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§1. Introduction

In the previous paper [5], we proved that every Dirichlet potential u(x) of
order p>1 on an infinite network N={X, Y, K, r} has limit O as x tends to the
ideal boundary of N along p-almost every infinite path. Our aim of this paper
is to prove the converse of this fact. In case p=2, our result has a continuous
counterpart in [3], i.e., on a Riemannian manifold Q, every Dirichlet function
(=Tonelli function with finite Dirichlet integral) u(x) has limit 0 as x tends to the
ideal boundary of Q along 2-almost every curve joining a fixed parametric ball to
the ideal boundary of Q if and only if u is a Dirichlet potential (i.e., the values of
u on the harmonic boundary of Q2 are 0). Since the proof in [3] is based on some
results concerning continuous harmonic flows and the Royden compactification
of @, it seems to be difficult to follow the reasoning in our case.

We shall prove in §2 that every Dirichlet function of order p on X can be
decomposed uniquely into the sum of Dirichlet potential of order p and a p-
harmonic function on X. We shall discuss in §3 the ideal boundary limit of a
non-constant p-harmonic function with finite Dirichlet integral of order p. As
an application, we shall prove that a Dirichlet function of order p is a Dirichlet
potential of order p if and only if it has limit 0 as x tends to the ideal boundary
of N along p-almost every infinite path.

We shall freely use the notation in [5] except for the reference numbers;
references are rearranged in the present paper.

§2. Decomposition of D) (N)

Let p and g be positive numbers such that 1/p+1/g=1 and 1<p<oo and
let ¢,(t) be the real function on the real line R defined by ¢,(t)=|t|P~* sign (2).
For each we L(Y), let us define ¢, (w) € L(Y) by ¢, (W) (¥)=¢,(w(y)) for ye Y.
For each u € L(X), the p-Laplacian 4,u € L(X) of u is defined by

Apu(x) = Zye}’ K(x’ y)¢p(du(y)) ’

where du(y)= —r(y) 1Y ,..x K(x, y)u(x) (a discrete derivative of u). We say that
u is p-harmonic on a subset A of X if A,u(x)=0 on A. Denote by HD®)(N)
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the set of all u e D®(N) which is p-harmonic on X. Some properties of p-
harmonic functions were discussed in [6] in a more general setting. It should be
noted that HD®)(N) is not a linear space in general if p#2.

For wy, w, € L(Y), we consider the inner product

(Wi, wy) = zyey r(ywi(»)w,(y)

of w; and w, if the sum is well-defined. It is easily seen that (w,, w,) is well-
defined if the support of w, or w, is a finite set or if H,(w,) (resp. H,(w,)) and
Hy(w,) (resp. H,(w,)) are finite. For each u e D((N), we have

Dy(u) = (¢,(du), du) = H(¢,(du)).
We begin with some lemmas.
LemMma 2.1, (¢p,(w))—¢,(w2), wy—w,) >0 for all wy, w,eL(Y) with
finite energy of order p. The equality holds only if w,=w,.

ProoF. Since f(f)=H,(w,;+t(w,—w,)) is a strictly convex function of
t € Rin case w; #w, and the derivative of f(¢) at t =0 is equal to p(¢,(w;), w,—w,),
our assertion follows from [2; p. 25, Proposition 5.4].

Lemma 2.2. (Clarkson’s inequality) For u, ve D®)(N), the following
inequalities hold:

2.1) D,(u+v) + D,(u—v) < 2°7'[D,(u)+ D,(v)] in case p > 2;
2.2) [D,(u+v)]'/ @D + [D,(u—v)]t/®-D
< 2[D,(u)+D,(v)]*/®=V in case 1 < p < 2.
Proor. LetteR,0<t<1. By [1], [4] or [7], we have

2.3) (1+8)P + (1—1)p < 2P~1(1+1P) in case p > 2,

(2.4 1+ + (11—t > (1 +t9)Ptincase 1 <p < 2.
Let us put s=(1—¢)/(1+¢t). Then (2.4) is equivalent to
2.4y [(1+5)2 + (1—s5)2]P~1 < 2P71(1 4 5P).

We see easily that (2.1) follows from (2.3) and that (2.2) follows from (2.4)
and the reverse Minkowski’s inequality.

LEMMA 2.3. (@ (dh), dv) =0 for every ve DP’(N) and he HD®(N).

ProoF. Let ve DF)(N) and he HD®(N). Then there exists a sequence
{f.} in Lo(X) such that |v—f,||,—0 as n—>co. We have

(6p(dh), df,) = Zyer () [$(dR(YD] [4f,()]
= — ZiexJu¥) [4,h(x)] = 0,



Ideal boundary limit of discrete Dirichlet functions 355

H(pp(dh), dv—f))| < [Hy(b(d)]"/4[H (d(v—f))]"/?
= [Dp(h)] 1/q[Dp(U —fn)] P — 0

as n— 00, so that (¢,(dh), dv) =0.
We shall prove the following decomposition theorem:

THEOREM 2.1. Assume that N is of hyperbolic type of order p. Then every
u € D®(N) can be decomposed uniquely in the form: u=v+h, where ve DF’(N)
and he HD®)(N).

PrOOF. Let u e D®)(N) and consider the following extremum problem:
(2.5) Find o =inf{D,(u—f); fe DP(N)}.

Clearly « is finite. Let {f,} be a sequence in D{)(N) such that D, (u—f,)—0 as
n—o. We show that D,(f,—f,)—0 as n, m—oco. In case p>2, we have by
2.1)

@ < Dy(u — (fu+fw)/2)
< Dy(u = (i +fw)2) + D(fu—1a)/2)
< 271D ((u—£,)/2) + D((u—fw)/2)]
=271[Dy(u—f) + Dyu—fw)] — «

as n, m—oco. In case 1<p<2, we have by (2.2)

aV/@=D < [D(u ~ (fy+f,)/D]VeD
< [P, — (fy +f)/D1VD + [D(f—f)/2]V/@D
< 2D =1)/2) + D(u—f)[2]H/ @D —s q1/=D

as n, m—oo. Thus we have D,(f,—f,)—0 as n, m—>o. Since [D,(v)]'/7 is a
pseudonorm, we see easily that {D(f,)} is bounded.

Next we show that {| f,(b)|} is bounded, where be X is a fixed element such
that [u]|,=[D,(u)+ [u(b)[P]'/7 (cf. [5]). Supposing the contrary, we may assume
that |f,(b)|—> o0 as n— oo by choosing a subsequence if necessary. Put f,(x)=
Ju(X)/fu(b). Then f,(b)=1 and f,eD{(N). Since {D,(f,)} is bounded, we
have D,(f)=D,(f)/|f(b)[?P—0 as n—oo, so that || f,~1],=[D,(f,)]'/*—0 as
n—oo. Namely 1e DP(N). This contradicts the assumption that N is of
hyperbolic type of order p (cf. [10]). Therefore {f,(b)} is bounded. By choosing
a subsequence if necessary, we may assume that {f,(b)} converges. Then {f,}
is a Cauchy sequence in the reflexive Banach space D®(N). There exists
ve D®(N) such that || f,—v||,»0 as n—>co. Since DFF)(N) is closed, v e DF(N).
Let us put h=u—v and show that heHD® (N). For any fe Ly(X) and teR,
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we have v+tfe DP'(N) and D (h)=a<D,(h—tf), so that the derivative of
D, (h—tf) with respect to t is zero at t=0. If follows that

(2.6) 0= Ty (») [¢,(dh(yNILdf (] = (¢,(dh), df) .

Denote by ¢, the characteristic function of the set {z}=X. By taking f=¢, in
(2.6), we have 4,h(z)=0 for every ze X. Since he D(®(N), we conclude that
h e HD®(N), which shows a decomposition of u.

To prove the uniqueness of the decomposition, let us assume that u=v, +
hy=v,+ h, with v;e D{F’(N) and h;e HD®)(N) (i=1, 2). Since v,—v, € D{P’(N),
we have by Lemma 2.3

(¢,(dhy) — ¢,(dhy), dhy — dh,) = (@,(dhy) — ¢, (dhy), d(v,—vy))

= (¢,(dhy), d(v;—v,)) — ($,(dhy), d(v—vy)) = 0.

Thus h;=h, by Lemma 2.1, so that v, =v,. This completes the proof.

REMARK 2.1. In case p=2, Theorem 2.1 is a discrete analogue of Royden’s
decomposition of a Dirichlet function (cf. [11]).

LEMMA 2.4. Let ue DP’(N)and we L(Y). IfueL*(X) and ¥,y K(x, y)-
_w(y)=>0 for all xe X, then

2xex (%) Zyey K(x, yIW(y) < [D,(u)]'/?[H (w)]"/1.

Proor. It suffices to prove our inequality in case H,(w) is finite. There
exists.a sequence {f,} in Ly(X) such that [u—f,||,—»0 as n—co. Put u,(x)=
max [ f,(x), 0]. Then u,e L}(X). Since Ts=max (s, 0) is a normal contraction
of R, ie., |Ts;—Ts,|<|s;—s,| for any s,, s, €R, we have D,(u,)<D,f,). By
our assumption that u e L*(X), we have

un(x) — u(X)] = |Tf(x) — Tu(x)| < |fo(x) — u(x)|.
Since {f,} converges pointwise to u and D,(f,)—D,(u) as n—00, u,(x)-u(x) as
n—oo for each x € X and lim sup,_, ,, D,(u,) <D,(u). We have
erX un(x) Zer K(x’ y)W(y) = Z_veY W(y) szX K(x’ y)un(x)
< [Hw)1"[D(u,)]',
so that
erX u(x) ZyEY K(xs J’)W(J’) < ]lm infn—voo erx un(x) Zer K(x’ y)w(y)
< lim sup,,., , [H,(W)]'/4[D (u,)]"/?
< [HW)]4[D(u)]"/*.
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§3. Main results

Denote by P, (N) the set of all paths from a € X to the ideal boundary oo
of N and by P,(N) the union of P, .(N) for all ae X. We call an element of
P_(N) an infinite path.

For every u € D®(N), u(x) has a limit as x tends to the ideal boundary oo of
N along p-almost every Pe P (N) (cf. [5; Theorem 3.1]). We denote this limit
simply by u(P).

We shall prove

THEOREM 3.1. Let he HD®)(N) be nonconstant. Then there is no constant
¢ such that h(P)=c for p-almost every infinite path P.

Proor. First we show that N is of hyperbolic type of order p. Supposing
the contrary, we have D{P’(N)=D®(N) by [10; Theorem 3.2], so that D, (h)=
(¢,(dh), dh) =0 by Lemma 2.2, which contradicts the assumption that h is
nonconstant.

Let us put w,(y)=¢,(dh(y)), Y(x)={yeY; K(x, y)#0} and Y*(x, h)=
{reY(x); K(x, yywi(y)>0}. If ye Y*(x, h) and e(y)={x, x’}, then we have
by definition

K(x, y)sign [ — K(x, y) (h(x) — h(x"))] > 0,

so that h(x) <h(x’).

Since h is nonconstant, there exists x, € X such that w,(y) is not identically
zero on Y(x,). By the relation A4,h(xo)=3 .y K(xo, y)W,(y)=0, we see that
Y*(xq, N)#@. Let us define subsets X; and Y; for n>1 as follows:

Yo =U{Y*(x, h); xe X7},
Xp =\ley) - Xo_; ye Yol

where X{={x,}. We put Xt=U2,X} and Y+=U2,Y;. Then N*=
{(X*, Y*) is an infinite subnetwork of N. To see this, it suffices to show that
X} #0 for each n. We prove this by induction. By the above observation,
Yi=Y*(xq, h)#@, so that X{#0@. Suppose that X}  #@. Since X;_,isa
finite set, there exists ae X;}_; such that h(a)=max {h(x); xe X;_,}. By defi-
nition, we can find y, e Y;_, such that e(y,)={a, x;} for some x; e X}_, and
y1€Y*(xq, h). We have K(a, y)wi(y1)=—K(xy, y)wi(y)<0 and 4,h(a)=
Y ,er K(a, Y)w(»)=0, so that Y*(a, h)#@. Let y,eY*(a, h) and e(y,)=
{a, x,}. Then h(a)<h(x,) by the above observation, so that x, ¢ X;_,. Thus
x, € X}, ie., Xi#0.

Let us put g*(x)=X ,cy+ K(x, y)w(y). Then g*(x,)>0 and g*(x)>0 for
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all xeX*, since Y*(x, h)cY* for xeX*. Note that inf{h(x); xe X+ —
{xo}}>h(x,). Let I'* be the set of all paths Pe P, . (N) contained in N*, i.e.,
Cx(P)=X* and Cy(P)cY*. Let us recall the extremal distance EL,({x,},
o00; N*) of order p of N+ relative to {x,} and oo:

EL,({x0}, c0; N*)™' = inf {H (W ; N*); We E(P,, (N*))},

where H,(w; N*)=3% .y« r(y)Iw(y)|? and E(P,, ,(N.))is the set of all We L*(Y*)
such that 3, r(y)W(y)>1forall Pe P, ,(N*). Then we see easily that A (I'*)=
EL,({xo}, ©; N*). Now we show that A(I'*)<oo. Supposing the contrary,
we have EL,({x,}, 00; N*)=o00. Therefore N* is of parabolic type of order p
by [10; Theorem 4.1], and hence DP’(N*)=DP(N*). Let WeE(P,, ,(N*))
and H,(W; N*)<oo. Define ue L(X*) by u(x,)=0 and

u(x) = inf {3, r())W(y); Pe P, (N*)} for x # xo,

where P, . (N*) is the set of all paths from x, to xe X, in N*. Then u is non-
constant and |Y ,.x+ K(x, Y)u(x)|<r(y)W(y) on Y* by [9; Theorem 3]. Put
v(x)=max [1—u(x), 0]. Then v(xy)=1, ve L*(X*) and

Dy(v; N*) = Xyey+ r(Wldv(p)IP<Dy(u; N*) < H(W; N*) < co.

Since ve DP(N*)n L*(X*) and g*(x)>0 on X*, we have by Lemma 2.4

g*(xo) = v(x0) X yer+ K(xo, yIWi(y)
< Dxex+ 0(x) Xyey+K(x, y)Wi(y)
< [Dy(v; N*)]VP[H (wy; N*)]V4
< [H(W; N*H)]VP[H (wp)]'/4 = [H(W; N*)]'/?[D,(h)]"/.

It follows that H,(W; N*)>[q*(xo)]P[D,(h)] ?/2>0, so that EL,({xo}, 0;
N*)<oco. This is a contradiction. Thus A,(I'*)<c and h(P)>h(x,) for p-

almost every PeI'*.
Similarly we define an infinite subnetwork N~ =(X~, Y~ > by X " =\UZX;,
and Y- =\UX,Y;, where X;={x,} and for n>1
Y. =U{Y~(x, h); xe X;_,},
X, =V lely) - X,_1; yeY,},
Y=(x, h) = {y e Y(x); K(x, y)wy(y) < 0}.
Let us put g (x)=3,y- K(x, yw,(y). Then g~ (x)<0 for all xe X~ and
g~ (x0)<0. Let I'™ be the set of all paths Pe P, ,(N) contained in N-. Then

we can prove similarly that A,(I'")<oo. Furthermore h(P)<h(x,) for p-almost
every PeI'~. This completes the proof.
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COROLLARY. HD®)(N) consists of only constant functions if and only if
for each ue D®P)(N) there is a constant c, such that u(P)=c, for p-almost every
infinite path P.

We shall prove

THEOREM 3.2. Let ue D®@(N). Then ue DP(N) if and only if u(P)=0
for p-almost every infinite path P.

Proor. In case N is of parabolic type of order p, our assertion is clear. We
consider the case where N is of hyperbolic type of order p. By [5; Theorem 3.3],
it suffices to show the “if’’ part. By Theorem 2.1, u can be decomposed in the
form: u=v+h, where ve D{’(N) and he HD®(N). Assume that u(P)=0
for p-almost every infinite path P. Since v(P)=0 for p-almost every infinite path
P by [5; Theorem 3.3], we have h(P)=0 for p-almost every infinite path P. It
follows from Theorem 3.1 that h=0, and hence u € D{P’(N).

We say as in [8] that u € L(X) vanishes at the ideal boundary of N if, for
every £¢>0, there exists a finite subset X’ of X such that [u(x)| <& on X —X".

As an application of Theorem 3.2, we have

COROLLARY. Let ue D®X(N). If u vanishes at the ideal boundary of N,
then u e D{P(N).
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