Oscillation theorems for nonlinear differential systems with general deviating arguments

P. MARUŠIAK

(Received December 20, 1985)

1. Introduction

The oscillation theory of nonlinear differential systems with deviating argements has been developed by many authors. Most of them have studied two-dimensional differential systems; see, for example, Kitamura and Kusano [2-4], Shevelo, Varech and Gritsai [8], and Varech and Shevelo [9, 10]. The oscillation results for *n*-dimensional systems with deviating arguments have been given by Foltynska and Werbowski [1], the present author [5, 6] and Šeda [7].

The purpose of this paper is to obtain oscillation criteria for the nonlinear differential system with general deviating arguments of the form:

$$(S_r) y_i'(t) = p_i(t)f_i(y_{i+1}(h_{i+1}(t))), i = 1, 2, ..., n-1,$$

$$y_n'(t) = (-1)^r p_n(t)f_n(y_1(h_1(t))), r = 1, 2,$$

where the following conditions are assumed to hold:

(1) a) $p_i: [0, \infty) \rightarrow [0, \infty)$, i=1, 2, ..., n, are continuous and not identically zero on any infinite subinterval of $[0, \infty)$, and

$$\int_{0}^{\infty} p_{i}(t)dt = \infty, \quad i = 1, 2, ..., n-1;$$

- b) $h_i: [0, \infty) \to R$ are continuous and $\lim_{t \to \infty} h_i(t) = \infty$, i = 1, ..., n;
- c) $f_i: R \to R$ are continuous and $uf_i(u) > 0$ for $u \neq 0, i = 1, 2, ..., n$.

Denote by W the set of all solutions $y(t) = (y_1(t), ..., y_n(t))$ of the system (S_r) which exist on some ray $[T_y, \infty) \subset [0, \infty)$ and satisfy sup $\{\sum_{i=1}^n |y_i(t)|; t \ge T\} > 0$ for all $T \ge T_y$.

DEFINITION 1. A solution $y \in W$ is called oscillatory if each component has arbitrarily large zeros.

A solution $y \in W$ is called nonoscillatory (resp. weakly nonoscillatory) if each component (resp. at least one component) is eventually of constant sign.

DEFINITION 2. We shall say that the system (S_1) has the property A if for n even every solution $y \in W$ is oscillatory and for n odd it is either oscillatory or

 (P_1) y_i (i=1, 2,..., n) tend monotonically to zero as $t \to \infty$.

We shall say that the system (S_2) has the property B if for n even every solution $y \in W$ is either oscillatory or (P_1) holds or

 (P_2) $|y_i|$ (i=1, 2,..., n) tend monotonically to ∞ as $t \to \infty$, and for n odd it is either oscillatory or (P_2) holds.

We introduce the following notations:

i) Let $\tau: [0, \infty) \to R$ be a continuous function such that $\tau(t) \le t$ and $\tau(t) \to \infty$ as $t \to \infty$. We define

$$\gamma_{\tau}(t) = \sup \{s \ge 0; \tau(s) < t\} \text{ for all } t > 0;$$

- ii) Let $i_k \in \{1, 2, ..., n\}, k \in \{1, 2, ..., n-1\}, t, s \in [0, \infty)$. We define:
- (2) $I_0 = 1$,

$$I_k(t, s; p_{i_k}, ..., p_{i_1}) = \int_s^t p_{i_k}(x) I_{k-1}(x, s; p_{i_{k-1}}, ..., p_{i_1}) dx.$$
It is easy to prove that the following identities hold:

(3)
$$I_k(t, s; p_{i_k}, ..., p_{i_1}) = \int_s^t p_{i_1}(x) I_{k-1}(t, x; p_{i_k}, ..., p_{i_2}) dx,$$

(4)
$$I_k(t, s; p_{i_k}, ..., p_{i_1}) = (-1)^k I_k(s, t; p_{i_1}, ..., p_{i_k}).$$

To obtain main results we need the following lemmas:

LEMMA 1. Suppose that the conditions (1a)-(1c) are satisfied. Let $y = (y_1, ..., y_n) \in W$ be a nonoscillatory solution of (S_r) on the interval $[a, \infty)$, $a \ge 0$.

I) Then there exist an integer $l \in \{1, 2, ..., n\}$, with n+r+l odd or l=n, and $t_0 \ge a$ such that for $t \ge t_0$

$$(5_l) y_i(t)y_1(t) > 0, i = 1, 2, ..., l,$$

(6_l)
$$(-1)^{l+i}y_i(t)y_1(t) > 0, \quad i = l, l+1,..., n.$$

II) In addition let $\lim_{t\to\infty} |y_l(t)| = L_l$, $0 \le L_l \le \infty$. Then

(7)
$$l > 1, L_l > 0 \Rightarrow \lim_{t \to \infty} |y_i(t)| = \infty, \quad i = 1, 2, ..., l - 1,$$
$$l < n, L_l < \infty \Rightarrow \lim_{t \to \infty} y_i(t) = 0, \quad i = l + 1, ..., n.$$

PROOF. a) Let r=1. From Lemma 1 of [5] we get the assertions of Lemma 1 in the case I). b) Let r=2. Without loss of generality we may suppose that $y_1(t)>0$, $y_1(h_1(t))>0$ for $t\ge t_1\ge a$. Because of (1a), (1c), the *n*-th equation of (S_2) implies that $y_n(t)$ is nondecreasing on $[t_1, \infty)$. Then either $y_n(t)>0$ or $y_n(t)<0$ for $t\ge t_2\ge t_1$. i) If $y_n(t)>0$ for $t\ge t_2$, it is easy to prove that $y_i(t)>0$ for $t\ge t_3\ge t_2$, $i=1,\ldots,n-1$. ii) Let $y_n(t)<0$ for $t\ge t_2$. Then in view of the

(n-1)-st equation of (S_2) we get $y'_{n-1}(t)y_1(t) \le 0$ for $t \ge t_2$. Then by the case a) with n replaced by n-1, there exist an integer $l \in \{1, 2, ..., n-1\}$ with n+l odd and a $t_0 \ge t_2$ such that (S_l) , (S_l) hold.

The assertions in the case II) follow from (5_1) , (6_1) .

LEMMA 2. ([5, Lemma 1]) Let $y \in W$ be a weakly nonoscillatory solution of (S_r) on $[a, \infty)$. Then there exists a $T \ge a$ such that y is nonoscillatory on $[T, \infty)$.

Furthermore we shall consider the system (\bar{S}_r) or the form

$$y'_{i}(t) = p_{i}(t)y_{i+1}(t), \quad i = 1, 2, ..., n-2,$$

$$y'_{n-1}(t) = p_{n-1}(t)f_{n-1}(y_{n}(h_{n}(t))),$$

$$y'_{n}(t) = (-1)^{r}p_{n}(t)f_{n}(y_{1}(h_{1}(t))), \quad r = 1, 2,$$

where the conditions (1a)-(1c) hold and

(1d) $f_{n-1}(u), f_n(u)$ are nondecreasing functions of u.

LEMMA 3. ([5, Lemma 4]) Suppose that (1a)-(1d) are satisfied. Let $y = (y_1, ..., y_n) \in W$ be a solution of (\overline{S}_r) on $[t_0, \infty)$. Then the following relations hold:

(8)
$$y_{i}(t) = \sum_{j=0}^{m} (-1)^{j} y_{i+j}(s) I_{j}(s, t; p_{i+j-1}, ..., p_{i})$$

$$+ (-1)^{m+1} \int_{s}^{t} y_{i+m+1}(x) p_{i+m}(x) I_{m}(x, t; p_{i+m-1}, ..., p_{i}) dx$$

$$for \quad m = 0, 1, ..., n - i - 2, i = 1, 2, ..., n - 2, t, s \in [t_{0}, \infty);$$

$$(9) \quad y_{i}(s) = \sum_{j=0}^{n-i-1} (-1)^{j} y_{i+j}(t) I_{j}(t, s; p_{i+j-1}, ..., p_{i})$$

$$+ (-1)^{n-i} \int_{s}^{t} p_{n-1}(x) I_{n-i-1}(x, s; p_{n-2}, ..., p_{i}) f_{n-1}(y_{n}(h_{n}(x))) dx,$$

$$for \quad i = 1, 2, ..., n - 1, \quad t, s \in [t_{0}, \infty).$$

LEMMA 4. Suppose that (1a)-(1d) are satisfied Let $y = (y_1, ..., y_n) \in W$ be a nonoscillatory solution of (\bar{S}_r) on $[a, \infty)$ with $y_1(t) > 0$ on $[a, \infty)$. Then there exist a $t_0 \ge a$ and an integer $l \in \{1, 2, ..., n\}$ with n+r+l odd or l=n such that (5_l) -(7) hold. Moreover

$$(10_{i}) y_{i}(t) \ge (-1)^{n+l} \int_{t_{0}}^{t} p_{n-1}(s) \bar{I}_{n-i-1}(s, t_{0}) f_{n-1}(y_{n}(h_{n}(s))) ds$$

$$for l = 2, 3, ..., n-1, i = 1, 2, ..., l-1, t \ge t_{0};$$

$$(10_{n}) y_{i}(t) \ge \int_{t_{0}}^{t} p_{n-1}(s) I_{n-i-1}(t, s; p_{i}, ..., p_{n-2}) f_{n-1}(y_{n}(h_{n}(s))) ds$$

for
$$i = 1, 2, ..., n - 1, t \ge t_0$$

where

$$\bar{I}_{n-i-1}(s, t_0) = \begin{cases} I_{n-i-1}(s, t; p_{n-2}, ..., p_l, p_i, ..., p_{l-1}), & 2 \le l \le n-2 \\ I_{n-i-1}(s, t_0; p_i, ..., p_{n-2}), & l = n-1. \end{cases}$$

PROOF. Suppose that $l \in \{2, 3, ..., n-1\}$, i = 1, 2, ..., l-1. Putting m = l-i-1, $s = t_0$, x = u in (8) and then using (4) and (5_l), we have

(11)
$$y_i(t) \ge \int_{t_0}^t y_i(u) p_{i-1}(u) I_{i-i-1}(t, u; p_i, ..., p_{i-2}) du, \quad t \ge t_0.$$

On the other hand, we put i = l, s = u in (9) and then use (6) to get

(12)
$$y_{l}(u) \ge (-1)^{n+l} \int_{u}^{t} p_{n-1}(x) I_{n-l-1}(x, u; p_{n-2}, ..., p_{l}).$$
$$f_{n-1}(u_{n}(h_{n}(x))) dx \quad \text{for } t \ge u.$$

Substituting (12) in (11), we obtain

$$(13) y_{i}(t) \ge (-1)^{n+l} \int_{t_{0}}^{t} \left(\int_{u}^{t} p_{n-1}(x) I_{n-l-1}(x, u; p_{n-2}, ..., p_{l}) \right).$$

$$f_{n-1}(y_{n}(h_{n}(x))) dx \right) p_{l-1}(u) I_{l-i-1}(t, u; p_{i}, ..., p_{l-2}) du$$

$$\ge (-1)^{n+l} \int_{t_{0}}^{t} p_{n-1}(x) H_{l}(x, t_{0}) f_{n-1}(y_{n}(h_{n}(x))) dx$$

for $t \ge t_1 = \gamma_{h_n}(t_0)$, where

(14)
$$H_{l}(x, t_{0}) = \int_{t_{0}}^{x} I_{n-l-1}(x, u; p_{n-2}, ..., p_{l}) p_{l-1}(u).$$

$$I_{l-l-1}(x, u; p_{l}, ..., p_{l-2}) du, \quad \text{for } x \ge t_{1}.$$

i) Let $2 \le l \le n-2$. In view of (3), H_l can be written in the form

(15)
$$H_{l}(x, t_{0}) = I_{n-l}(x, t_{0}; p_{n-2}, ..., p_{l}, p_{l-1}I_{l-i-1}(x, \cdot; p_{i}, ..., p_{l-2})).$$

Using the following relation for $t_0 \le s \le x$:

$$\int_{t_0}^{s} P_{l-1}(u) I_{l-i-1}(x, u; p_i, ..., p_{l-2}) du$$

$$\geq \int_{t_0}^{s} p_{l-1}(u) I_{l-i-1}(s, u; p_i, ..., p_{l-2}) du = I_{l-i}(s, t_0; p_i, ..., p_{l-1})$$

and then using (2), (3) n-l times in (14), we obtain

(16)
$$H_l(x, t_0) \ge I_{n-i-1}(x, t_0; p_{n-2}, ..., p_l, p_i, ..., p_{l-1}).$$

ii) Let l=n-1. Then with regard to $I_0=1$, (14) implies

$$H_{n-1}(x, t_0) = \int_{t_0}^{x} p_{n-2}(u) I_{n-i-2}(x, u; p_i, ..., p_{n-3}) du$$

= $I_{n-i-1}(x, t_0; p_i, ..., p_{n-2})$.

If we put (16) and the last equality in (13) we get (10_l) .

Let l=n. Putting $t=t_0$, s=t in (9) and then using (4), (5_n), we obtain (10_n). The proof of Lemma 4 is complete.

2. Main results

DEFINITION 3. System (\bar{S}_r) is called (α, β) -superlinear, if there exist positive numbers α, β such that $\alpha\beta > 1$ and

$$\frac{|f_i(u)|}{|u|^{\gamma_i}} \ge \frac{|f_i(v)|}{|v|^{\gamma_i}} \quad \text{for } |u| > |v|, \ uv > 0,$$

$$i = n - 1$$
, n , $\gamma_{n-1} = \alpha$, $\gamma_n = \beta$.

Let $m \in \{1, 2, ..., n\}$. We denote

(17)
$$J_{n-2}^{m}(t, T) = \begin{cases} I_{n-2}(t, T; p_{n-2}, ..., p_1) & \text{for } 1 \leq m \leq 2, \\ I_{n-2}(t, T; p_{n-1}, ..., p_m, p_2, ..., p_{m-1}) & \text{for } 2 \leq m \leq n-1, \\ I_{n-2}(t, T; p_2, ..., p_{n-1}) & \text{for } 2 \leq m = n; \end{cases}$$

$$P(t) = \int_{t}^{\infty} p_n(s) ds.$$

THEOREM 1. Let the system (\bar{S}_r) be (α, β) -suplerlinear. Suppose that there exist continuous increasing functions $g, h: [0, \infty) \to R$ such that

(18)
$$g(t) \leq h_1(t), \lim_{t \to \infty} g(t) = \infty$$

(19) $h(t) \ge \max\{h_n(t), g^{-1}(t)\}, \text{ where } g^{-1} \text{ indicates the inverse function of } g.$ If

(20)
$$\int_{\gamma_h(T)}^{\infty} p_{n-1}(t) J_{n-2}^{l}(t, T) f_{n-1}(LP(h(t))) dt = \infty \quad \text{for} \quad l = 1, 2,$$
$$\int_{\gamma_h(T)}^{\infty} p_1(t) J_{n-2}^{l}(t, T) f_{n-1}(LP(h(t))) dt = \infty \quad \text{for} \quad l = 3, 4, ..., n$$

for every constant L>0, then the system (\bar{S}_1) has the property A and the system (\bar{S}_2) has the property B.

PROOF. Suppose that (\bar{S}_r) has a weakly nonoscillatory solution $y = (y_1, ..., y_n) \in W$. Then, by Lemma 2, y is nonoscillatory. Without loss of generality we may suppose that $y_1(t) > 0$, $y_1(h_1(t)) > 0$ for $t \ge t_1 > 0$. Then the n-th equation of (\bar{S}_r) implies $(-1)^r y_n'(t) \ge 0$ for $t \ge t_1$ and it is not identically zero on any infinite interval of $[t_1, \infty)$. Then, by Lemma 4, there exist a $t_2 \ge t_1$ and an integer $l \in \{1, 2, ..., n\}$ with n+r+l odd or l=n such that (5_l) –(8), (11) hold for $t \ge t_2$.

A) Consider the system (\bar{S}_1) , i.e. r=1 and n+l is even. Integrating the n-th equation of (\bar{S}_1) from $t (\geq t_2)$ to ∞ , we have

(21)
$$y_n(t) \ge y_n(t) - y_n(\infty) = \int_t^\infty p_n(s) f_n(y_1(h_1(s))) ds, \quad t \ge t_2.$$

I) Let $l \ge 2$. Then, y_1 is an increasing function and therefore there exist C > 0 and $t_3 \ge t_2$ such that $y_1(h_1(t)) \ge C$ for $t \ge t_3$. Using the last inequality, (21) implies

(22)
$$y_n(t) \ge f_n(C) \int_t^\infty p_n(s) ds = LP(t)$$

where $L = f_n(C)$. Because the system (\bar{S}_1) is (α, β) -superlinear, in view of (22) and $y_1(h_1(t)) \ge C$, we have

(23)
$$f_{n-1}(y_n(h(t))) \ge \frac{f_{n-1}(LP(h(t)))}{(LP(h(t)))^{\alpha}} (y_n(h(t)))^{\alpha}, \quad t \ge t_3,$$

(24)
$$f_n(y_1(h_1(t))) \ge M(y_1(h_1(t)))^{\beta}, \quad t \ge t_3, \quad M = C^{-\beta}L.$$

If we put (24) in (21), then using (18), (19) and the monotonicity of y_1 , we get

$$y_n(t) \ge M \int_t^{\infty} p_n(s) (y_1(g(s)))^{\beta} ds \ge M(y_1(g(t)))^{\beta} P(t), \quad t \ge t_3,$$

or

(25)
$$y_n(h(t)) \ge M y_1(g(h(t)))^{\beta} P(h(t)) \ge M(y_1(t))^{\beta} P(h(t)),$$

for $t \ge \gamma_h(t_3) = T_1$.

i) Let $2 < l \le n (n+l)$ is odd). Putting i = 2, $t_0 = T_1$ in (10_l) , (10_n) , and using (19), the monotonicity of h, y_n , f_{n-1} , (4), (17) and (23), we obtain

$$(26_{l}) y_{2}(t) \ge \int_{T_{1}}^{t} p_{n-1}(s) \bar{I}_{n-3}(s, T_{1}) f_{n-1}(y_{n}(h_{n}(s))) ds$$

$$\ge (y_{n}(h(t)))^{\alpha} \frac{f_{n-1}(LP(h(t)))}{(LP(h(t)))^{\alpha}} J_{n-2}^{l}(t, T_{1}), \quad t \ge T_{1},$$

$$l = 3, 4, ..., n - 2,$$

$$(26_n) y_2(t) \ge f_{n-1}(y_n(h(t))) \int_{T_1}^t p_{n-1}(s) I_{n-3}(t, s; p_2, ..., p_{n-2}) ds$$

$$\ge (y_n(h(t)))^{\alpha} \frac{f_{n-1}(LP(h(t)))}{(LP(h(t)))^{\alpha}} J_{n-2}^n(t, T_1), \quad t \ge T_1,$$

respectively. Combining (25) with (26), we get

(27)
$$y_2(t) \ge C^{-\gamma}(y_1(t))^{\gamma} f_{n-1}(LP(h(t))) J_{n-2}^{l}(t, T_1), \quad t \ge T_1, \quad \gamma = \alpha \beta.$$

Multiplying (27) by $p_1(t)(y_1(t))^{-\gamma}$ and then using the first equation of (\bar{S}_1) , we get

(28)
$$y_1'(t)(y_1(t))^{-\gamma} \ge C^{-\gamma} p_1(t) f_{n-1}(LP(h(t))) J_{n-2}^l(t, T_1), \quad t \ge T_1.$$

Integrating (28) from $T_2 = \gamma_h(T_1)$ to τ , and then letting $\tau \to \infty$, we have

$$\int_{T_2}^{\infty} p_1(t) J_{n-2}^l(t, T_1) f_{n-1}(LP(h(t))) dt \leq \frac{C^{\gamma} y_1(T_2)}{\gamma - 1} < \infty,$$

which contradicts (20,) for $l \ge 3$.

ii) Let l=2=n. If we put the second equation in the first equation of (\bar{S}_1) and then use (19), (23) and (25), we get

$$y_1'(t)(y_1(t))^{-\gamma} \ge C^{-\gamma}p_1(t)f_1(LP(h(t))).$$

Integrating the last inequality from T_1 to τ and letting $\tau \to \infty$, we get a contradiction to (20_l) for l=2=n.

iii) Let l=2 < n. Putting i=2 in (9) and using (6), (19), the monotonicity of h, y_n , f_{n-1} , we obtain

(29)
$$y_2(s) \ge \int_s^t p_{n-1}(x) f_{n-1}(y_n(h(x))) I_{n-3}(x, s; p_{n-2}, ..., p_2) dx.$$

Combining (25) with (23) and using the monotonicity of y_1 , from (29) we get

(30)
$$y_2(s) \ge C^{-\gamma}(y_1(s))^{\gamma} \int_s^t p_{n-1}(x) f_{n-1}(LP(h(x))) I_{n-3}(x, s; p_{n-2}, ..., p_2) dx.$$

Multiplying (30) by $p_1(s)(y_1(s))^{-\gamma}$ and using the first equation of (\bar{S}_1) , we have

$$y_1'(s)(y_1(s))^{-\gamma} \ge C^{-\gamma}p_1(s)\int_s^t p_{n-1}(x)I_{n-3}(x, s; p_{n-2},..., p_2).$$

$$f_{n-1}(LP(h(x)))dx$$
.

Integrating the last inequality from T_1 to t, we get

$$\frac{C^{\gamma}(y_{1}(T_{1}))^{1-\gamma}}{\gamma-1} \int_{T_{1}}^{t} p_{1}(s) \int_{s}^{t} p_{n-1}(x) I_{n-3}(x, s; p_{n-2}, ..., p_{2}).$$

$$f_{n-1}(LP(h(x))) dx ds \ge \int_{T_{1}}^{t} p_{n-1}(LP(h(x))) J_{n-2}^{2}(x, T_{1}) dx,$$

which contradicts (20₂) as $t \rightarrow \infty$.

II) Let l=1 (n is odd). Then $y_1(t) \downarrow K$ as $t \uparrow \infty$, where $K \ge 0$. Assume that K > 0. If we put i=1, $s=T_1$ in (9), and use (6), (19) and the monotonicity of h, y_n , f_{n-1} , we obtain

$$y_1(T_1) \ge \int_{T_2}^t p_{n-1}(x) f_{n-1}(y_n(h(x))) I_{n-2}(x, T_1; p_{n-2}, ..., p_1) dx$$

for $t \ge T_2 = \gamma_n(T_1)$. Further using (22), we have

$$y_1(T_1) \ge \int_{T_1}^t p_{n-1}(x)J_{n-2}^1(x, T_1)f_{n-1}(LP(h(x)))dx,$$

which contradicts (20₁) as $t\to\infty$. Therefore K=0, $\lim_{t\to\infty} y_1(t)=0$. Then by (7) $\lim_{t\to\infty} y_i(t)=0$ for i=1, 2, ..., n.

- B) Consider the system (\bar{S}_2) , i.e. r=2 and n+l is odd.
- I) By virtue of Lemma 3, (5_n) holds. Then the *n*-th equation of (\bar{S}_2) implies, in view of $y_1(h_1(t)) > 0$, (1a) and (1c), that $y_n(t)$ is a nondecreasing function and therefore $\lim_{t \to \infty} y_n(t) = L_n \le \infty$. Then it follows from (7) that $\lim_{t \to \infty} y_i(t) = \infty$ for i = 1, 2, ..., n-1. We shall prove that $L_n = \infty$. Suppose that $L_n < \infty$. In view of the monotonicity of y_n and y_1 , there exist $T_2 \ge t_0$, $K_1 > 0$ and C > 0 such that

$$(31) K_1 \leq y_n(h_n(t)) \leq L_n,$$

(32)
$$C \leq y_n(g(t)) \quad \text{for } t \geq T_2.$$

Integrating the *n*-th equation of (\bar{S}_2) and using (18), (31) and the monotonicity of f_n , y_1 , we get

(33)
$$L_n \ge \int_t^\infty p_n(s) f_n(y_1(h_1(s))) ds \ge f_n(y_1(g(t))) P(t), \quad t \ge T_2.$$

In view of (32), the inequality (33) implies

(34)
$$L_n \ge f_n(C)P(h(t)) = LP(h(t)), \quad L = f_n(C), \quad t \ge T_3 = \gamma_h(T_2).$$

Because the system (\bar{S}_2) is (α, β) -superlinear, in view of (32)–(34) and (19) we have

(35)
$$L_n \ge M(y_1(g(h(t)))^{\beta}P(h(t)) \ge M(y_1(t))^{\beta}P(h(t)), \quad M = LC^{-\beta}$$

(36)
$$f_{n-1}(L_n) \ge \frac{f_{n-1}(LP(h(t)))}{(LP(h(t)))^{\alpha}} (L_n)^{\alpha}, \quad t \ge T_3.$$

a) Let n > 2. From (10_n) for i = 2, $t_0 = T_4$, in view of (31) and (17), we get

(37)
$$y_2(t) \ge f_{n-1}(K_1)J_{n-2}^n(t, T_3), \quad t \ge T_3.$$

Multiplying (37) by $f_{n-1}(L_n)p_1(t)(y_1(t))^{-\gamma}$ and then using (35), (36) and the first equation of (\bar{S}_2) , we have

(38)
$$y_1'(t)(y_1(t))^{-\gamma} \ge \frac{f_{n-1}(K_1)}{f_{n-1}(L_n)} C^{-\alpha} p_1(t) f_{n-1}(LP(h(t))) J_{n-2}^n(t, T_3).$$

- b) Let n=2. From the first equation of (\bar{S}_2) and in view of (31) we obtain $y_1'(t) \ge p_1(t) f_1(K_1)$, $t \ge T_2$. Multiplying the last inequality by $L_n^2(y_1(t))^{-\gamma}$ and then using (35) and (36), we get (38) for n=2 ($J_0=1$). Integrating (38) from T_3 to ∞ , we get a contradiction to (20_n) . Therefore $L_n=\infty$ and $\lim_{t\to\infty} y_i(t)=\infty$, $i=1,2,\ldots,n$.
- II) Let $l \in \{1, 2, ..., n-1\}$. Then (6) implies that $y_n(t) < 0$ for $t \ge t_2$ and it is an increasing function. Integrating the *n*-th equation of (\bar{S}_2) from $t \in [t_2]$ to ∞ , we have

$$-y_n(t) \ge \int_t^\infty p_n(s) f_n(y_1(h_1(s))) ds, \quad t \ge t_2.$$

Further proceeding in the same way as in the cases A-I), A-II) of this proof except that $y_n(t)$ is replaced by $-y_n(t)$ (>0), we get a contradiction to (20_l) for l=1, 2,..., n-1. In the case n is even and l=1 we obtain $\lim_{t\to\infty} y_i(t)=0$ for i=1, 2,..., n.

The proof of Theorem 1 is complete.

Theorem 1 represents a certain generalization of Theorem 5 in [4].

THEOREM 2. Let the system (\bar{S}_r) be (α, β) -superlinear. Suppose that

(39)
$$h_n(t) \leq t, \ g_1(t) \leq \min \{h_1(t), t\} \quad on \quad [0, \infty),$$

$$where \ g_1'(t) \geq 0 \quad on \quad [0, \infty), \lim_{t \to \infty} g_1(t) = \infty.$$

If

$$(40_{l}) \quad \int_{\gamma_{g_{1}}(T)}^{\infty} p_{n-1}(g_{1}(t))g_{1}'(t)J_{n-2}^{l}(g_{1}(t),T) \frac{f_{n-1}(LP(g_{1}(t)))}{(P(g_{1}(t)))^{\alpha}} (P(t))^{\alpha}dt = \infty$$

$$for \quad l = 1, 2,$$

$$\int_{\gamma_{g_{1}}(T)}^{\infty} p_{1}(g_{1}(g_{1}(t))g_{1}'(t)J_{n-2}^{l}(g_{1}(t),T) \frac{f_{n-1}(LP(g_{1}(t)))}{(P(g_{1}(t)))^{\alpha}} (P(t))^{\alpha}dt = \infty$$

$$for \quad l = 3, 4, ..., n,$$

then the system (\bar{S}_1) has the property A, and the system (\bar{S}_2) has the property B.

PROOF. Let $y = (y_1, ..., y_n) \in W$ be a weakly nonoscillatory solution of (\bar{S}_r) . Then by Lemma 2 it is nonoscillatory. Let $y_1(t) > 0$, $y_1(h_1(t)) > 0$ for $t \ge t_1 > 0$.

Proceeding in the same way as in the proof of Theorem 1, we see that (5_1) –(8), (11) hold for $t \ge t_2 \ge t_1$. Let $T_2 \ge t_2$ be so large that $g_1(t) \ge t_2$, $h_n(t) \ge t_2$ for $t \ge T_2$.

- A) Consider the system (\bar{S}_1) , i.e. r=1 and n+l is even. From the *n*-th equation of (\bar{S}_1) we get (21).
- I) Let $l \ge 2$. Proceeding in the same way as in the case A-I) in the proof of Theorem 1, we get (22)-(24). Combining (24) and (21) and using (39) and the monotonicity of y_n , y_1 , we have

(41)
$$y_{n}(g_{1}(t)) \geq y_{n}(t) \geq M \int_{t}^{\infty} p_{n}(s) (y_{1}(h_{1}(s)))^{\beta} ds$$
$$\geq M(y_{1}(g_{1}(t)))^{\beta} P(t), \quad t \geq T_{2},$$

and (22) implies

(42)
$$y_n(g_1(t)) \ge LP(t)$$
 for $t \ge T_2$.

i) Let l=n or $2 < l \le n-2$. Putting i=2, $t_0=T_2$ in (10_l) , (10_n) and using (39), the monotonicity of g_1 , y_n , f_{n-1} , (5_l) , (17) and the superlinearity of (\overline{S}_1) , we obtain

$$(43_{l}) y_{2}(t) \ge f_{n-1}(y_{n}(t)) \int_{T_{2}}^{t} p_{n-1}(s) \overline{I}_{n-3}(s, T_{2}) ds$$

$$\ge f_{n-1}(y_{n}(t)) J_{n-2}^{l}(t, T_{2})$$

$$\ge \frac{f_{n-1}(LP(t))}{(LP(t))^{\alpha}} (y_{n}(t))^{\alpha} J_{n-2}^{l}(t, T_{2}), \quad l = 3, 4, ..., n-2,$$

or

$$(43_n) y_2(t) \ge f_{n-1}(y_n(t)) \int_{T_2}^t p_{n-1}(s) I_{n-3}(t, s; p_2, ..., p_{n-2}) ds$$

$$\ge \frac{f_{n-1}(LP(t))}{(LP(t))^{\alpha}} (y_n(t))^{\alpha} J_{n-2}^n(t, T_2), \quad t \ge T_2,$$

respectively.

From (43) and in view of (39) we get

(44)
$$y_2(g_1(t)) \ge \frac{f_{n-1}(LP(g_1(t)))}{(LP((g_1(t)))^{\alpha}} J_{n-2}^l(g_1(t), T_2)(y_n(t))^{\alpha},$$

for $t \ge T_3 = \gamma_{a_1}(T_2)$. Combining (44) with (41), we have

(45)
$$y_2(g_1(t)) \ge C^{-\gamma} \frac{f_{n-1}(LP(g_1(t)))}{(P(g_1(t)))^{\alpha}} J_{n-2}^l(g_1(t), T_2).$$

$$(y_1(g_1(t)))^{\gamma}(P(t))^{\beta}, \quad t \geq T_3.$$

Multiplying (45) by $p_1(g_1(t))g_1'(t)(y_1(g_1(t)))^{-\gamma}$ and using the first equation of (\bar{S}_1) , we get

$$(46) \qquad \frac{y_1'(g_1(t))g_1'(t)}{(y_1(g_1(t)))^{\alpha}} \ge C^{-\gamma}p_1(g_1(t))g_1'(t)\frac{f_{n-1}(LP(g_1(t)))}{(P(g_1(t)))^{\alpha}} \cdot J_{n-2}(g_1(t), T_2)(P_1(t))^{\alpha}, t \ge T_3.$$

Integrating (46) from T_3 to ∞ , we obtain a contradiction to (40_l) for $l \ge 3$.

ii) Let l=2=n. If we put the second equation in the first equation of (\bar{S}_1) and use (39), (23) and (41), then we get

$$\begin{split} y_1'(g_1(t)) &\geq p_1(g_1(t))f_1(y_2(g_1(t))) \\ &\geq C^{-\gamma}p_1(g_1(t))(y_1(g_1(t)))^{\gamma} \frac{f_1(LP(g_1(t)))(P(t))^{\alpha}}{(L(g_1(t)))^{\alpha}}, \quad t \geq T_2. \end{split}$$

Integrating the last inequality from T_3 to ∞ , we have a contradiction to (40_l) for l=2=n.

iii) Let l=2 < n. If we put i=2 in (9) and use (7), (39), the monotonicity of y_n, f_{n-1} , we obtain

(47)
$$y_2(s) \ge \int_s^t p_{n-1}(x) I_{n-3}(x, s; p_{n-2}, ..., p_2) f_{n-1}(y_n(x)) dx.$$

Combining (23) with (25) and then using the monotonicity of y_1 , g_1 , we obtain from (47)

(48)
$$y_2(g_1(s)) \ge C^{-\gamma}(y_1(g_1(s)))^{\gamma} \int_{g_1(s)}^t p_{n-1}(x).$$

$$I_{n-3}(x, g_1(s); p_{n-2}, ..., p_2) f_{n-1}(LP(x)) dx,$$

because $g_1(g_1(s)) \le g_1(s)$. Multiplying (48) by $p_1(g_1(s))g_1'(s)(y_1(g_1(s)))^{-\gamma}$ and using the first equation of (\bar{S}_1) , we get

$$\frac{y_1'(g_1(s))g_1'(s)}{(y_1(g_1(s)))^{\gamma}} \ge C^{-\gamma}p_1(g_1(s))g_1'(s) \int_{g_1(s)}^t p_{n-1}(x).$$

$$I_{n-3}(x, g_1(s); p_{n-2}, \dots, p_2) f_{n-1}(L(P(x)))dx.$$

Integration of the above from T_2 to t yields

which contradicts (40₂)

II) Let l=1 (n is odd). Then $y_1(t) \downarrow K$ as $t \uparrow \infty$, where $K \ge 0$. Assume that K>0. If we put i=1, $s=T_1$ in (9) and use (7), (39), the monotonicity of y_n, f_{n-1} , and (22), then we obtain

$$\begin{aligned} y_1(T_1) & \ge \int_{T_1}^t p_{n-1}(x) f_{n-1}(y_n(x)) I_{n-2}(x, T_1; P_{n-2}, ..., p_1) dx \\ & \ge \int_{g_1^{-1}(T_1)}^{g_1^{-1}(t)} p_{n-1}(g_1(s)) g_1'(s) J_{n-2}^1(g_1(t), T_1) \,. \\ & \qquad \qquad \frac{f_{n-1}(LP(g_1(s)))}{(P(g_1(s)))^{\alpha}} \, (P_1(s))^{\alpha} ds. \end{aligned}$$

Since $g_1^{-1}(t) \to \infty$ as $t \to \infty$, the last inequality gives a contradiction to (40_1) . Therefore K = 0, i.e. $\lim_{t \to \infty} y_1(t) = 0$. Then it follows from (7) that $\lim_{t \to \infty} y_i(t) = 0$ for i = 1, 2, ..., n.

- B) Consider the system (\bar{S}_2) , i.e. r=2 and n+l is odd.
- I) By virtue of Lemma 3, (5_n) holds. Exactly as in the case B-I) of the proof of Theorem 1 we get $\lim_{t\to\infty} y_i(t) = \infty$ for i=1, 2, ..., n-1. We shall prove that $\lim_{t\to\infty} y_n(t) = L_n = \infty$. Suppose that $0 < L_n < \infty$. Proceeding as in the case B-I), we get (31)-(33), in which we replace g(t) by $g_1(t)$. Combining (33) with (32) gives

(49)
$$L_n \ge LP(g_1(t)), \quad L = f_n(C), \quad t \ge T_3.$$

Because the system (\bar{S}_2) is (α, β) -superlinear, in view of (32) and (49) we have

(50)
$$L_n \ge M(y_1(g_1(t)))^{\beta} P(t), \quad M = LC^{-\beta}$$

(51)
$$f_{n-1}(L_n) \ge \frac{f_{n-1}(LP(g_1(t)))}{(LP(g_1(t)))^{\alpha}} (L_n)^{\alpha}, \quad t \ge T_3.$$

a) Let n>2. From (10_n) for i=2, $t_0=T_3$, in view of (31) and (17) we obtain (37). From (37) we get

$$y_2(g_1(t)) \ge f_{n-1}(K_1)J_{n-2}^n(g_1(t), T_3), \quad t \ge T_4 = \gamma_n(T_3).$$

Multiplying the last inequality by $f_{n-1}(L_n)$ and using (51) and (50), we have

(52)
$$f_{n-1}(L_n)y_2(g_1(t)) \ge \frac{f_{n-1}(LP(g_1(t)))}{(P(g_1(t)))^{\alpha}} C^{-\gamma}(y_1(g_1(t)))^{\gamma}.$$

$$(P(t))^{\alpha} f_{n-1}(K_1)J_{n-2}^{\alpha}(g_1(t), T_3), \quad t \ge T_4.$$

If we use the first equation of (\bar{S}_2) , (52) implies

(53)
$$\frac{y_1'(g_1(t))g_1'(t)}{(y_1(g_1(t)))^{\gamma}} \ge \frac{f_{n-1}(K_1)}{f_{n-1}(L_n)} C^{-\gamma} p_1(g_1(t))g_1'(t).$$

$$\frac{f_{n-1}(LP(g_1(t)))}{(P(g_1(t)))^{\alpha}} J_{n-2}^n(g_1(t), T_3)(P(t))^{\alpha} \text{ for } t \ge T_4.$$

- b) Let n=2. From the first equation of (\bar{S}_2) , in view of (31) we obtain $y_1'(g_1(t)) \ge p_1(g_1(t)) f_1(K_1)$ for $t \ge T_2$. Multiplying the last inequality by $f_1(L_1)g_1'(t)(y_1(g_1(t)))^{-\gamma}$ and using (50), (51), we get (53) for n=2 ($J_0=1$). Integrating (53) from T_4 to ∞ , we have a contradiction to (40_n). Therefore $L_n = \infty$, i.e. $\lim_{t\to\infty} y_i(t) = \infty$ for i=1, 2, ..., n
- II) Let $l \in \{1, 2, ..., n-1\}$. If we proceed as in the cases A-I), A-II) of this proof by replacing $y_n(t)$ by $-y_n(t)$, we obtain a contradiction to (40_l) for l=1, 2, ..., n-1. In the case where n is even and l=1 we have $\lim_{t\to\infty} y_i(t)=0$ for i=1, 2, ..., n. The proof of Theorem 2 is complete.

References

- I. Foltynska and J. Werbowski, On the oscillatory behaviour of solutions of system of differential equations with deviating arguments. In Qual. Theory Diff. Equat. Amsterdam (1981) 1, 243-256.
- [2] Y. Kitamura and T. Kusano, On the oscillation of a class of nonlinear differential systems with deviating argument, J. Math. Anal. Appl. 66 (1978), 20-36.
- [3] Y. Kitamura and T. Kusano, Asymptotic properties of solutions of two-dimensional differential systems with deviating argument, Hiroshima Math. J. 8 (1978), 305-326.
- [4] Y. Kitamura and T. Kusano, Oscillation and a class of nonlinear differential systems with general deviating arguments, Nonlinear Anal. 2 (1978), 537-551.
- [5] P. Marušiak, On the oscillation of nonlinear differential systems with retarded arguments, Math. Slov. 34 (1984), 73–88.
- [6] P. Marušiak, Oscillatory properties of solutions of nonlinear differential systems with deviating arguments, Czech. Math. J. 36 (1986), 223-231.
- [7] V. Šeda, On nonlinear differential systems with deviating arguments, Czech. Math. J. (to appear).
- [8] V. N. Shevelo, N. V. Varech and A. G. Gritsai, Oscillatory properties of solutions of systems of differential equations with deviating arguments (in Russian). Ins. of Math. Ukrainian Acad. of Sciences, Kijev Reprint 85.10 (1985), 3-46.
- [9] N. V. Varech and Shevelo V. N, On the conditions of the oscillation of the solutions of differential system with retarded arguments (in Russian). Kačestv. metody teori dif. uravnenij s otklonijajuščimsia argumentom, Kijev (1977), 26-44.
- [11] N. V. Varech and V. N. Shevelo, On some properties of solutions of differential systems with retarded arguments, Ukrain. Math. J. 34 (1982), 1-8.

Katedra matematiky, VŠDS

(Marxa-Engelsa 15
010 88 Žilina, Czechoslovakia)