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1. Introduction

In this paper we consider the asymptotic solutions of the Dirichlet boundary
value problem for a pair of second-order partial differential equations

e4u — f(u,v) =0
(1.1) , x€Q,
Av — g(u, v) =0

with the boundary conditions
1.2) =a(x,8), v=p(x¢, xel.

Here Q is a bounded domain in R (N >2), its boundary I' is a connected C*®
hypersurface, and ¢ is a small positive parameter. Moreover we assume that f
and g are infinitely differentiable functions defined in R2. Such problems arise
in the study of steady-state solutions of chemically reacting and diffusing systems
(Aris [2] and the references therein). An interesting phenomenon in such systems
is the occurrence of boundary and/or interior transition layer. For N=1, by
using singular perturbation technique, Fife [7] showed that the existence of
boundary and/or interior transition layer phenomena for (1.1) and (1.2), and
recently Ito [9] modified his results into a more useful version. For N>2, as
far as we know, these phenomena have not yet been analyzed except numerical
simulations. In this paper, we restrict our attention to the problem (1.1) and (1.2)
with boundary layer phenomena. Consider the case where the reduced problem

f(“o, vO) = 0

, xX€Q,
4vy — g(uo, vo) =0

and

vy = Bo(x), xeT,

has a regular solution (uy, vg). In this case, we shall show constructively the
existence of a solution (u, v) of (1.1) and (1.2) such that

{ u — u, uniformly in any compact subset of Q,
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1 v = v, uniformly in @,

as e-0. Note that the above solution exhibits its irregular behavior, as a function
of ¢, in a neighborhood of the boundary I
The boundary value problem of the type

&24u — f(x,u) =0, xeQ,
(1.3)
u=oax,¢e), xel,

were studied in Berger et al. [3], De Villiers [5] and Fife [6], and others. They
showed the existence of a solution of (1.3) in the following way. First, they
constructed a formal asymptotic approximation by using an outer expansion,
valid in the region not adjacent to I', and a boundary layer axpansion, valid in a
neighborhood of I And next, they proved that there exists a solution of (1.3)
close to the formal approximation by using the contraction mapping principle
[3], [5] or the Schauder fixed point theorem [6].

Our main contribution is an extension of their method to the one applicable
to the boundary value problems for weakly coupled elliptic systems. In Section 2
we state the assumptions for the nonlinearities of f and g, which are of great
importance to construct the formal approximation. In Section 3 we construct
the outer expansion. Since this expansion dose not satisfy the correct boundary
condition, in Section 4 we construct the boundary layer expansion in a neigh-
borhood of the boundary I'.  And in Section 5, using these expansions we obtain
the formal approximation up to order &¢™ to the solution of (1.1) and (1.2), where
m denotes any nonnegative integer. In Section 6, applying the implicit function
theorem we show the validity of this approximation (see e.g., [7], [9]). Finally
in Section 7, we give a few comments on the equation (1.1) and (1.2).

2. Preliminaries

By singular perturbation techniques, we shall construct an asymptotic
expansion to the solution (u(x, €), v(x, ¢)) for a weakly coupled elliptic boundary
value problem

M[u, v] = e24u — f(u, v) = 0,

2.1
N{u, v] = 4v — g(u, v) = 0,

in a bounded domain Q (<=RY), satisfying the boundary conditions

2.2 u=ax,e, v=_p(x,e)),

on the boundary I', where f and g are infinitely differentiable functions of u and v,
I is a connected C* hypersurface, and ¢ is a small positive parameter. It is as-



A weakly coupled elliptic boundary value problem 229

sumed that a(x, &) and f(x, €) are infinitely differentiable functions with respect
to x e I' and have asymptotic expansions

a(x’ 3) ~ :0=0 “n(x)sns ﬂ(x’ 8) ~ 2 :0=0 ﬂ”(x)li",

as ¢—0 respectively, where «,(x)’s and ,(x)’s are infinitely differentiable functions

of xeI'. Moreover we make the following assumptions for f and g:

(1) f(u, v)=0 has at least one root u= h(v) with h defined on an interval I;

(ii) there exists an interval J (<I) such that By(x) € J for x e I', and f,(h(v), v) >0
and (d/dv) (g(h(v), v))>0 forve J;

(iii) for any y(x) e C*(I') with range in J, the boundary value problem

Av — g(h(v), v) =0, xe€Q,
2.3) {

v=19(x), xeTl,

has a solution v(x) € C*(Q) with range in J;
(iv) at each point xe I,

f(s, Bo(x))ds > 0

g h(Bo(x))
for ¢ # h(By(x)) in the closed interval between h(By(x)) and oyfx).

REMARK 1. From (i) and (ii),

D(f, 9) (h(v), v) = [f(u; v)g.(u, v) — f(u, V)g.(u; V)]u=p(w) > O
forveld.

REMARK 2. Let J%(a, b). If g(h(a), a)>0, g(h(b), b)<0 and a<y(x)<b
for x e I", then there exists a solution v(x) € C*(Q) of the problem (2.3) such that
a<v(x)<b for x € Q (Sattinger [10]).

First, we introduce several function spaces.useful for our purpose. Let
6=(04, 0,,..., 0y) denote the usual multi-index of ordet |¢|=0,+0,+ - +0oy
with nonnegative integers o;, and write 0,=0/0x; (1<i<N), V =(04, 03,..., O)
and 0°=09:0%>---0%". Suppose Q is a bounded domain in R".

(a) Let k be a nonnegative integer and ae(0, 1). By C***(Q) we mean the
Banach space of all real-valued functions u € C¥(Q2) for which the derivatives
0°u, with |o| =k, are Holder continuous on Q with exponent «. The norm is

”u”CHu(rz) = ’}:o |u|j,§ + |ulkso,a,
where

lul; o = max sup [07u(x)|,
lol=j xe@
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[Ulera = max sup [07u(x) — O7u(l/lx — yI* (x # ).

o|=k x,ye

(b) Ck+*%(Q) is the subspace of C¥**(Q) whose elements are functions vanishing
on 0Q.

(c) Let k be a nonnegative integer and 1<p<oo. We denote by W¥?(Q) the
Banach space of (equivalent classes of) real-valued functions u, defined on €, such
that » and all its generalized derivatives up to k, are pth-power integrable over Q.
The norm is

1/p
lelwer@ = (Ziors §, 10uEle dx )"
(d) Wk »(Q) is the closure of CP(Q) in Wk-2(Q).
WO-r(Q) is usually denoted by LP(Q). Let ¢ be a positive number.

(e) Ck%(Q) is the Banach space of all real-valued functions in C¥+*(Q), but with
the special norm depending on &:

ullcttaa = Z§=o 31|u|j,§+3k+¢|“|k+a,r‘z-

(f) Ck#(Q) is the subspace of Ck**(2) whose elements are functions vanishing
on 0Q.

(g) Let X and Y be Banach spaces. X—7Y is the totality of continuous linear
operator from X into Y equipped with the usual norm.

In this paper, the symbol C will denote a positive constant independent of .

3. Outer expansion

We begin with constructing an outer expansion (U(x, €), V(x, €)) of the form
3.1 U(x, &) = X 2o u(x)e”, V(x, &) =X Lov,(x)e", xeQ.
Substituting (3.1) into‘(2.1), we have

Xm0 Auy(x)e"*2 = f(X oo ul(X)e",  ilo va(x)e")

3.2 , X€EQ.
Yo v (x)er = g(Xiio un(x)e”,  Xiova(x)e")

The boundary conditions for (3.2) are assumed to be

(33) Z:o=0 Un(X)E" = Z:o=0 f,,(X)G", X € F’

where &,(x)’s are infinitely differentiable functions on I We will specify these
functions in Section 4.
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Equate the coefficients of the like powers of ¢ on both sides of (3.2) and (3.3).
Then for n=0, we obtain

| 0 = f(uo, vo)
, XeQ,
AvO = g(an vO)
and
3.4 vo = Eg(x), xel.

From (i) and (iii), we know that (uy(x), vo(x)) (o(x) = h(ve(x))) exists and uqy(x),
vo(x) € C*() whenever £4(x) e C(I') has a range in J. For n=1,

0 = fu(uo, vo)u; + f,(uo, vo)v,
3.9 , X€eQ,
Avy = g,(uo, vo)u; + g,(Ug, Vo)Vy
and
(3.6) v, = &(x), xer.
By the assumption (ii), we have
3.7 uy = — f(tho, o)y [fu(tho, Vo)
and
(3.9) Avy = D(f, g) (ug, vo)vy [f(tho, o).

Since D(f, g) (uq, vo)/f.(to, vo)>0 for x € Q, it is easy to see that (3.8) and (3.6)
have a unique solution v,(x) € C*(Q) if &,(x) e C*(I') (j=0, 1) are specified, and
thus u,(x) e C*() can be obtained from (3.7). For n>2, we have

Aun—2 =fu(u0’ ”o)“n +fv(u0’ UO)vn + Pn—l

(3.9 ' , X€EQ,
AU" = gu(uo’ UO)un + gv(u09 UO)Un + Qn—l

and

(3.10) v, = (%), xel,

where P,_; and Q,_, are functions determined only by u, vg,..., Uy—1, Vy—1. Itis
analogous to the case of (3.5) and (3.6) that (3.9) and (3.10) have a unique solution
(u,(x), v(x)) with u,(x) and v,(x)e C*(Q), if ¢i(x)eC>(I') (j=0,1,...,n) are
specified.

Accordingly the outer expansion (U(x,¢), V(x, &)=(2 20 u, (x)e",
> 2o V,(x)e") can be formally constructed if ¢,(x)eC*(I') (n=0, 1, 2,...) are
specified.
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4. Boundary layer expansion

It is clear that the outer expanison (U(x, &), V(x, ¢)) formally satisfies (2.1)
in Q, but does not (2.2) on I Therefore we have to modify this expansion by
supplementing U(x, ¢) and V(x, ¢) with boundary layer corrections ¢ and &*¥
in a neighborhood of the boundary I', respectively. So U+® and V+e2¥ will
formally satisfy both (2.1) and (2.2), and @ and ¥ will decay exponentially in
regions bounded away from I Namely (U+®, V+¢2¥) will converge to the
outer expansion (U, V) as e-0 away from I', while the boundary layer correction
(P, e2¥) will be significant only in a neighborhood of the boundary.

To study the behavior of the solution in a neighborhood of the boundary I,
as in Fife [6], we need to rewrite (2.1) and (2.2) in terms of a set of variables
adapted to describing boundary layer phenomena. Let Q be a bounded domain
in RN, Its boundary I' is called a C® hypersurface if, for each se I, there is a
neighborhood ¥ (=RY) of s and a real-valued function ¢ e C*(¥"), such that
V ¢ is nonvanishingon I'nv" and I'n v ={xe ¥"; ¢(x)=0}. As T isa (compact)
connected C® hypersurface, it is orientable, that is, there is a unit vector v(s)
for each s € I', varying continuously and perpendicular to I" ats.  v(s) will be called
the normal to I' at s. I being infinitely smooth, v(s) is a C* function. Moreover
we always choose the orientation so that v points into Q. The following pro-
position is basic for our object.

PROPOSITION 3. Let I' be a compact orientable C® hypersurface. Then
there is a positive number d such that the map

F: (t,5)— s+ tv(s)
is a C* homeomorphism of [—d, d]x I onto ¥ ;={xeR¥; dist (x, ') <d}.
Proor. The proof can be found in Appendix A.

In this paper we shall restrict F to the domain [0, d]x I'. Then the above
map F will be a C® homeomorphism of [0,d]xI’ onto Q,={xe@;
dist (x, I')<d}. In @, we introduce the stretched variable #=t/e and throughout
this paper we shall use the following notation

0, = 0/ot, 8, = 0/on, 8, = 0/de, and
u(x, &) = 4(t, s, &) = Ai(en, s, &) = iy, s, €).

Partial derivatives may be decomposed in the following manner. For u € C1(2,)
the tangential gradient éu of u on I is defined by

“4.1) ou="~Fu—-Fu)y
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where v-Fu is the usual Euclidean inner product of v and Fu. For any point
x=s+1tv(s) of Q,, the tangential gradient du(x) is the projection of the gradient
Vu(x) onto the tangent plane to I' at s. It is clear that v-6u=0 and du only
depends on the variable of u on I'. Let §=(d,, 9,,..., dy), where §; (i=1, 2,..., N)
are the C” first order linear differential operators in s. Higher order linear
differential operators in s are sums of compositions of the first order operators
in s. By (4.1),

V =v0,+6=¢eo,+ 4.
Therefore in terms of #, s and ¢, the Laplacian is
4.2) A=V-V =¢202+¢&10-v0, + 0,6+ 5-9.
Applying (4.2), we can rewrite (2.1) in terms of 5, s and ¢ as follows:
M[i, 5] = 0% + &6-vd,i + &vd, - 6i + €25 -6ii — f(i, T) = 0,
N[#, 5] = &72025 + ¢716-v0,5 + ¢ 1v0,- 60 + 6- 68 — g(id, §) = 0.
We note

REMARK 4. Let U(y, s, e)=U(x,¢) and V(n, s, )=V(x, &) be the outer
expansions. Then they satisfy

oML, V1(n, s, 00 =0, o°N[U, 71(@, s, 0) =0,
for any nonnegative integer n.
The expansions
D1, 5, &) = Limo Guln, )", ¥(n, s, &) = Lo ¥, )",

valid in Q,, may be constructed by seeking the formal solutions of M[d, #]=0
and N[#, 5]=0 in the form

[ i(n, s, &) = U(n, s, &) + &(n, s, ¢),
(n, s, &) = V(1, s, &) + e2¥(n, s, €).

The terms ¢, and Y, can be interpreted as 0"®(y, s, 0)/n! and 07¥(n, s, 0)/n!,
respectively, and they need to satisfy

[ omM[U + &, V + e2¥](y, 5, 0) = 0,
orN[0 + &, 7 + e2¥1(y, s, 0) = 0.

By Remark 4 these equations are equivalent to
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MU + &, V + 29] — M[U, V])(n, s, 0) =0,
4.3) [

(N[O + o, V + e2¥] — N[O, 71)(n, s, 0) = 0.

We shall see that the functions ¢, and ¥, (n=0, 1, 2,...) can be determined
successively by solving (4.3) with the boundary conditions

{ ;.xo=0 an(oa s)an + Z:o=0 ¢n(0’ s)g” = Z;.lo=0 an(os s)en

(4.4) R , serl
Z:o=0 ﬁn(()’ s)en + Z:o=0 wn(Oa s)€n+2 = Z:o=0 ﬂn(os S)gn

and

4.5) 2o P, 8)e" =0, XRoyY(0,s)e" =0, sel.

Since 9,0, s)=&,(0, s) (n=0, 1, 2,...), (4.4) and (4.5) can be rewritten in the form
(4.6) &(0,5=B,0,5) (n=0,1),

4.7 .0, 5) = 8,0, s) — 4,(0,5), ¢(0,5)=0, (n=0,1,2,..),

(4.8) V40, 5) = By 5(0,5) = &,42(0,5), Yn(0,5)=0 (n=0,1,2,.).

Note that (4.6) determines the boundary value in (3.4) and (3.6). That is, £y(x)=
Bo(x) and &,(x)=pB,(x) (e C*(I')). At times we shall use the term a C® linear
differential operator in n and s for the sum of compositions of C* linear dif-
ferential operators in s with differential operators in # of the form a,(n, s)0%,
where k is a nonnegative integer and a,(n, s) are bounded C* functions defined
for ne[0, oc0) and seT.

DEerINITION 5 (Fife [6]). Let & be the set of functions W(#, s, €) defined on
[0, o0) x I" x [0, &,) with the property that for each C* linear differential operator
D of any order in the variables n and s, there exist positive constants y and K
(possibly depending on D and W, but not on 7, s or &) with [DW|< Ke™"".

For n=0, noting that 40, s)=h(B(0, s)) and (0, s)=PB(0, s), we can
reduce (4.3) to

4.9) 2o, 5) = f(h(Bo(0, 5)) + bo(n; ), Bol0; 5)),

(4.10)  92Yo(n, 5) = g(h(Bo(0, 5)) + do(h, 5), Bo(0; 5)) — g(h(Bo(0, 5)), Bo(O, 5))-
The boundary conditions (4.7) and (4.8) are

4.11) $0(0, 5) = 8(0, 5) — h(Bo(0, 5)), Po(c0, 5) = 0,

(4.12) ¥o(0, s) = B(0, ) — £,(0, 5), WYo(0, 5) = 0.

For the problem (4.9) and (4.11), Fife [6] proved
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LEMMA 6. Let sel and assume (i), (ii) and (iv). Then the boundary value
problem (4.9) and (4.11) has only one monotone solution ¢y(n, s) with respect
to n, such that ¢o(n, s) € &.

Next rewrite (4.10) as

(4.13) 2o, s) = p(n, s)

where

@14) 91, )= [ guChBol0, ) + 0ol ), Bo(O, 5)dO don, )€ &,
and integrate (4.13). Then we obtain
Voln, 9 = a(s) + b + § e | ¢, yar
for arbitrary functions a(s) and b(s) of seI'. Since (4.14) implies
lim, o S:’ dr S“’ o(C, $)dt = 0,

it follows from the second condition of (4.12) that a(s)=b(s)=0. Thus we have

(4.15) Yol ) = Sj dt Sw o, s)dleé.

Setting =0 in (4.15), we can specify the boundary value in (3.10) with n=2 as

80,9 =809 - | ax " pt, arec=m).

Thus, we have

LEMMA 7. There exists a unique function &,(0, s)e C*(I') for which the
problem (4.10) and (4.12) has a unique solution Yy(n, s)€ &.

To treat the case n>1, the next lemma is of great importance. For con-
venience, we put

G(®, V) = M[U + &, V + e2¥] — M[U, 7],
G(®,¥) = N[O + o, V +e2¥] - N[O, 7].
Then
Gy(®, V) = 28 +£5-v0,® + evd, 6 + £25-5D
— (0 + &, 7 + 2%) + £(T, V),
(4.16) GA(®, ¥) = 2V + 65-v0,¥ + &v0,- 0% + £25- 5%
—g(0 + &, V + 29) + g(U, V).
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LeMMA 8. For given functions W)(n, s, &) and WP(n,s, &), let WD
(n, s, )=01WD(n, s, &)ln! and WP(n, s, &)=02WP>(n, s, e)ln! (n=0, 1, 2,...).
Then for n>1, we have

o1G (WM, WD) (n, s, &) = Ly () [WV, W21(n, s, ¢)
— [I, (WY, W,..., w0, W21, s, ¢),
OnG (WD, WD)(n, 5, &) = Lp(e) (W, W21(n, s, ¢)
—TI2, W, w,..., w0, W2 (@, s, €),
where L, and L, are the linear differential operators with
L0 [W, w21, s, 0) = 03wV (n, s, 0)
— fl8o(0, 5) + WEV(m, s, 0), Do(0, HW(n, s, 0),
Ly(0)[W, W21(, s, 0) = 02W 2 (n, s, 0)
— 9.(6(0, ) + WEV(n, s, 0), 00(0, HW(n, s, 0),

and [1$2, (i=1, 2; n>1) are the differential operators (in the variables n and s)
applied to the 2n functions such that

1, WS, WER,..., Wi, Wi]es

whenever Wi, W?,..., Wi, w2, e¢.

Proor. We omit the proof, since it is similar to that of Lemma 3.3 in Fife
[61].

Using the above lemma, for n>1, we can rewrite the problem (4.3), (4.7)
and (4.8) as follows:

(4.17) 324, 3) — f.(h(Bo0, ) + do(n, 5), Bo(0, )u(n, s) = [Ty (1, s, 0),

(4.18)  02(n, ) — 9u(h(Bo(0, ) + do(n, 5), Bo(0, Nu(h, ) = [Ti21 (1, 5, 0),

with the boundary conditions

(4.19) $4(0, 5) = 8,(0, 5) — 8,0, 5), (0, 5) =0,

(4.20) Va0, $) = Brs2(0,5) — &,42(0, 5), Y, (c0, 5) = 0.

We assume that ¢g, Yo,..., Pu_1, ¥u_1 €&, that is, TT2, (n, s, 0) e & (i=1, 2).
Lemma 9 (Fife [6]). For seI, consider the boundary value problem

02w(n, s) — fuh(Bo(O, 5)) + do(n, ), Bo(0, NW(n, ) = k(n, s),

w(0, 5) = we(s), w(oo, s) = 0,
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where wy(s) is some function of C*(I') and k(n, s)€ &. Then there exists a unique
solution w(n, s)€ &.

Applying Lemma 9 to the problem (4.17) and (4.19), we find a unique solution
d.(n, s)e&. Also, we see that in a way similar to the case (4.10) and (4.12), the
problem (4.18) and (4.20) has a unique solution

atn, ) = §7 e (7 {g.0Bo0, ) + BfC. 9 BolO, DE, 9
+IT21 (s, 0)}d e 6.

Further, we have
8120, 9) = Bra©,9) = [ de [ (g.(0Bo(0, )
+ ¢0(C> S), BO(O> S))¢n(c’ S) +H512—)1 (C’ S, 0)}d£ € Cao([*) .

Thus we have obtained

Lemma 10.  Assume (i), (ii) and (iv). Then there exists a unique function
&,.4(0, s)e C(I') for which the boundary value problem (4.17), (4.18), (4.19)
and (4.20) has a unique solution (¢,(n, s), ¥,(n, s)) belonging to & x &.

ReMARK 11. The above discussion yields that boundary values of the
outer expansion v,(x) at xeI" are

ﬁn(()’ S) = En(o, S),
=B.0,8) (n=0,1),

= B0, = | dt |7 g h(Bot0, 5)) + 690(C. 9,
Bo®, N0Bo(C, ) (1 =2),
= 8.0.9 = {7 e | {guh(Bo(0, ) + 60(C. 9,
Bo® -2 ) + TIR G 5, ML (02 3).

5. Uniform approximation
For an arbitrary nonnegative integer m, define
Um(x’ 8) = :.=0 u,,(x)a", Vm(x$ 6) = an=0 v,,(x)e",

where u, and v, (1<n<m) are coefficients of the outer expansions determined in
Section 3 by using the boundary values in Remark 11.
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LemMma 12.
5.1 IM[Ups V,1(%, ©)llciay < Cemt,
(5.2 INCU s, Vil (x, &)l cr(my < Cem*L.

ProOF. We shall prove only (5.1) since (5.2) follows from a similar argument.
M[U,, V,.J(x, ¢) is an infinitely differentiable function of &. Clearly

MIU,, V5, 9) = S0 (1= 0pmom* IM[U,,, Vil (x, 60)d0 = em*1R(, o).

Obviously R(x, ¢€) and its derivative with respect to x are bounded. Thus we have
(5.1).

Since the coordinate system (7, s, ¢€) is defined merely in the strip Q,, we must
extend the domain @, into Q. For this purpose, we take a cutoff function {(x) €
C*(Q,) such that

{(x)=1o0n Q43 0<{(x)<1 on 2,45 — Q4/3, {(x) =0 on Qi — Q3
and define @,(x, ¢) and ¥, (x, €) by

C(x) Z;t”=0 ¢"(I(X)/8, S(X))E", X€ Qd s
‘pm(x, 8) = _
0, xeQ—-Q,,"

and
Yolx,e) = P(x,8) =0, xeQ,
P (x, 8 = [ €] :."=:3 Yu(t(x)/e, s(x))e", x€Q, m>2),
0, xeQ—Q,
respectively. Notice that @,(x, ) and ¥,(x, &) € C*(Q).
LeEMMA 13.
(5.3)  |(M[Op+ &p, Vi + 2¥,] = M[0,, VD0, 5, ©)lo,3,/, < Cem*,
54 (N[O, +&,, V,+e¥,]1—N[U,, 7, s, )lo,z,, < Cem*1,
and for any C? linear differential operator D in n and s,
(5.5 |p(M[LO, + @, Vo + 29,1 — M[O,, 7V, D, s, &)lo,a,, < Ce™*1,
5.6) |IDIN[O,+ &,, P, +e¥,]1-N[(0,, V), s, &)lo,aas, < Ce™*1,

Proor. For x e @Q,;, we note
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M[0,,+ &,, V,, + 29,1 - M[O,, V,D(,s,&)=F,(n,s, &) — F,1, s, €)
where
Fin,s,e)=M[O,+&,, V,+e¥,.,]1-M[O,, V,D{, s, &
and
Fy(,s,e)=M[0,+®,,V,+e¥,,,]- MO, +8&,, V,+ ¥, s,e).

By the scheme in the preceeding section, determining the boundary layer ex-
pansion, we easily see that F(#, s, €) is an infinitely differentiable function of ¢ and

£m+l 1
Filn,s,0) = S0 (10t Fyn, s, 6e)do.
- JO

Thus by Lemma 8, we have

OmHIF (n, 5, &) = — TTIY [$os Yos-- s Dms Yl (1, 5, €)ES.
Therefore we have

IF1(1, s, €)lo,a4/, < Ce™ ', |DFy(1, 5, &)lo,z,, < Cem™*1.

Next we rewrite F, as

1 o~ ~ o
Fot,5,0) = |, B[O, + &y, Tt 628, + 0m (Y + 0,10

X & (Y g +EY).

M, is an infinitely differentiable function of # and s, whose derivatives are bounded
in Q5. Since y,,_, and ¥, are in &, we obtain

|Fy(n, s, lo,aass < Cemtl, |DF,(n, s, &)lo,a,, < Cem*l,
Thus we have (5.3) and (5.5). In a similar way, we obtain (5.4) and (5.6).

We are now ready to provide the formal approximation to the solution of
(2.1) and (2.2). Note that U, + ®,, and V,,+¢?¥,, satisfy the boundary condition
(2.2) approximately up to order &™.

THEOREM 14. Let U,(x, €), V,(x, €), D,(x, &) and ¥, (x,¢&) be as above.
Then for any a € (0, 1),

(5.7) IMLU,, + ®,, Vy, + &2%,1(x, )l sy < Cem*
and

(5-8) INLU,, + &,,, V,, + 2¥,]1(x, e)Hca(ﬁ) < Cgmti-a,
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Proor. We only show (5.7) since (5.8) can be analogously obtained. In
Q—Q,,/5, Lemma 12 yields

IMLU,, + ®py Vi + E2¥,1 (%, &)l c1(a-0,a/5) < Ce™ 1.
In de/s —Qy3,
M[U, + ®,, V,, + e¥,] = M[U,, V,,] + 628, + ¢5-v3,8,, + €0, 68,
+66:68, = | (JA0,+ 08, P+ 07,8,
— (0, + 08, 7, +209,):2¥,}db.
Lemma 12 and the fact that &, and ¥, are in & yields
MU, + ®py Vi + 29,1 (X, Ol cr(@ya/5-0as < CemHL.
Finally in Q,,, write

M[Up + @y Viu + &2¥,] = M[U,,, V1
+ {M[U,, + ®,, V,, + e2¥,] — M[U,, V,,.1}.

Applying Lemma 13, we have

MU, + @, V, + E2¥,] — M[U,, Villo,gas < Ce™,
IM[Um + ¢m’ Vm + SZT’"] - M[Uma Vm]ll,ﬁg/; < Cem

Thus we have
IM[U,, + @, V,, + e2¥,]l0.5 < Cem*', |M[U,, + &, V, + &2¥,]1l; 5 < Cem.
Therefore by the interpolation inequality, we obtain
IM[U,, + @, V, + 82¥, 1,0 < Cemti-e,

Thus we have proved (5.7).

6. Justification

By the use of the outer and boundary layer expansion, we define (U%(x, ¢),
Vr(x, €)) on Q by

Un(x, &) + @p(x, &) + {(x) {800, 5, &) — Ti=0 8,0, 5)e"}, x€Qy,

Ug(x, &) =
Uux, &)+ D,(x,¢), xeQ—Q,,
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Vm(x') 8) + 82q’m(x, 8) + C(x) {B(O’ S, 8) - Z:l=0 Bn(o_a s)sn}’ X € Qd’

Ve(x, &) = _
V.(x, &) + e2¥,(x,¢), xeQ—Q,.

Then (Ug(x, ), V&(x, ¢)) satisfies the boundary condition (2.2) on I
Now we look for a solution (u(x, &), v(x, &) of (2.1) and (2.2) in the form

u(x, &) = UB(x, &) + emr(x, &) + e"h'(vy(x))s(x, €),
6.1) [

v(x, &) = V&(x, &) + ems(x, €),
for 0<e<eg,, where g, is a small constant. Substituting (6.1) into (2.1), we have
R(r, s, &) = 24r + e24(h'(vy)s) — e [ f(UF + &™r + e™h'(vo)s,
(6.2) Ve + ems) — e24U%] =0,
S(r, s, &) = A4s — e "[g(UZ + e™r + e™h'(vy)s, Vg + ems) — AVE] = 0.

Let t=(r, s) and T(t, &)=(R(r, s, €), S(r, s, €)). Then T is a continuously dif-
ferentiable mapping from X, x (0, &) into Y, where

X, = CZ(Q) x C3«() and Y, = CxQ) x C¥Q).
The mapping T has the Fréchet derivative of the form

Ll(t9 8)9 L2(t5 8)
(6.3) T(t, &) = ( )
LS(ta 8)’ LA(t5 8)

where
L,(t, &) = 24 — f(UB + e"r + e™h'(vy)s, V& + &ems),
L,(t, &) = &2h'(vy)4 + €2V (h'(vy)) -V + €24(h'(vy))

— I(f)(UB + emr + emh'(vy)s, V8 + &ms),

Ly(t, &) = — g (Us + emr + enh'(vo)s, V5 + ems),
Ly(t,e) =4 — (g)(Ug + em™r + e™h'(vy)s, VG + €ms),
II(f) (2o, 21) = flzo» Z1)h' (Vo) + fi(20, 21)-

For simplicity we put

M, =L0,¢): CE(Q)— CxQ).

LEMMA 15. Assume (ii). Then there exists a constant g, such that M,
has a uniformly bounded inverse for 0 <e<e,.
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ProOF. First we consider a linear operator M? from C2%*(Q) into CX(D)
such that
M? = ¢e24 —fu(UO(x, 8) + ¢0(xa 8)’ VO(xa 8))

For any F e C#(2) we obtain, by Appendix B, a unique solution u(x, &) € C24*(Q)
of

6.4) Mo =F
such that
(6.5) [u(x, &)llco < C||F||co-

We rewrite (6.4) as
Au = e 2{f(Uy+ Dy, Vo)u + F}.
The Schauder estimates imply
[ulz+, < 672C(e™*ullco + luly + [IFllca)-
Further applying the interpolation inequality and (6.5), we obtain
€27 uly 1o < C||Fllca, €ul, < C||Flics, eluly < ClFlcs.

Thus we have

luCx, &)llczy= < ClIF|l ¢z

24a <
that is, M9 is invertible and
1Ml coacaie < C.
Next we have
M, — M? = fi.(Uo + @0 — UF) + fi,(Vo — V)

where f}, and f¥, are evaluated at (Ug+0,(Uo+Po—UY), VB+60,(Vo—VE)
for 0<6,, 6,<1. For any ue C3*(Q),

(M, — MQ)u|| cs
< N faulUo + o — UBulice + 11 f3.(Vo — VB)ull ¢z
On the other hand,
I f3.(Uo + D¢ — UPu| c=
S (fdalolUo + @9 — Ugly + &*lf¥ulalUo + @0 — Uglo



A weakly coupled elliptic boundary value problem 243
+ &% fiulolUo + Do — Uglo)lull c2i
< I fullcsllUo + @o — UBlicellull c2e-
In a similar way,
£ (Vo= Veulce<I fillczll Vo— VElcallul ez
Thus we have
M, — Mg”ci,‘;"ac':
< I flleslUo + @0 — Uglice + I f¥ullcel Vo — VElice
Noting that
Ifdullc = 0(1), [Uq + ®o — Ugllce = Ofe),
[fiollce =0Q), IIVo— VBlcz = 0(e),
as e—0, we obtain
M, — M?| c242c2 = O(e) as &—— 0.
Therefore with sufficiently small ¢,, we have
1M1 (M — M)l czgcze <1
for 0<e<eg, Since M,=MI—-(M?(M?-M,)), M, is invertible and
1M Hlcs ez < €
for 0<e<g,. This proves the lemma.
Put
N, =L,0,¢) : C3*2)— C(Q),
H =4 - 1I(9)(U,, Vp) : C3*(Q) — CX(Q).
If (ii) is satisfied, clearly we have
(6.6) 1 H | ca@y-cite@ < C.

Moreover by Theorem 2 in Chicco [4], for any F e LP(Q2) Hv=F has a unique
solution v e W2:p(Q) n W§-7(Q) such that

ollw2e@ynwer@y < CIFl Loy -

Setting p=N and applying the Sobolev imbedding theorem, we have
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”U“c«(ﬁ) < C”F"LP(Q) .
Hence, noting v=H"'F, we obtain
6.7) [H'F|lca@y < CIF|l Lo (@) -

LemMa 16 (Ito [9]). Suppose that (ii) is satisfied. Then there exists a
constant &g such that N, has a uniformly bounded inverse for 0 <e<g,.

Proor. We rewrite N, in the form
N,=H — K, where K =II(g)(Ug, Vg) — II(g)(Uy, Vy).
For ve C3+4(Q),
Kv = [II(g9)(Ug, V) — II(9) (U + P, Vo)
+ I(g) (U + o, Vo) — II(g)(Uy, Vo)lv

and

|Kv] < C(e+ (Do) lv]l c-
Here using (6.7), we have
(CRY) IH™ K]l czteoca < Cle+ [ Poll L) < Cel/P.
For any G e C%(Q), we consider

N, = Hv — Kv =G.
For sufficiently small ¢>0, by (6.6) and (6.8), we have
lollcgr= = I(I— HT1K) " H™1G g+« < CIH | canczrel Gllce,
< C|Gl¢a.

This establishes the lemma.

LemMa 17 (Ito [9]). There exists a constant &, such that

(6.9) [1L2(0, &)l cite@-ci@m < Ce,
(6.10) I L3(0, )| chr@-ce@ < CeT%,
Jor 0<e<e,.

Proor. For any ve C3t%(Q),

L0, e)v|ce < Clellv cz+= + [Povllce).
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Making use of the fact that v(x)=0 at x e I', we obtain
[Povlo < Celv]lcz+= and  [Pyv]; < Cljvfczte.
Applying the interpolation inequality,
|Povl, < &'7%Pov|y + Ce™*|Poplo < Ce'~*|v] cz+e.
Thus we have
[Povlce < Cellv]czte,
which shows (6.9). Next for any ve C24*(Q),
IL3(0, )vllce = llgUs, V)l ca

< 19U, VE)lolvlo + 19.UT, VE)lolvl, + 19.Ug, VElalvlo

< (e7%9.Ug, V8o + 19.UT, VEI)llvllcze

< Ce*|lvllczse
This implies (6.10).

By Lemmas 15-17, we have the following

LemMMA 18 (Hosono et al. [8]). Assume (ii) is satisfied. Then there exists
a constant &, such that T(0, &) has a uniformly bounded inverse for 0 <e<g,.

ProOF. We consider
(6.11) T(0, &)t = F

for F=(f,, f)eY,. By (6.3), Lemmas 15 and 16, the operator equation (6.11)
is reduced to

r= M (- Ly0, &)s + f,),
s = N;71(— L;(0, &)r + £,
so that
s = N;1L3(0, e)M;1L,(0, &)s — N71L5(0, ) M;1f, + N;1f,.
Thus from Lemma 17, we may choose g, such that
[Nz i cancarall L3(0, &)l cztoace 1M coac2il L2(0, €) [ cztamce <1
for 0<e<eg,y, and so we can find a unique solution t € X,, which satisfies

(6.12) Irlcze < CUifelles + 1l c=)

and
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(6.13) Islczt= < Cllfillce + 1 fsllce)-
Therefore from (6.12) and (6.13), we obtain
I(T0, &) *y,-x. < C
for 0<e<eg,. This completes the proof of the lemma.
LeEMMA 19.
1T, &ly, < Ce'~*.
ProOF. This follows immediately from Theorem 14.

LemMA 20 (Fife [7]). Let X, and Y, be Banach spaces and T(t, €) be a
continuously differentiable mapping from X, into Y,, defined in 0<e<g,.
Assume that T satisfies:

(1) for anyt, and t,e X,,
[ T(ty, &) — Tta, Ollx,~v, < Clity — tllx,

where T, is the Fréchet derivative of T with respectto t;
(2) T(O, €) has a uniformly bounded inverse for 0<e<e,;
A3) 1T, &)y, < Ce'~=
Then there exists a unique function t(¢)e X, which is defined for 0<e<e,
satisfying

T(t(e),e) =0 and |t(e)|x, = O(!™*) as e— 0.

Now we apply Lemma 20 to our operator equation (6.2). Then (1) is
obvious, while (2) and (3) follow from Lemmas 18 and 19, respectively. Therefore
we have the following

THEOREM 21. Under the assumptions (i), (ii), (iii) and (iv), there exists a
constant g, such that for 0<e<eg, (2.1) and (2.2) have a solution (u(x, &), v(x, &)

satisfying
lu(x, &) — UB(x, )l cztea < Cem+17e,
[v(x, &) — VB(x, &)llcareqm, < Cem+i—e.
COROLLARY.
lim, o u(x, &) = h(vy(x)) uniformly in each closed set in Q,

lim,_, o v(x, &) = vo(x) uniformly in Q,
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ao(x)

o2 G, (2
lim,,ge5—(x,8) =a(2
08 gy (%) h(Bo(x))

1/2
f(s, ﬂo(x))ds> uniformly in I,

lim, ., S—S(x, g) = 0

o . .
7 (x) uniformly in I',

where o =sign (h(Bo(x)) — oo(x)).

7. Concluding remarks

We have considered a pair of second-order partial differential equations
(2.1) and (2.2) and have shown the existence of asymptotic solutions. First we
note here that uniqueness is certainly not to be expected. In fact, many different
asymptotic solutions for (2.1) and (2.2) may be possible when f(u, v)=0 or (2.3)
has many solutions. Secondly, though we have assumed I' is connected for
simplicity and clarity, we can also treat similarly when I" are the sum of connected
C® hypersurfaces. Finally, we remark that our assertions can be easily
generalized to any uniformly second-order elliptic equations in divergence form

g2 Iiv,j=1 6i(aij(x’ s)aj“) —fu,v)=0
, Xe
Zliv,i=1.ai(bij(xa S)aj”) —gu,v)=0

with the same boundary conditions (2.2).
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Appendix A. Proof of Proposition 3

For any positive number d, certainly F is a C® map from [—d, d] xI" onto
¥ 4. Moreover for each seT, its Jacobian matrix (with respect to local coordi-
nates on [—d, d]xI') at (0, s) is nonsingular since v(s) is normal to I'. By the
compactness of I', there exists a positive number d, such that the Jacobian matrix
is nonsingular in [—d,, dg]xI. We show that, for some positive number
d (<d,), F is injective in [—d, d]xI'. Then by the inverse mapping theorem,
we shall obtain the assertion. Suppose, on the contrary, that for any d such that
0<d<d,, F is not injective in [—d, d]xI'. Then we may choose a positive
integer N, and for all n> N, two distinct points (t,, s,) and (¢,, s,) of [—1/n, 1/n] x
I' such that F(t,, s,)=F(t,, s;). Since I' is compact, there exist subsequences
{Ssy} and (s,4)} which converge to some points s and s’ of I'.  On the other
hand, both {t,,,} and {t,,} converge to zero. By the continuity of F we obtain
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F(0, s)=F(0, s"), so that s=s’. By the inverse mapping theorem, there exists a
neighborhood % of (0, s) such that F is injective in %. Thus F(t,q, Sux)=
F(thxy Sny) implies  (L,x)s Sney) =(tnny» Snry) for large k. This contradicts
the choice of the points (¢,, s,) and (,, s,). With this, the proof is completed.

Appendix B

First we show that we can choose a constant ¢, sufficiently small, such that
for any ¢ € (0, ) there exists a function y(x, &) € C2*%(Q) with the property that

(B.1) 0<6, <x<9,,
(B.2) MYy <—-63<0
where d,, d, and J, are some constants independent of ¢, and
M? = 24 — f(Ug+ Dy, V).
We put
1+ {(xo(t(x)/e, s(x)), x€Qy,
1, xeQ — Q,,

x(x, &) =

where xo(1, s) is a solution of the following problem

02x0(n, 8) = F.LH(Bo(O, 9)) + Do, 5), Bo(O, )xo(n, $)

= £(h(Bo(0, 5)) + Do(, 5), Bo(0, 5)) — f.(H(Bo(O, ), Bo(O, 5)),
100, 5) = W,
%o(00, s) = 0.

Observe that by Lemma 9, yo(n, s)e &. The constant Wcan be chosen sufficiently
large so that

XO(": S) = - 1/2 for ("a S)E [0, OO) x I.
Then we have
M2 = — f(h(vy), vo) + O(e) as &— 0.

By (ii), if we choose a constant ¢, sufficiently small, there exist constants J;, 6,
and d; such that for any e € (0, ¢,) (B.1) and (B.2) are satisfied.
Next we shall prove the following lemma as in van Harten [11].

LeMMA B. Let ¢€(0, &,). Then for each Fe C%Q) there exists a unique
solution u(x, £) € C2%(Q) of
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(B.3) M%u =F
which satisfies

(B.4) lullcoy < (82/03) | Fll coqy »
where 6, and 65 are as in (B.1) and (B.2).

Proor. With the aid of Theorem 12.7 in Agmon et al. [1], the existence of
a solution ef (B.3) follows from the uniqueness. Hence it suffices to show that
(B.4) holds for any ue C2i#(Q) satisfying Mlu=F. The function w=uy 'e
C2%(Q) satisfies

where
M? = g2yA + 2¢2 3N, 0,10; + M%%.

Since M{y< —8;<0, applying the maximum principle for elliptic equations,
we have

= 03| Fllco@my < w < 03| Fll cogay -
So
lul < 63 %I Fllcoy

from which (B.4) follows.
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