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In this paper, the field of real numbers and the field of rational numbers
will be denoted by R and Q respectively.

We denote an ordered field by (F, σ) or simply F, wheie σ is an ordering of
a field F. For ordered fields (F, σ) and (K, τ), we say that K/F is an extension of
ordered fields if K/F is an extension of fields and τ is an extension of σ. Let F

be an ordered field. Then the following statements are equivalent:

(1) F is isomorphic to R.
(2) F is a complete archimedean ordered field.
(3) F is archimedean and for any archimedean ordered field K, there is

an order preserving isomorphism of K with a subfield of F.

(4) F is archimedean and for any proper extension of ordered fields K/F,
K is not archimedean.

In §2, we define the rank of an ordered field. An ordered field F is archi-
medean if and only if F is of rank 0, and so R is characterized as a maximal ordered
field of rank 0. For the case of rank n, n^l, we consider the following three

conditions:
(1) F is a complete ordered field of rank n.
(2) F is of rank n and for any ordered field K of rank n, there is an order

preserving isomorphism of K with a subfield of F.

(3) F is of rank n and for any proper extension of ordered fields K/F,

rank K>n.

If n^l, the above three conditions are not equivalent. In fact (2) and (3)
are equivalent, and (1) follows from (3) but not conversely. We say that F is a
maximal ordered field of rank n if F satisfies the condition (3). The purpose of

this paper is to show that there is a maximal ordered field of rank n and it is unique

up to isomorphism.

§ 1. The rank of an ordered field

Let F be an ordered field and v be a valuation of F. The valuation ring,

the group of units and the maximal ideal of v will be denoted by A, U and M

respectively. Then the following statements are equivalent (cf. [5], Theorem 2.3):

(1) If 0< a and v(a)< v(b), then b < a.

(2) A is convex.
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(3) M is convex.
(4) |m| < 1 for every m e M.

We say that v is compatible (with respect to the ordering of F) if any one (and hence
all) of the conditions holds for v and F. In this case, there exists an ordering of

F = A/M cannonically induced by the ordering of F, namely F+ =/(F+ n U)

where / is the cannonical surjection A-+A/M = F and F+, F+ are the positive

cones of F and F respectively. Let k be a subfield of F. Then A(F, k): = {aeF;

\a\ <b for some b e k} is the smallest convex valuation ring which contains k (cf.

[5], Theorem 2.6). A(F, Q) is the smallest convex valuation ring and any convex

valuation ring is a localization of A(F, Q).

DEFINITION 1.1. rank F: = rank A(F, Q).

An ordered field F is called archimedean if for any positive elements a, b

of F, there is a natural number n so that na > b. It is equivalent to saying that
for any element a of F, there is a rational number r so that a < r. Hence, an
ordered field is of rank 0 if and only if it is archimedean. Let K/F be an extension
of ordered fields. Then the valuation ring A(K, Q) is an extension of A(F, Q).

Let A be a convex valuation ring of F. Then B: = {keKm,\k\<afoτ some aeA}

is a convex valuation ring of K and B n F = A. So rank K^rank F. Suppose F
is of finite rank. For any convex valuation ring B of K, B n F is a convex valuation
ring of F. Hence the following statement holds rank K > rank F if and only if

there exist convex valuation rings Bί^B2 of K such that B1<=B2 and Bί Π F =

PROPOSITION 1.2. Let F be an ordered field of finite rank n. Let K/F be

an extension of ordered fields of finite transcendental degree m. Then n^

rank

PROOF. It is sufficient to show the following two statements.
(1) For any algebraic extension of ordered fields K/F, rank K = n.
(2) Let F(x)/F be a simple transcendental extension of ordered fields. Then

rank F(x) = n or n + 1.
(1): Since K is algebraic over F, any two extensions of a valuation ring of

F are incomparable. Let A be any convex valuation ring of F. Let Bί and B2

be extensions of A to K. From the fact that Bl and B2 are overrings of A(K, Q),

Bί dB2 or Bί=>B2. Hence B^=B2 and we have rank K = n.

(2): Let G and G' be the value groups of A(F, Q) and A(K, Q) respectively.
Then rational rank G'/G^l, and we have rank G'^n + 1 ([!]," Chapter 6, §10,
Corollary 2). Q. E. D.

Let K/F be an algebraic extension of ordered fields of finite rank. Then
by Proposition 1.2, rank F = rank K, and this shows A(K, F) = K. For a simple
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transcendental extension F(x) of an ordered field F of rank n, it is well known that
there is a unique extension of the ordering on F to F(x) for which x is infinitely

large (cf. [2]). Let B={beF(x); \b\£a for osme aεF}. Then B is a convex
valuation ring of F(x) which does not contain x, and B n F = F. So in this case,
rank F(x) = n + l.

PROPOSITION 1.3. Let F be an ordered field of finite rank. Let K/F be an
extension of ordered fields such that F is dense in K (i.e. for any elements a<b
in K9 there exists an element c of F such that a<c<b). Then rank F = rank K.

PROOF. Suppose rank F<rank K. Then there exist convex valuation rings
Bί^B2 of K such that BίdB2 and Bί(]F = B2Γ\F. There exists a positive

element aeB2^Bί. Put b = a + l. Then be£2^£ι and by the assumption,
there exists an element c of F such that a<c<b. So c is contained in (B2 n F)\

(B1 n F). This contradicts the fact B1 n F = B2 n F. Q. E. D.

Q is dense in R, so Q is dense in its real closure. But in general, an ordered

field is not necessarily dense in its real closure. We give here such an example.
Let F = R(x) where x is infinitely large and K be a real closure of F. Let y and z

be positive elements of K such that y2 = x and z4 = x (y and z are uniquely

determined). Suppose that there exists an element w = af(x)/g(x) of F such that

z<w<y where a is a positive real number and/(x), g(x) are monic polynomials

of R[x]. Then z4 = x<w4<y4 = x2 and so xg(x)4 < a4/(x)4 < x2#(x)4. The
inequality xg(x)4<a4f(x)4 implies deg g(x) < deg/(x) and the inequality a4f(x)4

<x2g(x)4 implies deg/(x)^deg#(x). This contradiction shows that F is not
dense in its real closure.

Let A be a convex valuation ring of F. By Zorn's Lemma, there exists
a maximal subfield k contained in A.

LEMMA 1.4. Let F be an ordered field and (A, M) be a convex valuation

ring of F. Let v be a corresponding valuation and k be a subfield of A. Then

the following statements hold:
(1) The convex valuation ring A(F, k) is contained in A', in particular M

is a prime ideal of A(F, k).
(2) A(F9 k) — A(F9 fe)/M, where F = A/M and the ordering of F is can-

nonίcally induced by the ordering of F; in particular the residue field ofA(F9 Q)

is an archimedean ordered field.

PROOF. It is easy to show the assertion (1) (cf. [5], Theorem 2.6). For the

assertion (2), let a be any element of A(F9 k). There is an element b of k so that

a < b. Since the ordering of F is the induced one, ά ̂  B in F. This shows that a

is an element of A(F, k). The converse inclusion is proved similarly. Moreover
if A = A(F, Q) and /c = Q, then A(F, Q) = F and so F is archimedean. Q. E. D.
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PROPOSITION 1.5. Let F be an ordered field of finite rank and (A9 M) be a

convex valuation ring of F. Let k be a maximal subfield of A. Then the

following statements hold:

(1) A = A(F,k).
(2) k is algebraically closed in F and the residue field F = A/M is algebraic

over k.
(3) rank F = rank A + rank F.

(4) rank k = rank F.

PROOF. First we show (2). Since A is integrally closed, it is clear that k is

algebraically closed in F. Let u be any element of A which is not contained in k.
If k\_u] Π M = {0}, then k(u)^A and it contradicts the maximality of k. Thus
we have the assertion (2). Next we show (1). Since F is algebraic over k, A(FS k)
= F. On the other hand, by Lemma 1.4, (2), A(F9 k) = A(F9 k)/M. Hence
A(F9 k)/M = F and we have A = A(F9 k). By Lemma 1.4, A(F9 Q) = A(F9 Q)/M

and this fact shows (3). It is clear that rank fc = rank F by Proposition 1.2.

Q.E.D.

REMARK 1.6. Let F = Q(π), an ordered subfield of R, and K = F(x), where x

is infinitely large. Let F1 = Q(π-f x"1) be an ordered subfield of K. Then FF1

= K and F U Fί <^A(K9 Q). We can readily see that both F and Fί are maximal

subfields contained in A(K, Q). So a maximal subfield of a convex valuation

ring is not necessarily unique.

PROPOSITION 1.7. Let F be a real closed field and A be a convex valuation

ring of F. Let k be a maximal subfield of A. Then the following statements

hold:
(1) k is real closed.
(2) The cannonical injection k^A/M is an order preserving isomorphism.
(3) the value group is divisible.

PROOF. By Proposition 1.5, (2), k is algebraically closed in F and A/M is
algebraic over k. Hence k is real closed and k = A/M. For any positive element
a e F9 and any positive integer n9 there exists be F such that bn — a. This implies
that the value group is divisible. Q. E. D.

§2. Maximal ordered fields of rank n

In [2], a cut (C, D) of an ordered field was defined as follows. If C and D

are subsets of an ordered field F9 we write C<D if c<d for all ce C and deD.
We write C<a or a<D instead of C<{a} or {a}<D9 respectively. A pair (C, D)
of subsets of F is called a cut in F if F = C U D and C < D. We regard (F, φ) and
((/>, F) as cuts of F.
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DEFINITION 2.1. Let (C, D) be a cut of an ordered field F.

(1) We say that (C, D) is proper ifC^φ.D^φ and neither max C nor min D

exists.

(2) We say that (C, D) is archimedean if for any eeF, e>0, there exist
elements c e C and d e D such that d — c < e.

(3) We say that an ordered field is complete if it has no proper archimedean
cuts.

Let (C, D) be a non-proper cut of an ordered field F. If C^φ and D^φ
(i.e. max C or min D exists), then it is clear that (C, D) is archimedean.

LEMMA 2.2. Let L/F be an extensions of ordered fields. For any b e L\F,
we put Cf, = {αeF; a<b} and Db = {aeF', b<a}. If F is dense in L, then
(Cb9 Db) is a proper archimedean cut of F.

PROOF. It is clear that there are no infinitely large elements, so Cb^φ and

Db^φ. Suppose d: = max Q, exists. Then we can readily see that F<(b — d)~l,
a contradiction. Hence max Cb does not exist. Similarly, min Db does not exist,
and so (Cfc, Db) is a proper cut. Next suppose that (Cb, Db) is not archimedean.

Then there is an element eeF, e>0, such that d-oe for any ceQ, and deDb.

Let / be an element of F where b<f<b + e!2. Then feDb, f—e/2eCb and
f—(f—eβ)<e. This is a contradiction, and thus the assertion is proved.

Q. E. D.

Let Fc be the set of archimedean cuts of F such that lower subsets have no
greatest elements. Then we can consider Fc as an ordered field and F is an ordered
subfield of Fc. In fact the definitions and the proofs are essentially the same as

those used in the case of ordinary Dedekind cuts in the development of the real
numbers. It is easy to show that Fc is complete and F is dense in Fc.

PROPOSITION 2.3. For an order field F, the following statements are

equivalent:

(1) F is complete.
(2) For any extension K/F of ordered fields, if F is dense in K9 then F = K.

PROOF. Suppose F is complete. Let K/F be an extension of ordered

fields such that F is dense in K. If there is an element beK^F, we put Cb =

{aeF; a<b} and Db = {a eF; b<a}. Since F is dense in K, (Cb9 Db) is a proper

archimedean cut of F by Lemma 2.2. This contradicts the fact that F is complete,
so F = K. Conversely if F is not complete, then FC/F is a proper extension of

ordered fields and F is dense in Fc. This shows the assertion (2)=>(1). Q. E. D.

PROPOSITION 2.4. Let K/F be an extension of ordered fields. If F is dense

in K, then the following statements are equivalent:
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(1) K is complete.
(2) For any extension L/F of ordered fields, if F is dense in L, then there

exists a unique order preserving injection L->K over F.

PROOF. (1)=>(2): Let 5 be the set of all proper archimedean cuts of F.

First we show that the map ψ: K^.F-+S defined by ψ(b) = (Cb, Db) (the cut (Cb9 Db)
was defined in the proof of Proposition 2.3) is a bijection. Since F is dense in K,

it is clear that ψ is injective. Let (C, D) be any proper archimedean cut of F.

We put Cκ = {beK; b^c for some ceC} and Dκ = {beK; b^d for some deD}.

If Cκ U DK = K, then it is easy to show that (Cκ, Dκ) is a proper archimedean cut
of K. It contradicts the fact that K is complete. Hence X\ Cκ U Dκ is not empty.
Since F is dense in K, K^CK U Dκ consists of one element. We put K^CK U

Dκ = {b} Then \j/(b) = (C, D), and so ψ is surjective. We now define the map
/: L-+K. If b e F, then we let/(fe) = b and if b e L-^F, we \Qif(b) = \j/-\(Cb, Db)) 9

here note that since F is dense in L, the cut (Q, Dfc) of F defined in the proof of
Proposition 2.3 is proper archimedean. It is clear that / is an order preserving

injection L->X over F. Next we show the uniqueness of/. Let/x and/2 be order
preserving injections L^K over F. Suppose that there exists an element beL

such that fi(b)^f2(b). We may assume/1(fe)</2(ft). From the fact that F is

dense in K, it follows that there is an element a eF with/1(b)<α</2(b). Since
/! and/2 are order preserving injections L-+K over F, we have b<a<b, a con-
tradiction. So /! =/2.

(2)=>(1): If K is not complete, then KC^K. Since F is dense in Kc, there
exists an order preserving injection/: KC-*K over F. From the uniqueness, the

restriction map/| K: K-+K is identity and we get a contradiction. Q. E. D.

DEFINITION 2.5. Let X/F be an extension of ordered fields. Suppose F is
dense in K. If the statement (2) in Proposition 2.4 holds, we say that K is the
completion of F.

It is clear that the completion of F is unique up to isomorphism as an ordered
overfield of F. By Proposition 2.4, Fc is the completion of F.

REMARK 2.6. In general a complete ordered field is not real closed. Let
R(x) be the ordered field where R<x. Let K be the real closure of R(x) and F
be the completion of R(x). If F is real closed, then K is regarded as a subfield of

F and so R(x) is dense in K. But we remarked that, after Proposition 1.3, R(x)
is not dense in K and this contradiction shows that F is not real closed.

DEFINITION 2.7. We say that F is a maximal ordered field of rank n if rank F

= n and for any proper extension K/F of ordered fields, rank K>n.

Let K/R be an extension of ordered fields. Suppose that K is archimedean.
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Then there is an order preserving isomorphism of K with a subfield of R. If the

extension K/R is proper, then R is siomorphic with a proper subfield of R, a
contradiction. Therefore K = R and so R is a maximal ordered field of rank 0.
By Proposition 1.2, a maximal ordered field of rank n is real closed.

PROPOSITION 2.8. A maximal ordered field F of finite rank is complete.

PROOF. Let K be the completion of F. Since F is dense in K, rank K =
rank F by Proposition 1.3, and soF = K. Q. E. D.

CORORALLY 2.9. A maximal ordered field of finite rank has no proper

archimedean cuts.

PROPOSITION 2.10. For an ordered field F of rank n, the following statements
are equivalent:

(1) F is a maximal ordered field of rank n.

(2) F is real closed and rankF(x)>n/or any ordering of F(x) which is an

extension of the ordering of F, where x is a variable.

PROOF. (1)=>(2) is trivial. (2)=>(1): Let K/F be an extension of ordered

fields. We fix an element y E K^F. Since F is real closed, y is transcendental
over F. By the assumption, rank F(y)>n and we have rank K>n. Q. E.D.

PROPOSITION 2.11. Let (F, σ) be an ordered field and v be a compatible
valuation of F. Let K be an extension of F and v' be a valuation of K which is an
extension of v. Let F and K be the residue fields of v and v' respectively. We
denote by σ the ordering ofF induced by σ. Let τ be an ordering of K such that
v' is compatible with τ. Suppose that τ, the ordering of K induced by τ, is an

extension of σ and v(F) = 2v(F). Then K/F is an extension of ordered fields
(i.e. τ is an extension of σ).

PROOF. Let μ be the restriction of τ to F. It is easy to show that v is com-

patible with μ. By the assumption, we have μ = σ. Since the value group of v

is two divisible, there is a cannonical one to one correspondence between the set of

orderings of F such that v is compatible with them and the set of orderings of F

(cf. [6], §7). Sowehaveμ = σ. Q.E.D.

REMARK 2.12. Let F be a field and v a valuation of F with the residue field F.
It was shown in [6], §7 that for any ordering τ of F, there exists an ordering σ of F,

with which v is compatible, such that σ — τ.

PROPOSITION 2.13. Let F be a maximal ordered field of rank n. Let M be

the maximal ideal of A(F, Q). Then the following statements hold:

(1) A(F9Q)/M = R.
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(2) ι;(F) = Rx ••• xR, a product of n copies ofR, where v is the valuation

ofA(F9 Q).

PROOF. We put A: = A(F, Q). Since A/M is an archimedean ordered field,

A/M is a subfield of R. First we show that A/M = R. Suppose on the contrary

that there is an element r of R which is not contained in A/M. By Proposition 1.7,

r is transcendental over A/M. By [1], Chapter 6, §10, Proposition 2, there is a

valuation υ' of a simple transcendental extension F(x) over F, which is an
extension of v, such that the value groups of v and υ' coincide and the residue
field of υ' is (AjM)(r). Let τ be an ordering of F(x) such that v' is compatible with

τ and τ coincides with the ordering of (A/M)(r) (cf. Remark 2.12). By virtue
of Proposition 2.11, (F(x), τ)/F is an extension of ordered fields and by

Proposition 1.5, rank F(x) = n. This contradicts the maximality of F. So A/M
= R. Since the rank of the valuation ring A(F, Q) equals rc, *;(F)c=Rx ••• x R

(cf. [7], A). Suppose that v(F)ΦR x x R. We take ξ e R x x R^t (F).
Since the value group is divisible by Proposition 1.7, ZξΠϋ(F) = {0}. By [1],

Chapter 6, §10, Proposition 1, there is a valuation v' of F(x) such that the residue

fields of υ and υ' coindice and the value group of υ' is Z£ + v(F). Similarly to
the former case, we can get a contradiction. Q. E. D.

§3. Main Theorem

In this section we show the existence and the uniqueness of a maximal ordered
field of rank n for any positive integer n.

Let F be a field and G be an ordered group. We let F((x))G stand for the
formal power series field, with coefficients in F and exponents in G. An element

of F((x))G is s=Σsg*g> 0eG, where supp (s) = {g e G sgΦ0} is well ordered.
Let 0(s) be the initial element of supp (s) and let v be the valuation of F((X))G

which is defined by v(s) = o(s). Then it is clear that the value group and the residue
field of v are G and F respectively. We say that v is the cannonical valuation of
F((x))G. Suppose that F is an ordered field with the ordering σ. Then there is
an ordering τ of F((x))G such that the cannonical valuation v is compatible with τ

and σ is the restriction of τ. An ordering τ is uniquely determined if the value
group G is two divisible (cf. Remark 2.12).

PROPOSITION 3.1. Let n be a non-negative integer. Then there exists a

cardinal number c(n) such that \F\<c(n)for any ordered field F of rank n, where
\F\ is the cardinal number of the set F.

PROOF. Let F be an ordered field of rank n and let v be the valuation of F
with the valuation ring A(F, Q). Let F and G be the residue field and the value
group of v, respectively. It is well known that |F|^|S| where S = F((x))G (cf.
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[7], p. 80, Lemme 1). Since GcRx ••• x R and FcR, we have |F|g|Γ| where

T=R(x))H, H = R x xR, a product of n copies of R. So the assertion is

proved. Q. E. D.

We borrow the following results on a maximal valued field from Krull [3]

and Kaplansky [2].

PROPOSITION 3.2.

(1) For any valued field F, there exists a maximal immediate extension of

F. If the residue field has characteristic zero, then it is unique up to isomor-

phism as valued fields.

(2) For any field k and any ordered group G, the formal power series

field k((x))G is a maximal valued field with respect to the canonical valuation.

Let G = Rx x R b e a product of n copies of R. As we remarked, there is

a unique ordering σ in R((x))G with which the cannonical valuation is compatible.

By Proposition 1.5, R((x))G is of rank n.

PROPOSITION 3.3. In the above situation, R((x))G is a maximal ordered

field of rank n.

PROOF. Let K/R((x))G be an extension of ordered fields. Suppose rank K =

n. Let v be the cannonical valuation of R((x))G and v' be the valuation of K with
the valuation ring A(K, Q). It is clear that the valuation ring of v is A(R((x))G, Q).

So v' is an extension of v. By Lemma 1.4, the residue field of v' is archimedean

and this implies that the residue fields of v and v' coincide. Since rank K = n and

G = R x x R, the value groups of v and v' also coincide. Therefore we see

that K is an immediate extension of R((x))G. Hence K = R((x))G by Proposition

3.2. This shows that R((x))G is a maximal ordered field of rank n. Q. E. D.

PROPOSITION 3.4. Let F be a maximal ordered field of finite rank and v

be any compatible valuation ofF. Then F is a maximal valued field with respect

to the valuation v.

PROOF. Let K be a maximal immediate extension of F. Let F be the residue

field of F (and K). Let σ be the ordering of F and σ be the induced ordering of

F by σ. There is an ordering τ of K so that the valuation of K is compatible with

τ and σ is induced by τ (cf. Remark 2.12). By Proposition 2.11, τ is an extension

of σ and any Proposition 1.5, rank (K, τ) = rankF. SoK = F. Q.E.D.

THEOREM 3.5. For any ordered field (F, σ) of rank n, there exists an

extension K/F of ordered fields such that K is a maximal ordered field of rank n.

PROOF. Let L be an algebraically closed field which is an extension of F and
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\L\ = c(n) (the cardinal number c(n) is defined in Proposition 3.1). Let S be the

set of ordered fields (T, σr) of rank M.such that F^T^L and στ\F = σ. For

(T, στ) and (17, σv)eS, we write (T, σr)^((7, σv) ifT^U and σv\T=στ. Then 5

is an inductive set. Let (K, σκ) be a maximal pair of S. It is clear that (K, σκ) is

real closed. Since \K\<c(ri) by Proposition 3.1, there exists a simple tran-

scendental extension K(x) over K in L. By the maximality of (K, σx), rank K(x)

>n for any ordering τ of K(x) such that τ | K = σκ. Hence by Proposition 2.10,

K is a maximal ordered field of rank n. Q. E. D.

LEMMA 3.6. For any maximal ordered field of finite rank, there is an
ordered subfield which is isomorphic to R.

PROOF. Let F be a maximal ordered field of finite rank. Then by Propo-
sition 2.13, A(F, Q)/M = R. Let A: be a maximal subfield of A(F, Q). Then

by Proposition 1.7 (2), k is isomorphic to R. Q. E. D.

THEOREM 3.7. A maximal ordered field F of rank n is isomorphic to
R((X))G where G = R x ••• x R, a product of n copies ofR.

PROOF. Let A = A(F, Q) and v be the corresponding valuation. We denote

by M and G the maximal ideal and the value group of v respectively. By Propo-
sition 2.13, A/M = R and G = R x xR, a product of n copies of R. G is a

vector space over Q. Let {0J, i e /, be a basis of G over Q. For each gt, we fix

an element tg.eF so that tg.>Q and v(tg) = gi. Let r = /z/raeQ, m>0. Since

th

gi is positive and F is real closed, the equation xm — th

gi = Q has a unique root

(ίji)1/m in F. We put ίΓΛ = (ίJι)1/m and for seG, we also put ts = Πtr.g., where

It is clear that tsts, = ts+s, for any s, s' e G. By Lemma 3.6, there is a subfield
of F, which is isomorphic to R. Therefore we can identify R with a subfield of F.

We consider the subfield K = R(ts), seG, of F, and the subfield £ = R(x)G, seG,
of R((x))G. It is easy to show that there exists an isomorphism /: K^E over R
such that f(ts) = xs. F is a maximal immediate extension of K by Proposition 3.4.
So by Proposition 3.2, there is an isomorphism of F with R((x))G. Since F and
R((x))G are real closed, this is an order preserving isomorphism. Q. E. D.

CORORRLLY 3.8. Let F be α maximal ordered field of rank n. For any
ordered field K of rank n, there is an order preserving ίosmorphism of K with an
ordered subfield of F.

PROOF. A maximal ordered extension of K is isomorphic to F = R((x))G and
the assertion is clear. Q. E. D.
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