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1. Introduction

In this paper we consider the asymptotic solutions of the Dirichlet boundary

value problem for a pair of second-order partial differential equations

ί ε2Au -f(u,v) = 0
(1.1) xeΩ,

[ Δv - g(u, v) = 0

with the boundary conditions

(1.2) u = oc(x, ε), v = β(x9 ε), xeΓ.

Here Ω is a bounded domain in RN (N>2)9 its boundary Γ is a connected C00

hypersurface, and ε is a small positive parameter. Moreover we assume that /

and g are infinitely differentiate functions defined in R2. Such problems arise

in the study of steady-state solutions of chemically reacting and diffusing systems

(Aris [2] and the references therein). An interesting phenomenon in such systems

is the occurrence of boundary and/or interior transition layer. For iV=l, by

using singular perturbation technique, Fife [7] showed that the existence of

boundary and/or interior transition layer phenomena for (1.1) and (1.2), and

recently Ito [9] modified his results into a more useful version. For N>29 as

far as we know, these phenomena have not yet been analyzed except numerical

simulations. In this paper, we restrict our attention to the problem (1.1) and (1.2)

with boundary layer phenomena. Consider the case where the reduced problem

ί f(μ09 v0) = 0
xeΩ,

[ ΔvQ - g(u0, v0) = 0

and

^o = βo(*)> x e Γ,

has a regular solution (u0, v0). In this case, we shall show constructively the

existence of a solution (u, v) of (1.1) and (1.2) such that

{ U-+UQ uniformly in any compact subset of Ω,
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1 v ^ v0 uniformly in Ω9

as ε-»0. Note that the above solution exhibits its irregular behavior, as a function

of ε, in a neighborhood of the boundary Γ.

The boundary value problem of the type

f ε2Au -f(x,u) = 0, xeΩ,
(1.3)

[ u = <x(x, ε), XGΓ,

were studied in Berger et al. [3], De Villiers [5] and Fife [6], and others. They

showed the existence of a solution of (1.3) in the following way. First, they

constructed a formal asymptotic approximation by using an outer expansion,

valid in the region not adjacent to Γ, and a boundary layer axpansion, valid in a

neighborhood of Γ. And next, they proved that there exists a solution of (1.3)

close to the formal approximation by using the contraction mapping principle

[3], [5] or the Schauder fixed point theorem [6].

Our main contribution is an extension of their method to the one applicable

to the boundary value problems for weakly coupled elliptic systems. In Section 2

we state the assumptions for the nonlinearities of/ and g, which are of great

importance to construct the formal approximation. In Section 3 we construct

the outer expansion. Since this expansion dose not satisfy the correct boundary

condition, in Section 4 we construct the boundary layer expansion in a neigh-

borhood of the boundary Γ. And in Section 5, using these expansions we obtain

the formal approximation up to order εm to the solution of (1.1) and (1.2), where

m denotes any nonnegative integer. In Section 6, applying the implicit function

theorem we show the validity of this approximation (see e.g., [7], [9]). Finally

in Section 7, we give a few comments on the equation (1.1) and (1.2).

2. Preliminaries

By singular perturbation techniques, we shall construct an asymptotic

expansion to the solution (u(x, ε), v(x, ε)) for a weakly coupled elliptic boundary

value problem

f M[u, v] =ε2Au -f(u, ύ) = 0,
(2.1)

[ N[U,Ό] = Av-g(u,v) = 0,

in a bounded domain Ω ( c R^), satisfying the boundary conditions

(2.2) w = α(x, ε), v = β(x,ε)9

on the boundary Γ, where/and g are infinitely differentiate functions of u and υ,

Γ is a connected C00 hypersurface, and ε is a small positive parameter. It is as-
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sumed that α(x, ε) and β(x, ε) are infinitely differentiable functions with respect

to x e Γ and have asymptotic expansions

<x, β) ~ Σ%o«n(x)e\ β(x, β)-~ ! „ % « * ,

as ε->0 respectively, where αn(x)'s and J?n(x)'s are infinitely differentiable functions

of x e Γ. Moreover we make the following assumptions for / and g:

( i ) f(u, v) = 0 has at least one root u = h(v) with h defined on an interval /;

(ii) there exists an interval J ( £ /) such that βo(x) eJforxeΓ, and fu(h(v), v)>0

SLnd(dldv)(g(h(v),v))>OforveJι
(iii) for any y(x) e C°°(Γ) with range in /, the boundary value problem

[ Av- g(h(v),v) = 0, xeΩ,
(2.3)

{ v = γ(x)9 xeT,

has a solution v(x) e C°°(Ω) with range in J ;

(iv) at each point XGΓ,

[C f(s, βo(x))ds > 0

for c Φ h(βo(x)) in the closed interval between h(βo(x)) and αo(x).

REMARK 1. From (i) and (ii),

£>(/, g)(h(v% v) = [ / > , % „ ( « , ι;) -flu, v)gu(u9v)-]u=h(v) > 0

for veJ.

REMARK 2. Let j = (α, b). If 0(h(α), α)>0, gf(/ι(b), b)<0 and α<y

for x e Γ, then there exists a solution v(x) e C°°(Ω) of the problem (2.3) such that

a<v(x)<bfoτxeΩ (Sattinger [10]).

First, we introduce several function spaces useful ,for our purpose. Let

a==(σl9 σ2,-.., σN) denote the usual multi-index of ordef \σ\=σί + σ2-\ hσN

with nonnegative integers σί5 and write d^djdxi ( l< i<iV) , Γ = ( δ l 5 d2;."9dN)

and dσ = dlιdγ'"d%N. Suppose Ω is a bounded domain in RN.

(a) Let k be a nonnegative integer and αe(0, 1). By Ck+a(Ω) we mean the

Banach space of all real-valued functions u e Ck(Ω) for which the derivatives

dσu, with \σ\ = k, are Holder continuous on Ω with exponent α. The norm is

where

= max sup
\σ\=j xeΩ
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Mk+a,Ω = max sup_ \dσu(x) - dσu(y)\/\x - y\« (x Φ y).
|<x|=fc x,yeΩ

(b) Cg+α(β) is the subspace of Ck+a(Ω) whose elements are functions vanishing
on dΩ.
(c) Let k be a nonnegative integer and l<p<oo. We denote by WktP(Ω) the
Banach space of (equivalent classes of) real-valued functions u, defined on Ω, such
that u and all its generalized derivatives up to k, are pth-power integrable over Ω.
The norm is

\d°u(x)\p d

(d) W% P(Ω) is the closure of C$(Ω) in Wk>*(Ω).

W°'P{Ω) is usually denoted by LP(Ω). Let ε be a positive number.

(e) Ck+a(Ω) is the Banach space of all real-valued functions in Ck+a(Ω), but with
the special norm depending on ε:

(f) Ck%aφ) is the subspace of Ck+a(Ω) whose elements are functions vanishing
ondΩ.
(g) Let X and Y be Banach spaces. X-+Yis the totality of continuous linear
operator from X into 7 equipped with the usual norm.

In this paper, the symbol C will denote a positive constant independent of ε.

3. Outer expansion

We begin with constructing an outer expansion (U(x, ε), V(x, ε)) of the form

(3.1) U(x,ε)=Σΐ=oUn(x)ε», V(x9 ε) = Σΐ=ovn(x)εn, xeΩ.

Substituting (3.1) into (2.1), we have

ί ΐ o a ( / ( π % n ( ) Z ? o ^ > )
(3.2) , xeΩ.

[ Σ ΐ ^ ( ) (Σ ( > Σ ^ ) )
The boundary conditions for (3.2) are assumed to be

(3.3) Σΐ=oVn(x)ε" = Σn=oξ*(x)εn,

where ξπ(x)'s are infinitely differentiable functions on Γ. We will specify these
functions in Section 4.
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Equate the coefficients of the like powers of ε on both sides of (3.2) and (3.3).

Then for n = 0, we obtain

ί 0 = / ( u 0 , v0)
, xeΩ,

[ Δυ0 = g(uOi v0)

and

(3.4) vo = ξo(x), xeΓ.

From (i) and (iii), we know that (uo(x), vo(x)) (uo(x) = h(vo(x))) exists and uo(x),

vo(x) e C°°(Ω) whenever ξo(x) e C°°(Γ) has a range in J. For n = 1,

ί 0 = fu(u09 vo)uί + fv(uθ9 vo)vί

(3.5) , xeΩ,
{ Avx= gu(u0, vo)u1 + gv(u0, VQJV^

and

(3.6) v^ξ^x), xeί.

By the assumption (ii), we have

(3.7) uί = - fv(u0, vo)vί /fu(u0, v0)

and

(3.8) AΌX = D(f, g)(u09 vo)υί /fu(uθ9 v0).

Since D(f, g)(u0, vo)lfu(uo, vo)>0 for xeΩ, it is easy to see that (3.8) and (3.6)

have a unique solution v^x) e C°°(Ω) if ξj(x) e C^Γ) (7 = 0, 1) are specified, and

thus M1(x)eC00(Ω) can be obtained from (3.7). For n > 2 , we have

f Aun-2 =fu(u0, vo)un +fv(u0, vo)vn + Pn-ί
(3.9) , xeΩ,

[ Δυn = gu(u0, vo)un + gv(u0, vo)vn + Qn.ί

and

(3.10) vn = ξn(x), xeΓ,

where Pn-ι and Qn-ι are functions determined only byuO9vO9...9un-.l9vn-±. It is

analogous to the case of (3.5) and (3.6) that (3.9) and (3.10) have a unique solution

(un(x), vn(x)) with uJtx) and t;M(x) e C°°(Ω), if ξ/x)eC*>(Γ) (; = 0, 1,..., n) are

specified.

Accordingly the outer expansion (U(x, ε), F(x, ε)) = ( Σ * = 0 wπ(x)εn,

Σΐ=oi>n(x)εn) can be formally constructed if £n(x)e C°°(Γ) (n = 0, 1,2,...) are

specified.
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4. Boundary layer expansion

It is clear that the outer expanison (U(x, ε), V(x, ε)) formally satisfies (2.1)
in Ω, but does not (2;2) on Γ. Therefore we have to modify this expansion by
supplementing U(x, ε) and V(x, ε) with boundary layer corrections Φ and ε2Ψ
in a neighborhood of the boundary Γ, respectively. So U + Φ and V+e2Ψ will
formally satisfy both (2.1) and (2.2), and Φ and Ψ will decay exponentially in
regions bounded away from Γ. Namely (£/ + Φ, V+ε2Ψ) will converge to the
outer expansion (U, V) as ε->0 away from Γ, while the boundary layer correction
(Φ, ε2Ψ) will be significant only in a neighborhood of the boundary.

To study the behavior of the solution in a neighborhood of the boundary Γ,
as in Fife [6], we need to rewrite (2.1) and (2.2) in terms of a set of variables
adapted to describing boundary layer phenomena. Let Ω be a bounded domain
in R .̂ Its boundary Γ is called a C00 hypersurface if, for each seΓ, there is a
neighborhood ^ ( c : R N ) of s and a real-valued function φeC^ii^), such that
V φ is nonvanishing o n Γ n f and Γflf* = { x e / ; φ(x) = 0}. As Γ is a (compact)
connected C00 hypersurface, it is orientable, that is, there is a unit vector v(s)
for each seΓ, varying continuously and perpendicular to Γ at s. v(s) will be called
the normal to Γ at s. Γ being infinitely smooth, v(s) is a C00 function. Moreover
we always choose the orientation so that v points into Ω. The following pro-
position is basic for our object.

PROPOSITION 3. Let Γ be a compact orientable C°° hypersurface. Then
there is a positive number d such that the map

F: (ί, s) >s + tv(s)

is a C00 homeomorphism of\_-d, d~]xΓ onto ϊ^d = {xeRN; dist(x, Γ)<d).

PROOF. The proof can be found in Appendix A.

In this paper we shall restrict F to the domain [0, d~\ x Γ. Then the above
map F will be a C00 homeomorphism of [0, d]xΓ onto Ωd = {xeΩ;
dist(x, Γ)<d}. In Ωd, we introduce the stretched variable η = t/ε and throughout
this paper we shall use the following notation

dt = dfdt, dη = d/dη,dE = d/de, and

u(x, ε) = ύ(t, s, ε) = ύ(εη, s, ε) = ύ(η, 5, ε).

Partial derivatives may be decomposed in the following manner. For u e C\Ωd)
the tangential gradient δu of u on Γ is defined by

(4.1) δu = Fu -(



A weakly coupled elliptic boμndary value problem 233

where v-Pu is the usual Euclidean inner product of v and Vu. For any point

x = s + tv(s) of Ωd9 the tangential gradient δu(x) is the projection of the gradient

Fu(x) onto the tangent plane to Γ at s. It is clear that v δu = 0 and δu only

depends on the variable of u onΓ. Letδ = (δt, <52,.. , δN)9 where (5f(i = l, 2,..., N)

are the C00 first order linear differential operators in s. Higher order linear

differential operators in s are sums of compositions of the first order operators

ins . By (4.1),

V = vδt + δ = ε~1vδη + δ.

Therefore in terms of η, s and ε, the Laplacian is

(4.2) A = F'F ^ε-2dl+ε-1δ'vdη + ε-Hdn δ + δ-δ.

Applying (4.2), we can rewrite (2.1) in terms of η, s and ε as follows:

{ M[w, ϋ] = d\ϋ + εδ-vdηύ + εvδη-δu + ε2δ δu —/(w, v) = 0,

iV[w, 0] = ε~2δ2

ηϋ + ε-iδ .vdfi + ε - ^ δ ^ δ δ + δ-δv - ^(ίί, 0) = 0.

We note

REMARK 4. Let ϋ(η, s, ε) = I/(x, ε) and F(*7, s, ε)=F(x, ε) be the outer

expansions. Then they satisfy

d»M[Ό, Ϋ\% s, 0) = 0, d»ENtU, P\(η, s, 0) = 0,

for any nonnegative integer n.

The expansions

valid in Ωd, may be constructed by seeking the formal solutions of JV?[M, £ ] = 0

and J7.[u, t;] = 0 in the form

ύ(η, s, ε) = U(η, s, ε) + Φ(η, s, ε),

ί;( ,̂ 5, ε) = V(η, 5, ε) + ε2Ψ(η, s, ε).

The terms φn and ^ w can be interpreted as δ%Φ(η, s, 0)/n! and δn

εψ(η, s, 0)/n!,

respectively, and they need to satisfy

ί δ»$[[ϋ + Φ, V + ε2!F] (if, 5, 0) = 0,

I a»Λ[ί7 + Φ, F + ε2Ψ~\{η, s, 0) = 0.

By Remark 4 these equations are equivalent to
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dn

ε(M\Ό + Φ, V + ε2 ίF] - i\?[ί/, VJ)(η9 s, 0) = 0,
(4.3)

d*(ff[O + Φ,V + ε2 ϊF] - JV[ί7, F])(*/, 5, 0) = 0.

We shall see that the functions φn and φn (n = 0, 1, 2,...) can be determined

successively by solving (4.3) with the boundary conditions

ί Σ?=o ώ»(0, Φ " + Σn% Φβ(0, Φ " = Σ?-o 4.(0, Φ "
(4.4)

I Σ?=o « 0 , Φ " + Σΐ=oΨn(0, Φ " + 2 = Σ:=o
and

(4.5) Σ?=o 0»(oo, s)β» = 0, Σ ? = o ^ ( c o , s > ϊ » = 0 ,

Since βΛ(0, s) = | n (0, 5) (n = 0, 1, 2,...), (4.4) and (4.5) can be rewritten in the form

(4.6) | w (0, 5) = βn(0, s) (π = 0 , l ) ,

(4.7) 0,(0, s) = 4,(0, 5) - Un(0, 5), φΛ(co, s) = 0, (n = 0, 1, 2,...),

(4.8) ψn(0, s) = βn+2(0, s) - | π + 2 ( 0 , s), ^(00, s) = 0 (n = 0, 1, 2,...).

Note that (4.6) determines the boundary value in (3.4) and (3.6). That is, ξo(x) =

βo(x) and ξί(x) = β1(x) (eC°°(Γ)). At times we shall use the term a C00 linear

differential operator in η and s for the sum of compositions of C00 linear dif-

ferential operators in s with differential operators in η of the form ak(η, s)3J,

where k is a nonnegative integer and ak(η, s) are bounded C°° functions defined

for η G [0, 00) and seΓ.

DEFINITION 5 (Fife [6]). Let g be the set of functions W(η, s, ε) defined on

[0, 00) x Γ x [0, ε0) with the property that for each C00 linear differential operator

D of any order in the variables η and s, there exist positive constants γ and K

(possibly depending on D and W9 but not on η, s or ε) with \DW\ <Ke~yη.

For n = 0, noting that ύo(0, s) = h(βo(0, s)) and flo(0, s) = βo(0, s), we can

reduce (4.3) to

(4.9) δ ψofo, s) = /(Λ(j90(0, s)) + 0OO/, 5), j80(0, 5)),

(4.10) d2

ηψ0(η, s) = flf(Λ(i9o(0, s)) + 0o(fl, *λ J^oΦ, s)) - g(h(βo(09 5)), ^ 0 (0, 5)).

The boundary conditions (4.7) and (4.8) are

(4.11) 0O(O, 5) = 4ό(0, s) - h(βo(0, 5)), φo(oo, 5) = 0,

(4.12) ψo(p, s) = β2(0, s) - | 2 ( 0 , S ) , ψo(ao9 s) = 0.

For the problem (4.9) and (4.11), Fife [6] proved
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LEMMA 6. Let seΓ and assume (i), (ii) and (iv). Then the boundary value

problem (4.9) and (4.11) has only one monotone solution φo(η, s) with respect

to η9 such that φo(η, s) e £.

Next rewrite (4.10) as

(4.13) d2ψ0(η, s) = p(η, s)

where

(4.14) p(η9 s) = Γ gu(h(βo(0, s)) + θφo(η, s), j§0(0, s))dθ φo(η, s) e £%
JQ

and integrate (4.13). Then we obtain

ψo(η, s) = a(s) + b(s)η + Γ dτ Γ p(ζ, s)dζ
J»/ Jτ

for arbitrary functions α(s) and b(s) of seΓ. Since (4.14) implies

η

it follows from the second condition of (4.12) that α(s) = fo(s) = 0. Thus we have

(4.15) ψo(η, s) = Γ dτ Γ p(C, s)dζ e ^ .

Setting /7 = 0 in (4.15), we can specify the boundary value in (3.10) with n = 2 as

I2(O, s) = β2φ9 s) - Γ dτ Γ p(C, s)dζ e C°°(Γ).
JO Jτ

Thus, we have

LEMMA 7. T/iere exίsίs α unique function |2(0> s ) e C°°(Γ) for which the

problem (4.10) and (4.12) /iαs α unique solution ψo(η,

To treat the case n > l , the next lemma is of great importance. For con-

venience, we put

f G^Φ, Ψ) = M\U +Φ,V + ε2Ψ] - M[_U, K ] ,

1 G2(Φ, Ψ) = ft[ϋ + Φ, V + ε2ίF] - JV[ί7, F] .

Then

GX(Φ, Ψ) = d2

nΦ + εδ-\dnΦ + εvδη'δΦ + ε25-^Φ

- / ( ί / + Φ , F + ε2!F)+/(ί7, f),

G2(Φ, Ψ) = d\Ψ + εδ vδηψ + εv^ δlF + ε2δ-δΨ

, V).

( 4 1 6 )
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LEMMA 8. For given functions Ww(η, s, ε) and W^2\η, s, ε), let W(

n

1}

(η, s, έ) = δ"εWW(η, s, ε)/n! and W(

n

2\η, s, ε) = δ"εW^(η, s, ε)/n! (n = 0, 1, 2,...).

Then for n>ί, we have

, s, β) = L&KWP, FF<2)](ι& s, β)

- Πί'Λ LWP, wp,..; w(

nι\, w£\Uη, s, β),

, s, ε) = L2(ε) W , ^ί«].(iί, s, ε)

Lγ and L2 are the linear differential operators with

fa, 5, 0) = d2

ηW
{

n

ι\η9 s, 0)

-Λ(ώo(0, s) + Wfr\η9 5, 0), ίo(0, s ) ) ^ 1 ^ , s, 0),

fa, s, 0) = 35Wr^2)(ιy,.s, 0)

, 5) + ^ > ( ι y , s, 0), βo(0, s ) ) ^ 1 ^ , . * , 0),

Πi- i (' = 1> 2; n > l ) are ί/ie differential operators (in the variables η and s)

applied to the Injunctions such that

whenever W#\ W&\...9 W(

n\)u

PROOF. We omit the proof, since it is similar to that of Lemma 3.3 in Fife

[6].

Using the above lemma, for n > l , we can rewrite the problem (4.3), (4.7)

and (4.8) as follows:

(4.17) d*φn(η, s) -Mh(βo(p, 5)) + φo(η, s), jίo(0, s))φn(η, s) = ΠΆ (η, s, 0),

(4.18) d>ψώι9 s) - gu(h(βo(0, 5)) + φo(η9 5), j50(0, s))φn(η, s) = Y\Ά (^ s, 0),

with the boundary conditions

(4.19) φn(09 s) = 4Λ(0, 5) - Un(0, s), φn(*>, s) = 0,

(4.20) φn(0, s) = βn+2(0, s) - ξn+2(09 5), ^ ( o o , s) = 0.

We assume that φθ9 ψθ9...9 φn.l9 ^ . ^ ^ that is, Π i - i ( ^ s,0)eS> (ί = l, 2).

LEMMA 9 (Fife [6]). For seΓ, consider the boundary value problem

j d2

ηw(η, s) -fMβoΦ, s)) + φo(η, s), βo(P, s))w(η, s) = k(η, s),

[ w(0, s) = wo(s), w(oo, s) = 0,
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where wo(s) is some function ofC°°(Γ) andk(rj, s) e £. Then there exists a unique

solution w(η, s)e<f.

Applying Lemma 9 to the problem (4.17) and (4.19), we find a unique solution

φn(η, s) e S. Also, we see that in a way similar to the case (4.10) and (4.12), the

problem (4.18) and (4.20) has a unique solution

ψn(η, s) = Γ dτ Γ {gu(hCβΌ(0, s)) + φo(ζ, s), βQ(0, s))φn(ζ, s)
Jη Jτ

+ UΆ(ζ,s,θ)}dζ e<?.

Further, we have

eπ+2(0, s) = βn+2(0, s) - Γ dτ Γ {gMhΦ, «))
JO Jτ

+ φO(ζ, 5 ) ^ 0 ( 0 , S))φn(ζ, S) +Π^2Λ(C, 5, 0)}^6C°°(Γ).

Thus we have obtained

LEMMA 10. Assume (i), (ii) and (iv). Then there exists a unique function

£n+2(0, s)eC™(Γ)for which the boundary value problem (4.17), (4.18), (4.19)

and (4.20) has a unique solution (φn(η, s), ψn(rj, s)) belonging to

REMARK 11. The above discussion yields that boundary values of the

outer expansion υn(x) at x e Γ are

= W0,s) (n = 0, 1),

= βn(0, s) - Γ dτ Γ Γ gMβoΦ, s)) + 0tf>o(C, s),
JO Jτ JO

j§0(0, s))dθφo{ζ, s)dζ (n = 2 ) ,

= ^(0, s) - JJ dτ £ {gu(h0o(O, s)) + φo(ζ, s),

βo(0, 5))0B-2(C, s) + Πi2Λ (C, s, 0)}ί/ζ (n > 3).

5. Uniform approximation

For an arbitrary nonnegative integer m, define

Um(x, ε) = Σ!?=o « n ( Φ " , Vm(x, ε) = Σ?=o υn(x)ε",

where un and t>B (1 < n < m) are coefficients of the outer expansions determined in

Section 3 by using the boundary values in Remark 11.
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LEMMA 12.

(5.1) \\M\Um F J ( x , β ) | | c l ( f i )

(5.2) \\N\Um9 F J ( x , ε ) | | c l ( ^ <

PROOF. We shall prove only (5.1) since (5.2) follows from a similar argument.

M[l/m, Vin](x, ε) is an infinitely differentiate function of ε. Clearly

M\Um FJ(x, ε) = - ^ j - ^{\-θγd^M\Um, Km](x, θε)dθ = ε "^R(x, ε).

Obviously R(x9 ε) and its derivative with respect to x are bounded. Thus we have

(5.1).

Since the coordinate system (η, s, ε) is defined merely in the strip Ωd, we must

extend the domain Ωd into Ω. For this purpose, we take a cutoff function ζ(x) e

C°°(βd) such that

ζ(x) = 1 on Ωd/3, 0 < ζ(x) < 1 on Ω2d/3 - Ωd/3, ζ(x) = 0 on Ωd - Ω2d/3,

and define Φm(x, ε) and Ψm(x, ε) by

0, xeΩ-Ωd,

and

Ψ0(x,ε)= Ψx(x, e) = 0, xeΩ,

Ψm(x9ε)=\ _
I 0, xeΩ - Ωd

respectively. Notice that Φm(x, ε) and Ψm(x, ε) 6 C°°(Ω).

LEMMA 13.

(5.3) |(Λ?[ί7m + Φm9 Vm + ε ^ J - M[ί?m, ^J)(ιy, 5, e ) | 0 Λ / 3 <

(5.4) |(JV[ί7w + Φm, F m + ε ^ J - ff[ϋm VmMη, 5, β ) | o A / 3 <

and for any C00 linear differential operator D in η and s,

(5.5) | D ( ^ [ ί 7 m + $m, Vm + ε ^ J - MlUm, ΫJ)(η, s, β ) | o A / j

(5.6) I D ^ E ^ + * . , fm + ε2*?J - J\7[i7m, P J X , , s, β)|0. f i ( l / l

PROOF. For x e Ωd/3, we note
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(ttlθm + $m> Ϋm + e * * J - Λ?:t7m, Vm-])(η, s, ε) = i ^ , s, ε) - F2{η, s, ε)

where

Ft(η, s, 8) = mϋm + $m, Vm + ε*Ψm+2] - jtf[Um, Fj)( ι , , 5, ε)

and

F2(η, s, ε) = {M[Um + Φm, Vm + ε 2 ^ m + 2 ] - U?[ί7m + ίm, F m + ε^m])(//, 5, ε).

By the scheme in the preceeding section, determining the boundary layer ex-

pansion, we easily see that F^η, s, ε) is an infinitely differentiable function of ε and

Fifa, s, ε) = ^ ^ ( l - θ ^ r 1 Fx(η, 5, θε)dθ.

Thus by Lemma 8, we have

dr'FM s, ε) = - Πi° Wo, !̂ o m̂S ̂ J ( ί ,

Therefore we have

|ί*i(^ s, e ) | 0 A / 3 < Ce»+1,- IDF f̂y, s, β ) | o A / 3 <

Next we rewrite F2 as

F2(/y, 5, ε) =

Mυ is an infinitely difFerentiable function of η and 5, whose derivatives are bounded

in Ωd/3. Since ψm-ι and \\ιm are in <f, we obtain

\, s9 ε)\o,άdh < Cεm+\ \DF2(η, s, ε)\OfΩdh

Thus we have (5.3) and (5.5). In a similar way, we obtain (5.4) and (5.6).

We are now ready to provide the formal approximation to the solution of

(2.1) and (2.2). Note that Um + Φm and Vm + ε2Ψm satisfy the boundary condition

(2.2) approximately up to order εm.

THEOREM 14. Let Um(x, ε), Fm(x, ε), Φm(x, ε) and Ψm(x, ε) be as above.

Then for any αe(0, 1),

(5.7)

and

(5.8)

\\M[Um -

\\Nίum -̂ φ



240 Hideo IKEDA

PROOF. We only show (5.7) since (5.8) can be analogously obtained. In
Ω—Ω2d/3, Lemma 12 yields

+ Φm, Vm ( ( l - / j )

In Ω2i/3-Ωd/3>

M\Um + Φm, Vm + ε ^ J = M[[/m) F J + d\Φ*m + εδ • vdηΦm + εvδη • δ$m

+ έ*δ • δ$m - £ {fu(ϋm + θ$m> Pm + ε*ΘΨJΦm

Lemma 12 and the fact that $m and Ψm are in <f yields

l|M[l/m + Φm, Vm + ε*Ψm-](x, ε)\\clφ2dh-Ωdh)

Finally, in Ωi/3, write

MtUm + Φm, Vm + ε̂  P J = M[C/m) Fm]

+ {M\Um + Φm, Fm + ε ^ J - M[l/m, F J } .

Applying Lemma 13, we have

\M\υm + Φm, Vm + ε̂  P J - M[Um, FJ | 0 > i 5 d / 3 < Cε"+\

\M\Um + Φm, Vm + ε ^ J - M[C/m, Vm-\\ιfidh < Cε-".

Thus we have

\M\Vm + Φm, Vm + βJψJ|o,0 < Cε^K \M{Um + Φm, Vm + ε^ΨJl^ < Cε".

Therefore by the interpolation inequality, we obtain

\MίUm + Φm, Vm + ε*Ψm-]\XiS < Cε-»+i-".

Thus we have proved (5.7).

6. Justification

By the use of the outer and boundary layer expansion, we define (l/o(*> ε)>
V%(x, ε)) on Ω by

UJx, ε) + Φm(x, ε) + ζ(x){A(0, s, ε) - Σ?=o <*„(<), &"}>

,ε), xeΩ-Ωd,
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x9*).+ ζ(x){β{0, s, &) - Σ!U> A,(Q> *>"}, ^

FM(x, ε) , ε),

Then (L/jJ(x, ε), Fg (x, ε)) satisfies the boundary condition (2.2) on Γ.

Now we look for a solution (u(x, ε), v(x, ε)) of (2.1) and (2.2) in the form

(6.1)
u(x, ε) = l/jjf(x, ε) -I- ε^φc, ε) + e"1/*'(i;0(x))s(x, ε),

v(x, ε) = Fff(x, ε) + εms(x, ε),

for 0 < ε < ε o , where ε0 is a small constant. Substituting (6.1) into (2.1), we have

' R(r, 5, ε) Ξ ε2Ar + β2J(h'(i;σ)s) - ε ~ m [ / ( ^ + εmr + εm/ι'(z;0)s,

(6.2)

S(r, s, έ) = As-

εms) - ε2zl l/y] = 0,

εmr + εm/ir(ι;0)s, Fg + εms) - JFg1] = 0.

Let ί = (r, s) and Γ(ί, ε) = (Λ(r, s, ε), S(r, s, ε)). Then T is a continuously dif-

ferentiable mapping from Xε x (0, ε0) into Yε where

χε = Cε

2,+

o

α(S) x C§+ α(β) and 7ε = Q(Ω) x

The mapping T has the Frechet derivative of the form

^ e ) , L2(ί, ε)
(6.3)

where

Tt(t, ε) =
L3(ί, ε), L4(ί, e)

εms),Li(ί, ε) = ε2Δ - fu(U% + εmr + εmh'(υ0)s,

L2(ί, ε) = e*h'(po)Δ+

- 77(/)(t/gf + εmr

L3(ί, ε) = - ^ I / y + εmr + εmh'(v0)s, Fgf

L4(ί, ε) = J - n{g){VS + εmr + εm/t'(t)0)s,

Π(/)(z 0 , zx) = / u ( z 0 , zJΛ'

For simplicity we put

Mε = LiίO, ε):

LEMMA 15. Assume (ii). Tften fftere exists a constant ε0 sucft ίfeαί M£

ftαs α uniformly bounded inverse for 0 < ε < ε o .
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PROOF. First we consider a linear operator M° from C*+o

a(Ω) into

such that

M? = ε2A - fu(U0(x, ε) + Φ0(χ, β), F0(x, β)).

For any F e C%(Ω) we obtain, by Appendix B, a unique solution u(x, ε) e C

of

(6.4) M°εu = F

such that

(6.5) | | M (x,ε) | | c o<C||F| | c o.

We rewrite (6.4) as

The Schauder estimates imply

l«l2+« < β-*C(β--||«||co + \u\. + | |F | |c ) .

Further applying the interpolation inequality and (6.5), we obtain

β2+ |« l2+.^C«f | | c ? , ε2 |u|2 < C\\F\\cΐ, φ], < C\\F\\cf.

Thus we have

that is, M? is invertible and

Next we have

M ε - M° = f:u(U0 + Φ0- l/y) + f*,(V0 - Vff)

where/:„ and /•„ are evaluated at (Ujg + Θ^Uo + Φo-Ujg), V$ + Θ2(VO-V!S))
{oτO<θuθ2<ί. For any ueCl%\Ω),

| |(Mε-M>||c f

< \\f*uu(Uo + Φo~ UfMci + Ui.(V0 - V S)u\\cΐ.

On the other hand,

UUU0 + Φ0-U!S)u\\cΐ

< (l/ί. lolϋo + φo - ^olo + β*l/ΪJ.|t/0 + Φo - I/5lo
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In a similar way,

\\ft.(V0-

Thus we have

Φ0- teller + UUCΪWO ~ vz\\c°. •

Noting that

11/ϊJlcf = 0(1). Wo + Φo - l/Jllcf = 0(ε),

as ε-+0, we obtain

l |W,-Aί?| |cί^cί = 0(ε) as ε • 0.

Therefore with sufficiently small ε 0 , we have

for 0 < ε < ε o . Since Af^M^Z-ίM^-^MO-MJ), Mt is invertible and

||(AfJ-Mlcί-cϋ < C

forO<ε<ε0. This proves the lemma.

Put

JV6 = L4(O,ε) : Cg+«(Π) — C*{Ω),

H = Δ- Π(g)(U0, Vo) : Cg+«(Ω) > C(Ω).

If (ii) is satisfied, clearly we have

(6.6) Htf-Ίlc«(Ω)^-<n) < C.

Moreover by Theorem 2 in Chicco [4], for any FeLp(Q)Hv = F has a unique
solution υeW2>p(Ω) n ^o' p(β) such that

HϋllϊΓ2.i'(β)nTFo1'1'(β) ^ Cll ^11 Li»(13)

Setting p = iV and applying the Sobolev imbedding theorem, we have



244 Hideo IKEDA

Hence, noting v = H~1F, we obtain

(6.7) II

LEMMA 16 (Ito [9]). Suppose that (ii) is satisfied. Then there exists a

constant ε0 such that Nε has a uniformly bounded inverse for 0<ε<εo.

PROOF. We rewrite Nε in the form

Nε = H-K, where K = Π(g)(U^ Fj) - Π(g)(U0, Vo).

Kυ= LΠ(g)(U^ Vt) - Π(g)(U0 + Φo, Vo)

+ Π(g)(U0 + Φ09 Vo) - Π(g)(U09 Voy]v

and

\Kv\<C(ε + \Φ0\)\\v\\cl+«.

Here using (6.7), we have

(6.8) \\H-iK\\ci+^c. < C(ε+\\Φ0\\LP) < CέM*.

For any G e Ca(Ω), we consider

NEv = Hv - Kv = G.

For sufficiently small ε>0, by (6.6) and (6.8), we have

< C | | G | | c α .

This establishes the lemma.

LEMMA 17 (Ito [9]). There exists a constant ε0 such that

Cε ,(6.9)

(6.10)

for 0<ε<ε o .

PROOF.

[|L2(0, ε)

111.3(0, β)

For any veC%+*(Ω),

IMθ,Φllc?

ΊlcS+ (β)-c?(ί

< C(β||β||c».
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Making use of the fact that ι;(x) = 0 at x eΓ, we obtain

\Φov\o < Cε|M|C2+* and | < M

Applying the interpolation inequality,

\Φov\a < ei-*\Φ0Ό\t + Ce-«|Φ0ι>|0

Thus we have

which shows (6.9). Next for any v e C2

ε%"(Ω),

l|L3(0, ε)υ\\c« = \\gu(U>$9 V$v\\c

%, V$)\0\Ό\0 + \gu{U^ VM0\Ό\a + \gJiUt, V#)\a\υ\o

This implies (6.10).

By Lemmas 15-17, we have the following

LEMMA 18 (Hosono et al. [8]). Assume (ii) is satisfied. Then there exists

a constant ε0 such that Tf(0, ε) has a uniformly bounded inverse for 0 < ε < ε o .

PROOF. We consider

(6.11) Tf(0, ε)t = F

for F = (fnfs)eYε. By (6.3), Lemmas 15 and 16, the operator equation (6.11)

is reduced to

{ s=N7K-L3(0,ε)r+fs),

so that

s = N7^L3(09 β)Mβ- 1L 2(0, ε)s - Nj*L3(09 β)Afβ"
1/r

Thus from Lemma 17, we may choose ε0 such that

for 0<ε<ε o, and so we can find a unique solution teXε, which satisfies

(6.12) | | r | | c J i .

and
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(6.13) l |5 | |cg-<C(| |/ r | | c «+| |

Therefore from (6.12) and (6.13), we obtain

for 0 < ε < ε 0 . This completes the proof of the lemma.

LEMMA 19.

| | Γ ( 0 , ε ) | | y ε < C ε 1 - « .

PROOF. This follows immediately from Theorem 14.

LEMMA 20 (Fife [7]). Let XE and Yε be Banach spaces and T(ί, ε) be a

continuously differentiate mapping from Xε into Yεi defined in 0 < ε < ε o .

Assume that Tsatisfies:

(1) for any tί and t2 e Xε9

\\Tt(tu ε) - Tt(t2, ε)\\Xε^Yε < C\\U - t2\\Xε

where Tt is the Frechet derivative of Twith respect to t;

(2) Tf(0, ε) has a uniformly bounded inverse for 0 < ε < ε o ;

(3) | |Γ (0 ,ε) | | y e <Cεi-« .

Then there exists a unique function t(ε)eXε which is defined for 0 < ε < ε o ,

satisfying

T(ί(ε), ε) = 0 and \\t(ε)\\Xε = Oiε1-") as ε > 0.

Now we apply Lemma 20 to our operator equation (6.2). Then (1) is

obvious, while (2) and (3) follow from Lemmas 18 and 19, respectively. Therefore

we have the following

THEOREM 21. Under the assumptions (i), (ii), (iii) and (iv), there exists a

constant ε0 such that for 0 < ε < ε o , (2.1) and (2.2) have a solution (u(x, ε), v(x, ε))

satisfying

\\u(x, ε) -

\\v(x, ε) - J ( )

COROLLARY.

lim^o w(x, ε) = h(vo(x)) uniformly in each closed set in Ω9

lim^o v(x, ε) = vo(x) uniformly in Ω,
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limε_>0a-£-(x, ε) = σ(l (β°(3° /(s, βo(x))ds)X'2uniformly in Γ,

limε_0 -g~(Λ, β) = -gξ-(χ) uniformly in Γ,

where σ = sign (h(βo(x)) - αo(x)).

7. Concluding remarks

We have considered a pair of second-order partial differential equations
(2.1) and (2.2) and have shown the existence of asymptotic solutions. First we
note here that uniqueness is certainly not to be expected. In fact, many different
asymptotic solutions for (2.1) and (2.2) may be possible when/(w, v) = 0 or (2.3)
has many solutions. Secondly, though we have assumed Γ is connected for
simplicity and clarity, we can also treat similarly when Γ are the sum of connected
C00 hypersurfaces. Finally, we remark that our assertions can be easily
generalized to any uniformly second-order elliptic equations in divergence form

x, ε)dju) -/(i , , *) = 0
, xeΩ

ΌfyO - s(u, v) = o
with the same boundary conditions (2.2).
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Appendix A. Proof of Proposition 3

For any positive number d, certainly F is a C°° map from [ — d9 d] x Γ onto
Ψ"ά. Moreover for each seΓ, its Jacobian matrix (with respect to local coordi-
nates on [ — d, d~]xΓ) at (0, s) is nonsingular since v(s) is normal to Γ. By the
compactness of Γ, there exists a positive number d0 such that the Jacobian matrix
is nonsingular in [ — d0, d o ]xΓ. We show that, for some positive number
d (<d0), F is injective in [ — d, d~\ xΓ. Then by the inverse mapping theorem,
we shall obtain the assertion. Suppose, on the contrary, that for any d such that
0<d<d0, F is not injective in [ -d ,d]x f . Then we may choose a positive
integer N, and for all n > N, two distinct points (tn, sn) and (t'ni s'n) of [ — 1/n, 1/n] x
Γ such that F(tn, sn) = F(t'n9 s'n). Since Γ is compact, there exist subsequences
isn(k)} a n d ($!,(*)} which converge to some points s and s' of Γ. On the other
hand, both {tn(k)} and {t'nik)} converge to zero. By the continuity of F we obtain
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F(0, s) = JF(O, s'), so that s = s'. By the inverse mapping theorem, there exists a

neighborhood °U of (0, s) such that F is injective in <%. Thus F(tn(k), sn(k)) =

F(t'n(k)> s'n(k)) implies (tn(k)9 sn(k)) = (t'n(k), s'n(k)) for large fc. This contradicts

the choice of the points (tn, sn) and (ί^, s^). With this, the proof is completed.

Appendix B

First we show that we can choose a constant ε0 sufficiently small, such that

for any ε e (0, ε0) there exists a function χ(x9 έ) e C*+a(Ω) with the property that

(B.I) 0<δί<χ<δ29

(B.2) M°χ < - < 5 3 < O

where δl9 δ2 and δ3 are some constants independent of ε, and

We put

+ ζ(x)χo(Kx)/ε, s(x)l xeΩd,
χ ( x , ε ) = ι

1, xeΩ-Ωd,

where χo0i, s) is a solution of the following problem

S2

ηχ0(η, s) -fu(h(βo(O> s)) + φo(η, s), βo(0, s))χo(η9 s)

= Λ(fc(jίo(o, s)) + φo(n, s), βo(p, s)) -fMβoiP, s)χ ]5o(o,

χo(o, s) = w,
, s) = 0.

Observe that by Lemma 9, χo(>7, s) ε «f. The constant PFcan be chosen sufficiently

large so that

Xo(η, s) > - 1/2 for (ι/, s) e [0, oo) x Γ.

Then we have

M°Bχ = ~ fu(Kv0), v0)+ O(ε) as ε — > 0.

By (ii), if we choose a constant ε0 sufficiently small, there exist constants ί1 ? δ2

and (53 such that for any εe(0, ε0) (B.I) and (B.2) are satisfied.

Next we shall prove the following lemma as in van Harten [11].

LEMMA B. Let εe(0, ε0). Then for each FeC*(Ω) there exists a unique

solution u(x, ε)e C^α(O) of
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(B.3) M°εu = F

which satisfies

(B.4) \\u\\coφ)<(δ2lδ3)\\F\\co(n)9

where δ2 and δ3 are as in (B.I) and (B.2).

PROOF. With the aid of Theorem 12.7 in Agmon et al. [1], the existence of

a solution θf (B.3) follows from the uniqueness. Hence it suffices to show that

(B.4) holds for any MeC^+

o

α(Ω) satisfying M®u = F. The function w = uχ~xe

Cl%«(Ω) satisfies

M°εw = F

where

M°ε = ε2χA + 2e2 Σf

Since M°χ<-<5 3 <0, applying the maximum principle for elliptic equations,

we have

So

from which (B.4) follows.
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