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1. Introduction

In this paper we prove two local existence results concerning strongly non-

linear functional differential equations of the form

(1)
u(s) = φ(s), - r ̂  s ̂  0.

With few exceptions, our notation follows that of Hale [11] and Fitzgibbon

[9]. Thus, X is a real Banach space, A: D(A)<^X-+2X is an m-accretive operator

(possibly nonlinear and multi-valued), U is a nonempty subset in C([ — r, 0] X),

F: [0, T] x Ό->X is a given mapping, and φ e U satisfies φ(0) e D(Λ). We recall

that for each u e C([-r, T]; X) and te [0, T], ut: [-r, 0]->.X is defined by ut(s)

: = u(t + s), for se[-r, 0].

We note that equations of the form (1) have been intensively studied over the

past several years by many authors, using mainly the semigroup techniques initiated

by Webb [26]. Roughly speaking, the semigroup approach to (1) consists in

applying the Crandall and Liggett generation theorem [4, Theorem 1.3, p. 104]

to prove the unique solvability of an equivalent equation obtained by an appro-

priate reformulation of the original problem in a suitably chosen state space.

This method is no longer effective if we do not assume some Lipschitz-like con-

dition on F with respect to its second argument. Therefore, to compensate the

lack of regularity of F we have to assume some additional "appropriate com-

pactness" properties on the operator A. In the case where A is linear and densely

defined, it has been shown that a very natural compactness assumption on A,

which along with the continuity of F ensures the local solvability of (1), is the

compactness of the generated semigroup. This very useful remark which goes

back to Pazy [18] has been widely used in the study of various classes of, either

semilinear functional differential equations, or fully nonlinear differential and

integro-differential equations. See for instance [7, 9, 10, 12, 20-23, 25].

The aim of this paper is to show that similar compactness arguments can

be employed to conclude the local solvability of (1) when both A and F are

nonlinear. Thus, our existence results which are mainly based on a compactness

criterion due to the second author [24] apply to new classes of functional differ-
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ential equations including all those considered in [9, 19, 20, 26] — in the quasi-

autonomous case.

Here we have to point out that, although we are merely concerned with the

quasi-autonomous case, i.e., the case in which A does not depend on /, our proofs

can be adapted to handle the nonautonomous case as well. To this aim we ought

to use the notion of integral solution for a nonautonomous equation as defined

in [13], or that of DS-limit solution combined with (i) in Theorem 4.1 in [16].

However, we do not touch upon such generalizations in order to make the ideas

of the proofs as transparent as possible by avoiding unpleasant technicalities.

This paper consists of seven sections. The next two sections are devoted to

some background material and auxiliary results. In Sections 4 and 5 we prove

the main local existence results, while in Section 6 we focus our attention on the

continuation of the solutions. Finally, the last section contains some examples

which i l luminate the effectiveness of the abstract theory.

ACKNOWLEDGEMENTS. The authors would like to express their warmest

thanks to Professor S. Oharu for suggesting several improvements in the presen-

tation.

2. Preliminaries

In all that follows X is a real Banach space whose norm is denoted by || ||.

If x, ye X, then (x, y)+([x, y]+) is tne right directional derivative of 2~ l | | ||2

(of || ||) evaluated at x in the direction y, i.e.,

and

Λ I O

We recall that A: D(A)c:X-+2x is said to be accretive if

[x t-x2, yί-y2']+ ^ 0

for X, e D(A), yt ε Axh i= 1, 2. An accretive operator A is said to be m-accretive,

if for each λ>0 the mapping Id + λA is surjective, where ld is the identity on X.

Let A: D(A}aX-*2x be an m-accretive operator and consider the following

quasi-autonomous nonlinear evolution equation

d

d

u

t (t) + A i i ( t ) 3 f ( t ) , a^t<L_b

(2)
u(ά) = w0 ,
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where/eLHO, b]; X) and u0eD(A\

DEFINITION 1. A function u: [α, b~\-+D(A) is called a strong solution of

(2) on [0, 6] if tι(fl) = MO, w(f) G D(Λ) for a.a. t e [0, b], u belongs to JK' KCa, b] X)
and it satisfies the equation in (2) for a.a. f e [ α , b]. For the definition and

properties of the spaces Wk>p([a, b]; X), (fe, p )e7Vx[ l , +00], see [4, p. 18].

DEFINITION 2. A function u: la, b~\-+D(A) is called an integral solution

of (2) on [α, b] if u(a) = u0, u e C([α, b]; X), and w satisfies

for xeD(A), ye/ lx , and a^s^t^b. See [14, Definition 3.5.1, p. 104].

It turns out that each strong solution of (2) on [α, b] is an integral solution of

(2) on the same interval. We note that if X is not reflexive, then the problem (2)

may have no strong solution even though w 0eD(^4) and /is smooth. However,

if A is m-accretive, then for each (u0,f)εD(A)x Ll(\_a, b]; X) the problem (2)

has a unique integral solution u on [0, b]. See [5], [4, Theorem 2.1, p. 124]

and [14, Theorem 3.5.1, p. 104].
In order to exhibit the dependence of u on (w0, /) we shall denote this integral

solution by 7(w0, /). The inequality below describes the continuous (in fact

Lipschitz-continuous) dependence of / on (w0»/) In particular, it is regarded as
a uniqueness result. Namely, we have

(3) IMO-KOII ύ \\u(s)~υ(s}\\ + ||/(τ)-0(τ)||dτ

for α r g s ί g ί r g b , where M = /(MO,/), and v = I(v0,g). See [5], [4, Theorem 2.1,
p. 124] and [14, Theorem 3.5.1, p. 104]. With the same notation as in
Definition 2, we also have

(4)

for a^s^t^b. See [5], [4] and [14] loc cit.
In this paper we mostly assume that A is m-accretive. Hence a semigroup

{S(0; ί^O} of (possibly nonlinear) contraction operators from D(A) into itself

can be constructed via the Crandall-Liggett theorem. In this case we say for

simplicity that A generates a semigroup on D(A).

3. Basic compactness results

The purpose of the present section is to collect some basic compactness

results we shall use in the proofs of our local existence theorems.
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We begin by recalling that a subset G in L*([a, b]\ X) is called uniformly

integrable if for each ε>0 there exists <5(ε)>0 such that

for each measurable subset E in [α, b] whose Lebesgue measure is less than
δ(ε), and this holds uniformly for/e G.

REMARK 1. We may easily verify, by using Holder's inequality, that each

bounded subset of Lp([α, b~\\ X) with l<p^ + 00 is uniformly integrable. We
also note that, since [α, b~] is compact, each uniformly integrable subset is bounded

in L'CO, &]; X).

The next result, due to the second author [24], is the main compactness

argument we shall use in what follows.

THEOREM 1 . Let A : D(A) c X-+2X be an m-accretive operator, u0 e D(A) and
G a uniformly integrable subset in L1^, b]\ X). Then, the following conditions

are equivalent.
( i ) The set {/(ι/0,/);/e G} is relatively compact in C([>, &]; X).
(ii) There exists a dense subset D in \_a, b~\ such that for each teD, the set

{/(w0,/)(f);/eG} is relatively compact in X.

A useful instance of Theorem 1 which is a slight extension of some previous
results due to Baras [3] and the second author [21] is given below.

THEOREM 2. Let A: D(A)aX^2x be an m-accretive operator which gene-

rates a semigroup (S(t)', S(t): D(A)-+D(A), f§:0} such that S(i) is compact for

each ί>0. Then, for each u0eD(A) and each uniformly integrable subset G in

LH[α, ί>]; X), the set {/(w0,/);/e G} is relatively compact in C([α, &]; X).

For a simple proof of Theorem 2 based on Theorem 1 see [24] and [25].
Another consequence of Theorem 1 we need later is the following :

THEOREMS. Let A: D(A)<^X^>2X be an m-accretive operator such that

(Id + λA)~l is compact for each A>0, let u0eD(A), and let G be a uniformly

integrable subset of L1([α, &]; X). Then, the following conditions are equi-
valent.
( i ) The set {I(u0,f)',feG} is relatively compact in C([α, &]; X).
(iii) The set {7(w0,/);/e G} is equicontinuous from the right at each te[a, b\_.

PROOF. Obviously (i) implies (iii). To prove the converse statement we
shall use Theorem 1. First of all, let us recall that
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(5) \\Jλx-x\\ ^ -

for each xeD(A) and Λ>0, where Jλ:=(Id + λA)'1 and {5(0; ί^O} is the semi-
group generated by A. For the proof of (5) the reader is referred to [6], or [25].

Now, we shall show that (iii) together with the compactness of Jλ implies

(ii) in Theorem 1 with D = [# , b\_. Since w0 is fixed in D(A), we write for simplicity
in notation as

fi ':=/(ιι0,/)

for each/e G. Using (5), we then have

\\Jλuf(t)-uf(t)\\ ^

^ \ Γ ||5(τ)ιι/(0 - u f ( t + τ)\\dτ + j Γ \\uA J o Λ J o

for/eG, re[α, b\_ and ^>0 with ί + A G [ α , b~\. At this point, we observe that
the mapping s-+S(s — i)uf(f) is the unique integral solution of the problem

d" (s) + Av(s) 3 0, / ^ s ^ ί + τ

and therefore, from (3), we easily deduce

||S(τ)ιι/(f)-tι'(f + τ)|| ^ J^ \\f(s)\\ds

for/eG, re [α, ί>[, and τ>0 with ί + τ e [«, b]. Consequently,

J
f o r / e G , ίe[α, fc[, and A>0 with / + Ae[«, b]. From this inequality, taking
into account that G is uniformly integrable and {w^ /eG} is equicontinuous
from the right at each t e [0, ft[, we deduce that

lim| |JAM'(0--w /(OII - 0
Λ l O

for each /e[«, b[, the limit existing uniformly f o r / e G . On the other hand,

{w^O /eG} is bounded in X because G is bounded in LH|>, b]; X). See
Remark 1 and (3). Hence, inasmuch as 7λ is compact for each Λ>0, the above
formula shows that { u f ( t ) ; f e G } is precompact in X. Thus for each ίe[α, b[
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the set {w/(ί);/eG| is relatively compact in X, and therefore by Theorem 1 it

follows that {uf\fe G} is relatively compact in C([fl, />]; X), as claimed.

REMARK 2. The compactness of J'λ for each Λ>0 is a strictly weaker con-

dition than the compactness of S(t) for each ί>0. See [6] and [25]. Roughly

speaking, the compactness of S(t) for each ί>0 is a specific property of operators

A arising in the study of nonlinear parabolic equations and systems, while the

compactness of J'λ for each λ>Q is a general property of not only operators as

mentioned above but also of those arising in the study of nonlinear hyperbolic

equations and systems.

Now, let us recall that a subset G in Ll([a, b]; X) is called equiintegrable

if it is uniformly integrable and, in addition

lim Γ~*ll/(f + Λ)-/(ί)||</r = 0
hlO J a

holds uniformly for/eG.

REMARK 3. Using Weil's Criterion of Compactness [8, Theorem 4.20.1,

p. 269], we easily conclude that any relatively compact subset of Lλ([a, b]; X)

is equiintegrable, but the converse statement is no longer true unless X is finite

dimensional.

An important consequence of Theorem 3 is Theorem 4 below.

THEOREM 4. Let A: D(/4)<=X-»2V be an m-accretive operator with

(Id + λA)~l compact for each λ>0. Then, for each u0eD(A) and each

equiintegrable subset G in Lλ([a, ί?]; X), the set {7(w0,/);/eG} is relatively

compact in C([<7, b]; X).

PROOF. With the same notations as in the proof of Theorem 3, it readily

follows from (3) that

«oiι + fJ a

for/eG, ίe[fl, 6[ and /7>0 with t + he[a, 6]. Also by (3) we get

\\uf(a + h) — u0\\ 5Ξ \\uf(a + h) — S(h)uQ\\ + ||S(Λ)w0 — M 0 | |

^ f"+* U(s)\\ds H
J a

for /e G, and h > 0 with a + h^b. Therefore

rg | |S(Λ)u 0-ιioll + Γ+" \\f(s)\\ds + Γ |L
J a J a
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for each/eG, ίe[>, ft[ and /ι>0 with f + /ιe |>, ft],
Now, taking into account the condition that (S(f); ί^O} is strongly

continuous at the origin and G is equiintegrable, we conclude that {W /eG}
is equicontinuous from the right at each t e [α, ft[. Thus Theorem 3 applies, and
this completes the proof.

The next lemma gives a simple sufficient condition in order that a subset

G of LKO, ft]; X) be equiintegrable.

LEMMA 1. If G is bounded in Wl *([a, 6]; -Y), fΛen G /s equiintegrable.

([α, ft]; X) and define the setPROOF. Let G be a bounded subset of

: = { g f ' , f E G } , where

0/0: = Γ
J a ds

ds

f o r / e G and fe[0, ft]. Clearly, // is bounded in JP HO, ft]; /O Since this
Sobolev space is compactly embedded in /^([α, ft]; R), H is actually relatively
compact in Ll(\_a, ft]; /?). Therefore, by Remark 3, H is equiintegrable in

At this point we observe that

J b-h
||/(s + /7

a

J b-h Γt

a J t

Γb-h I Γt + h Λf
= lim -/-(s)ds

hlO J a J t US

ds dt
Γb-h

= lim \
/ι!θ J α

at

-gf(t)\dt = 0

uniformly for /e G. Finally, Wl>l([_a, b~\\ X) is continuously embedded in
Lp([a, ft]; X ) f o r p e ] l , + oo[, and so we conclude that G is bounded in the space
Lp(\_a, ft]; X). Hence, by Remark 1, G is uniformly integrable. This remark

in conjunction with the above relation shows that G is equiintegrable, and this
completes the proof.

Now, Theorem 4 together with Lemma .1 yields:

THEOREMS. Let A: D(A)aX-^2x be an m-accretive operator such that

(Id + λA)~l is compact for each λ>Q. Then, for each UQ e D(Ά) and each bounded
subset G of WlΛ(\_a, ft]; X), the set {/(WO,/);/E G} is relatively compact in
C([α, ft];X).

We conclude this section with a result concerning the weak-strong continuity

of the mapping /-»/(w0,/) from W^^a, ft]; X) into C([>, ft]; X) —here u0

is fixed in D(A) — in the specific case when the dual of X is uniformly convex.
First, we need the following lemma.
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LEMMA 2. Let X be a real Banach space whose dual X* is uniformly convex,
let (un), (vk) be two sequences in C([α, b]; X), and (/„), (gk) two sequences in
Ll([a, b]; X). If limun = u, limvk = v strongly in C([α, b]; X), \irnfn=f and
]imgk = g weakly in Ll([a, b]; X), then

J b
(un(s) - υk(s)9 fn(s) - gk(s)) + ds

a

= Γ(«(s)-ι<s),/(s)-0(s))+ίfo.
J a

PROOF. Since X* is uniformly convex, the duality mapping / on X is
single-valued and uniformly continuous on bounded subsets in X. See [4,

Proposition 1.5, p. 14]. On the other hand it is well known that

(x,

for each (x, y) e X x X. See [14, p. 10]. Therefore

I Γ(un(s)-vk(s)Jn(s)-gk(s))^s- Γ (u(s)-υ(s),f(s)-g(s))+ds
I J a J a

Γ /(n(s) - φ)X/,,(s) - 0Λs))ί/s - Γ" /(u(s) -
J α J α

for «, / c e Λ Γ . Since Vιmn>k(fn — gk)=f—g weakly in Ll([a, b]; X) and

t>( )) belongs to the dual of Ll(\_a, b]; X), the second term on the right-hand side
of the above inequality approaches 0 when n, /c-> + oo. Clearly {fn — gk',n,

is bounded in L!([fl, b]; X), say by M>0, and thus

I Γ /KM - vk(s))(fn(s) - gk(s))ds - Γ /(u(s) - K^XΛίs) - gk(s))ds
\ J a J a

-φ))||; se[^7, b]}

for π, A:e7V. Now, recalling that lim,, ιk (un — vk) = u — v strongly in C([«, b]; X),

and using the fact that / is uniformly continuous on bounded subsets of X,
we conclude that

Γ /(wπ(s) - vk(s))(fn(s) - gk(s))ds - Γ /(M(S) - v(s))(fn(s) - gk(s))ds
J a J a

approaches 0 when n, /c-»oo. This completes the proof.

THEOREM 6. Let X be a real Banach space whose dual is uniformly convex,
let A: D(A)<=:X-+2X be an m-accretive operator such that (Id + λA)~l is compact
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for each A>0, and let w0 be a fixed element In D(A). Then, the mapping /-»

I(uo > f) is sequentially continuous from each bounded subset of Wl }(\_a, b~\\ X)

endowed with the induced weak topology of Ll([a, b~]\ X) into C[(α, f>]; X)

endowed with its strong topology. In particular, the mapping f-+I(u0,f)

is sequentially continuous from W l > p ( [ a , b]; X) endowed with its weak topology

into C([fl, &]; X) endowed with its strong topology, for each pe[ l , +00].

PROOF. Let G be a bounded subset of Wl'l([a, b]\ X). From Theorem 5

it follows that {/(w0,/);/eG} is relatively compact in C([0, &]; X). Therefore,

to conclude the proof, it suffices to show that for each sequence (/„) in G which

converges weakly in L !([fl, f>]; X) to/eG, the sequence ( I ( u Q , f n ) ) — denoted for

simplicity by (un) — has at most one limit point. To this aim, let (um) and (uk)

be two subsequences of (un) such that l im^w^w and \imkuk = v strongly in

[α, b}\ X). From (4) we obtain

\\um(t)-uk(t)\ 2 ^ 2 Γ (ujίs)-uk(s)9fm(s)-fk(s)) + ds
J a

for ra, k and t e [α, &]. Now, using Lemma 2, we conclude that

limn α(wm-w f c) = u - v = 0

strongly in C([#, &]; X), and this completes the proof.

4. The case in which F is continuous

Let r>0, let U be a nonempty subset of C([-r, 0]; X), and let φe U with

</)(0)eD(XJ. Let F: [0, Γ] x ί/->X be a given mapping.

DEFINITION 3. A function u: [ — r, 7~]-> £)(^lj is called an integral solution

of the problem (1) on [0, Γ] if

(ί^ w(s) = φ(s) for each se[ — r, T],

(12) w,e(7 foreach ίe[0, T],

(13) the mapping /: [0, Γ]->JV denned by /(ί): = F(ί, w f) for a.a. ίe]0, T[

belongs to LH[0, T]; X),

(14) M is an integral solution of (2) on [0, T] in the sense of Definition 2, with /

as above and ι/0 =

The main result in this section is Theorem 7 below.

THEOREM 7. Let A: D(A)cX-^2x be an m-accretiυe operator which gene-

rates a semigroup {S(t)\ 7^0} on D(A) such that S(t) is compact for each ί>0,

let U be a nonempty open subset o/'C([ — r, 0]; X), and let F: [0, T] x C/-»X be

a continuous mapping. Then for each φeU with φ(Q)eD(A), there exists T0 =
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]0> 1̂ such that the problem (1) has at least one integral solution on

[0, T0].

PROOF. The idea of the proof consists in showing that a suitably defined

operator has at least one fixed point which is an integral solution of (1) defined on

[0, T0] with T0e]0, T].

To this aim, we choose /?>0, M>0 and 7\ e]0, T] such that

(6) fl(φ,Λ): = W6C([-r,0];X); \\ψ-φ\\c£h} c U

and

(7)

for /e[0, T,] and φ e B(φ, /?), where || ||c denotes the usual sup-norm on

C([-r, 0]; X). Next, we choose T0e]0, min {T,, r}] such that

(8) \\φ(t + s)-φ(s)\\ ^ Λ / 3

for -r^s^Oand f e[0, T0] with / + s^0, and

(9) ||S(Oφ(0)-φ(0)|| + Γ0 - M ^ J - Λ

for each fE[0, Tυ]. We note that this is always possible since U is open in

C([ — r, 0]; X), F is continuous, φeU, φ(0)e~D(A), and the semigroup {S(ί);

ί^O} is strongly continuous at the origin.

We define

K0: = {>•; yeC([0, Γ0]; X), j>(0) = <y>(0)},

which is clearly closed in C([0, T0]; X). Furthermore, for each yeKQ, we

define y: [-r, T0]-^X by

ί φ(t) if - r ^ t ̂  0,
(10) j)(f): =

[ y ( t ) if 0< ί ^ T0,

and set

K: = {y\ y e K0, yt e β(φ, /?) for each / e [0, T0]} .

Obviously K is nonempty (by (8) the constant function y: [0, T0]->X, defined

by y(t)' = φ(Q) for each fe[0, T0], belongs to /C), bounded, closed and convex
inC([0, T0];X).

We then define the operator P: K->K0 by (PjO(0: = w(0 for each

ίe[0, T0], where u is the unique integral solution of the problem
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^ (ί) + Au(t) 3 T(t9 j>f), 0 ̂  ί ̂  T0 ,

ιι(0) =

We note that, in view of (6), (7) and the definition of K, the operator P is defined

on all of K.
Next, we prove that P(K)cK. To this aim, observe that for y e K we have

(Py)t e B(φ, /?) if and only if

^ Λ, u = Py,

for fe[0, T0] and -r^s^
If f + s>0, we have

and thus, by (3), (7), (8) and (9), we obtain

\\u(t + s)-φ(s)\\ g Γ°||F(0, j>β)||d0 + ||S(f + s)φ(0)-φ(0)||
J o

- "h + ' h = A

If f + s<ΞO, by (8), we have

\\u(t + s)-φ(s)\\ = \\φ(t + s)-φ(s)\\ ^ Λ/3 < A,

and consequently

Now, from (3), (7), the continuity of F and Lebesgue's Dominated

Convergence Theorem, it readily follows that P is continuous from K into itself

with respect to the induced norm topology on both domain and range.

Finally, by (7) and the definition of K, we conclude that the set G: = {/y;

fyeLl([09 T0]; X), fy(t): = F(t,$t) for a.a. fe]0, T0[, ye K} is bounded in

L°°([0, T0]; X). Hence, by Remark 1, the set G defined as above is uniformly
integrablein L^CO, T0]; X). Thus, Theorem 2 applies, and consequently P(K)

is relatively compact in C([0, T0]; X). From Schauder's Fixed Point Theorem

it then follows that P has at least one fixed point which, obviously, gives an

integral solution of (1) on [0, Γ0], thereby completing the proof.

5. The case in which F is an integral operator

Let CA([a, b'] X) be the set of all functions φ in C([0, fc] X) such that φ(s) e
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D(A) for a.a. se]#, b[ and consider the problem

du
dt
du (t) + Au(t)B Γ k(t-s)g(u(s))ds, 0 ̂  ί ^ T

J t-r

(11)
u(s) = φ(s), - r ^ 5 <Ξ 0,

where /c is an operator kernel, g: D(A)^X is a given mapping and φe
CA(l-r, 0]; X) satisfies φ(0)eD(A).

We note that, by a simple change of variable, the problem (11) may be
rewritten in the form (1) with F: [0, Γ] x C^([-r, 0]; X)-+X defined by

(12) F(t,ψ):= Γ° k(-τ)g(ψ(τ))dτ
J -r

for f e[0, T] and ψeCA([-r, 0]; X). Nevertheless, since l/ = C^([-r, 0]; X)
is n0f open in C([ — r, 0]; X) in general, Theorem 7 can not be applied to (11).

Thus, our main goal here is to show that, using the additional properties of F

due to its specific form, we can prove a local existence result concerning strong
solutions of (11). Since it is very clear what a strong solution of (11) ought

to be, we do not give an explicit definition of this concept.
We begin with the following definition to make a precise statement of our

local existence result.

DEFINITION 4. A mapping g: D(A)^X is called A-demiclosed if for each
T>0 the following conditions are satisfied.

(Adj) For each y e CA([Q, T] X) such that there exists /eL2([0, T]; X),

f ( t ) e Ay(t) for a. a. t e ]0, T[, the mapping f->#(XO) is strongly measurable
from [0, T] into X.

(Ad2) If (ya) is a sequence in CΛ[0, T] X\ y e CA([0, T] X), fn(t) e Aya(t) for
each neN and for a.a. fe]0, T[, f(t)eAy(t) for a.a. ίe]0, T[, and
if in addition

yn - >y strongly in C([0, T] X) ,

L - >/ weakly in L2([0, T]; X),

ff(y«) - > 9 weakly in L2([0, T]; X),

then 0(f) = 0(XO) for a.a. ίe]0, Γ[.

(Ad3) There exists a monotone nondecreasing function m: R + ̂ R+ such that

for each ueD(A), where M°w|| : = inf {|M| υeAu}.
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We then impose the following general assumptions.

(Hj) X is a real Banach space whose dual X* is uniformly convex, and A:
D(A)cιX-+2χ is an m-accretive operator such that (Id + λA)~l is compact
for each λ > 0.

(H2) k: [0, r\-+&(X) is a mapping of class C1, where &(X) is the Banach
space (endowed with the usual sup-norm) of all linear, bounded operators
from X into itself.

(H3) g: D(A)-+X is an v4-demiclosed mapping.

THEOREM 8. Assume that (Hi), (H2) and (H3) are satisfied. Then, for
each φεCA([-r, 0]; X) with φ(Q)ε D(A) and g(φ)e L2([-r, 0]; X), there exists
T0 = T0(φ) e ]0, T[, such that the problem (11) has least at one strong solution
defined on [0, T0].

PROOF. The idea of proof consists in showing that a suitably defined operator

has at least one fixed point whose existence will imply the existence of at least
one strong solution of (11) defined on [0, T0] with T0e]0, T].

To begin with, let /ί>0 and Se]0, min {T, r}], and define

Ks

h: = {/ /e H".2([0, S]; X), ||/||1.2is^Λ,/(0) = JF(0, φ)}

where || | | l f 2 ( S is the usual norm on Wlt2([09 S]; X), i.e.,

2NΛ]"2

for each/e '̂̂ ([O, S]; X) and F is given by (12).
Now, for each /e XJ, we write uf for the unique strong solution of the

problem

Q =
(13)

and define the operator β: D(ρ)cXg-^^^2([0, S]; X) by

for/e Xf and / e [0, S]. Herew^*: [-r, £]->* is defined by (10) with T0 replaced
by S and F is given by (12); hence

D(Q): = {/ /eXf, ί-»F(f, ύ/) belongs to M^1'2^, S]; X)} .

We shall prove that for some suitably chosen /ι>0 and S in ]0, min (Γ, r}]
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the operator Q has at least one fixed point /e/Cj which by means of the corre-
spondence f-+ύf defines a strong solution of (11) on [0, S].

To this aim, we show first that for h>0 — large enough — and for Se
]0, min {T, r}] — small enough — the operator Q is defined on all of Ks

h, i.e., D(Q) =
Kf, and maps K% into itself. We prove this with the aid of the next simple lemma.

LEMMA 3. For each /?>0 and each SE]U, min{T, r}], there exists a con-

stant C(S, /?)>0 such that

\\A°uf(t)\\ £ C(S, h)

for each /e K% and for a.a. ίe]0, S[, where uf is the unique strong solution
of (13). In add it ion, for h>0 and 0<S^S'^min {T, r} we have

C(S, h) ̂  C(S', h) .

PROOF OF LEMMA 3. First we recall that, in view of [4, Theorem 2.2, p. 131],
for each h and 5 as above and each /e Kf the problem (13) has a unique strong
solution uf satisfying

ω ^dt

for a.a. fe]0, 5[, where \\(Aφ(0)-f(0))°\\=inf {\\v--f (0)\\-, VE Aφ(Q)}. Then,
taking into account the relation /(O) = F(0, φ), we have

\\A°u'(t)\\ £
dt (0 +

rJ o ds
F(0,

^ ||(/ίφ(0)-F(0, ||F(0, φ)\\ + 2 Γ !!-^ (s'
J o l i as

ds

^ IK/MO)-F(0, φ))°|| + I F(0, φ)\\ + 2( Γ II ̂ {
\j o !l as

\2 j \ 1 / 2 / f s , ^ 1 / 2

J^ ^^/ \J o

2/7S1/2 - : C(S, Λ),

and this completes the proof.

PROOF OF THEOREM 8 — continued. In view of (H2) there exists c0>0

such that

(14)
(X)
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for each se[0, S]. Put

641

which is finite by hypothesis. In view of (14), (15), (Adj), (Ad3) and Lemma 3,
we have

If k(t-s)g(ύf(s))ds ^c 0Γ° ||0(«Ks)>||ds + Co f ||0(«'(s))||</s
IJ f-r J ί-r J 0

αθ \ l / 2 / ΓO \ l / 2 Γt

\\g(φ(s))\\2ds) ( \ d s ) + Co iw(M°ii'(s))||</s
-r / \J -r / J O

^ ί V d - r ' / z + Co-mCαS, /0) S,

for h >0, S ε ]0, min {T, r}], /e KJ, and / e [0, S]. Thus we conclude that

(16) ΓΊIf /c(ί-S)0(M/(5))ί/s 2 Λ^S[ C o . C j . r ' / 2 + c0.m(C(S, /j)) S]2

J o IIJ ί-r

for /?>0, Se]0, min{T, r}] and /e Kf . Using the same arguments as above,
we also deduce

JS

O

' dt ^ S[c0 c, r l / 2 + c0 m(C(S, h)) S]2

for Λ>0, Se]0, min{T, r}] and/eXf.
At this point, we recall that

: = F(t, ύ{) = f fc(ί-
J ί-r

for/eKf and fe[0, S]. Hence, if Se]0, min {T, r}] then we have g(ύf(t-r)) =
g(φ(t — r}) for each t e [0, 5], and consequently

d
at

for each/eXf and for a.a. f e]0, S[.
Now, applying (14), (15), (16), (17) (Ad3) and Lemma 3 and a standard

argument, we obtain

(18) Ί lδ/ l l i2 . s ^ cl'c\ + H(S Λ)

for /?>0, 5e]0, min{Γ, r}] and/e/C^, where lim s i 0//(S, A) = 0 for each Λ>0.
But (18) shows that for each h>c0 cl we may choose 5 in ]0, min {T, r}] so that
cl c2ι+H(S9h)^h2. Thus, for /?>0 and Se]0, min {T, r}] as above, Q is
defined on all of K% and maps K% into itself.
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In order to complete the proof, we need the following simple but useful
fixed point theorem due to Arino, Gautier and Penot [1].

THEOREM 9. Let E be a metrizable locally convex topological vector space
and let K be a weakly compact convex subset ofE. Then any weakly sequentially
continuous map Q: K-+K has a fixed point.

For the proof of Theorem 9 the reader is referred to [1, Theorem 1, p. 274].

PROOF OF THEOREM 8 — continued. Since K% is bounded, closed and convex

in W l ' 2 ( [ Q , S]; X) and X is reflexive — being the predual of a uniformly convex
Banach space — it readily follows that Kl is weakly compact in ^ (̂[O, 5]; X).
Thus, in view of Theorem 9, it suffices to show that Q is weakly sequentially con-

tinuous from K% into itself. On the other hand, a simple topological argument
together with the fact that Ks

h is weakly compact shows that Q is weakly
sequentially continuous from Ks

h into itself if and only if the graph of Q is weakly

sequentially closed in Ks

h x Ks

h. Therefore we shall prove that the graph of Q is
weakly sequentially closed in Ks

h x Kf .
To this aim, let ((/„, qn)) be a sequence in graph (Q) such that

\{mfn = / and lim qn = q weakly in W l 2([0, S] X) .

We denote by (un) the sequence (ufn) and observe that, by Theorem 6, we

have

lim un = uf strongly in C([0, S]\X).

Let (υn) be a sequence in L2([0, S]; X) defined by

!>„(*): = - - - -

for each n e N and for a.a. t e ]0, S[. Since vn(t) e Au"(t) for each n e N and for
a.a. ίe]0, 5[, Lemma 3 ensures that (vn) is bounded in L2([0, 5]; X) (in fact
(vn) is bounded in L°°([0, S] X)). Hence we may assume without loss of gene-
rality that

lim vn = v weakly in L2([0, 5] X) .

At this point, we define the operator tf ': D(j^)cιL2([0, S]; X)-

by

stu\ = {v, ι;eL2([0, S]; X), v ( t ) ε A u ( t ) for a.a. fe]0, 5[}

where
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D(st) = {u u e L2([0, S] AT), u(t) e D(A) for a.a. t e ]0, S[

and there exists ι;eL2([0, 5]; X) such that

v(t) E Au(t) for a.a. t e ]0, S[} .

It is a simple exercise to prove that jtf is m-accretive in L2([0, S1]; A"). In

addition, since the dual of L2([0, S]; X) is L2([0, S]; X*) -see [8, Theorem

8.20.5, p. 607]— and X* is uniformly convex, it follows that L2([0, S]; X*) is

uniformly convex too. See [27, Theorem 4.2 and Remark 4.7, p. 365]. Hence

[4, Proposition 3.5, p. 75] implies that jtf is demiclosed. Therefore vejtfuf, or

equivalently, v(t)eAuf(t) for a.a. .ίe]0, S[. Now, by Lemma 3 and (Ad3) we

may assume without loss of generality (by extracting a subsequence if necessary)

that

lim g(un) = g0 weakly in L2([0, S] X) .

From (Ad2) it then follows that go(t)=*g(uf(t)) for a.a. f e]0, S[.

Finally, noting that

= Γ
J t

k(t-s)g(U»(s))ds

for ΠG N and / e [0, S], we easily conclude that

= Γ
J f

for each /e[0, S]. Therefore the graph of Q is weakly sequentially closed in

Ks

h x K%, and thus Theorem 9 implies that Q has at least one fixed point /e Ks

h

which by means off-^ύf defines a strong solution of (11) on [0, S], thereby com-

pleting the proof.

REMARK 4. As seen from the proof of Theorem 8, we may allow g to depend

on s. It is also obvious that we can treat the case where k need not be a convo-

lution kernel.

6. Continuation of the solutions

In this section we state without proof several results concerning the contin-

uation of the solutions of ( 1 ) and ( 1 1 ) .

THEOREM 10. Lei A: D(A)aX-+2x be an m-accretive operator which gene-

rates a semigroup {S(t); /^O] on D(A) such that S(t) is compact for each ί>0,

and let F: [0, -f cc[xC([ — r, 0]; X)-+X be a continuous mapping. If F maps

bounded subsets of [0, + oo [ x C([ — r, 0]; X) into bounded subsets of X, then



644 Enzo MΓΠDIERI and loan I. VRABIE

each integral solution u of(\) can be continued to the right up to a noncontinuable

one u: [ — r, Tmax[-*D(/4) where either Tmΐίκ= + co, or Tm a x<-hoo and in the

latter case

lim | |w(OII = + oo.
t t T r n a x

REMARK 5. The interesting fact in Theorem 10 is that in the case where

7"max< + 00 we nave not merely lim sup ί T T m a Jw(0| | = + oo as mentioned in
[9, Theorem 4.2, p. 7], but the formula lim f T T m βJ|M(ί) | | = H-OD. The proof of

Theorem 10 which follows exactly the same lines of [25, Theorem 3.2.2, p. 127] is

inspired by [17, Theorem 6.1, p. 233].

Using the same arguments as in [9, Theorem 4.2, p. 8] we may prove

THEOREM 11. Let A: D(A)<^X^>2X be an m-accretive operator which

generates a semigroup (S(t)', f^O} on D(A) such that S(t) is compact for each

f>0, and let F: [0, + oo[ x C([ — r, 0]; X)-^X be a continuous mapping.

If there exists two locally integrable functions /q, k2 such that

\\F(t,ψ)\\ ^

for each (/, φ) e [0, +oo[ x C([ — r, 0]; X), then each integral solution of (I) can
be continued to the right up to an integral solution defined on [0, + oo[.

Concerning the problem ( 1 1 ) we have

THEOREM 12. Assume that (Hj), (H2) and (H3) are satisfied with T= +00,

and let u: [0, S[-»D(/1) be a strong solution o/( l l ) . Then u is noncontinuable

as a strong solution if and only if the mapping t->\\A°u(t)\\ is unbounded in the
L^-norm on every neighbourhood of S.

The proof of Theorem 12 is very similar to that of [15, Theorem Vϊ, p. 288].

7. Examples and applications

Our aim here is to illustrate the abstract existence theory developed in

Sections 4 and 5 by some examples of functional partial differential equations.
We begin with an example related to Theorem 7. Let Ω be a bounded domain

in R", n ^ l , with smooth boundary Γ, and consider the following functional
partial differential equation:

p\..
™ - Δβ(u) = F(ί, w f) for a.a. (f, x)e]0, T[ x Ω

(19) w(f, x) = 0 for a.a. (f, x)e]0, T[ x Γ

w(5, x) = φ(s, x) for each 5 e [ — r, 0] and for a.a. x e Ω,
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where β: R-+R is a given nondecreasing function with β(0) = 0, F: [0, T] x

C([-r, 0]; Ll(Ω))-*L*(Ω) is a continuous mapping, and φeC([-r, 0]; Ll(Ω)).

THEOREM 13. Assume that βeC\R-{Q}', R), β(0) = 0, and there exist c>0

and p>(n-2)/n if n>2, p>0 if n^2, such that

β'(u) ^ c\u\P~l

for each uεR — {0}. Assume, in addition, that F is continuous from [0, T] x

C([-r, 0]; L'(Ω)) // t fo Ll(Ω). Then, for each φε C([-r, 0]; L'(O)), *Λέ?rέ?
ex/sfs T0 = T0((p) e ]0, T] such that the problem (19) has at least one solution

defined on [0, T0].

PROOF. Take X = L}(Ω) and observe that (19) can be rewritten in the

form (1) with F as above and A: D(A)<=:X-*2X defined by Au: = { — Δβ(u)} for

each u e D(A), where

D(A) = {iiGLKQ); β(u)eWj> *(Ω), Aβ(u)eV(Ω)}.

it is well known that A is m-accretive in LHΩ). See [5]. On the other

hand, by [2, Proposition 3.1, p. 12], A generates a semigroup (S(ί); ί^O} on

D(A) such that S(t) is compact for each f>0. Hence Theorem 7 can be applied

to obtain the desired assertion. Q. E. D.

Next, we analyse two examples related to Theorem 8. First, let us consider

the problem

for a.a. (ί, x)e]0, T[ x ]0, 1[,

(20) |J (ί, 0)ep(M(r, 0)), - |^(r, l)ep(u(ί, 1)),

for a.a. fE]0, T[,

w(5, x) = <p(s, x), for each se[ — r, 0] and a.a. xe]0, 1[.

THEOREM 14. Let k: [0, r]^ R αncί g: R-+R be functions of class Cl and

let p: D(p)aR-^2R be a maximal monotone operator with Oep(O). Then, for

each φeC([-r, 0]; L2([0, 1])) satisfying φ(t) e H2([0, 1]) for ίe[-r,0],

(dφldx)(t, 0)6p(φ(f, 0)), - (δφ/3xXί, l)6p(φ(ί, 1)) /or ίe[-r, 0] and
d2φ/dx2e L2(l-r, 0]; L2([0, 1])), f/zere ex/sis T0 = T0(φ) ίw ]0, T] such that

the problem (20) has at least one strong solution defined on [0, T0].
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PROOF. Take X = L2([0, 1]) and observe that (20) can be rewritten in the

form (11) with A, k and g defined as follows:

for each Me£>(Λ)= j«e//2([0, 1]); ^" (O)ep(w(O)), - ^ (l)ep(w(l))} ,

for each s e [0, /•], where /,, is the identity on X, and

.(«)(*): =

for each u e D(A) and for a. a. xe]0, 1[.

Clearly (ld + λA)~l is compact for each A>0. On the other hand, a simple

argument together with the fact that g is of class C1 shows that g is Λ-demiclosed.

Therefore Theorem 8 can be applied to obtain the desired assertion.

Finally, let us consider the following problem

d2u d2u

for a.a. (f, x)e]0, T[ x ]0, 1[,

(21) ιι(f, 0) = w(f, 1) = 0, for a.a. fe]0, T[,

w(5, x) = φ0(s, x), ~^" (s, x) = φ^s, x)

for each .se[ — r, 0] and for a.a. xe]0, 1[,

where k and $ are as in the previous example, φ0eC([ — r, 0]; //o([0, 1])) and

^,eC([-r, 0];L2([0, 1])).

THEOREM 15. Let k: [0, r]->/? α«J g: R-+R be functions of class C1. Then,

for each pair of φ0eC([-r, 0] HJ([0, 1])) αwd <p, eC([-r, 0]; L2([0, 1]))

satisfying φ0(s)e //2([0, 1]) for se[-r, 0], </>1(0)ef/i([0, 1]) α«J d2φ0/dx2

eL2([-r, 0]; L2([0, 1])), r/?ere βjc/sίs Γ0 = T0(φ0, </),)e]0, T] such that the

problem (21) /?fls αf /^«.s/ owέ' strong solution defined on [Ό, T0].

PROOF. First of all, we observe that (21) can be rewritten as a first-order

system of the form

δ

d

u - v = 0, for a.a. (ί, x)e]0, T[ x ]0, 1[,
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<••*>*•dt

for a.a. (ί, x)e]0, T[ x ]0, 1[,

M(r, 0) = tiff, 1) = 0, for a.a. fe]0, T[

M(S, X) = </>o(Λ X), tf(s, X) = </>ι(s, X),

for each se[ — r, 0] and for a.a. xe]0, 1[.

This time, we employ the space

; t/ e//ί([0, l]), , 1])}

with the norm || || defined by

(x)
2 , \ l / 2 , Y/2

is]

forί )eX. Then X is a real Hubert space. Obviously, the system mentioned

above can be rewritten in the abstract form (11) with A, /c, g and φ defined as
follows:

A

for each ; M€//2([0, 1])>P6H4([0, 1])} ,

*(*):= . .
k(s)ld

for each s e [0, r], 7,, being the identity of L2([0, 1]).

•(:)=-V υ / (d/dx)g(duldx)

for each ί J e D(A), and φ e C([ — r, 0] X) is defined by φ = i

It is a simple exercise to show that A, k and # as defined above satisfy~the
hypotheses of Theorem 8, and the desired assertion is obtained.

REMARK 6. We may easily verify that the operator A defined in the proof
of Theorem 15 generates a semigroup (S(ί); ί^O} on X with S(t) noncompact
for f>0, even though (Id + λA)~} is compact for each A>0.
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REMARK 7. Both Theorem 7 and Theorem 8 can be suitably reformulated
in order to handle infinite delays.
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