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§0. Introduction.

L. Waelbroeck [10] proved the following facts concerning the space &'(V)

of Schwartz-distributions with compact support on a C®-manifold V. Namely:

1) The delta function map 6: V->&'(V) is a C*-map where &'(V) is
considered as a b-space in his sense.

2) Any C®-map f of Vinto a b-space E uniquely factors through J: V—
&'(V) i.e. there exists a unique b-linear map f”: &'(V)—>E such that
f=f~-o.

In other words, the map é: V—&'(V) is universal among C®-maps from V into
any b-space and the b-space &'(V) is characterized up to b-isomorphisms by
these two facts.

It is natural to ask what would happen if we replace C®-maps by C®-maps

i.e. analytic maps. One of candidates by which &'(V) is replaced would be the
space Z(V) of Sato-hyperfunctions with compact support on a real analytic
manifold V. The space %, (V) has a structure of b-space but the delta function
map 6: V->%,(V) is not analytic even in the case where V is the unit circle T
(an important remark by Prof. H. Komatsu). In the case of V=T, the space
%(T) can be considered as the inverse limit of Banach spaces By, i.e., Z(T)=
inv limy By. If we define an analytic map f: T—%(T) by requiring that the
map f: T— By be analytic for all N, then the delta function map §: T—-%(T) is
analytic and we can prove 1) and 2) replacing &'(V), C*-maps and b-spaces by
#(T), C»-maps and iB-spaces, which are the inverse limits of Banach spaces,
respectively. By a work of Gel’fand-Shilov [2], these iB-spaces have enough
functionals and are too restrictive compared to the class of b-spaces of Waelbroeck.
A b-space in the sense of Waelbroeck is the direct limit of Banach spaces and
coincides with a ultrabornologic space in the sense of Bourbaki [1] if the space
considered is a locally convex topological vector space (a remark by Prof. H.
Komatsu). Of course, there are many non locally convex b-spaces such as L°
which were main concern of Waelbroeck to introduce his notion of b-spaces.
Therefore, we consider the inverse limit of b-spaces, which we call ib-space, namely,
E is expressed with Banach spaces E,; in the form
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E = inv lim, dir limz E 5.

The class of ib-spaces includes b-spaces and iB-spaces. The notion of ib-maps
is naturally defined. Especially, we are concerned with ib-space valued analytic
maps f: T—E=inv lim, dir lim, E,; which, for every «, there is some g such that
the map f: E-E, is analytic. Remark that we are not considering topology on
an ib-space itself but on each component E,;. Now we can state our theorem:

THEOREM Let T={z € C; |z| =1} be the unit circle in the complex plane C.
Then the space #(T) of Sato-hyperfunctions is an ib-space (actually an iB-space)
and the delta function map 6: T— %(T) is an ib-space valued analytic map such
that for any ib-space E and for any ib-space valued analytic map f: T-E
there exists a unique ib-linear map f*: #(T)—E such that f=f"-0.

This theorem shows that the map 6: T—%(T) is universal among analytic
maps from T to ib-spaces and characterizes the space Z(T') of Sato-hyperfunctions
up to ib-isomorphisms among ib-spaces. Moreover, the map f*: #(T)—E is
given by an integral with f as a kernel. In fact we show in §5 that in the case of
E=2(T), these kernels are analytic functions of two variables:

fiTx C~T— C

vanishing at infinity, which is a special case of the kernel theorem of Ko6the [6].
The author would like to thank Prof. H. Komatsu for his kind advice during
the preparation of this paper.

§1. #(T) as an ib-space.

By a theorem due to Silva-K6the-Grothendieck [3], [51, [7], we can represent
the space #(T) as

2(T)=2*(T)® 2~ (T)
where
#B*(T) = 0(D) ={¢: D> C; holomorphic},
B-(T) = 0o(C~D) = {¢: C~D — C; holomorphic and ¢(c0) = 0}

with D={ze C; |z|<1}. We define, for each natural number N, a norm on
#~(T) by

oy = supjzj=1+1/nle(2)l, ¢ €27(T).

Let By be the completion of #~(T) with respect to this norm. Then By is the
space of continuous functions on
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C~{zeC; z<1+1/N}

which are holomorphic in C~{ze C; z<1+1/N} and vanish at 0. We see
that

#~(T) = inv limy By
is an ib-space. Similarly

&*(T) = inv limy B}

§2. Analyticity of the delta function map 6: T— %Z(T).

By definition, it is enough to show that for any natural number N, the map
d: T-By=B}4®Bj is analytic. It is known that the map J is given by

o(t) = (6*(1), 67 (1)) = (1/(t—2), 1/(z—1))
€ 0(D) @ 0,(C~D) < By.

For instance, for |z|>1+1/N, 1—-1/2N<]|t,|, |t,+h|<1+1/2N,

1 _ 1 < 1 ) _ 1 ® h"
Z—(ro+h) z—1, 1—/(2_10) z2—T1, n=0 (Z_To)"
and
11/(z=7o)" I3 = supzj=1+1n [1/(z—7.)" < (2N)"

so that for |h| <1/2N, the series converges in By, i.e. 6~ : T— By is analytic. Simi-
larly we see that 6*: T— B} is analytic.

§3. Existence of ib-linear map f*: #(T)—E.

Let f: T->E be an ib-space valued analytic map. By definition, if E=
inv lim, dir lim, E, 4, then for each «, the map f: T—E,=dir lim, E,, is analytic
i.e. for some B, the map f: T—E,; into a banach space E,; is analytic. Take a
natural number N so that f can be extended holomorphically to

fTiTR ={zeC;1-1/N<|z|<14+1/N} — E,.
Let us define f*: By—E,; by the integral
£ =5 w@r@d+ ok b o e

where y, is a negatively oriented circle of radius 1—1/2N and y_ is a positively
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oriented circle of radius 14+1/2N. f~: By—>E,; is well defined, i.e. independent
of the choices of contours y,, y_ and extension f~ of f, and defines an ib-linear
map f*: #(T)—~E. Moreover, by definition, forany te T

t—z

e =t £D g b L =g
ie. fr.5=f.

§4. Unicity of the map f~: #(T)—>E.
It is enough to show that if f~-0=0 identically on T, then f* =0 identically
on #(T). By the definition of ib-linear map
f": #(T) — E = inv lim, dir lim; E,;,

for each o there are N and f such that f*: By—E,; is a bounded linear map between
Banach spaces. Take a continuous linear functional ¢ € E,;. Then we have
an equality for composed maps:

¢-fro=9-f
By the duality theorem of Silva-K&the-Grothendieck,
o-f*=0.

Since ¢ € E,; separate E,, it follows that f*=0 identically on £(T). This
proves the unicity.

§5. Applications.

Our theorem states also that there exists a bijection f«»f~. For the case of
E=C, this shows that the dual space #'(T) of Sato-hyperfunctions is the space
&(T) of analytic functions on T, which is a part of Silva-Ko&the-Grothendieck
theorem. Novelty of our formulation is that the map §: T—%(T) is analytic
and universal among analytic maps f: T—E.

Consider next the case E=%(T) itself. Then the space of ib-linear maps
[ B(T)->B(T) is the space of linear operators on #Z(T). Kothe [6] has
determined the space of inear operators as the space of two variable functions

f:Tx C~T— C

which are analytic in two variables variables vanishing at T'x co. To deduce
this kernel theorem of K&the from our theorem, it is enough to prove the following
fact:
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PropoSITION. f: T—>2%(T) is an ib-space valued analytic map if and only
if the two variable function

fiTx C~T— C
is analytic in each variable and vanishes at T x 0.

PrOOF. Suppose f: T—->Z(T) is an ib-space valued analytic map and take
(t,, z,)e Tx C~T. Assume z,e C~D for instance. Take N such that |z |>
1+1/N. For (t, z)=(t,+h, z) close to (t,, z)e T x C~T,

f(t, 2) = Xz h'fu(t, 2) in By

This series converges uniformly in a small neighborhood of (¢,, z,) and each
f.(t., z) is holomorphic in z. Hence f(t, z) is analytic in two variables. By the
definition of the space By, f(t, z) vanishes at z= co.

Suppose, conversely, the map f: Tx C~T— C is analytic in two variables
and vanishes at Tx co. Let us show that the ib-space valued map f: T— %(T)
is analytic. For this, take a natural number N and let us prove first that f maps
T into By=B}®By. Consider, for instance, f(t, z) with |z|>1+1/N. For
each te T, f(t, z) is holomorphic around z as long as |z|>1. Hence

suplz|=1+1/N lf(t> Z)l < + c0.
By the compactness of T and f(t, c0)=0, we conclude that
f(t, z2) € By.
Let us take t,e T and t=t,+h; |h| small. Then f(t, z)=3 2, h"f,(t., z) with
=1 f(z, 2)
fn(toa Z) - 27” %y (T_to),, dT

where y is a small contour negatively oriented around ¢, say |t—t,|=¢>0. From

I/s(tes Dy = C-supje—r, = [ f(z, 2lI5/e"

it follows that each coefficient f,(t,, z) € By and the series f(t,z)=Y 2, h"f,(t,, 2)
converges for small |h|, i.e. f: T— By is analytic.
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