem 4.5 and
its Corollary 4.7 in [5].

COROLLARY. If mp=n and u is an (m, p)-BL function on R", then there
exist a polynomial P of degree at most m—1 and a set E<S such that B, (E)=0
and

lim, ., (log r)~/?"{u(r®)— P(r®)} = 0
for every ® e S—E.

PrOOF OF THEOREM 3. Let ¢ be a nonnegative integer such that £<m—
n/p<£+1. Inview of Theorem 1, we can find a polynomial P of degree at most
m—1 and a set E, such that B, (E,;)=0 and

UX) = pom s [Kasts DDy + Px)  for xeRe = E,.

We note here that E; is (m, p)-thin at infinity; in case mp>n, E, is empty and the
functions defined by the above integrals are all continuous. We write u=u; +
u,+ P outside E,, where

uy(x) = 2“]:"‘ alg Km,;.,n(X, y)D*u(y)dy
vilx=ylzlx]/2}

and

() = Epijom @ | Ko .45 )DAu(y)dy.

vslx—yl<Ix|/2}

We infer from Lemmas 4 and 5 that lim, ., A(|x]u;(x)=0. Moreover, taking
Lemmas 6 and 7 into consideration, we can show the existence of E, such that
E, is (m, p)-thin at infinity and

limyy) o o, xern ~ E, [X|"7™P/P uy(x) = 0.

Since E=E, U E, is (m, p)-thin at infinity, our theorem is proved.

4. Perpendicular limits

By the integral representations of Beppo Levi functions in [7] and the proof
of Proposition 1 in [8], we can prove the following result.
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THEOREM 4. If mp<n and u is an (m, p)-BL function on R", then there
exist a polynomial P of degree at most m—1 and a set Ec R"~1 x {0} such that

B, (E)=0 and
@) lim,, , {u(x’, )—P(x’, )} =0  for every (x’,0)eR"1 x {0} — E.
ReMARK. Unlike the conclusion of Theorem 2, (4) can not be replaced by
lim,, ,, A(?) {u(x’, )—P(x', )} =0
(see Example 6 in Section 5).

In view of Theorem 3, only the case mp=n remains to be discussed for the
existence of perpendicular limits of (m, p)-BL functions.

THEOREM 5. If mp=n and u is an (m, p)-BL function on R", then there
exist a polynomial P of degree at most m—1 and a set E such that

lim,, . o, xern— £ (10g [X[)7/7"{u(x) - P(x)} = 0

and
Z;’o=1 Bm,p(E(j)) < 0,

where x, denotes the n-th coordinate of x, 1/p+1/p'=1 and
EW ={xeE;j<x,<j+1}.

ProoF. By Theorem 1 we can find a set E; and a polynomial P of degree
at most m—1 such that B, ,(E;)=0 and

U(X) = Zpajen a3 [ Kol HDAOMY + P)
for any xe R"—E,. Write u=u,;+u,+u;+P on R"—E,, where
) = Do || Ksols DDOGMy,  j=1,23,

with D(1)={y e R"; |x—y|2|x|/2}, D(2)={yeR"; 1=|x—y|<|x|/2} and D(3)=
B(x, 1). It follows from Lemma 5 and Holder’s inequality that

lim . o (log [x[)71/7" {u (x) +u5(x)} = 0.
By the definition of functions K, ,, we can find a nonnegative function f in

Lr(R™) such that

sl < §, | anx— 300y,
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where g,, denotes the Bessel kernel of order m (see [6], [11]). Take a sequence
{t;} of positive numbers such that lim;_, , t;= oo and

25t | fyyrdy<oo.

=0y",yn);j—1<yn<j+2}

Define

EV) = {x =, x);jSx, <j+ I,S In(x—=)f(y)dy > t}‘“’}
B(x,1)

for each positive integer j. By the definition of Bessel capacities we have
Bu,(ED) <1, )y,
{y;J—1<yn<j+2}

from which it follows that 3%, B,, (E‘"))< . Clearly,

limy o sernr | Gux= DGy =0,
B(x,1)

where E,=\U$.; E(). Therefore E=E, U E, has the required properties in our
theorem, and the proof is complete.

For EcR", denote by E* the projection of E to the hyperplane R*~!x {0}.
If %, B, (E“)< oo with the above notation, then B,, (N\iX; U, E¢¥)")=0 on
account of the contractive property of Bessel capacities (cf. [9; Lemma 5]). Thus
Theorem 5 has the following corollary.

COROLLARY. If mp=n and u is an (m, p)-BL function on R", then there
exist a polynomial P of degree at most m—1 and a set EcR""'x {0} such that
B, ,(E)=0 and

lim, ., (log )~1/7 {u(x’, f) — P(x’, £)} = 0

for every (x’, 0)e R*~1 x {0} —E.

5. Best possibility with respect to the order at infinity

We shall give below examples which show the best possibility of our theorems
with respect to the order at infinity. The functions appearing in the following
examples will be of potential type; so we prepare

PrROPOSITION. Let m>0, p>1 and a<m—n/p<a+1. Let K(x,y) be a
Borel function on R" x R" for which there is M >0 such that

IK(x, )| £ M|x|**!|y|m~m=*=t  when |y| 2 2|x| > 1,
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|K(x, )| = M|x|*|y|m—r= when 1< |yl <2|x| and |x—y| > |x|/2
and
|K(x, y)| = M|x—y|m" when |x—y| < |x|/2.

For fe LP(R"), we define Kf(x)=SK(x, WSf()dy. Then there exists a set EcR"
which is (m, p)-thin at infinity such that

]imlxl-‘oo,xeR"-E A(lJCI)Kf(X) = 0.
If mp<n, then there exists a set F< R" such that 3%, B,, (F())< o and
limx,.—'oo,st"—F B(|XI)Kf(X) = O’

where FU={xeF;j<x,<j+1}, B(r)=1 in case mp<n and B(r)=A(r) in
case mp=n.

The proof of the proposition is similar to those of Theorems 3 and 5.
If |A]l=m and £=m—n[p<{+1, then K,, ; , satisfies all the conditions on

K with a= ¢+ ¢ for some £=0.
We shall give other examples of K. Let m be a positive integer and set

|x|™"log|x| if m — nis a nonnegative even integer,

Rm(x) = [

|x|m=n otherwise.
Letting ¢ be a nonnegative integer, we define
Ru(x—y) = Xyys2 W) 'XHD*R,)(—y) if yeR" - B(0, 1),

R, ,(x, y) =
A% ) [Rm(x—y) if yeB(,1).

If mp=nand £<m—n/p<¢+1, then R, , satisfies all the conditions on K in the
proposition and, in the same manner as in the proof of Lemma 3, R,, , f is shown
to be an (m, p)-BL function on R* whenever fe LP(R"), on account of Lemmas
3.3 and 4.3 in [7].

ExampLE 1. Let mp=n and h be a nondecreasing function on R! such that
lim,, , h(f)=00. Then we can find an (m, p)-BL function u on R" such that
lim, | - i, xern — £ (108 |X])"1/?’u(x)=0 for some E which is (m, p)-thin at infinity
but lim |, x4 P(|x]) (log |x])~1/?'u(x) = co for some 4 which is not (m, p)-thin
at infinity.

This example shows that Theorem 3 (ii) is best possible as to the order at

infinity.
For the construction of such u, take a sequence {k;} of positive integers such
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that 2k;<k;, 1, h(2**)>0 and > %, h(2?*))"'<oo. Now we define

E;={y=(, y)eR"; [yl <2y, 2% < |y| <223},
h(2%k5)~1/p|y|=m(log |y[)~*/»  when — y€E;,
f) =
when — yeR" — UZ, E;

and
U(x) = = Ryof () = = { {Ix=ylm = lyim"1()dy.

Then we see easily that fe LP(R"), and hence, by the consideration given after the
Proposition, u is an (m, p)-BL function on R". If 22k/<|x| <221 and |x|<./2
x,, then |x—y|>|y| whenever—ye\U%, E;. Consequently, if j is large enough,
then

@z | Q= lx—y) Sy

(y;—yeE;}

2 @t ie {{ - Iylon(log Iy edy

—ealnn | 1y dlog|yl)1/rdy)
J
Z ch(Q) kY,

where ¢, and c, are positive constants independent of j. Thus, setting A=
U {x; |x] <4/2 x,, 2%k <|x| <22k:*1}, we obtain

lim g oo xea h(1x]) (log |x)™1 /7 u(x) = 0.

Since A is not (m, p)-thin at infinity, u satisfies the last condition in Example 1.
Thus, in view of the Proposition, u is a required function.

ExamMpPLE 2. Let O<m—n/p<1 and h be as in Example 1. Then, in the
same manner as above, we can construct an (m, p)-BL function u on R" such
that lim ., ,, |x|*~™»/Py(x)=0 but

lim sup,., , h()t(»~mP)/py(0, t) = oo.

This example together with the following three examples will show the best
possibility of Theorem 3 (i) as to the order at infinity.

ExamMPLE 3. Let h be a nondecreasing function on R! such that
lim,, o, h(r)=00. Suppose m—n</é<m-—n/p<é+1 for some positive even
integer ¢. Then we can find a function ueBL,(LP(R") satisfying
lim,|, o, A(|x|)u(x)=0 and
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lim sup, ., h(P)A(r) (o, 1)1 SM(O u(x)dSG) = oo,

s

where o, denotes the area of the boundary dB(0, 1) of B(0, 1).

For this purpose, find a nonnegative function fe LP(R") for which there
exists a sequence {r;} of positive numbers tending to co such that

lim; o h(’f)A(rf)"f-S Iylm="tf(y)dy = o0
_/B(0,rj)
and
i -1
timye {f, it rO) st (vt 02 0y} = oo

see (A) and (C) in Appendix. Applying (3.2) in [7], we establish

Za=2;(ANH(D*R,) (= y)(o ") 71 SBB(O Y x*dS(x)
=c;r2(4'R,)(— y)=r¥|y|m""2i{d;+ d}log |y|}
for j=1,..., £*=1¢/2, where c;, d; and d’j are constants such that dj.#0 and
7+=0. Consider v(x)=R,,,f(x). Then wveBL,(L?(R")) as remarked after
the Proposition. Further we obtain

@ e@dse)=({@r ] Ryx-pdse

dB(0,r
— BitorlyIr2i[d; + dylog 911} f(3)dy.
If m—n is not a nonnegative even integer, then

@) Ry(x=)dS(x) S My
2B(0,r)

for ye B(0, 2r) and d;=0 for all j=0,..., £*, where M, is a positive constant.
If m—n is a nonnegative even integer, then |x|™™" is a polynomial of degree less
than ¢, so that,

@r )| eds)

2B(0,

{1 ] = pimntog (1= ylinds ()
9B(0,r)

— Xior|y|mn=2i[d; + d’log (Iyl/r)]} f(y)dy.



Existence of limits along lines 399

Since S [x—y|™ | log |x — y||dS(x) is continuous on R", there exists M, >0
2B(0,1)
such that

@ eyl log (k- yI/dSG) 2 — My

2B(0,r

whenever yeB(0, 2r). Hence, noting that |R,, ,(x, y)|<M;|x|*tt|y|m—nr-i-1
whenever |y|=2|x|>1, we establish

(=dp)th(n) A(r) (a,r"~ )7 S |, vx)dS(x)

2B(0

2 i) A {( i foydy - Mt )y
B(0,2r) B(0,2r)
— M TR Ly )y
- My | [P £ )
R"—B(0,2r)

2 h(r)A(r)r* {gmr) Iylm==tf(y)dy — Myrt Sw N [y|m="=t*1 f(y)dy

- Mer [y|m=n=t=1 f(y) dy},

R"—B(0,r)
where M; ~ Mg are positive constants. By the construction of f, the right hand
side is not bounded above. Thus u=(—dj.)"lv satisfies the last condition in
Example 3, and thus it is a required function in view of the Proposition.

If ¢ is odd, then we need consider the weighted mean value of u over the
surface 0B(0, r).

ExaMPLE 4. Let h be as above. Suppose {<m—n/p<{+1 for some
positive odd integer ¢. Then we can find a function u € BL,(L?(R")) satisfying
lim,; ., o, A(|x|)u(x)=0 and

lim sup, ., o, h(r)A(r) (t,r")~1 SM(O )u(x)x,,dS(x) = o0,

where 1:,,=S |x,|dS(x) and x=(x,..., X,).
1)

>

For this, we first note by (3.2) in [7] that for j=1,..., £*=(£ —1)/2,

Zia=2j+1 AN THD*R,) (— J’)(an"')_l Sas(o ) x*x,dS(x)

= ¢;r2i*1((0/0x,) 4’ R,)(— y)
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= r¥ty lylmn2i2{d; + djlog |y}

with constants c;, d; and d} such that dj.#0 and dj.=0. Find a nonnegative
function fe LP(R") for which there exists a sequence {r;} of positive numbers
tending to co such that

limy-. BDAGS |l f )y = oo
orj

and
timw{(  yalyirrt )y (vt D2 £0)dy) T = o0
J B(0,r;) n J J >

see Appendix (D). Setting v(x)=R,, ,f(x), we find, as in the above arguments
for Example 3,
(=di @ oxds@) et gl )y

0B(0,

DI fydy = M [yttt () dy

R"—-B(0,r)

— Mr*t S

B(0,r)
with positive constants M; and M,. Thus we see that u=(—d}.) v has the

properties required in Example 4.

EXAMPLE 5. Suppose m —n is a positive even integer and m —n/p<m—n+1,
that is, n/p’<1. If h is as above, then we can find u € BL,(LP(R")) such that
lim,, . ., A(|x)u(x)=0 and

. Tim sup, .., K(r)A(r)(o,r*~1)1 Sa u()dS(x) = o.

s

For the construction of such u, find a nonnegative function fe LP(R") for
which there is a sequence {r;} of positive numbers such that lim;_, ,, r;= 0o,

limye.q e | £ log ryllydy = eo
and
timje {§, )o@ NAYHrs [y 0)Y} T = oo

see Appendix (B). Letting /=m—n, we consider »(x)=R,,,f(x). Since £
is even, we obtain

@) pds(x)

aB(0,

= {@r (L le=itior (x—y1ir) ds(o)
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— Bitor¥Iy2[d; + djlog (15101} £()dy,

where d); and d are constants such that dj.#0 and £*=/¢/2. Thus, in the same
manner as above, we derive

@ e weds@ 2 )10 Clly)dy

S RV O e W T L

R"—-B(0,r)

for some positive constants M; and M,. As before, u=(d}.)"'v is seen to satisfy
the required assertions in Example 5.

We next consider the best possibility as to the order at infinity of our results
concerning perpendicular limits.

ExAMPLE 6. Let mp<n and h be a nondecreasing function on R! such that
lim,, ., h(f)=oc0. Then there exists a nonnegative function fe LP(R") such that

lim sup,., ,, h(t) S|(x’, —y|™"f(y)dy= oo for any x’ € R*~1,

In view of Lemma 3.3 in [7], the potential R, f (x)ES |x =yl f(y)dy is an
(m, p)-BL function on R". Further, in the same way as in the proof of Proposi-
tion1 in [8], we can find a set EcR"!x{0} such that B, (E)=0 and
lim,., R, f(x', {)=0 for any x'eR*"! with (x’,0)¢ E. Hence Theorem 4 is
best possible as to the order at infinity.

For the construction of such f, take ¢ € CP(R") such that ¢=0 on R~,
¢=1 on B(0, 1/2) and ¢=0 outside B(0, 1), and find a sequence {r;} of positive
numbers such that r;+1<r;,;—1 and X%, h(r;)"'<oco. Now define f(y)=
SRy h(rp) trd(y—rje) with e=(0,...,0,1)eR". Then we see easily that
feLP(R™). Further, setting x) =(x', r;) € R", we have

h(rpR,f(x) 2 h(r)'?’ Rup((x', 0)) —> 00 as j— oo.

ExaMPLE 7. Let 0Sm—n/p<1 and h be as above. Then the functions u
obtained in Examples 1 and 2 may be taken to satisfy

lim sup,._, , () A(Du(x’, t) = oo for any x’eR"1,

This shows that Theorem 5 is best possible as to the order at infinity.

Appendix

Let h be a positive nondecreasing function on R! such that lim,_, ,, h(r)= co.
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(A) Let a be a positive number such that n/p’'—1<a<n/p’. Then we
shall find a nonnegative function f e L?(R") satisfying

» limyeo By yimes )y = oo
rj

-1

@A) dimpn {|, o)y (I D 0Ny =0
3Ty
for some sequence {r;} of positive numbers which tends to co.

For this purpose, take sequences {s;} and {¢;} of positive numbers such that
lim;, , &;=0, &;,;<¢;<1/2, s;<€;s;,; and X7, h(s;)" ' <oo. We now define
h(s)~1/Ply|™""? if s; <yl <2s;,
10) = ,
otherwise.

Then there exist positive constants ¢y, ¢,, ¢; and ¢4 such that for 2s,<r<s;,;
we have

Ay (rordy=c, T3 b1 <o0;
A9 {1 0)dy = ¢ By hls ) e
B(O,r)
(A I AO)dy = ey Doy hls ) esyE e syl

(As) Y7o f()dy = cq X Peps1 B(s;)"VPs7atn/P "1 < 00,

SR"—B(O,r)
From (Aj;) it follows that fe LP(R"). By (A,) we have

(A hyren (eSO 2 eh(s)! 7 sy

s

Since s;> ¢k~ /s, for j>k, we derive from (Ag) that

A rl o)y

R"-B(0,r)

< coh(s)) 7 PSETEP ()P (L —ggnIr + 1),
We can choose a sequence {M;} of positive numbers such that

2<Mj<Sj+1/Sj, limJ_.wMj= o0

lim;_,, h(s)'/?’ M3/ = c0o and lim;,, M;e§"/P"*1 = 0,
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Then, by setting r,= M,s,, (A,) implies (A,), and (As) together with (Ag) implies
(Ar).

(B) Suppose n/p’<1. Then, in the same manner, we can construct a non-
negative function fe LP(R") for which there exists a sequence {r;} of positive
numbers tending to co such that

®)  limp by | ) 1og Dy = co;
rj

>

@) Gimeo{f, ) IosDayr (G S0y = .

(C) Asin the discussion after Example 1 we can find a nonnegative function
feLr(R™) and a sequence {r;} of positive numbers tending to co such that

(©)  limyq hrogry ™ {1y £y = oo

’

©  dimea{f, i f)ay)

X {’f S'y""""“(rﬁ|y|)‘2f(y)dy}"‘ - .

(D) Let a be a positive number such that n/p’—1<a=<n/p’. Then we can
construct a nonnegative function fe LP(R") which has a sequence {r;} of positive
numbers tending to oo such that

O) Ty HeAE) |y 0)y = s

@) timpen{, I 0) )

xdr iyl D210y} = o,

where A(r)=ra=/?" if a<n/p’ and A(r)=(logr)~1/?" if a=n/p’".
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