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We denote an ordered field by (F, o) or simply F, where ¢ is an ordering of a
field F. For ordered fields (F, o) and (K, t), we say that K/F is an extension of
ordered fields if K/F is an extension of fields and 7 is an extension of ¢. In this
paper, F(x) always means a simple transcendental extension of F. A pair (C, D)
of subsets of F is called a cut of F if CUD=F and c<d for any ce C and d e D.
Let (F(x), 1)/(F, o) be an extension of ordered fields. Then g(t):=(C, D), where
C={aeF;a<x} and D={aeF;a>x}, is a cut of F. If F is a real closed
field, then g is a bijective map from the set of all orderings of F(x) to the set of
all cuts of F (Theorem 1.2). In [2], we defined the rank of an ordered field and
we said that an ordered field F is a maximal ordered field of rank n if rank F=n
and for any proper extension K/F of ordered fields, rank K> n.

Let F be a real closed field of finite rank n and let A;c---cA4,cA4,,,=F be
the compatible valuation rings of F. In this paper, we define the subsets W,
i=1,...,n+1, of the set of all cuts of F (Definition 3.4) and show that for an
ordering 7 of F(x), the following statements are equivalent (Theorem 3.10):

1 g(eW.

(2) There exist distinct convex valuation rings B and B’ of F(x) with respect
to 7 such that BN F=B'n F=A,.

As a corollary of the above assertion, we have the following statement:
rank (F(x), t)=rank F+1 if and only if g(t)e \U?t! W,. In particular, F is a
maximal ordered field if and only if any cut of F is contained in \U}*} W..

§1. Real closed fields and cuts

Let F be an ordered field. If C and D are subsets of F, we write C<D if
c<dforallceC,deD. IfacekF,then we write C<a or a<D instead of C<{a}
or {a} <D, respectively. A pair (C, D) of subsets of F is called a cut of F if F=
CuUD and C<D. We regard (F, ¢) and (¢, F) as cuts of F. Throughout this
paper, we denote by X the set of orderings o of F(x) where (F(x), 0)/F is an
extension of ordered fields. Let Cp be the set of all cuts of F. We define the map
gr: X—Cp by gi(0)=(C, D), where C={ce F; c<x(0)} and D={d e F; x<d(0)};
here we write a<b(o) if a<b with respect to the ordering ¢. It is well known
that there is an ordering 6 € X such that F<x(¢) and it is uniquely determined
(cf. [1]). In this case, it is clear that g (¢)=(F, ¢).
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The following definition is stated in [2], Definition 2.1.

DEerINITION 1.1. Let (C, D) be a cut of an ordered field F.

(1) We say that (C, D) is proper if C and D are non-empty, C has no largest
element and D has no smallest element.

(2) We say that (C, D) is archimedean if for any ee F, e>0, there exist
elements ¢ € C and d € D such that d—c<e.

Let K/F be an extension of ordered fields. We say that an element be K
is infinitely large (with respect to F) if F<b. If there is no infinitely large element
in K, then we say that F is cofinal in K.

The following Theorem 1.2 is stated in [1], Theorem 1, and we give a proof"
as a preliminary step to §2 and §3.

THEOREM 1.2. If F is real closed, then the map grp: X—Cr is bijective.

Proor. First we show that g, is injective. Let ¢ and 7 be elements of X
such that gp(6)=gg(r). Let f(x)e F[x] be a polynomial over F. Since F is
real closed, we can write f(x)=all(x—b){(x—c;)?>+d?}. By the fact gp(o)=
g£(1), the signatures of x —b; with respect to o and 7 coincide. Hence it is clear
that o=1.

Next we show that gy is surjective. Let (C, D) be any cut of F. We must
show that there exists o € X such that gg(¢)=(C, D).

Case 1. Assume that (C, D)=(F, ¢) (resp.(C, D)=(¢, F)). Let o be the
ordering of F(x) where x (resp. —x) is infinitely large. Then it is clear that
9r(0)=(C, D).

Case 2. Assume that there exists cy:=max C (resp.dy,:=minD). Put
y=(x—co) t(resp. y=(do—x)"!) and let ¢ be the ordering of F(x)=F(y) for
which y is infinitely large. Then we can readily see that g (¢)=(C, D).

Case 3. Assume that (C, D) is a proper cut. For any monic polynomial
f(x), we can write f(x)=1II(x—b;){(x—c;)>+d?}. Let S be the set of all monic
polynomials f(x)=II(x—b){(x—c;)?>+d?} such that the number of elements
in the set {j; b;e D} is even. We put S, ={af(x); a is a positive element of F
and f(x)e S} and S,={af(x); a is a negative element of F and f(x) is a monic
polynomial which is not contained in S}. Put P:={f,(x)/f2(x); f1(x), fo(x) €
S, US,}. Itis easy to show that P is a multiplicative subgroup of F(x) of index 2.
We remark that for a polynomial f(x), the following statements are equivalent:

(1) f(x)eS,uUS,.

(2) there exists an element ¢ € C such that f(¢')>0 for any ¢’ € C, c<c'.

By the above remark, S, U S, is additively closed and so is P. Hence there is an
ordering o € X such that the positive cone of ¢ is P. Now it is clear that gg(o)=
(C, D). Q.E.D.
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REMARK 1.3. Even if F is not real closed, gy is surjective. 1In fact, let K
be a real closure of F. For any cut (C, D) of F, we put C'={beK; b<c for
some ceC} and D'=K~.C’. By Theorem 1.2, there exists an ordering ¢ of
K(x) such that gx(6)=(C’, D')eCg. It is clear that g (o |F)=(C, D), where
o | F is the restriction of ¢ to F, and so g is surjective.

PROPOSITION 1.4. Let F be a real closed field. Then F is cofinal in (F(x), 6)
if and only if gg(o) is a proper cut of F.

PrOOF. First we assume. that gg(o) is not a proper cut of F. By case 1 and
case 2 in the proof of Theorem 1.2, it is clear that F is not cofinal in (F(x), o).
Next we assume that gg(o):=(C, D) is a proper cut of F. First we show that for
any f(x)eS, US, (S;, S, were defined in the proof of Theorem 1.2), there exist
elements a, b e F such that 0<a<f(x)<b. Let e be the absolute value of the
leading coefficient of f(x). Then f(x)/e is a product of polynomials, x—c, ce C,
d—x,deD, and (x—c)>+d?2. So we may assume that f(x)=x—c, ceC, f(x)=
d—x,deD, or f(x)=(x—c)*+d>

Case 1. Suppose f(x)=x—c, ceC. Let c¢;eC with ¢c<c; and c,€D.
Then we have O0<c¢, —c<f(x)=x—c<c,—c.

Case 2. Suppose f(x)=d—x, deD. Let ¢;eC and c,eD with ¢c,<d.
Then we have 0<d—c,<f(x)=d—x<d—c,.

Case 3. Suppose f(x)=(x—c)>+d2. By case 1 and case 2, there exists an
element ¢ with (x—c)?<c¢;. Then 0<d?<(x—¢)>+d2<c;+d>.

Now we must show that F is cofinal in (F(x), o). Let « be any positive
element of F(x). By the proof of Theorem 1.2, we can see that the positive cone
of o is { f1(x)[f2(x); f1(x), fo(x) € S; U S,}. So we can write a=f,(x)/f(x) for some
fix), fo(x)eS,US,. By the above argument, there exist a, be F . such that
O<a<f,(x) and 0<f,(x)<b and we have a=f,(x)/fo(x)<b/a. This shows
that F is cofinal in F(x). Q.E.D.

LEMMA 1.5. Let E and F be subfields of a field L. Let 6 and t be orderings
of the composite field EF. Suppose that E/(E N F) is an algebraic extension and
o|E=1|E,o|F=1|F. Then we have 6=r1.

PrOOF. Suppose o#7. Then there exists an element ae EF such that
a>0(c) and a<0(r). We may assume that a € F(e,,..., e,) for some e,,..., e,€ E.
We put N=(E n F)(ey,..., ¢,). Then N/(En F) is a finite extension and NF con-
tains a. Let o, and t, be the restrictions of ¢ and 7 to NF respectively. The
fact « € NF implies 6, #1,. These observations show that we may assume E/(E n
F) is a finite extension. We put E=(En F) (). Let f(x)and g(x) be the minimal
polynomials fo § over ENn F and F respectively. Let K be a real closure of the
ordered field (F, o | F) and let K’ be the algebraic closure of En F in K. It iw well
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known that K’ is a real closure of ENn F. Let a; and a, be the roots of g(x) in K
such that orderings ¢ and t are canonically induced by injections f;: F(6)— F(a;)
<K, f(0)=a;, i=1, 2, respectively (cf. [3], Chapter 3, §2). Then the orderings
0| E and 7| E are canonically induced by the injections h;: E=(E n F) (6)—(En F)
(x)<K', h(f)=a;, i=1, 2, respectively. So the assumption ¢ | E=1|E implies
o, =05, and this shows o=1. Q.E.D.

Let F be an ordered field and F(x, y) be an extension field of F where x, y are
variables. Let o and 7 be orderings of F(x, y) which are extensions of the ordering
of F such that F <x(a), F(x)<y(o), F<y(t) and F(y)<x(t). Then F <x(c|F(x))
and F<x(t|F(x)). So we have ¢ | F(x)=1|F(x) and similarly we have o | F(y)=
t|F(y). From the fact that x<y(6) and y<x(z), it follows that ¢#t. So in
Lemma 1.5, the assumption that E/(E n F) is an algebraic extension is essential.

THEOREM 1.6. Let K be a real closure of an ordered field F and Y be the
set of all orderings of K(x). For t€Y, we let Y(t) be the restriction of t to F(x).
Then the map Y. Y- X is bijective.

ProoF. First we show that i is surjective. Let ¢ be any element of X and

L be a real closure of (F(x), ). The algebraic closure of F in L is a real closure of

F, and so we can identify it with K. It is clear that x € L is transcendental over K.

Let 7 be the restriction of the ordering of L to K(x). Then it is easily shown that
Y(r)=o0, and so ¥ is surjective. By Lemma 1.5, it is clear that y is injective.

Q.E.D.

As a corollary of Theorem 1.2 and Theorem 1.6, we have Theorem 5 in [1].
We also have the following corollary.

COROLLARY 1.7. Let F be a real closed field. Then the following statements
hold:

(1) Let (F(x), o) and (F(y), t) be ordered fields where x and y are variables.
If {aeF;a<x(6)}={aeF;a<y(r)}, then the isomorphism h: F(x)-F(y),
defined by h(x)=y, is an order preserving isomorphism.

(2) Let o and t be orderings of F(x). If there exist elements y, z of F(x)
so that F(x)=F(y)=F(z) and {aeF; a<y(o)}={a€eF; a<z(t)}, then (F(x), o)
and (F(x), ©) are isomorphic as ordered fields.

§2. Ordered fields of finite rank

In this section, we assume that F is a real closed field of finite rank (cf. [2],
Definition 1.1). Take an ordering ¢ € X and suppose that F is cofinal in (F(x), o)
and rank (F(x), 0)=rank F+1 (as for the existence of such an ordering, see
Remark 2.1). We fix this ordering geX. Since rank (F(x), o)=rank F+1,
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there exist convex valuation rings B,, B, of F(x) such that B, #B, and B, |F=
B, | F and the valuation rings B; and B, are overrings of A(F(x), Q) (cf. [2]).
So we may assume that BcB,. We put A:=B,|F=B,|F. We denote the
maximal ideals, the groups of units, the valuations and the value groups of A4,
B, and B, by (4, M, U, v, G), (B, M,, Uy, vy, G;) and (B,, M,, U,, v,, G,)
respectively. We denote by h: G;—>G, the canonical surjection. H:=Ker h is
the convex subgroup v,(U,) of G, corresponding to the prime ideal M, of B,.
There are canonical injections h,: G—G, and h,: G—»G,. Itisclear that hh, =h,,
and we identify h,(G) and h,(G) with G.

ReEMARK 2.1. Let R(x, y) be an extension field of R, the field of real numbers,
where x, y are variables. Let 7 be an ordering of R(x, y) such that R <x(tr) and
R(x)<y(t). Let L be a real closure of (R(x, y), t), K be the algebraic closure of
R(y) in L and o:=7|K(x). Then for any element z of K(x), we have z<y” for
some positive integer n, since the set {y”; n=1, 2,...} is cofinal in L. This implies
K is cofinal in K(x). Next we show that rank K(x)=rank K+ 1. In general, for
an ordered field N of finite rank, the following assertions hold (cf. [2], Propo-
sition 1.2):

(1) Let N,/N be an algebraic extension of ordered fields. Then rank N, =
rank N.

(2) rank N(x)=rank N+1, where N(x)/N is a simple transcendental
extension of ordered fields such that x is infinitely large.

By the above assertions, we have rank L=2 and rank K=1. Since L/K(x)
is an algebraic extension, rank K(x)=2=rank K+ 1.

LeEMMA 2.2. There exists an element beF such that v,(x—b) is not
contained in G.

PROOF. Suppose to the contrary that v,(x—b)e G for any be F. Let f(x)
be any monic irreducible polynomial of F[x]. Since F is real closed, deg f(x)<2.
If degf(x)=2, then we can write f(x)=(x+a)*+b?, b#0. If v,(x+a)#v,(b),
then v,(f(x))=min (v,((x+a)?), v,(b?)). If v(x+a)=v,(b), then v,(f(x))=
v,((x+a)?)=v,(b?) since B;/M, is formally real. So we have v,(f(x))eG. This
shows that the value of any irreducible polynomial of F[x] is contained in G.
This contradicts the fact G#G;. Q.E.D.

LEMMA 2.3. Take an element beF so that e:=v,(x—b)é&cG. Then G,=
GP Ze.

Proor. Since G is divisible ([2], Proposition 1.7), it is clear that Zen G=
{0}. Let a be any polynomial of F[x]. We can write a=a,(x—b)"+---+a,(x—
b)+a,. Since Zen G={0}, the values v,(af(x—Db)), i=0,..., n, are different
from each other. So v,(a)=v,(a(x—b)’) for some i and we have v,(a) e G+ Ze.
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This implies G; =G® Ze. Q.E.D.

PropOSITION 2.4. G,=G, H=Z and G,=G®H (the ordering of G®H
is lexicographic).

Proor. By Lemma 2.3, G,/G is isomorphic to Z. Since Hn G={0},
H is isomorphic to (G+ H)/G which is a subgroup of G,/G. Hence we have
Hx~Z. The fact G;/G= Z also shows that G,/(G+H)~ Z/nZ for some n>0.
Since G,/G is isomorphic to G,/(G+ H), G,/G is a torsion group. On the other
hand, by [2], Proposition 1.7, G is divisible, and so G,/G is torsion free. This
implies n=1, and G,=G. Now it is clear that G;=G®H and the ordering of
G®H is lexicographic. Q.E.D.

The proof of the following Proposition 2.5 is similar to that of Proposition 2.4
and we omit it.

PROPOSITION 2.5. Let t be an element of X. Suppose that F is not cofinal
in (F(x),t). Then B:={beF(x); b<a(r) for some aeF} is a non-trivial
valuation ring of F(x) and B is compatible with respect to 1.

Let vg be the valuation of B. Then vg is trivial on F and the value group
of vy is isomorphic to Z. Moreover there exists beF such that vg(x—>b) is
a generator of this value group.

In the situation of Proposition 2.5, there exists an element y of F(x) such that
y is a change of variable (i.e. F(x)=F(y)) and vg(y)=—1, y>0(r). Then it is
clear that F < y().

Let 7, and 7, be elements of X and suppose that F is not cofinal in F(x) with
repect to 7, and 7,. Then by the above argument, there exist y; and y, such that
F(x)=F(y,)=F(y2) and F<y, (1y), F<y, (15). So (F(x), 7,) and (F(x), 75)
are isomorphic as ordered fields by Corollary 1.7.

PROPOSITION 2.6. For t€ X, if g(t) is proper archimedean, then rank (F(x),
t)=rank F.

ProOOF. Let F; be the completion of F (cf. [2], Definition 2.5). By [2]
Proposition 1.3, rank F=rank F.. Since F is real closed, y:=g(t) € F is trans-
cendental over F. Let u be the ordering of F(y) induced by the ordering of F.
Then {aeF; a<y(u)}=C where (C, D)=g(zr). By Cororally 1.7, (F(x), t) and
(F(y), p) are isomorphic as ordered fields. So we have rank (F(x), t)=rank (F(y),
p)=rank F. Q.E.D.

§3. Maximal ordered fields and cuts

In this section, we assume that F is a real closed field of rankn. Let
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A(F,Q)=A,c---cA,=A,,,=F be the convex valuation rings of F and v; be
the valuations of 4,, i=1,..., n.

DEerINITION 3.1.  For a cut (C, D) of F, we put M(C, D):={xeF; +xeC or
+xeD} and M(C, D):=M(C, D)~{0}.

If C=F :={aeF;a<0}, then M(C, D)={0}. For any cut (C, D), it is
clear that 0 e M(C, D).

ProrosITION 3.2.  Let (C, D) be a cut of F and v be a compatible valuation
of F. Then g'<g for any gev(M(C, D)) and g'eW(F~M(C, D)). In par-
ticular, the set v(M(C, D)) n (F~M(C, D)) consists of at most one element.

PrROOF. First we remark that if ae M(C, D) and 0<b <athen —ae M(C, D)
and be M(C, D). There exist elements a e M(C, D) and be F~M(C, D) such
that v(a)=g and v(b)=g’. By the above remark, we may assume 0<a<b.
Since v is compatible, v(b)<v(a) and so g'<g. Q.E.D.

DerFINITION 3.3, Fori=1,..., n we put T;={(C, D) a proper cut of F; v M(C,
D)) n v (F~M(C, D))=¢ and min v (M(C, D)) or max v (F~M(C, D)) exists}.
If (C, D)eT,, then we denote min v (M(C, D)) or max v(F~M(C, D)) by a(v,,
(C, D).

If (C, D)e T, then it is clear that v;'(v(M(C, D)))= M(C, D), and we can
show that M(C, D) is a fractional ideal of 4;. For a cut (C, D) and an element
aeF, we put C+a={c+a,ceC} and D+a={d+a,deD}. 1t is clear that
(C+a, D+a)is a cut of F.

DEeriNITION 3.4, For i=1,...,n, we put W;:={(C+a, D+a);(C, D)eT,
a € F} and we let W, , be the set of all non-proper cuts of F.

ProPOSITION 3.5.  Let (C, D) be a cut of F which belongs to some T,. For
an element y € F, the following statements are equivalent:

(1) yeM(C, D).

(2 (C,D)=(C+y, D+y).

Proor. (1)=>(2): Let y be any element of M(C, D). First we assume
that 0e C; in this case M(C, D)= C. Suppose C+y#C. There are two cases
C+y>C and C+ycC. Replacing y by —y if necessary, we may assume
that C+y>C. Then there exists an element c € C such that 0<c and c+yeD.
Since ¢e M(C, D) and M(C, D) is additively closed, ¢+ ye=D, a contradiction.
As for the case 0 € D, the assertion can be proved similarly.

(2)=(1): Suppose C+y=C. If 0eC, then y and —y are contained inC.
So ye M(C, D). If 0€C, then 0e D, and the fact D+ y=D also implies ye
M(C, D). Q.E.D.
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PROPOSITION 3.6. \UZ_, W, is a disjoint union.

ProoF. Suppose to the contrary that there exists a cut (C, D)e W;n W;
for some i#j. We may assume i<j. There exist cuts (C;, D;)e T; and (C;, D)) e
T; such that (C, D)=(C;+c¢;, D;+¢;)=(C;+c;, D;+c;) for some c;, c;eF. It
is clear that {aeF; C;+a=C;}={aeF; C+a=C} and so we have {a€eF;
Ci+a=C;}={aeF; Cj+a=C;}. Let H be the kernel of the canonical surjection
G;—G; (cf. §2). We fix an element 0<fe H. There exist elements s and s’
such that 0<s, 0<s’ and v;(s)=a(v;, (C;, D;))— B, v(s")=av;, (C;, D;))+ B. Since
v(s)ev(F~M(C;, D})) and uv(s')ev(M(C;, D,)), we have s&M(C; D;) and
s'e M(C;, D,). By Proposition 3.5, C;+s'=C; and C;+s#C; and so by the
fact {ae F; C;+a=C;}={aeF; C;+a=C;}, wehave C;+s'=C;and C;+s#C;.
On the other hand, since v;(s)=v,(s), we can see that se M(C;, D,) if and only
if s"e M(C;, D;). Hence by Proposition 3.5, C;+s'=C; if and only if C;+s=C;.
This is a contradiction. Q.E.D.

For o, 1€ X, we write o ~ 1 if (F(x), o) is F-isomorphic to (F(x), 7) as ordered
fields. We can easily show that ~ is an equivalence relation in X. We put
X,={0€e X;rank (F(x), 6)=n+1}. Then X, is a union of equivalence classes.
We can define the equivalence relation in Cp which is canonically induced by
the bijection g: X—>Cr. We denote it by the same symbol ~. By Proposition 1.4
and the argument after Proposition 2.5, W, is an equivalence class of Cp.

PRrOPOSITION 3.7. Let (C, D) and (C’, D') be any cuts of F wihch belong
to the set W, for some i=1,...,n. Then (C, D)~(C’, D).

PROOF. Let o be the element of X such that g(¢)=(C, D). By Corollary 1.7,
it is sufficient to show that there exists an element y of F(x) such that F(x)=F(y)
and {deF;d<y(0)}=C'. If C'=C+a for some a, then we put y=x+a.
It is clear that y satisfies the desired condition. So we may assume that (C, D)
and (C’, D) are contained in T;. We suppose, for example, that M(C, D)cC,
M(C’, D')cC’ and «(v;, (C, D))=min v (M(C, D)), «(v;, (C’, D'))=max v (F~
M(C, D)) (in the other cases, the assertions can be proved similarly). Leta
and b be elements of F such that a>0, b>0, v(a)=o(v;, (C, D)) and vy(b)=
o(v;, (C’, D')). We put y=ab/x. Let d be a positive element of F and suppose
d<y(o). Then ab/d>x, and so vf(ab/d)<a(v;, (C, D)). This implies v(d)>
a(v;, (C', D)), hence de M(C’, D')cC’. These observations show that {deF;
d<y(e)}=C’. The converse inclusion is proved similarly. Q.E.D.

DerinITION 3.8. For g€ X,, let BjcB,c---<B,,,=F(x) be the convex
valuation rings of F(x) (with respect to ¢). Then there exists a unique number
j (j=1,...,n+1) such that B;n F=B;,;nF=A;. We put N(g)=j. It is clear
that for o, 1€ X, if 6 ~ 7, then N(6)=N(7).
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THEOREM 3.9. The map N: X,/~—{1,..., n+1} is bijective, where X/~
means the set of equivalence classes in X ,.

Proor. First we show that N is surjective. We fix a number j, j=1,..., n+1.
Let C=F~UA; and D=F~C. Then, since A4; is convex, (C, D) is a cut of
F. Let o be the ordering of F(x) such that g(¢)=(C, D) and let k; be a maximal
subfield of A;. We put B=A((F(x), 0), kj). It is clear that B is a convex valu-
ation ring of F(x) with respect to o. By [2], Proposition 1.5, A(F, k;)=A4;.
This implies that Bn F=A;. We put B'={a € F(x); |a| <x"(s) for some positive
integer n}. From the facts k;cA4;cC<x(s), and xe B'~B, it follows that
Bc B and B#B'. We show that B’ is a convex valuation ring of F(x) with respect
to o and B'n F=A;. By the definition of B’, it is clear that B’ is a convex subset
of F(x) with respect to ¢ and B’ is multiplicatively closed. Let ¢ and d be any
elements of B’. Then there exist positive integers s and ¢ such that |¢|<x* and
|d|<xt. We may assume s<t. We have |[c+d|=|c|+]|d|<xs4+x!'S2x" <x!*1.
This shows that c+de B’. Thus B’ is additively closed and so B’ is a subring of
F(x). Since B’ is an overring of B, B’ is a valuation ring. Let b be a positive
element of BN F. Then b<x" for some n and so 0<b!/"<x (note that F is
real closed). This implies b'/»e F* n C=A;, where F* is the set of all positive
elements of F. Thus be 4;, and we have B'N F=A;. This shows that se X,
N(o)=j and therefore N is surjective.

Next we show that N is injective. Let g, T be elements of X, such that
N(o)=N(r)=j. Let B,cB,c:--cB,,,=F(x) be the convex valuation rings
of F(x) with respect to ¢. By Definition 3.8, B;nF=B;, ;N F=A;. Let v;,
v; and vj,, be the valuations of 4;, B; and B;, respectively, and G;, G and
G’y be the value groups of v;, v; and v, respectively. By Proposition 2.4,
Gi+1=G; and G;=G;® Z (the ordering of G;® Z is lexicographic). By Lemma
2.2 and Lemma 2.3, there exists an element b of F such that vj(x—b)=(g, +1),
g€ G;. By a suitable change of variable, x; =a/(x—b) or x; =a(x—b), we can
find an element x, of F(x) such that x, >0(c), vj(x,)=(0, —1) and F(x)=F(x,).
Let a be an element of F such that |a|<x,(6). Then vj(a)>v(x,) (note that
v; is compatible with respect to ¢ and vj(x,)=(0, —1)é=G;). This shows that
v/(a)20, and so aeA; Conversely we can prove {a€F; |a|<x,(0)}>A4;,
and so we have {aeF; |a|<x,(0)}=A; Similarly there exists an element x,
of F(x) such that x,>0(tr), F(x)=F(x,) and {aeF; lal<xy(v)}=A4;. By
Corollary 1.7, this shows that the isomorphism f: F(x)— F(x), defined by f(x,)=
f(x;), gives an order preserving isomorphism between (F(x), ) and (F(x), 7).
Thus we have ¢ ~ 1. Q.E.D.

For j=1,...,n+1, let Y; be the equivalence class of X, such that N(Y;)=j.
It is clear that Y, is the set of orderings 7€ X such that F is not cofinal in F(x)
with respect to t and g(Y,,)=W,,,
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THEOREM 3.10. For any j, j=1,...,n, g(Y)=W,. In particular, W;, j=
1,..., n, is an equivalence class of Cp.

Proor. We fix a number j, j=1,..., n. By Proposition 3.7, it is sufficient
to show that g(Y;)cW,. Let o be any element of Y;. We use the notation in
the proof of Theorem 3.9, and we put C=F~ UA;, D=F~C. ThenC={ceF;
c¢<x,(0)}; here the element x, satisfies the conditions that x, >0(c), v}(x;)=(0,
—1) and F(x)=F(x,;). It is clear that M(C, D)=4;, and so v(M(C, D))=
{ge€G;; 0<g} and v,(F~M(C, D))={geG,; 0>g}.

We can write x; =a/(x—b) or x, =a(x—b) (see the proof of Theorem 3.9).
Hence x=a/x,+b or x=x,/a+b. We put y=x—b (y=a/x, or y=x,/a), and
C'={ceF;c<y(o)}, D’/=\E>\C’. Then we can easily show that if y=x,/a,
then v(M(C', D'))={g€G;; —v(a)<g}, v(F~M(C', D)={geG;; —v(a)>g},
and if y=a/x,, then v(M(C’, D))={geG;; v(a)<g}, v(F~M(C’, D)=
{9€G;; v(a)=g}. This shows (C’, D')e T}, and so g(a)=(C'+b, D' +b)e W,.

Q.E.D.

By Proposition 2.6, any proper archimedean cut is not contained in \Ut} W;.

THeEOREM 3.11. For a real closed field F of rank n, the following statements
are equivalent:

(1) F is a maximal ordered field of rank n.

2 Cp=untiw,.

Proor. (1)=(2): Let (C, D) be any proper cut of F and 6e X be an
ordering such that g(6)=(C, D). Since F is a maximal ordered field of rank n,
we have rank (F(x), 6)=n+1. So by Theorem 3.10, g(o)e W, for some j=
1,..., n.

(2)=(1): By [2], Proposition 2.10, it is sufficient to show that rank (F(x),
o)=n+1 for any ce X. If g(o) is not proper, then F is not cofinal in (F(x), o)
by Proposition 1.4. This shows that A(F(x), F) is a proper valuation ring of F(x),
and so rank (F(x), 6)=n+1. If g(o) is proper, then g(c)e W,, for some j=
1,...,n. ByTheorem 3.10,0 € Y;= X, and so rank (F(x), 6)=n+1. Q.E.D.

ExaMpLE 3.12. Let (R(x), o) be the ordered field such that R<x. Let F
be a real closure of (R(x), o). Since rank R(x)=1 and F/R(x) is an algebraic
extension, we have rank F=1. Therefore there exists a unique compatible
valuation v of F. Let v’ be the restriction of v to R(x) and G, G’ be the value
groups of v and v’ respectively. By Proposition 2.5, G’ is isomorphic to Z.
Since F/R(x) is an algebraic extension, G/G’ is a torsion group and by [2], Propo-
sition 1.7, G is divisible. So G is isomorphic to Q, the field of rational numbers.
Let C=F~ U {aeF;v(a)>2'2} and D=F~C. Then (C, D) is a cut of F and
W(M(C, D))={reQ;2'2<r}, vo(F~M(C, D))={reQ;2!/2>r}. Choose eec
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F, e>0 such that v(¢)=2. Then for any de D and ce C, ¢>0, we have v(d—c)=
v{d)<v(e)=2 (note that c € M(C, D) and so v(c)>wv(d)). This shows thatd—c>e;
therefore (C, D) is not archimedean. We show that (C, D) is not contained in
W, U W,. 1t is clear that (C, D) is proper, and so (C, D)&=W,. It is sufficient
to show that (C+b, D+ b) is not contained in T, for any be F. If v(b)>21/2,
then for any de D, v(d+b)=uv(d)<2!/? and for any O<ceC, v(c+b)>21/2
This shows that (C+b, D+b)=(C, D)&T,, since neither min »(M (C, D)) nor
max v(F~M(C, D)) exists. If v(b)<2!/2, then we can easily show that min
o(M(C+b, D+ b))=max v(F~M(C+b, D+b))=uv(b). This shows that (C+b,
D+b)e&T,. Hence in general, there exists a proper cut of a real closed field F
which is not archimedean and not contained in W;, j=1,..., n+1.
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