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1. Introduction

The oscillation theory of nonlinear differential systems with deviating
argements has been developed by many authors. Most of them have studied
two-dimensional differential systems; see, for example, Kitamura and Kusano
[2-4], Shevelo, Varech and Gritsai [8], and Varech and Shevelo [9, 10]. The
oscillation results for n-dimensional systems with deviating arguments have been
given by Foltynska and Werbowski [1], the present author [S, 6] and Seda [71.

The purpose of this paper is to obtain oscillation criteria for the nonlinear
differential system with general deviating arguments of the form:

(S, Yit) = pOfis1(his (D)), i=12.,n—1,
Va@® = (=1 p,(0fu(y1(hy(D)), r=1,2,

where the following conditions are assumed to hold:
(1) a) p;: [0, ©)-[0, ), i=1, 2,..., n, are continuous and not identically
zero on any infinite subinterval of [0, o), and

Swpi(t)dt =0, i=12,..,n—-1;

b) h;: [0, 0)— R are continuous and lim,_, , h(t)=o0, i=1,..., n;

¢) fi;: R—R are continuous and uf(u)>0 for u#0, i=1, 2,..., n.

Denote by W the set of all solutions y(t)=(y,(1),..., y,(t)) of the system
(S,) which exist on some ray[ T,, 00) <= [0, o0) and satisfy sup { 37—, [y(#)|; t=T}>0
for all T2 T,

DEFINITION 1. A solution y e W is called oscillatory if each component has
arbitrarily large zeros.

A solution y € Wis called nonoscillatory (resp. weakly nonoscillatory) if each
component (resp. at least one component) is eventually of constant sign.

DEFINITION 2. We shall say that the system (S,) has the property A4 if for n
even every solution y € W is oscillatory and for n odd it is either oscillatory or
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(Py) yi(i=1,2,..., n) tend monotonically to zero as t— oo.

We shall say that the system (S,) has the property B if for n even every solution
y € W is either oscillatory or (P,) holds or
(Py) |yl (i=1, 2,..., n) tend monotonically to oo as t— 0,
and for n odd it is either oscillatory or (P,) holds.

We introduce the following notations:

i) Let t: [0, c0)—R be a continuous function such that 7(#) <t and ©(t)—
as t—»oo. We define

y{t) = sup {s=0; ©(s)<t} forall t>0;
ii) Leti,e{l,2,...,n}, ke{l,2,.,n—1},t s€[0, o). We define:
(2) 10= 15

t
Li(t, S5 Pip>---» Pi) = SS P () 1(x, S5 Py 5---5 Py, )AX.
It is easy to prove that the following identities hold:

t
(3) Ik(t9 S5 pik""’ pil) = Ss pi,(x)lk—l(t1 X, pik""9 piz)dxv

(4) Ik(t9 S5 Piys---s pi;) = (_ l)klk(s’ L Diys---s pik) .

To obtain main results we need the following lemmas:

LEMMA 1. Suppose that the conditions (la)-(1c) are satisfied. Let y=
(¥15.--> ¥n) € W be a nonoscillatory solution of (S,) on the interval [a, ), a=0.

I) Then there exist an integer l€ {1, 2,..., n}, with n+r+1 odd or l=n,
and ty=a such that for t=t,

5) @Oy (1) > 0, i=1,2,..,1,
(6) (=D*iy(y, (1) > 0, i=LI1+1,..,n
I) In addition let lim,_, |y (t)|=L,, 0XL;<00. Then
@) I>1,L,>0=lim_,|ly(®)) =0, i=12,..,1-1,
l<n L <oo=lim,,y(t)=0, i=1+1,..,n.

Proor. a) Let r=1. From Lemma 1 of [5] we get the assertions of
Lemma 1inthecaseI). b) Letr=2. Without loss of generality we may suppose
that y,(t)>0, y,(h,(1))>0 for t=t,=a. Because of (1a), (1c), the n-th equation
of (S,) implies that y,(t) is nondecreasing on [t,, 0). Then either y,(t)>0 or
yu(1)<O0 for t=t,=t,. i) If y,(1)>0 for t=1,, it is easy to prove that y(f)>0
for t=2t3=t,, i=1,...,n—1. ii) Let y,(t)<0 for t=t,. Then in view of the
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(n—1)-st equation of (S,) we get y,_(1)y,(1)<0 for t=t,. Then by the case a)
with n replaced by n—1, there exist an integer l€ {1, 2,..., n—1} with n+1 odd
and a t,=t, such that (5)), (6,) hold.

The assertions in the case II) follow from (5,), (6,).

LEmMMA 2. ([5, Lemma 1]) Let ye W be a weakly nonoscillatory solution
of (S,) on [a, c©). Then there exists a T =a such that y is nonoscillatory on
[T, ).

Furthermore we shall consider the system (S,) or the form

(Sr) y:(t) = pi(t)yi+ l(t)’ i= 1’ 25"'3 h— 2,
y;l_l(t) = Pn- l(t)fn— 1(yn(hn(t))) ’
yu(®) = (=1 p, (0 f,(y1(hs(0), r=1,2,

where the conditions (1a)-(1c) hold and
(1d) f,_.(u), f,(u) are nondecreasing functions of u.

LemMMA 3. ([5, Lemma 4]) Suppose that (la)-(1d) are satisfied. Let
y=15--., ¥s) € W be a solution of (S,) on [ty, 00). Then the following relations

hold:
® yit) = X0 (=1 yis DS, 15 Pisj- 15+ D)
=0 i kOO nCOTX, 15 Prvmo1os DI
Jor m=0,1,...n—i—-2,i=1,2,...,n—2,t s€[ty, ©);
O 2 = T (D OLE 55 B e )
+ (=0 P s aeie s 53 Bam s P (a0,
for i=1,2,...,n—1, t ,se[ty, ).

LemmaA 4. Suppose that (1a)—-(1d) are satisfied Let y=(y,,..., y,) € W be a
nonoscillatory solution of (S,) on [a, ©) with y,(£)>0 on [a, ). Then there
exist a ty=a and an integer le {1, 2,..., n} with n+r+1 odd or l=n such that
(5)«7) hold. Moreover

t -
10) 302 (0 oD amio i 10y s
for 1=23,..,n—-1, i=1,2,..,1—1, t=t,;

10) 302 || P sOacioalt, 5 Poeos Pa- Do s Ol
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for i=1,2,...,n—-1, t=1t,,
where

- In—i-l(s’ t; Pn-25-++5 P> Pi>-+-> pl—l)’v 2 é l é n—2
Toeioa(s, 1) = .
In—i—l(s’ tO; Dis--+» P,,_z), l =n-—1.

PROOF. Suppose that le{2,3,...,n—1}, i=1,2,.,l—1. Putting m=
I—i—1, s=ty, x=u in (8) and then using (4) and (5,), we have

t
(11 yi) 2 g: Y)p— (- ((t, U5 Piyes P-p)du, t 2 1.
On the other hand, we put i=1, s=u in (9) and then use (6) to get
t
12 5@ 2 0 p i1 85 B 2.

Ja-1(u(h(x)))dx  for t2u.

Substituting (12) in (11), we obtain
5 I OEY Gt W ( W NETARINCRTY S o)
Fae A0 - ()i 18 5 Py Pr- )
2 (=07 [ pa s COH 8, 1) a0
for t=t, =y, (t), where

) H 10 = Lie (0 85 g, ORI,
I 1(x, u; piy..., Di—)du, for x=1,.
i) Let2ZI<n-2. Inview of (3), H, can be written in the form
15) H((x, to) = I,_(X, to; Pn—2s--ss Pi Pri-1l1i=1(X, 5 Piseess P1-2)) -

Using the following relation for t,<s<x:
S: Py () _ ;- (X, u; ps..., p1~o)du
0
2 St i1 (S, U5 Pyyeeey Pr—2)du = IS, 1o5 Pis---5 Pi—1)
0

and then using (2), (3) n—1 times in (14), we obtain
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(16) Hl(x’ tO) g In—i-l(x, to; Pn—25-++5 Pi> Pis--+» pl—l)-

ii) Let I=n—1. Then with regard to I,=1, (14) implies

Hn-l(x’ tO) = St pn-Z(u)In—i—Z(x’ U Dis--o» Pn-3)d“
(]

=T, ;= 1(X; 105 Piseees Pu—2)-

If we put (16) and the last equality in (13) we get (10,).
Let I=n. Putting t=1,, s=t in (9) and then using (4), (5,), we obtain (10,).
The proof of Lemma 4 is complete.

2. Main results

DEFINITION 3. System (S,) is called (a, B)-superlinear, if there exist positive
numbers o, f such that af>1 and

il s 1fi)] g0 lul > |v], uv > 0,

Iul?i = lvl?i

i=n’_1’ n, Yn-1 =a’Yn=ﬁ~
Let me{l, 2,..., n}. We denote

In—z(ts T, Pn-25--15 pl) for 1 é m é 2’
(17) J;rn—l(ta T) = In—z(ta T’ Pn—15:++5 Pm> P25--+» pm—l) fOI' 2 é m é h — 1,

Ay 5(t, T; payeesy Pp—y) for 2 =< m=n;
PO) = | p.(5)ds.
t

THEOREM 1. Let the system (S,) be (a, B)-suplerlinear. Suppose that
there exist continuous increasing functions g, h: [0, c0)— R such that

(18)  g(1) = hy(2), lim,, ,, g(1) = ©
19) h(t) = max {h,(t), g~'(t)}, where g~! indicates the inverse function of g.
If

@ " pae Ot Do (LPBON = 0 for 1= 1,2,

gwm P (DT _ot, T)f,_ (LP(h(t)dt = 00 for 1=13,4,...,n

for every constant L>0, then the system (S,) has the property A and the system
(S,) has the property B.
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PrOOF. Suppose that (S,) has a weakly nonoscillatory solution y=
(¥15---» yu) € W. Then, by Lemma 2, y is nonoscillatory. Without loss of gener-
ality we may suppose that y,(#)>0, y,(h,(£))>0 for t=¢;,>0. Then the n-th
equation of (S,) implies (—1)"y,()=0 for t=¢, and it is not identically zero on
any infinite interval of [¢,, c0). Then, by Lemma 4, there exist a t,>t, and an
integer le {1, 2,..., n} with n+r+1 odd or I=n such that (5,)<(8), (11) hold for
t=>t,.

A) Consider the system (S,), i.e. r=1 and n+1 is even. Integrating the
n-th equation of (§,) from t (=t,) to oo, we have

@D 302 50 = 3u(e) = | B SO ONs, 121,

I) Let I=2. Then, y, is an increasing function and therefore there exist
C>0 and t;=t, such that y,(h;(¥))=C for t=t,. Using the last inequality,
(21) implies

@ 50240 [ psds = LP

where L=£,(C). Because the system (S,) is (@, B)-superlinear, in view of (22)
and y,(h,(t))=C, we have

Sa-1(LP(h(1))) a
(23) Sac1 (R (D)) 2 W(h(k(‘») , 1213,

24 Si1(hs (D)) 2 M(y((R((®))?, t21t;, M= CL.

If we put (24) in (21), then using (18), (19) and the monotonicity of y,, we get

502 M p (g 2 MOGOPPO, 1215,
or
@) y.(h) 2 My, @HOWPHO) 2 MOOYPRO),

for t2y,(t3)=T;.
i) Let2<I=n(n+1is odd). Putting i=2, t,=T; in (10,)), (10,), and using
(19), the monotonicity of h, y,, f,-, (4), (17) and (23), we obtain

@) 702 P56 T o Gu)ds
2 (u(hy L=l EPRO)) g1 1y, 12 T,

(L P(h(2)))*
1=3,4,...,n -2,
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t
@6) 720 2 fus0uhO) || Pae st 55 Py a2
1

2 Oy Lot IO e o1, T, 12T

respectively. Combining (25) with (26), we get
27 ya(t) 2 CT' (31 (D) fo o LP(hONT 28, Ty), t2 Ty, y =ap.
Multiplying (27) by p,(¢) (y;(¢))~" and then using the first equation of (S,), we get
(28) Y@@ 2 Cpy() fu o LP(ROD -5, Ty), 2 Ty
Integrating (28) from T,=y,(T;) to 7, and then letting 7— co, we have

[ P TS WP s C214T2) < oo,

which contradicts (20,) for 1= 3.

ii) Let I=2=n. If we put the second equation in the first equation of
(S,) and then use (19), (23) and (25), we get

Yi®O @)™ 2 C7py () f1(LP(h(D)) .

Integrating the last inequality from T; to 7 and letting t— 00, we get a contradiction
to (20) for I=2=n.

iii) Let I=2<n. Putting i=2 in (9) and using (6), (19), the monotonicity
of h, y,, f,—1, We obtain

@ 5O 2 [ e s O s 53 a2 P2
Combining (25) with (23) and using the monotonicity of y,, from (29) we get
(G0 329 2 O [ P sy s LPHENI,- 505, 55 P30, P
Multiplying (30) by p,(s)(¥,(s))~? and using the first equation of (S,), we have
OO 2 CPU Pae s G5, 53 Pazses 2.

Ja-1(LP(h(x)))dx.
Integrating the last inequality from T, to ¢, we get

Y 1-y t t
LN py) ([ pams ) -s(, 53 Prcgeves p).

Su-A(LPRG)dxds 2 | py- (LPRGON3-a(x, To)dx,
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which contradicts (20,) as t—o0.

II) Let I=1 (n is odd). Then y,(t) | K as t 1 oo, where K=0. Assume
that K>0. If we put i=1, s=T, in (9), and use (6), (19) and the monotonicity
of h, y,, f,—1, We obtain

T2 | pa i OB o5, T3 g P
for t=2 T,=y,(T;). Further using (22), we have
IRCAERNY SIEVIEN AN YA

which contradicts (20,) as t—oco. Therefore K=0, lim,_ y,(t)=0. Then by
(D lim,_, , y()=0 for i=1, 2,..., n.

B) Consider the system (S,), i.e. r=2 and n+1 is odd.

I) By virtue of Lemma 3, (5,) holds. Then the n-th equation of (S,) implies,
in view of y,(h,())>0, (1a) and (lc), that y,(¢) is a nondecreasing function and
therefore lim,_, , y(t)=L,<o0. Then it follows from (7) that lim,_  y(f)=o0
for i=1,2,...,n—1. We shall prove that L,=oc0. Suppose that L,<oo. In
view of the monotonicity of y, and y,, there exist T, =1t,, K, >0 and C>0 such

that
(31) Kl é yn(hn(t)) é Ln,
(32) C=ylg(®) for t2T,.

Integrating the n-th equation of (§,) and using (18), (31) and the monotonicity of
fm y19 we get

(33 Lz porote)ds 206000, 12T,

In view of (32), the inequality (33) implies

(34) L, 2 f(O)P(h(1)) = LP(h(1)), L=f(C), t=2T;=7(T2).

Because the system (S,) is («, f)-superlinear, in view of (32)—(34) and (19) we have

(335) L, 2 M(y,(g(h())’P(h(1)) 2 M(y,(D)’P(h(t)), M = LC~*

Jat(LP(R(1))) ([ e
(36) fn—l(Ln) g W (Ln) s t g T3 .

a) Letn>2. From (10,) for i=2, t,=T,, in view of (31) and (17), we get

37 Vo) 2 fac i (K)n_o(t, T3), t 2 T;.
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Multiplying (37) by f,—(L)p:(t)(y,(¢))"7 and then using (35), (36) and the first
equation of (S,), we have

() VOGO 2 S Cpy(0fy (LPRON-o(t, Ty).

b) Let n=2. From the first equation of (5,) and in view of (31) we obtain
yi®zp,(0)fi(K,y), t=T,. Multiplying the last inequality by L%(y,(¢))"? and
then using (35) and (36), we get (38) for n=2 (J,=1). Integrating (38) from T;
to oo, we get a contradiction to (20,). Therefore L,=oo0 and lim,_ . y(t)=oco,
i=1,2,...,n.

II) Letle{l,2,...,n—1}. Then (6) implies that y,(t)<O for t=1¢, and it is
an increasing function. Integrating the n-th equation of (S,) from t (=t,) to
00, we have

=50 2 " OL0nONMs, 12 1.

Further proceeding in the same way as in the cases A-I), A-II) of this proof except
that y,(¢) is replaced by —y,(f) (>0), we get a contradiction to (20, for I=1,

2,...,n—1. In the case n is even and /=1 we obtain lim,. ., y{(t)=0 for i=1,
2,..., n.

The proof of Theorem 1 is complete.

Theorem 1 represents a certain generalization of Theorem 5 in [4].

THEOREM 2. Let the system (S,) be (a, f)-superlinear. Suppose that
(39) h(t) £ t, g1(1) < min {hy(1), 1} on [0, 00),

where g1(t) 20 on [0, o), lim,, g,(t) = co.

I
@) {7 puslg1 )10 Jislgi 1), T) L EPGLDD. (piryyeai— oo
for 1=1,2,

) ; fa-s(LP(g (1)) o
Svmr)Pl(gl(91(1))gl(t)1f._2(g,(t), T) (IP(gl(t)l))“ (P(2))*dt = o

for 1=3,4,..,n,

then the system (S,) has the property A, and the system (S,) has the property B.

Proor. Let y=(y,,..., y,) € W be a weakly nonoscillatory solution of (S,).
Then by Lemma 2 it is nonoscillatory. Let y,(£)>0, y,(h,(£))>0 for t=t,>0.
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Proceeding in the same way as in the proof of Theorem 1, we see that (5,)—(8),
(11) hold for t=t,=t,. Let T,=t, be so large that g,(f)=t,, h,(t)=t, for t= T,.
A) Consider the system (S,), i.e. r=1 and n+1 is even. From the n-th
equation of (S;) we get (21).
I) Letl=2. Proceeding in the same way as in the case A-I) in the proof of
Theorem 1, we get (22)«(24). Combining (24) and (21) and using (39) and the
monotonicity of y,, y;, we have

(41 9@ 2 1,0 2 M " ) Gulh )P
2 MO O)PPO, 12 T,

and (22) implies

“2) yl9:(0) 2 LP@)  for 12 T;.

i) Let I=n or 2<l=n—2. Putting i=2, t,=T, in (10;), (10,) and using
(39), the monotonicity of g,, ¥, f.—1, (5), (17) and the superlinearity of (S,),
we obtain

CEP IR HORF ANCR ()} W SINC) MINCR A%

2 fu OVt Ty)

> fodlLPW) () (iygegt 1, Ty), 1=3,4,.,n—2,

= WP
or
43,) 950 2o 10D | Pae st 55 P2 a2
2 Lot EEO) ()it T, 12T,
respectively.
From (43) and in view of (39) we get
(44) yalgi®) 2 L= L@ g1 1, T) (),

(LP((g:(2)))"
for t=2T;=y,,(T,). Combining (44) with (41), we have

43) yal:() 2 ¢ Lol RN i g,(), T2).

(g (PO, 12 T;.
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Multiplying (45) by p,(9.(1)g1(t)(y:(g.(?)))"? and using the first equation of
(5,), we get

PG O)GUD) o ooy s fad(LP(gy())
(46) gy = €PN 2

Ju-2(g1(2), TR)(Py(2))*, t 2 T5.

Integrating (46) from T; to oo, we obtain a contradiction to (40,) for [2=3.
i) Let I=2=n. If we put the second equation in the first equation of
(S,) and use (39), (23) and (41), then we get

Yi(g1(®) = p1(9.(D)f1(y2(g.(1)))

> C? t 0O))? S1(LP(g.(1)))(P(2))* , t2T,.
= Pl(gl( ))(yl(gl( ))) (L(gl(t)))" = 12
Integrating the last ineqaulity from T, to oo, we have a contradiction to (40))
for I=2=n.
iii) Let I=2<n. If we put i=2 in (9) and use (7), (39), the monotonicity
of y,, f»_1, We obtain

(47) y2(s) ; S: Pn- l(x)In—3(x’ S Pn—25--+» p2)fn—'l(yn(x))dx'

Combining (23) with (25) and then using the monotonicity of y,, g, we obtain
from (47)

48) P40 2 g0 |

In—3(x’ gl(S)’ DPn-25--> pZ)fn—l(LP(x))dxs

because g,(g(s))=g4(s). Multiplying (48) by p;(g,(s))g1(s)(y1(9:(s)))" and
using the first equation of (S,), we get

s Pr- l(x) .

t
g1(

¥1(41(5))g1(s) . NG
LEGEIE). 2 c (g DNGHO | | pami (0.

In—3(x’ gl(s); DPn-25--15 pZ) fn—l(L(P(x)))dx'
Integration of the above from T, to ¢ yields

o> 20010 | pues s 01605 B 22,
fuesLPCNx = (™ 5y (0fnLPE)  pi).

X
y(T:

In—3(xa U Pn—25--0» Pz)d“dx

S IRICRO VIO ROROR ST PREVEY
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which contradicts (40,)

II) Let I=1 (n is odd). Then y,(t) | K as t 1 oo, where K=0. Assume
that K>0. If we put i=1, s=T, in (9) and use (7), (39), the monotonicity of
Yus fu—1, and (22), then we obtain

WD 2 || Pue sy a2, Ty Py p)x

v

97U ,
e PG G Ealgs(0). T,

Fur(LP(g1(5))) \
(Plgi(s)))e (Dr)rds.

Since g7 1(t)— oo as t— 00, the last inequality gives a contradiction to (40,). There-
fore K=0, i.e. lim,_, y,(t)=0. Then it follows from (7) that lim,_ y(t)=0
fori=1, 2,..., n.

B) Consider the system (S,), i.e. r=2 and n+1is odd.

I) By virtue of Lemma 3, (5,) holds. Exactly as in the case B-I) of the
proof of Theorem 1 we get lim,, , y(t)=o0 for i=1, 2,..., n—1. We shall prove
that lim,_, ,, y,(t)=L,=o0. Suppose that 0<L,<o0. Proceeding as in the case
B-1), we get (31)-(33), in which we replace g(¢t) by g,(f). Combining (33) with
(32) gives

49) L,z LP(9,()), L=/(0), 12 Ts.

Because the system (S,) is (a, f)-superlinear, in view of (32) and (49) we have

(50) L, 2 M(y,(9:(0)’P(), M =LC™*
Sa-1(LP(G1(2)) (]
(51) Ja-1(Ln) 2 W(Ln) , t2Ts.

a) Let n>2. From (10,) for i=2, t,=T;, in view of (31) and (17) we
obtain (37). From (37) we get

V2(g1(0)) 2 fo— 1K) r_2(94(0), T3), t= T, =1y,(T5).

Multiplying the last inequality by f,_,(L,) and using (51) and (50), we have

Jn-1(LP(g1(1))) -y v
(52) Ja-1(La)y2(g4() 2 (P(g: (D))" C(y1(9:(0))".

(P(t))afn— I(Kl)Jg—‘Z(g l(t)’ T3)5 t g T4 .

If we use the first equation of (S,), (52) implies
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11(91(0)g:() > fa-i(KD) -y .
R RPN L s AR

LoafLPG). 13910, To)(P()* for 12T,

b) Let n=2. From the first equation of (§,), in view of (31) we obtain
Yi(g())=pi(9.())f(K,) for t=T,. Multiplying the last inequality by
fi(LDg1(®) (¥,1(g:(1)))~? and using (50), (51), we get (53) for n=2 (J,=1). Inte-
grating (53) from T, to oo, we have a contradiction to (40,). Therefore L,= 0,
ie. lim,_, y{(t)=o0 for i=1,2,...,n

II) Let le{l, 2,...,n—1}. If we proceed as in the cases A-I), A-II) of
this proof by replacing y,(f) by —y,(t), we obtain a contradiction to (40;) for
I=1, 2,...,n—1. In the case where n is even and /=1 we have lim,_, y(t)=0
fori=1, 2,..., n. The proof of Theorem 2 is complete.
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