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Introduction

The Griffith energy balace theory in fracture mechanics has been
reformulated in terms of J-integrals, so that the fundamental relationship:

the energy release rate is expressed by a J-integral

holds for crack grwoth problems. As stated in the previous paper [12], this
relationship is valid only for simple (two-dimensional) models of fracture. Thus,
in [12], we proposed generalized J-integrals (abbreviated to GJ-integrals) and
established the relationship

(*) the energy release rate is expressed by a GJ-integral

for a three-dimensional fracture problem in which the crack is strictly contained
in the material and the stress is free on the crack surface. Here we note that
the arguments in [12] are also applicable to the two-dimensional problems (see
[11D.

The GJ-integral introduced in [12] is expressed as the sum of a surface
integral P and a volume integral R. The term P corresponds to the original
J-integral. An integral corresponding to the term R was also considered by
Destuynder and Djaoua [1] for a two-dimensional problem, in which it was
shown that the energy release rate can be as well expressed only by this integral.
Moreover, in more general theory (cf. [13], [14]), the term R appears to play a
leading part.

Another feature of J-integral is that it represents the singularity of the elastic
field (see [1], [11]). For the problem considered in [12], it was shown that the
singularity appears only on the edge of the crack and the GJ-integral vanishes
if the singularity does not appear.

In this paper we treat the case where the crack intersects the surface of the
material, and moreover the crack itself is pressurized. In practical problems,
such crack arises in various cases such as pressure vessels containing surface
cracks (see e.g. Kikuchi, Miyamoto and Sakaguchi [6]), and there is much practical
interest in estimating safety of such cracked structure. For two-dimensional
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pressurized crack, there have been some attempts to modify the J-integral and
to obtain a relation like (*); see e.g. Karlsson and Backlund [5], Chen and Wu [3].

The main purpose of this paper is to give an expression of GJ-integral and
establish the relationship (*) for such three-dimensional pressurized surface
crack problem. It turns out that the GJ-integral consists of three terms P, R()
and R®; P and R™W correspond to P and R in [12] and the term R(® reflects the
pressure near the edge of the crack. We shall see that only the singularity on
the edge of the crack (hence not that on the intersection of the crack and the
surface of the material) contributes to the GJ-integral.

The whole arguments are based on functional analysis as in [12]. We need
the density and the trace theorems for Sobolev spaces on a domain with a cut.
But the usual density and trace theorems (see e.g. Necas [10]) are not applicable
to our domain, so in section 2, we formulate and prove these theorems. Recently
a trance theorem for a two-dimensional domain with a cut has been given in
Grisvard [4], but the method used in [4] is different from ours.

Throughout the paper the letters C, C,, C,,---, will be used to denote various
positive constants, which are not necessarily the same even in a single formula.

The author wishes to thank Dr. T. Miyakawa for his helpful suggestions for
improvements of the manuscript. The author also would like to acknowledge
the continuing guidance and encouragment of Professor Fumi-Yuki Maeda.

1. Quasi-static formulation of the problem

1.1. Let # be a three-dimensional elastic body which occupies in its
non-deformed state a bounded domain G in R3 with smooth boundary. We
assume that the body & contains a crack %, parametrized by ¢ in a fixed interval
[0, T]. Each crack ¥, is a surface crack, that is, it intersects the boundary of 4,
and is assumed to be represented by a surface X(¢) in R3 in its non-deformed state.
The deformation of the elastic body under consideration is described in terms of
a family of elliptic boundary value problems with parameter ¢ defined on the
domains Q(t)= G — X(¢) (see subsection 1.2 below).

We assume that X(f) extends smoothly along a C®-surface IT in R3 which
is transversal to 0G and divides G into two domains G* as follows:

(SC1) G=G*UG UG°withG°=6nIMand G* NG°=G~ nG°=G* NG~ =g;
(SC2) L=IInaG is a C*-curve.
We assume that the surfaces X(¢) are of the form
Z() = A(®) n G°,
where A(f), t e [0, T], are relatively open subsets of IT such that
(SC3) the closure A(f) is a two dimensional C®-submanifold of IT with C*®-
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boundary 0A(f) intersecting transversally with L at two points 4,(f) and
Ay(0);

(SC4) A=A0)cA(H)<=A(t) for 0<t<¢, and the limit lim,_, ¢~ Z(f)—Z(0)]
exists and is non-zero, where | -| denotes the surface area.

(SC5) There are smooth diffecomorphisms ¢,: d4—0A(t), te [0, T], such that
the map (x, t)— ¢/(x) is smooth from 04 x [0, T] into II.

Hereafter we use the notation:

[()=03G—5(1); 8,5(f)=04()nG; 9,5(1)=A() n6G; E=2(0), 2=0(0),
I'=r(0), 4=4(0), 0,2=0,2(0); I'+=0G*—(G°U L); and 0,Q=00Q NG, 0,Q0=
0 n 0G, for any set Q in R3.

In case t=0, (SC1)-(SC3) imply the following

LemMA 1.1. Let D be the open unit disc in R? and
D,=Dn{xeR?; x,20}. Thereis a C*-diffeomorphism F,,(n, &) from 0Ax D
onto an open neighborhood V 5, of 0A in R? such that:

F,,n,0)=n for every n in 04;
Fol(@AX[DN{E,=01]) =TT V,y;
Fos@AX[DN{E;>0,E,=0) = A n Vou;
Fol0Zx[DN{E>0,E,=01) =2 n V,,;
F,,({4}xD) <0G and F,,({};}xD;)cTl;,i=1,2.

We can construct a spray (see Lang [7; IV, 3]) wich fits into the shape of 0G
and 04, and then the usual argument on the existence of tubular neighborhood
leads to Lemma 1.1; see e.g. [7; IV, 5]. We may as well start with assuming
the existence of such F,,. In terms of the curvilinear coordinate (V,4, Fj,),
each edge 0,2(¢) is parametrized as follows:

There are a number To>0 and a family {h(-, #): t€[0, T,]} of smooth
functions on 04 such that:

(i) —1<h(n,t) <0 and h(n, 0) = 0 for all nedA and te[0, T,].
(ii) The map h is smooth from 04 x [0, T,] into (—1, 0].

(1“) alz(t) n VaA = {X'X = FbA(r’, h(ﬂ, t)a 0)’ ”ealz},
Z(ONVoq = {xlx=Fou(n, &, 0), n€0.Z, h(n, )<& <1},
A() = Fyu(4; h(4;, 1), 0) for each tand i =1, 2.

This is shown in essentially the same way as in [12, Lemma 4.3], and so the
details are omitted.
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For each x eV, let ¢, be a positive number such that, for 0<t=c,,

(1.1 Ki(x) = Fa4(n(x), $1(X)+h(n(x), 1), &5(x))

belongs to V,,, where (n(x), £,(x), £,(x))=F;4(x). The parametrized path:
t—k(x) defines a vector field X on V,, as

(1.2) X(x) = (d/d)K/(x) li=0
= ((0/0D)h(n(x), Dle=0) [(3/0L1)F 541 (n(x), £1(x), &5(x))-

1.2. Let u(x)={uj(x)}3-; denote the displacement vector of the elastic body
under consideration. The constituent law is formulated as follows:

O'ij(x) = [O'ij(")] (x) = aijkl(x)ekl(x),
eij(x) = [eij(u)] x) = (Djui(x)+Diuj(x))/2’ D; = 0/0x;,

where the components a;;,, of Hooke’s tensor are assumed to be in C*(G) and
satisfy the symmetricity:

Aijkl = Ajie = Qi
and the uniform ellipticity condition:
aijnliiCu 2 a&;ii; (&5 € R®) for some constant o > 0.

(Here and in what follows the summation convention is used.) Now let I'; be a
portion of G along which the elastic body cannot move. We assume that I' is
measurable with respect to the surface element of 0G, has positive surface measure
and dist (I'y, 0,2(t))>0. Let us denote by .2(¢) the surface force acting on I',(f)=
r(t)—TI,, by 2(¢) the force acting on X(¢) and by #(¢) the body force prescribed
inside ©(¢f). In this paper we assume that they are given by Z(t)=F|g(),
P()=P|sr) and 2(t)= 2|y, for some (£, 2, 2) in {L%G)}3x {H'*(G°)}*x
{HY*(0G)}3. Here, for an open set Q or a surface Q, we denote by H™(Q) (m=0)
the Sobolev space of order m with the norm ||, o. Let

V(Q(1) = {ve H(A)}’lop=0 on I'},

where v is the trace of v on I We shall denote by [v] the jump of v across
2(1), ie., [v]=v*—=v~, where v* and v~ are the traces of v on dG* n G° and
0G~ n G, respectively. dS will denote generically the surface element. Then,
under the hypotheses stated above, the quasi-static problem to be discussed is
the following:

PrROBLEM 1.2. Find for each te[0, T] a displacement vector u(t) e V(€(t))
which minimizes the potential energy functional
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E(v;, ¥)= S [o:;j(v)e;;(v)]/2dx — g F-vdx
() (1)

—S .@~vrdS—S 2.[v]dS for ve V(Q(1)).
(1) Z(t)

This problem can be restated in the following form:

PrOBLEM 1.2°. Find u(t) e V(Q(t)) such that

a3 | oy@oe;@ds={ Fodx+| soas+ | o.wids
(1) Q(r) t) (1)

Iy(
for all v e V(Q(1)).

Problem 1.2 is equivalent to the determination of a solution u(z) of
—Djo;(u(t)) = #; in Q1) in the distribution sense,
(1.4) (o (u(Nrv; = 2; on I'y(1),
o(ut)tv; = o, (u)"v; = 2, on X(¥) (i=1,2,3),

where v; are components of the outward normal to 0G or the outward normal
to G° with respect to 0G*.

Since () satisfies the cone property (see e.g. [12, p. 23]), an argument
similar to the one used in the proofs of [12, Theorem 2.5. and (4.28)] yields the
estimate:

(15) [, 711 ®e1s(@)dx 2 Clolt.a

for all v e V(Q(t)), 0=t<T, with C>0 independent of v and ¢. This estimate,
together with the Lax-Milgram theorem, implies that Problem 1.2’ has a unique
solution #(t) in V(€(?)) for each t€ [0, T] and for any ¥ =(&, 2, 2)e 4,

M = {LHG)} x {HYXG)}* x {H'*(0G)}3,
and Green’s operators
TH): L =(F,2,2)— u@)=9(; &), tel0, T]

are uniformly bounded linear operators from .# into V(Q(t)).

1.3. Since the differential operator u—D;o;,(u) satisfies the uniform ellipticity
condition as shown in Fichera [2, p. 91], a regularity result (see e.g. [2, Lectures
5 and 10]) implies that singular points of the elastic field belong to (o N ;) U 8Z.
Here the term singular is used in the following sense: We call p € Q a regular point
of the elastic field, if there is an open neighborhood ¥, of p such that
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ulgay,€ H(QnV,). A point p is called a singular point of the elastic field if p
is not a regular point.

In order to state the relationship between the regularity and the direction
of the crack, we introduce the space 4 (Q) of functions v in L*Q) satisfying the
following conditions:

(1.6) v|ynoe H(% n Q) for all open sets # such that # < G, dist (%, %) > 0
and dist(#, [y nT,) > 0;

(1.7) (& -F)v)|y np belongs to L2(¥" n Q) for all domains ¥~ such that ¥~ < V,,,
dist (¥, 0V ;,)>0 and dist (¥, 0,2)>0, where the vector field Z on V,,
is defined by

Z(x) = [(0/OE)IF s 4(n(x), £1(x), £2(x)), x€EVoy.

The space 4°(Q2) is topologized as follows: A sequence {v,} converges to v in
A(Q) if and only if

| —lo,0 + |Um_U|1,9/nn + (% - V)Um—(fr'V)lﬂo,rnn—’ 0 as m—- oo

for each # as in (1.6) and each ¥~ as in (1.7). Notice that A47(2) is a Fréchet
space with respect to the above topology. :

THEOREM 1.3. The operator £—-D;7(0, &) is continuous from .# into
H(Q) for j=1, 2, 3.

ProoF. Let u=7(0, ¥) and L e.#. For any domain ¥~ as in (1.7),
we can prove (Z - F)u e {H (¥ n 2)}3 by estimating the difference quotient

[#(Fas(nx), £1(X)+h, E(x))—u(x)]/h, x€¥'n Q, O0<hsh,

where h, is a number such that F, ,(n(x), &,(x)+ hq, £,(x))eQnV,,forxe ¥ n Q.
Using this, we can obtain the assertion by modifying the argument given in
[2, Lecture 5]; the details are omitted.

2. Density and trace theorems for H' (£2)

Because our domain Q does not have the local Lipschitz property, the usual
density and trace theorems (see e.g. [10, pp. 67, 99 and 103] for local Lipschitz
domains) are not applicable. Thus, in this section, we establish corresponding
theorems for Q.

2.1. For a domain Q in R3, we define the distance ¢4(x, y) of two points x, y of
Q by the infimum of lengths of all broken lines connecting x and y in Q. We
notice that Z,(x, y) is not equivalent to the Euclidian distance. If Q has the
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local Lipschitz property (see [10, p. 15]), then £, is equivalent to the Euclidian
distance.

We can easily show

LEmMMA 2.1. Let Q be a domain with local Lipschitz property. Under a
C2-diffeomorphism of R3 onto R3, the image of Q has also local Lipschitz
property.

LemMa 2.2. Let Q and @ be bounded domains in R3 and ® a mapping
from Q into 0. Assume that Q is covered by a family {Q.};=1 ... m, of domains
with local Lipschitz property in R3 which satisfy the following:

(2.1) There is a constant C such that |®(x)—@(y)|<C|x—y| for any x, yeQ;,
i=1,-, m.

(2.2) The image Q¥ of Q; under @ is a domain with local Lipschitz property for
each i.

Then there is a constant C, such that
(2.3) £y(P(x), D(y)) = Coly(x, y)  forall x,yeQ.

PrOOF. Let B be an arbitrary broken line lying inside Q, which connects
x, y in Q. By considering a subdivision of B, if necessary, we may assume that
B consists of segments z;_,z;, j=1,---,q, with zo=x, z,=y, where for each
Jj» zj-1 and z; belong to Q,;, for some k(j), 1=Sk(j)S<m. By (2.1),(2.2), thereis a
constant C, such that

Lo(D(z;-1), D(z))) S Lot (P(z;-1), D(z)))
S CylD(zj-1)—P(z))| = C1Clzj—y — z;
for each j=1,---,q. Hence we have
£(D(x), D(y)) = Z‘}=1 ea(é(zj—l)’ Q(Zj)) =C,C Z?=1 [zj_l—zj .
Therefore, we obtain (2.3) with C,=C,C.
Let us put

U ={Fy/n, &1, &); meod, |§]<1)2,i=1, 2}
and

E(e) = {Faan, &1, £2)5me 0,2, 0<E,<1/2, 0<E;<ely},
for 0<e<1. We consider the family of mappings {®,},<.<; defined by
Fos(n(x), &4(x), [E2(x)+8&,(x)]/2)  for xeZ(e),
x for xe(UnQ) — E(e),

P(x) =
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where (7(x), &,(x), £,(x))=F3i(x) for xe U.

LemMA 2.3. For each ¢ 0Z¢=1/2, ®, maps UnQ onto U(e)=
U n Q—E(g/2) bijectively, and

Ci lyna(x, ¥) S |9(x) = DY)l < C.lynalx, y)
for all x, ye U n Q with a positive constant C, independent of x, y.

Proor. The bijectivity is clear. Let Q,=Z(2¢)—5(¢/2). By Lemma 2.1,
U(e), E(2¢), U(2¢), Q, are domains with local Lipschitz property. By Lemma 2.2
we obtain the inequality of the lemma, since U n 2=E(2¢) U U(2e), D (E(2¢))=0Q,
and @, is the identity on U(2e).

LEMMA 2.4. Let { € CF(R?3) satisfy
2.9) 0=<({=<1, supp{<U and (=1 near 0,Z.
Then, for an arbitrary we HY(Q) and 0<e<1/2,

2.5 Colliwlivna < [CW)e D1 vy = CollWliune
with a constant C, independent of ¢ and w.

ProOF. Let 0<d<e. Then &;! is a bilipschitz mapping from U(e+9)
onto U(26) with a Lipschitz constant independent of ¢ and 5. We obtain the
estimate (2.5) by the use of [10, Lemma 3.1]. This completes the proof of
Lemma 2.4.

2.2. The well-known density theorem (see Meyers and Serrin [9]) shows that the
subspace C®(2) n H(Q) is dense in H(Q). However we cannot replace C®(Q)
with C2(Q).

DerINITION. For a bounded domain Q in R3, let C$1(Q) be the set of all
Lipschitz continuous functions with respect to £, i.e., for each fe C 1(Q) there
is a constant C such that

IfX)—f)I = Clo(x,y)  forall x,yeQ.
Using Lemma 2.4 we derive the following
THEOREM 2.5. C%YQ) is dense in H(Q).

Proor. Let we H(Q2) and set v={w with (e CF(R3) satisfying (2.4).
Since dist (supp(1 —{), 8,Z) >0, we can choose a covering {U;} of Q nsupp (1—{)
such that each U is a domain with local Lipschitz property. Then, by the aid of
a partition of unity subordinate to {U;} and by the usual density theorem (see e.g.
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[10, p. 67]), we can construct a sequence {w;}7, in Cy (Q) which converges to
(1-0win HY(Q). Let v*=voP7},, which belongs to H(U(1/4)) by Lemma 2.4.
Since U(1/4) has local Lipschitz property, there is a sequence of functions {v;}%,
in C*(U(1/4)) such that v;=0 near oU n dU(1/4) and |v* —v;|; y(1/4)—0 as j—oo.
We now put v} =v;o®P, ,. Then the estimate (2.5) yields that

lv— Ullunﬂ Colv* _U|1U(1/4)—-—’0 as j—— oo.

Since v¥=0 near 0U, extending v} by 0 on Q—U, we have v%—v in H(Q).
Furthermore v% € C !(Q) for all j by Lemma 2.3. This completes the proof of
the theorem.

2.3. For a function v in C$(Q) we put
(2.6) yo=@* v, vp)

where vy is the trace of v onI"and v*(x)=lim,,, .6+ v(y), v~ (x)=1lim,,, .- 1(2)
for each xe X. We shall now extend y given by (2.6) to ve H(Q).

For a surface S in R3 with a distance dg, we denote by H*(S; d), 0<a<1,
the space consisting of functions v in L?(S) such that

1/2
luss = Jlld.s+ | {1600 = o), p)20dsas} < oo,
SJS

H*(S; dy) is a Hilbert space with respect to the norm |- |, ;.. We omit dg in case
dg is induced by the Euclidian distance in R3.

We define a distance dy(x, y) on I' as follows: d,(x, y)=lim;, £¢o(x;, ¥;),
where points x; € Q and y; € Q approach to x and y, respectively.

Let Q be elther R? or R, ={xe R?; x;,>0, x,>0}. We denote by «7(Q)
the space of functions w in H/2(Q) such that

1/2
Wy = {lWI 12,0t S x2‘|w(x)|2dx} < + o0.

The space «/(R?) coincides with H3/2(R?) given in Lions and Magenes
[8, p. 66] which is the intermediate space [H§(R?), L%(R?)];,,. Hence by
the interpolation theorem [8, Theorem 5.1], the zero-extension of win «/(R?)
(resp. «(R%,)) is continuous from «Z/(R?) (resp.«(R%,)) to HY%(R?)
(resp. HV%({x € R?; x,;>0})). The operator D, is continuous from H?'/3(Q)
to the dual «’(Q) of &/(Q). Now let o7(2) be the space of functions w in H/%(Y)
such that

/2
Wlaw = [ W13+ dex, 2D 1weotas [ < + o,
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where, for xe Z, d(x, 0,Z)=inf,., y|x—y|. Then the above observation implies,
via partition of unity, that the zero extension w of w in &7(X) to G, i.e.,

w—W=w on X;=0 on G°-—2%

is a continuous map from «/(Z) into H'/2(G°). Here we cannot replace .« (Z)
with HY/2(X). In the following we shall use the same notation w for the zero
extension w of w, when there is no ambiguity.

We shall prove

THEOREM 2.6 (cf. [4, Theorem 1.7.3]). The mapping y defined by (2.6) is
extended to a continuous operator from HY\(Q) into {HY2(X)}2x HYXI'; d,)
so that

[v] € #(Z) for each ve H{(Q), where [v] =v*t —v-,
and the mapping v— [v] is also continuous from HY(Q) into «/(2).
2.4. In order to prove Theorem 2.6, we prepare

LEMMA 2.7. We set Q=R2?. For (¢,, ¢,) e {CF(Q)}2%, we consider the
Jfollowing norms

@) [ 101=0:00kx, y)ydxdy+ £31 10,310}

R O I S MY

where k(x, y)={(x;—y1)*+x3+y3}'/? and {$p}(x)=¢,(x)—d,(x).
Then the norms (2.7) and (2.8) are equivalent.

Proor. 1) We have

[, |, 19169 =6:0002K(x, 3)2dxdy < AL, +1),

where

1= {[, ke p-2ayficayerds = x>,

I = {§ 16:60=620)PkCx, y)ydxdy.
Since k(x, y)?2(x;—y1)*+(x2—y,)*in Q, I, <|¢;|},5,o- Hence

[, §, 1819 =@2001kCx, y)2dxdy < 2{] x3*1o>(ldx+1dlEm,0f
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2) For (¢4, ¢,) € {CT(Q)}?, integration by parts yields
[, x5 ks = {72t (” ax [ Key@1ax,
=< S: t~2dt S: dx, S; T (t, x) + L, (t, x)]dx,,
where

x1+t
19 = 7 1900 x) = daes, 2+ 0Pz,
xX1—

x1+t
It = {7 19221 33+ 0= 8o, x4z,

Using Fubini’s theorem and setting z, =x, + ¢, we have

2.9 S: t~2dt Sw dx, S; 7, (¢, x)dx,
= S_w dx, S_w [L1(xy, 21) + 1;5(xy, 21)]dzy,

where
|z1—x1] ©
I(xq 29) = So dx, Sx o I(Zz—xz)_3|¢1(x)—¢2(z)|2dzza

I5(xy 29) = SI al dx, Sz (z22—x2)73]¢1 () — @2(2)]%dz, .
Zy3—xy1 X2
Inequalities |z; —x;|=x,20, z,=2x,+|z; —x,| hold on the domain of integration
of I, so that (z,—x,)"1<2%2k(x, z)~1. Also the same inequality holds on

the domain of integration of I,,, since x,=|z;—x,|, z,=2x, there. Thus it
follows from (2.9) that

5“’ 124t S“’ dx, S' 1711, (t, x)dx, < 29/25 [ 16100 = #2(2)kCx, 2)2dxdz.
0 —0 (1] QJQ
In the same way, we have
o} 0 t
S t—Zsz dx,S -11,(t, X)dx gzwzg S 162(x) — $5(2)21x— 2|3 dxdz.
0 - 0 QJQ
Collecting terms, we thus have
[, x5 1P 22 {{ 16,09 = 02012k (x, )>dxdy +1alts0}

This completes the proof of Lemma 2.6.
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2.5. ProoF OF THEOREM 2.6. By Theorem 2.5 it suffices to prove that y and v—
[v] are continuous on C¥1(Q). Let { be a cut-off function satisfying (2.4). Since
dist (supp(1 —{), ,2)>0, by considering a covering of 2 n supp (1 —{) by domains
U; with local Lipschitz property, and the partition of unity subordinate to {U},
we see that the usual trace theorem (see e.g. [10, pp. 99 and 103]) yields the
continuity of v—y((1—{)v) from HY{(Q) into {H'/2X)}2x HYXI'; d,). Obviously,
[(A=0v] € #(2) and |[(1 =)ol |z S C{UA =D 0] " 12,5 +IIA =]~ |1/2,53-

Let us set
H = {xlx=F6A(rI, 619 52)’ ’76612: 0§€1§1/2, 62=61/8}a

&=0,,, and Q=U(1/4). The restriction of @ to G* n U (written by &%) is a
bilipschitz mapping from G* n U onto G* n Q by Lemma 2.3. We continuously
extend @, to the closure of G* N U. Then ¢*(ZnU)=H and ¢*(I'* nU)=
r'*nQ. We set kox, y)={Ix—y|2+d(x, 0,2)*+d(y, ,2)*}1/? for x, yeZX.
Using local coordinate systems, we obtain the estimate

(2.10)  Ci'ko(x, y) = |9*(x)—y| = Ciko(x, y)  forall x,yeZnU,

with C, independent of x, y. We next use Lemma 2.3 and the fact that Q, G*
and G~ have local Lipschitz property, and obtain

(211 Caldy(x, y) = [9*(x)—y| = Cadul(x, y)

for all xeI'*t nU and yeI'- n U with C, independent of x, y. We put w={v
for ve CYY(Q) and w*(x)=w(P 1(x)) for xe Q. Since Q has local Lipschitz
property, the usual trace theorem and (2.5) yield the estimate

(2.12) |W3Q|1/2,aQ = C3|W*|1,Q = C4|’-’|1,Un9

with constants C;, C, independent of ». Decomposing the domain of inte-
gration, we can show that

[Wioli/2,00 2 {IWEIZ 2,8 + IWESI3) ring + IWE 32,100
+ [W¥l3/2,500 + I + I}/,

where w§, i, w-, and w¥ denote the restrictionsof w¥, to H, I'. nQ, I'_nQ
and 2 n Q, respectively, and

L= W) =W 02k =515 (S 0)
L= (W= wEO)x—yI2dS(ES0),
Inu

Since @ is bilipschitz on G* n U, we have by (2.10) and (2.11)
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Lzl (= w0y »)2dsxdso),

Lz (| (Wi @—w o)kt ) 2dS@ds0)

with Cs independent of w. By applying Lemma 2.7 with respect to the local
coordinate systems of X and using a partition of unity, we obtain

I+ 1w 32,500+ W7 132,200}

2C{[  dex 0,5 ICIPASCO+ W ssao + W 00

with C4 independent of w. In the same way as in the proof of Lemma 2.4, we
can show that the norms [W§l}/5 1 IWEH13/2,r, ns IWEI%/2,r_ 0 and |WH13)5 500 are
equivalent to |W*|y/2 5005 IWrlyj2,r,nus [Wrliy2,r_av @and [W™|y )5 5qu, Tespectively.
Theorem 2.6 then follows from (2.12).

3. Generalized J-integral
3.1. The Lie derivative L, with respect to a vector field ¢ is determined by
3.1 Lo = lim, t" ' [afw—w]
for an r-form w (0=r=n), where afw is the pull-back of w by the flow «, for &

(see e.g. [7, pp. 109-127]). If M is a surface in R3, then functions defined on M
are 0-forms; for the surface element dS,

(3.2) Ly(dS) = div,, &dS,

where div,, £ is the divergence of ¢ with respect to M (see e.g. [7, p. 205]). If,
for a submanifold N of M, the restriction a,|y is also a flow in N, then o,|y gives a
Lie derivative, which we denote by L,|y. The local flow x—«,(x) on V,, given
in (1.1) derives the Lie derivative Ly=X-F for functions. We denote by Ly|y
the restriction of Ly to N nV,,, where N=0G or G°.

LeMMA 3.1. Let ¢ be an arbitrary function in CF(R?) such that
suppy =V If veCLUQ), then Y(Lylscvr) € L™(I') and Y(Lylgo[v]) € L™(2).
Furthermore, the mapping v—Y(Lyx|,gvr) (resp. vo>Y(Ly|go[v])) from C$ ()
into L®(I') (resp. L®(Z)) extends uniquely to a continuous mapping from H'(Q)
into H-1/2(0Q) (resp. H-1/%(G®)). We use the same notations Y(Lx|,cvr) and
Y(Ly|go[v]) for ve HY(R). Then

¥ Ealagree = = | [Laloo+divacX) Wf)1ords
(3.3)
@, VLl [oDyeo= = | | [(Lalgo +diveo X)(Wg)][v1dS
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hold for any element (f, g) in C$(0G)x CF(G®), where C3(0G)={fe C*(0G);
f=0 near L}.

REMARK 3.2. For veCQ1(Q), the element {Y(Ly|,6vr), ¥(Lxlgolv])} in
L*(I') x L*(X) can be considered as an element of H-1/2(0G) x H-1/*G°), i.e.,

Sy W (Lxlogvr)dog = Sac SfU(Lxls6v)dS,
@, V(ExlLoDdeo = | g¥(Lxles[0])ds,

for all (f, g) e HV*(0G) x H'/%(G°).

REMARK 3.3. CP(0G)x CF(G°) is dense in HY2(0G)x HY/*(G%); see
[8, p. 15].

Proor oF LEMMA 3.1. If ve CQ1(Q), the function v, is Lipschitz con-
tinuous on I" with respect to d,, and [v] € C%1(X). Since Y(Lxls6) and Y(Lx|go)
are differential operators of order 1, Y(Lx|,6)vr € L°(I') and Y(Lx|go) [v] € L®(Z).
Since [v] =0 on 0,Z, the Gauss theorem (see e.g. [7, p. 206]) gives

[ Aalagonds = = | [(Lxlog+divag XppfIurs,

[ gwrlooton)ds = = | [(Lalos+dives Xopg] Du1ds,

for (f, g) € C3(0G) x CP(GO), where we used the formula (3.2). Hence we have
(3.3) in view of Remark 3.2. By Theorem 2.6, the operators v— v, and v— [v]
are continuous from HYQ) into HYX(I';d,) and from H'(Q) into «/(2)
respectively. Moreover the zero-extension of we «/(X) to G° is continuous
from /(X)) into HY?(G®). Since the operators f—(Lx|,q+divye X)(Wf) and.
g—(Lx|go+divge X)(¥g) are continuous from HVXI',) into H-Y*I') and
from H1/%(G°) into H~'/2(G°), respectively, the right-hand sides of (3.3) are
estimated by |f|y,2,s6/0l1,0 and |gly,2,6olvl;,o Tespectively. This, together with
Remark 3.3 and Theorem 2.5, shows the assertions of the lemma.

3.2. LeMMA 3.4. Let A be an open neighborhood of 0,2 such that the boundary
0A is smooth and is transversal both to 0G and to II. Suppose A<V ,,,
dist (0A, 0,2)>0 and 8, n A consists of two points. Then the trace operator:
d—9lo,ang from #'(Q) into HI20,ANnQ) is also continuous from A(Q) into
L%(0,An Q).

Proofr. The transversality between IT and 04 implies that

Z(x), v(x)) £ —Cy <0 for xed,Z n 04,
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where (-,-) is the standard inner product in R3 and v the unit outward normal
to 04. Let w be a function in CF(V,,) such that w=1 near 94 nd,Z,
0A nsupp w=g and (&, V)< —Cy/2 on 0A nsupp w. For small >0 we set

V(0) = {xe R3; x=F,,(n, &), ned,Z, Le D—{{; 20, |£,|<0}},
0,V(0) = Uiz, {x; x=F4(A;, £), EeD—{{, >0, |, S6} ).
Let fe #(Q); then wfe H!(QA(S)), where QA(0)=AnV(6). Since QA(J) has

the local Lipschitz property, we obtain

@-F) (02 f2)dx = S 0? [, ndS

SQA(&) 210A(5)

&, n)dS — S w?f?2 div ¥dx

San(J)nA R4(%)

for the unit outward normal n to dV(5). We may write for sufficiently small é
0,QA(0) = (0 AnV(O) U (AnH,(H)) U (AnH_(3)),

where H,.(0)={x; x=F,,n, &), ned,Z, £eD, &,>0, £,=+6}. Note that
{Z, n)=0 on 0,V(0) and <%, n>=0 on AnH,(5), because & is tangent
to 0,V(d) and to An H4(d). Since n=v on 9,4, it follows that

W f2, v>dS = S (@ - P )@ f )+ w2 f2div ) dx.

SO‘AnV(J) QA(9)

Using the assumption that (&', v> < —C,/2 on 04 nsupp w, together with the
Schwarz inequality, we therefore obtain

lwfl(z),mAnV(a) s C{l@- V)flg,r nn+|f|%,n}

with C, independent of 4 and f, where ¥~ is an open set in R? as in (1.7) such that
suppw<=7¥". Hence, letting §—0, we have

waltz),al,{nn = C1{l(-%"‘7)f|%,rnn+|f](2),n} .

Since dist (0,4 n supp (1 —w), 6Z)>0, there is an open set % in R3? as in (1.6)
which contains 0,4 nsupp (1 —w). Hence by the usual trace theorem,

|(1_w)f|(2),014nﬂ = Czlfﬁ,wnn-
This proves Lemma 3.4.

3.3. We are now in a position to give the definition of generalized J-integral
for the surface crack problem 1.1.

DErFINITION 3.5. Let A be an open neighborhood of d,% as given in Lemma
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3.4, and ¢ € CF(R?3) a function such that supp p=A and ¢=1 near 6,X. For
=(F, P, De ., u=7(0; £) and the vector field X given by (1.2), we define
the generalized J-integral acting on the surface crack by

J(Z) = Py(2) + RP(ZL)+ RP(2),

where
P2 = | WX )-T-(X - Puyds;
RY(L) = — Sm (X -P)aulDeqe,; + F - (X - P)u)pdx
+ Sm (0,0, X, )(Dy) — W(div X)}dx;
RP (L) = — {2, 9Lxlacurs6 — {2, ¢Lxlgo[u] dgo

[ =02 @isgupds - | (1-0)7 - (Laleolu)ds.
rn4 INA

Here W=oe;;/2 (the strain energy density); T=(T;) with T;=o;;v;, where v; are
the components of the unit outward normal v to 04. The term (X -F)u in P (%)
is the trace of (X-F)u on 0,4, and {, >, (resp.{ , Dgo) denotes the
duality pairing between {H'/2%(0G)}3 and {H~Y%(0G)}3 (resp. {H'*(G%}3 and
{H-1%G°)}%). By Lemma 3.1, RP(%) is well-defined.

As is easily checked, J (%) is independent of the choice of the function ¢.
It will be shown later (see Proposition 3.7), that J ,(.#) is also independent of the
choice of A.

PROPOSITION 3.6. J (%) defines a continuous functional on 4 ; in fact the
mapping £ —J (%) is uniformly continuous on bounded sets in A .

Proor. Let u=7(0, ¢). By Theorem 1.3, g;;(#) and e;i(») all belong to
A(Q). Hence by Lemma 3.4 the operators

L— O'ij(")lamnn and ¢ — eij(")lamnn, i,j=1,2,3,

are continuous and linear from .# into L%(0,4Nn Q). Let %, and %, be in #
and u*=7(0; &), o%;=0,(u"), ek;=e¢;(u*) and T¥=0%;v; for k=1,2. Then
‘we have

Pu(2) = Pu(2) =271 (ol(el;—el) + el (ol — 01D} (Xv)dS

B Sa AnQ {T-((X-7) (u'—u?) + (T'—T?)-((X-F)u?)}ds.

Applying the Schwarz inequality we obtain
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[P(Z1) — Pi(L)| = Ci(|1 %] + | L2 %1 — Lol e

with C, independent of %,, k=1, 2. Similarly, the continuity property of the
Green’s operator 7 (0; £): #—V(Q) implies the estimate:

|IRP(Z)) — RP(L)| = Co| %1t + |22 E1 — Lol
Finally we estimate
RP(£)) — RP(£) = R3 + R,
where

R3' = — {2y, ¢Lxloe(u' —u?) o6 — (21— 23), ¢Lxlo¥?) 26
— {21, Lx|go[u' —u?] Y60 — {(P1—P,), ¢ Lx|go[4*] o

Rp= = (1-p)2(Lxloou' ~u?))ds
= { -0)@i-2)-Wxloaupas = | (1-9)2, (Lalgolu* ~w?])ds
'nA ZNA

= (. (1-0) (@-2) Lalelw]ds.
Using Lemma 3.1 we have
IRE = C3(121|.¢ + |22l )21 — 2l e

with C; independent of %, k=1, 2. Since dist(supp(l1—¢), ,2)>0 and
dist (4, 0V ,,)>0, Theorem 1.3 and the usual trace theorem together imply that
the operators ¥—(1—@)(Lxlocur)rngs (1 —@)(Lxlgo[u#])lsq4 are continuous from
A to HY*(I' n A) and from .# to H'/?(Z n A). Hence by the Schwarz inequality
we obtain

IR = Cu(|21]e + [ L2 )IE1 — Z2)0

with C, independent of %, k=1, 2. We obtain the desired result by combining
the above estimates.

3.4. PrOPOSITION 3.7. The value J (%) is independent of the choice of the
domain A.

PrROOF. Let A, and A4, be two domains as in Lemma 3.4. Without loss of
generality we may assume A, cA,. Let Q=A,—A4,; then as in the proof of
Lemma 3.4, we obtain
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(3.4) SQm(X- V)yWdx = Sa oo WX 0)S ng W(div X)dx.

1

On the other hand, since e;;=e;; and g;;=0;;, we have

3.5) gm(x- 7 \Wix = SW((X. P )asjul2)ene,dx

Qne one
As in the proof of Lemma 3.4, it follows that

(3.6) S o DAX - Pupdx = — S Do (X -V)u)dx
ene one
+ S 210 aijvj((X P)udds + S rng (aij)r vj((X -P)(u)r)ds

+ S [o,((X - 7 )up] v,dS.
InQ
Since u=9(0; .#), we have (1.4) with t=0. Hence from (3.5), (3.6) and the
fact that dist (0Q, 0,2)>0, we obtain
(3.7 S (X-P)Wdx = S {(X - Pajjul2)ene;+ F - (X -V )u)}dx
Qne Qne
+ g T.((X - P)u)dS + 5 2.((X - P)up)dS
210 rng
+ S 2-(X-7)[u])dS — S 0,,(D,; X, (Dyu)dx
InQ one

Equalities (3.4) and (3.7) yield J 4,(#)—J 4,(#)=0, which shows the assertion

In what follows, the subscript A of J (%) will be dropped. If u=7(0; .¥)
is smooth up to the edge of the crack, then by letting Q=A in the proof of
Proposition 3.7, we have

PrROPOSITION 3.8. If u=9(0; %) belongs to H?> near 0,XU {4, A,}, then
J(£)=0.

This, together with Theorem 4.1 below, indicates that the crack extension
is caused by the singularities at 0,XU {4;, A,}, while the singularities at
0,%—{A,, 4,} have no effect on crack extension.

4. Calculation of the energy release rate

We now state our main result.

THEOREM 4.1. Suppose a load & € # and a smooth crack extension {Z(f)}
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as defined in section 1 are given. Define the energy release rate by
9(Z; {2(O}) = lim,,o |[E((0); £)—E(u(t); £)|/|12()—Z(0)|,
where u(t)=7(t; £). Then
9(2; {Z(O}) = [0Z()I1I(2),
where |0X(t)| =lim,_, o t~1|Z(t) — Z(0)].

Before the proof of this theorem, we prepare some lemmas.

4.1. Let 4(t) be a non-increasing smooth function on [0, ) such that |£(f)| < C,t
with C, >0 and 4(0)=0. We set

N(@) = {xeR3; x=(x,,0), £()<x; <0}, S({) = R?— N(1).

Let d(S(0))=4d(S(0); x, y) be the distance function on S(0) defined as the infimum
of the lengths of all broken lines inside S(0) which connect the points x and y
in S(0). We set

Aiw(x) = [w(xy—£4(1), x))—w(xy, x)]t7Y, xeS(1), 0<t<1,
for a function w on S(0).

Lemma 4.2. For fe HY*(R?) and we H'Y?*(S(0); d(S(0))) we have the
estimate

‘SS(I)fAinx =< COlf|1/2,R2|w|1/2,d(S(0))

with C, independent of f, w and t. (See subsection 2.3 for H'/2(S(0); d(S(0)))
and |- |1/2,d(5(0))-)

Proor. Let fe CP(R?). Obviously
t p— t
Ss(l)fdlwdx = SRZ fAiwdx + SnifA'lwdx. .
Since the path: t—(x; —4(%), x,) is parallel to the line x, =0, we have

(o ratwax = {, (v,

where
A7) = LG40, %) =FGer, 2] (=07 = (=07 | ¥ D, 1,48, x7)dE.

Since D; si continuous from H'/%2(R%) to H~'/?(R2), we obtain, letting

J)=f(x1+¢, x2),
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ISRifAlt wdx ,.—<—.Cz SuPog(g]gchgll/z,Ri|W|1/2,Ri = C2|f|1/2,R2|W|1/2,R£~

Noting that d(S(0); x, y)=|x—y| for x, y € R2, we obtain

}SnifAinx‘ =< Czlf‘1/2,n2|Wl1/2,a(S(0))-

The estimate for the integral over RZ2 is similar. This completes the proof of
Lemma 4.2.

We next consider an analogous difference quotient in the direction x,. Let
ke C$(R%) be a function such that k(y, £)<0 for (y, f)e R, k(y, 0)=0 and
k(y, )2 k(y, ) if t<t, for ye Rl. We put

w(x) = [w(xy, x3—k(xq, ) —w(x,, x)Jt7L, 0<t<l,
for a function w on R?, and
K(t) = {(x4, x,) € R?; x,>k(x4, 1), x; € R},
K.(®) =K@ n {xeR?; x,>0}.

Then, recalling that D, is continuous from H'/2(R%) into «/(R?%)’, by an argument
similar to the above proof we obtain

LemMmA 4.3. Let Q()=K(t) or Q()=K , (t). Let fe HV/*(R?) and w be
a function in C°1(Q(0)) n «(Q(0)) such that w(x)=0 on x,=0. Then by con-
sidering the zero extension of w to Q(1), we have

ng(') fAQdel < Colfli)2,72IW] w00y
with C, independent of f and w.
4.2. Let A be an open neighborhood of 6Z in R3 as in Lemma 3.4 such that
0. X(H)c A for all te[0, T,].
Take a function g in CF(R3) such that supp f<V,, and f =1 on A, and set
Fos(n(x), £1(x)— Bh((x), 1), £x(x))  for x€Vyy,
() = x for R3—V,,.
Applying arguments similar to those in the proofs of [12, Lemmas 3.8, 3.9], we

have the following

LeMMA 4.4. There is a positive number Ty <T, such that
(i) o: R3->R3is a C*-diffeomorphism for each te [0, T;],
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(ii) af2())=Z for each te[0, Ty],

(iii) the map v—afv=voq, is a linear isomorphism of H(Q) onto HY((?)) as
well as of V(Q) onto V(€(t)), for each te [0, T].

Let us put
A'w = [oaFw—w]lt™t, 47w = [(; ) *w—w](—1)"1
for a function w and 0<t<T;. Then we have

Lemma 4.5. If ve HY(Q), then {A'v, A*[v]} converges weakly to
{—B(Lxlogvr), —B(Lxlgo[v])} given by (3.3) in H~1/*(0G) x H~'/*(G°) as t—0.

Proor. By Lemma 3.1 we need only to show (see e.g. Yosida [15,
p. 125]) that (i) {{4*v}, 4*[v]}; 0<t<T,} is bounded in H~Y2%(0G)x H~1/*(G"),
and (ii) <f, 4'vr)se (resp.{g, 4'[v] Dgo) tends to <f, —B(Lxlsctr)Psc (resp.
<9, —B(Lxlgo[v])> o) as t—0 for any fe CE(OG) (resp. g € CGH(G)).

Assertion (i) will be obtained if we show the estimate:

@0 [, saods + (|  gaw1dS| < Collflyzoet gzt o

X(

for (f, g) € C3(0G) x CZP(G°), where C, is independent of v, f, g and ¢t. In case
ve CY1(Q), (4.1) follows from Lemmas 4.2 and 4.3 and Theorem 2.6 by the use of
an appropriate partition of unity. Since C$ (Q) is dense in H(Q2), we have (4.1)
for ve HY(Q2). Next we prove (ii). Using the change of variables y=a,(x), we
obtain, for (f, g) e CY(0G) x CF(GY)

@) | favas= - @yoas - | faroperas)-asy,
r(t) r r(@)

@3 | gamplas=~{ @9 p1ds - | o@D @Es)-as),
(1) Go Go

where [v] in the right-hand side of (4.3) is the zero extension to G°. By (3.1)
and (3.2) the last term of the right-hand side of (4.2) tends to

@) [ fordivee(~px0ds = = | (@ivee X)(B)ords — § (X - 4p)foras

as t—0. We can easily show that A4~ converges to

(Lxlag +divyg X)(—Bf)—div,e (— BX)f as t—0 uniformly on dG. Hence from
(3.3)and (4.4), <f, 4'vry,c converges to {f, —P(Lx|s6)vrYsc as t—0. Similarly
we can prove that {g, 4*[v] >go—<g, —B(Lxlgo[v])Dgo as t—0. This completes
the proof of Lemma 4.5.

LeEmMMA 4.6. There is a constant C>0 such that
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lefu—u(®ly,0n < Ct|l %),  forall te[0, T1],
where u(t)=7(t, ) and u=u(0).

ProoF. Given a load ¥ =(#, 2, 2)e #, we define v(¢) to be the solution
of the problem

) .9~wr(,)dS+S a* 2. [wldS
)

r(t Z(t

[ ou@ae,mix={ Fwix+|
) )

for all w e V(€(¢)). From (1.3) we have
4.5) ng 0., (u(t) — v(t))e;,(W)dx = gm (P —a*?)[w]dS.

By considering the zero extension of [w], and a partition of unity, the argument in
the proof of Lemma 4.3 yields the estimate

Hz(r) (2 —at2)[w] dS‘ s C'ltl‘@|1/2,6"| [w] Ix(;)

with C, independent of &, w and t. Then in view of (4.5) and (1.5), the Lax-
Milgram theorem (see e.g. [2]) and Theorem 2.7 imply

(4.6) lu(t) — v()|1,00) < Catl21/2,60
with C, independent of 2 and t. Now let

av, w) = ggm o (e wydx  for v, we V@),

and ¢ (u, w)y=a/ofu, afw)—ay(u, w) for we V(Q). Then, by an argument as in
the proof of [12, Lemma 4.10] we have

4.7 [4.(u, w)| = Cstlulyglwli,e  for weV(Q).

From the identity (1.3) we have
a,(afu, afw) = gnﬂ‘-wdx + S 2-wrdS + S P2-[wldS + ¢,(u, w)
Iy z

2-(@W) 1y dS + S oa* 2 [oa*w] dS
t) )

- S F-(o*w)dx + S
2(t) Iy( Z(t

+ S F-(w—a*w)dx + S
(1) Iyt

1

-@' (W —a?W)r(t)dS
)

+ SGO oa* 2 [a*w] (a (dS) —dS) + 4,(u, w).

Notice that here we have used the fact that the Lebesgue measure of Q—€Q(f) and
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'y —T(¢) are zero. Using the definition of v(t), we therefore obtain

a,(afu—ov(t), afw) = Sn(:) F-(w—afw)dx + Sr o 2-(w—afw)rHdS

1

+ SGQ o* - [oxw] (o* (dS)—dS) + £,(u, w).
As in [12, p. 41], we see that
(0, &0 =22W)dS| S Cutl Flo eIl < Catl Z1alwl1,0.

Using a partition of unity, Lemma 4.2 and Theorem 2.6, we obtain

ISH(‘) -9'(W—°‘fw)r(:)ds’ S Cst|2]4)2,06!Wrl1)2,40 = Cet| L] £IW]1,0-
Since (a*(dS)—dS)/t=w,dS with uniformly bounded functions w, on G°,

f,. @2)- latw) @ (dS) = dS) | < Co12 1o 5| W10,z S Cutl Z.alwls e
Thus, together with (4.7), we have

la,(afu—v(1), axw)| = Cot|Z| (Iwls,0
for all w e V(). Since a¥u — v(f) € V(€(1)), this gives
la,(afu—v(1), afu—v(2))| = Cyot| Z| lofu—v(t)ly,00 -

Hence, by (1.5), we finally obtain
(4.8) lo¥u — v(2)]1,00) = C11t| L ¢ -
The desired estimate now follows from (4.6) and (4.8).

4.3. Proor oF THEOREM 4.1. Since mapping ¥ —J(%) is uniformly continuous
on bounded sets of .# (Proposition 3.6), and since

A ={CF(G)}? x {CF(G")}? x {CF(8G)}?

is dense in .#(see [8, Chapter 1, (11.6)]), it suffices to consider the case . € .#.
By Lemma 4.6, we have

(4.9) lim, o o — u(£)|2 gqy = O.

Let a(v, w) be as in the proof of the previous lemma. By (1.3) with v=u(t) —a}u,
we see that
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|E(u(1); £)—E(eu; £)|
=Ha,(u(?), u(?)) —a,(a}u, atu)}/2—a,(u(1), u(t) —ofu)|
= a,(u(t) — afu, u(t) — atu)/2 = Cilu(z) —atul? o) -
Hence, by (4.9),
E(u(t); £) = E(a¥u; L) + o(t) (1—0).
By the definition of the energy release rate we have

16Z(0)|9(2; {2(1)}) = lim,o 1™ {ao(u, u) — a,(atu, ofu)}/2

F-(aFu—u)dx + lim, o 1! {S 2-(o*u —u) sy dS
)

+ lim, g 1 S
Iy(t)

Q(t
+(  o-lru-was).
- JEm

Now we introduce cut-off functions w, { € CF(R?3) such that

0w, (£1; AoV, nsupp(l—w), w =0 near 9,;
suppl{ = V4, { =1 on suppw and { =0 near 0,2.

By calculations similar to those in [12, pp. 44-46], we have

(410) 162019(<; (20D = | 0,D(BXIDudx
+{ @ pawppax - § a-owspax

- SQ {(X-P)ajjul2)eqe;;+ F-(X - V)u)Bldx + lim,_ o t71,,
where 4’ =(d/dt)|det (F a,)|~1),=o and
1= gac 2- (¥ u—u)pdS + S 2. [aru—ulds.
GO

From Lemma 4.5 it follows that
(4.11) lim,o t~'l,= —<2, BLx|sgUr) 56 — {2, BLx|go[u])go.

Let {B,} be a sequence of functions in CF(R3) such that 0=p,<1,
supp Bn<=Vos» Bw=1 on A4, and B,—yx, ae. as m—oo. Here y, is the
characteristic function of A. Since §,,=1 on supp (1 — w), substituting f=f,, into
(4.11) and letting m— oo, we see that the right-hand side of (4.11) tends to

(4.12) =<2, (1=0)Lalagurdag — | @2-(X-P)u)ds

~ (@, 1=0) Lilelde - | 02-(X-P)[uD)ds.
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To treat the other terms on the right-hand side of (4.10), we first observe the
following: Since D ;=0 on supp (1 —w) and {=1 on supp w,

@13 | o @A -Puydx = | w0y 08)(X-P)Cudx.

On the other hand, since there is ¥~ asin (1.7), (X - 7 )({u) € H'(22) by Theorem 1.3.
Hence by Green’s formula and (1.4),

@14) | Di@o)B(X-P)u)dx = | w2(X-P)Cup)rBds
+ [ 02t ML) pas = | o, D,{ACX-P)CuD}dx.
Combining (4.13) and (4.14), we obtain
@15 | o @A Puddx = — | Do) (X P)Cu)1pdx
+ [ 024X P)Cup s + | w07 LuDEdS.

We now substitute f=p,, in the right-hand side of (4.10), and then let m— oo.
Then taking (4.12) and (4.15) into account, we find

(4.16) 6EOI9(<; {20)
= = | Di@a,)(X - P)GuNldx + | 0D, X) D)
QnA ANQ
+ SQM((X-V)(CW))dx - SnnA(l—C)WJ’dx

(A PagulDewe, + #-(X P}

=<2, (1—w)Lx|s6ur) 56 — {2, (1 —@)Ly| o [#] Do

Since wo;;, {e;;€ #(R2) and (X - F)({u;) € H'(A N Q), a slight modification of the
argument in the proof of Lemma 3.4 yields

4.17) SAM(X-V)(CW)d‘x - ga WX 9)dS — Sm W(div X)dx

1

- g (1= O)W(div X)dx .
ANQ

Furthermore, as in the proof of (4.14), we have

@18 | Diwo(X-MEudx = | oy (X-P)wds



352 Kohji OHTSUKA

+S a>9~((X-V)[[Cu]])dS+S w2 (X -7)(Cu))dS.
ANx Anr

Here we have used the fact that o={=1on ;4 and w={=00n 9,Z. Collecting
terms in (4.16)—(4.18), we therefore obtain

(4.19) [82(D)|9(Z; {Z(1)}) = J(L) + SW (1=0) {W(div X)— W.s"}dx .

Now take a sequence {(,,} of functions in CP(R?) such that {,,—1 a.e. in A as
m—o0. Replacing { in (4.19) by {,, and then letting m— oo, we conclude that

[6Z(D)|g(2; {2} = J(£),

which completes the proof of Theorem 4.1.

References

[1] P.P.Destuynder and Le Chesnay M. Djaoua, Sur une interprétation mathématique de
Iintégrale de Rice en théorie de la rupture fragile, Math. Mech. Appl. Sci. 3 (1981), 70-87.

[2] G. Fichera, Linear elliptic differential systems and eigenvalue problems, Lecture Notes
in Math. 8, Springer-Verlag, Berlin-Heidelberg-New York, 1965.

[3] W-H. Chenand C-W. Wu, On the J-integral for a pressurized crack in bounded materials,
Int. J. Fracture 16 (1980), R47-R51.

[4] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman Advanced Publishing
Program, Boston:London-Melbourne, 1985.

[5] A.Karlsson and J. Bicklund, J-integral at loaded crack surfaces, Int. J. Fracture 14
(1978), R311-R314.

[6] M. Kikuchi, H. Miyamoto and Y. Sakaguchi, Evaluation of three-dimensional J-integral
of semi-elliptical surface crack in pressure vessel, Trans. Int. Conf. Struct. Mech. React.
Technol. 5, G7/2, 1-9, 1979.

[7]1 S.Lang, Differential manifolds, Addison-Wesley, Reading, 1972.

[8] J.L.Lions and E. Magenes, Non-homogeneous boundary value problems and ap-
plications I, Springer-Verlag, Berlin-Heidelberg:New York, 1972.

[9] N. G. Meyers and J. Serrin, H= W, Proc. Nat. Acad. Sci. USA 51 (1964), 1055-1056.

[10] J. Netas, Les méthodes directes en théorie des équations elliptiques, Masson et C'c,
Paris, 1967.

[11] K. Ohtsuka, J-integral in two dimensional fracture mechanics, RIMS Kokyuroku 386,
Kyoto Univ., 231-248, 1980.

[12] K. Ohtsuka, Generalized J-integral and three dimensional fracture mechanics I,
Hiroshima Math. J. 11 (1981), 21-52.

[13] K. Ohtsuka, Generalized J-integral and its application — An interpretation of Hadama’s
variational formula — RIMS Kokyuroku 462, Kyoto Univ., 149-165, 1982.

[14] K. Ohtsuka, Generalized J-integral and its applications I —Basic Theory—, Japan
J. Appl. Math. 2 (1985), 329-350.

[15] K. Yosida, Functional Analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1968.

Hiroshima-Denki Institute of Technology





