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Introduction

In their paper [11, 12], I. Mauser and F. J. Ernst proved in the affirmative
the Geroch conjecture [2, 3] that all stationary axisymmetric solutions of the
Einstein field equations can be essentially derived from the Minkowski space
metric by means of Kinnersley-Chitre transformations. In the subsequent
paper [13], they extended this result to the case of N Abelian gauge fields inter-
acting with gravitation which contains as special cases the Einstein field equations

(N = 0) and the Einstein-Maxwell field equations (N= 1). We call their equations
the Hauser-Ernst equations.

The purpose of this paper is to give a slightly different formulation of the
Hauser-Ernst equations in such a way that the theory of real semisimple Lie
groups can be easily applied to it; replacing the real simple group SU(N+\, 1)
in their formulation by more general real simple Lie groups, we shall prove our
version of the "generalized Geroch conjecture". Our formulation is based on
the framework of the theory of homogeneous spaces of Lie groups. The most
striking is the analogy with concepts of finite (or infinite) dimensional generalized
flag manifolds, parabolic subgroups, the Bruhat (or rather the Birkhoίf) decom-
position and so on (cf. [14]). In particular we give a new proof, using the
Birkhoίf decomposition in place of the homogeneous Hubert problem.

The paper is organized as follows.

In Section 1 we introduce a certain topology into a group of analytic loops
on a Lie group; provided with this topology the analytic loop group becomes a
topological group. Theorem 1.6 implies that for an arbitrary linear algebraic
group any loop sufficiently near the unit loop has a Birkhoff decomposition.

In Section 2 we follow the idea of Hauser-Ernst to define the action of the

analytic loop group.
In Section 3, with the aid of a certain involutive real automorphism of GL(/V,

C), we put the Hauser-Ernst equations into simple formulas, from which we can
easily deduce various group theoretical properties of solutions. Theorem 3.2
describes the dependency of solutions on their axial values.

Finally, in Section 4 we start with constructing a "seed solution" which

plays the same role as the Minkowski space metric in the theory of Hauser-Ernst.
Theorem 4.6 assures that our loop group generates solutions. The results of
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this section show that any solution can be obtained by applying a certain element

of our loop group to the seed solution.

The author heartily thanks Prof. K. Okamoto for' his helpful advice and

encouragement.

1. Analytic loop groups

We start with some definitions. Fix a positive real number R and the circle

SR = {se C; \s\ = R}. For a complex manifold M, we denote by j/^ or jf ** the

set of all mappings from SR to M such that they extend to holomorphic mappings

from neighborhoods of SR to M. Let L be a finite dimensional vector space over

C. Naturally j t f L becomes a vector space over C. We introduce a topology on

j2/L. Take a norm || || on L. For a formal Laurent series f=Σnezfns" with
fn e L, we set

\\f\\s = ΣneZ \\fn\\S".

This is also a formal Laurent series. If we can substitute R into 5, we denote its

value by ||/||R. Then s#L is made into a normed space by || ||R, which is not
complete. We notice that this topology of J/L is independent of a norm on L.

For a positive real number 6, we set D^ = {XeL\ | |X| |<f>} and ^£ = {/e j3fL;

|| / 1| R < b} . If F is a holomorphic mapping from L>£ to C, the composition F(f) =
FO/ defines a continuous map from Qι\ to j/c, which we denote by F, too.

Let G be a complex Lie group and g be its Lie algebra. We take a basis

{βi} of g. For xeg, we put ||x|| =max t \xt\ if x = Σ xtet with x f e C. We always

use the norm on g of this type. We define a family of subsets of <sfG: «̂ " = {exp

Qi I b > 0} . It is easy to check that & becomes a fundamental system of neighbor-

hoods around the unit of $#G . Thus we have the following

LEMMA 1.1. s?G is made into a topological group.

It is clear that for a vector group L, the previous topology on stf L coincides

with the topology defined now. From now on we treat JZ?G as a topological
group given in Lemma 1.1.

PROPOSITION 1.2. Let H and G be complex Lie groups. (1) ///: H-+G is

a holomorphic homomorphism, thenf:j^H-^j^G is a continuous homomorphίsm.

(2) If H is a closed complex Lie subgroup of G, then stf11 is a closed subgroup of

PROOF. (1) follows from the definition of the topology. We show (2).

If g E Λ/G\cβ/H, there exists s0 e SR such that 0(s0) e G\//. Then for any g' e ja^G

sufficiently near g, we have g'(s0)eG\//. This means that j^w is a closed
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subset of stfG. Let I) be the Lie algebra of H. Make a basis of g by extending

a basis of f) . For a sufficiently small b>0, we know that exp ^£ = (exp @l) Π

So s/H is a closed subgroup. Π

We try to describe the topology of ̂ G for a linear algebraic group G in a

simple way. For an integer 7V>0, let M(N, C) denote the space of all square

matrices of size N whose entries are complex numbers. We use the norm \\x\\ =

maXjΣyl jc, ; ! f°r x = (Xij)eM(N9 C). Let M(N,^G) denote jfW o and let
GL(N, j/c) = {g e M(ΛΓ, J#c)ι det # is an invertible element of jtfc}. Employ the

topology of M(N, j t f c ) defined by || ||Λ. Then GL(N, ^c)\^ open in M(N,

and becomes a topological group in a natural way.

LEMMA 1.3. j^GL(N'C) = GL(N, j t f c ) as topological groups.

PROOF. Of course jafG L<N 'c> = GL(N, ̂ c) as abstract groups. For Xe
C), ||exp*-l||Λ<exp||*||R-l. We put Jog Y= -£n>0(l- y)»/n

for Ye M(N, ^c) so that || 1 - Y\\ R < 1 . Then Y= exp (log 7). Hence the identity

map: jtfGL(N>C)->GL(N9 j t f c ) is a homeomorphism. Π

COROLLARY 1.4. Let G be a linear algebraic group. Then stfG is a closed

subgroup of GL(N, j t f c ) f o r a certain integer N>Q.

Next we refer to the Birkhoff decomposition. We begin with some notations.

Let G be a linear algebraic group and be embedded in GL(7V, C). The complex

projective line P1 is Cu{oo} ? the one-point compactification of C. Let D% =

{56 C; |s|<K} and D^ = the closure of Pl^D£. For an open subset U of P1,

we set 0(17, G) = the space of all holomorphic mappings from U to G. {0(U, G);

L/cDJ} makes a direct system in a natural way. We denote its direct limit by
^G — ̂ G por an Open subset U which contains D^, we set ^Γ((7, G) = {ge

Θ(U9 G); g(oo) = 1}. Similarly we define the direct limit ^ΓG = Λ^. We consider

«^G and >"G as abstract subgroups of Λ?G through the inclusion maps SR-*D%.

LEMMA 1.5. JfG and 0>G are closed in

PROOF. Let G be a Zariski closed subgroup of GL(N9 C). For a formal

Laurent series g = Σnez 9ns
n with gn e M(N, C), we set g+ = Σn>0 gns" and g~ =

Σn<o9ns
n. If/e^G and ge^G, then | |/-flf| |Λ= | |/-flf+ | |Λ+ ||^-||R. So if g

lies in the closure of «^G, then we have g~ =0. That is to say, g is a holomorphic

mapping from a neighborhood of D£ to M(AΓ, C). Also we know that there

exists fe0>G such that |det/(s)-det0(s)|<|det#(s)| for all sεSR. By the

argument principle,

the number of zero points of det g in DJ =

the number of zero points of det/ in DR = 0.
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Hence g(D^) c GL(ΛΓ, C). This implies that g belongs to &G. For Λ^G, the same

argument is valid. Π

The following theorem plays an important role in our proof of the main

result.

THEOREM 1.6. The product map: jY*Gx0>G-+s#G is an open embedding as

topological spaces.

PROOF, Step 1 . The product map is injective.
For n, raec/TG and p, qe^G

9 we assume that np = mq. Then n~λm = pq~^
on SR. So we can extend n~lm to a holomorphic mapping from P1 to G.
Therefore n~lm is a constant mapping. Notice that n~lm takes the value 1 at

s=oo. Hence n = m and p = q.
Step 2. The theorem holds for G = GL(N, C).

Let/= Σ//I5" (resp. F= Σ ^s") be a formal Laurent series whose coefficients
are N-square complex matrices (resp. real numbers). If ||/W | |<FΠ for all n e Z,

then we write f«F. Take ges^G such that ||1— 0||Λ< 1/2. We put α = l — #

and A = As=\\a\\3 and note that |!fiΓ|| s«Λ. Set h a = (ha)~ for Λ e M(N,
We consider this as a right action of #.

(1.1) We set/=-Σ^o^~( «)m. Then/«^/(l-X) and/=/_.

Since Zm>fc^~(* f l)m < <^^ f c» we obtain (fg)~ =f—f a= —g~. We set c=l+/.
Then cg = g++(fg)+. Hence cgf is a holomorphic function on a neighborhood

ofDJ.

(1.2) c^- 1 = f l f - 1 + Λ « X + X(l + X)/(l-X) = 2X/(l-X).

By (1.1) and (1.2) we can find a neighborhood ^ of 1 in jafG with the property:
For any g e ̂ , we can define c e M(N9 Λ/C) by the above process and then 1 1 —

det φ)| < 1 and 1 1 - det φ) det g(s)\ < 1 for all s e SR.
For ^e^, we set gn = c~1 and gp = cg. Then (1.1) and (1.2) imply the

following estimate.

(1-3) \\9p-nR<2ARK\-AR) and \\gn- l\\R < ARj(\ -2AR).

Clearly gnE^G, gpe^G and g=gngp. This shows that ^ is contained in
^ΓG^G. So jV*Gϋtt0>G = j\rG0>G and ^G0>G is open in $#G .

We prove that the inverse of the product map is continuous. By Step 1,

for g e j¥*G0>G, we set

9 = gngp with gne^G and gpe&G.

Fix h = hnhpe^G^G. For any ^6>"G«^G sufficiently near /?, we can assume
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that h-igh-1 is in #. Since (h~lgh-l)n = h-lgn and (h-lghp

l)p = gphp\ we

have h0-gn = ha(l-(h-igh?)n) and /ip-0pKl-(/'n WVV Thυs O 3)
completes Step 2.

Let G be a Zariski closed subgroup of GL = GL(N, C). Then the following
diagram is commutative.

the inclusion >

inverse mapthe i

So the product map ^ΓGx gPG-*stfG is an into-homeomorphism. The theorem is
proved if we show that rfG&G is open in £#G .

Step 3. If G has no nontrivial rational character, the theorem is true.
It is enough to show that^ΓGL«^GL Π s#G is contained in Λ*G0>G. From the

assumption, it follows that there exist a rational GL-module V and an element υ
of V such that G={/ce GL; kυ = υ}. If M6^ΓG L, pe0>GL and npεjtf0, then
we have p(s)ι; = n(s)"1ι; for all s e SR. Hence p(s)υ extends to a holomorphic map
from Pl to V. Since n(oo)=l, we have pv = n~lv = v. Thus M and p belong to

Step 4. Let l-»F->G->f/->l be an exact sequence of linear algebraic
groups. If the theorem is true for F and //, then it is also true for G.

F is a Zariski closed normal subgroup of G and H is the quotient group G/F.
Let K be the canonical surjection G->G/F. Let f, g and I) denote the Lie algebras
of F, G and H respectively. We understand g = f + ί) as vector spaces. Fix a
basis of g which is a union of bases of f and I). We define a norm || || on g as
above. A real number c>0 is taken so as to satisfy the following conditions:

( i ) The exponential maps D®->G, D£-»F and Dj->// are into-homeo-
morphisms.

( i i ) F n e x p D s = expDJ.

(Hi) exp^jc:yrF^F and

For (iii), we use the assumption of Step 4. Next we take b>0 such that b<c
and the followings hold:

(iv) We set y(κ(exp X)) = exp X for X e D£. Then j is a local cross section

from the subset /c(exp D\) of // to the subset exp DQ

b of G.

( v ) (exp ̂  ϋ)(exp ^?)(exp ^J) n ̂ F is contained in j*F&>F .

In addition, we choose 0<α<b such that (exp ̂ J)n an(^ (exP ̂ S)P

 are contained
in exp 0J. For g f 6 e x p ^ g , we set h = κ(g\ w=j(hn) and x=j(hp). If α is
sufficiently small, we can assume that hp(D%) and hn(D^) are contained in exp D£.

Then w 6 ^ Γ G n exp^g and x e « ^ G n exp^^. By (v), we write (\vx)~1^f = yz
with >'e>"F and ze<^F. Note that ^ = w(xj;χ~1)xz, xyx~lej&F and xz e ^»G.



540 Hideo Doi

Then "g-+xyx~l" defines a continuous map from exp Qs^ to JS/F, which sends 1
to 1. Therefore if α>0 is sufficiently small, this map sends exp ^2 into Λ*F0>F.
Thus exp £^9 is contained in jV*G$>G.

Step 5. We recall basic exact sequences for linear algebraic groups.

1 > [alg. torus] > [reductive gr.] > [semisimple gr.] > 1.

1 > [unipotent gr.] —-> [linear alg. gr.] > [reductive gr.] > 1.

We can apply Steps 3 and 4 to these sequences. Π

COROLLARY 1.7 (cf. Shubin [16]). Let U be a neighborhood of SΛ, M be
an analytic manifold and Ybe an analytic map l/xM->G. // y( , m) belongs
to JfG0>G for any m G M, then Ύ( - , )n and Y( - , )p are analytic on U x M.

COROLLARY 1.8. Let χ be a rational character of G and g be an element of

stfG so that χ(g)=L For / J G J / G and Y, Zeyr
G, if ghY equals hZ in stfG\0>G,

then we have χ(Y) = χ(Z).

PROOF. Take an element p of 0>G such that ghY=hZp in J/G. Then

χ(ghY) = χ(h)χ(Y) = χ(h)χ(Z)χ(p). Hence χ(Z)'l^Y) defines a holomorphic
function on P1. Clearly this function equals 1. Π

In the remainder of this section we treat <$&G in a geometric method. First
we explain a basic device. We take affine open subsets of P1 = C U {00} as follows:

} and (71=P1\{0}. The unit circle S1 is contained in U0Γ\U1 =
is to be defined for S,. For an element g of J/G, we assign a holo-

morphic principal G-boundle over P1 in the following way: Choose open subsets
W0c ί/o and Wv c (/! such that P1 - W0 U ̂  and 0 is defined on W0 (Ί ̂ . The
assigned bundle is to be Pg = (WQ x G U W^ x G)/^, where "^ " is the glueing so

that for (w0, ί?0) e ίf0 x G and (w1? α je ̂  x G, (w0, α0)~(wι» Λι) means that
w0 = wί in W0 n W^c: H^o and ί/ι=^(w0)ί70.

For example, "G=CX, g = g(s) = s" is assigned to the associated principal
bundle of the tautological line bundle. Here "5" denotes the standard coordinate

of Cx.
We notice that for g, hejtfG, Pg and Ph are isomorphic as holomorphic

G-bundles i f f g lies in G^Gh^G. The set of all isomorphic classes of holomorphic
principal G-bundles over P1 is denoted by Hl(Pl, G). Let G be a connected
reductive linear algebraic group over C and Tbe a maximal torus of G. W(T)
denotes the Weyl group of G associated with T. An element of Hl(P1, T) is
represented by a 1-parameter subgroup of T through the above assignment J^T->

//HP1, T). In fact, the abelian group Hom(Cx, T) is isomorphic to H1(P1

9 T).
So the Weyl group W(T) acts on Hl(P], T) naturally. Grothendieck's classi-
fication theorem shows that the canonical map Hl(Pl, T)l\V(T)-*Hl(P\ G)
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is bijective [5, Theoreme 1.1, Corollaire 1]. Therefore, any g EJ&G is written
in the form g = qhp with qeG^G, /zeHom(C x , T) and pe0>G. We call g =
qhp a Birkhoίf decomposition of g. Here we apply Grothendieck's theorem to a
connected complex semisimple Lie group G of adjoint type, i.e. G with a trivial
center. We denote the root system of the pair (G, T) by R = R(G, T). It is
well known that Hom(Γ, Cx) is a free abelian group with a basis which consists
of simple roots. All coroots of R make a root system Rv. Through the natural
dual pairing Hom(Γ, C x )x Hom(Cx, T)->Z, we identify Horn (Cx, T) with the
weight lattice of K v , which is performed in the abstract root theory. We call
elements of this lattice "coweights". Using these terminologies, we have for a
connected complex semisimple Lie group G of adjoint type,

//HP 1, G) = {the dominant coweights of R(G, T)} as sets.

Next we give another specialization of Grothendieck's theorem (cf. Birkhoίf [1]).

//HP1, GL(N, O) = Z<"> = {(iii!,..., mN)eZ»; m^-^

as sets. Note that an JV-tuple (ml5..., mN) represents a 1 -parameter subgroup
,...,*"1") for seC x .

DEFINITION 1.9. Let P and Q be holomoiphic principal bundles over a
complex manifold. If there exists a holomorphic 1 -parameter family of principal

bundles {P,; t in a nonempty open subset of C] such that Pf = P except for a
finite number of t and Pto = Q for some ί0, then we call Q an elementary deformation
of P. If there exists a chain of elementary deformations from P to Q, we say that
Q is a deformation of P and write P>Q.

In //HP1* GL(N9 C)), the partial ordering " > " is described as combinatorics.
Gohberg and Krein introduced an ordering on Z(Λr): For m = (mi) and k = (ki)e

m<k iff Σ i ^ ί = Σ / ^ and

Σm^p^/-/7) < Σfe^pίfei-p) for any peZ.

LEMMA 1. 10. For any meZ(N\ Let Pm denote the assigned principal

GL(N, C)-bundle. Then for m andkeZ™, Pm>Pk iff m<k.

PROOF. The "only if." part is an immediate consequence of Gohberg and
Krein [4]. But there is a simple explanation in our situation. Let Em be the

associated Cv-bundle to Pm and £* be its dual bundle. Let H be the hyperplane
bundle over P1. The tautological line bundle L is the dual bundle of //. For
any pe Z, put E^l(~p) = E^®Lp = ̂ iH

mi~p (a direct sum). Then the dimension

of the 0-th cohomology group HQ(Pl, E^(-p)) is Σm,:>p(mi-P+l) Hence
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if Pk is a deformation of Pm9 then by the semicontinυity of the cohomology,

we know that Σm f >p( m /~/ 7 + O^Z* f>P(^ — P+ 0 for any peZ. This implies
that Σ m / > 9 (m ί — ^)<Σ f c.>^(/c ί — ̂ ) for any qeZ. Also we notice that the

Chern number cl(E*) = Σi m i is a topological invariant.
Next we prove the "if" part. Suppose that mφk. Tensoring Lp for some

large interger p, we can assume that all m t and kt are strictly positive. An ele-
mentary argument of combinatorics shows that there exist n = (n^)eZ(N} and
integers \<a<b<N such that nt = ki for iφa,b, na = ka — \, nb = kh+\ and

m<n<k. So it is enough to give a proof for N = 2. For t^±leC and an

integer r>l, we set

land
1

1 0
1/7, = I

(t-Γ*)s 0

Let Et be the C2-bundle defined by gr We remark that ht defines the same

bundle as Et for

0
For/o — I I and

t

0

For/oH I and /; = 1 I, A,/<5 =
Γ ° 1

; = L
L ^-^"1 J

Therefore Et = Lr~λ +L for f^O, ±1. Clearly £0 = Lr + L°and (r-1, l)<(r, 0)
in Z(2}. As seen above, Z/-fL° is an elementary deformation of L1""1 +L. Π

Let {gfj be a holomorphic family of elements of Λ?G and gt = q^tpt be a
Birkhoίf decomposition. If qt and pt are holomorphic in ί, then ht is constant in

ί, as Λ f lies in a discrete space Hom(Cx, T). Hence g^s are assigned to the
same principal bundle. The converse of this observation is also true for local

parameters, cf. Rδhrl [15, Lemma 4.1, Corollary 2]. From this point of view,
it is an interesting problem to ask whether a holomorphic family of elements of

defines isomorphic bundles.

DEFINITION 1.11. An element g of $#G is said to be rigid if there exists a

real number ε>0 such that any element of {/?ej^G; \g(s) — Λ(s)|<ε for all seSJ
defines the same holomorphic principal bundle as g does. The bundle defined
by such g is called rigid. We denote the set of all isomorphic classes of rigid
principal G-bundles by
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We will list up all rigid bundles for connected simple linear algebraic groups
over C. For that purpose the next lemma is useful.

LEMMA 1.12. Let G-»G' he a covering homomorphism of complex Lie
groups. For an element g0 of ja/G, we denote its projection to j&G' by g$. Then

0o is rigid iff g'Q is rigid.

PROOF. In the category of topoloical spaces, the natural map Map (Sl9 G)-»
Map (Si , G') is a local homeomorphism. Let g 0 E j t f G be rigid and h' EJ&G> be
sufficiently near g^. Here we use "near" with respect to the compact open topo-
logy. Let AeMap(SΊ, G) be a lift of hf sufficiently near g0. Then hejtfG.
Hence there exist neGΛ*G and pe0>G such that ng0p = h. Clearly nfgf

0p
f = h f .

So 0o is rigid.
Conversely we assume that g'Q is rigid. Let hej/G be sufficiently near gQ.

Then the projection h' of h is sufficiently near g'Q. By the assumption, we can

write h' — n'gap' for some n'eGOΓ0' and p' e «^G/ . Since n' is a map from a

disk to G', n1 has a lift n e G^G. Similarly p' has a lift p e 0>G. Then (/?00P)' = Λ'
So there exists n 0 e G such that n0ng0p = h. Thus g0 is rigid. Π

PROPOSITION 1.13. (i) An element m of Z(N) defines a rigid principal

GL(N, C)-bundle iff m is of the form (ml9...9 mί9 m t — 1,..., mγ — 1).
(ii) Let G = PGL(N, C) = GL(Λf, C)/CX. Fix a maximal torus TN of

GL(N, C) consisting of diagonal matrices. Then {diag(s,..., s, 1,..., l )eHom
(Cx, TN/CX); 0< the number of s<N} is exactly assigned to

PROOF, (i) is an immediate consequence fo Lemma 1.10 and Gohberg
and Krein [4].

(ii) We set Y= |Γ^ jΊ e GL(2, C)| . Then the canonical projection

Y-*PGL(2, C) is an open immersion. Hence for an integer r>0, a 1 -parameter

subgroup diag(s r, 1) is assigned to a rigid principal GL(2, C)-bundle iff r = 0 or 1.

Let 0 = diag(smι,...,sm"-1, l)eHom(C x , T N / C X ) be assigned to a rigid
principal G-bundle. Then x = diag(smι, 5m2)e Horn (Cx, GL(2, C)) corresponds
to a rigid principal GL(2, C)-bundle. Otherwise, we have an element /? of
jtfGL(2,o which is sufficiently near x and assigned to a different bundle from

Px. Let A = ndiag(s*', sk2)p be a Birkhoff decomposition. Then {kί9 k2}^
{ml9m2} and h xdiagO"13,..., s1"^-1, l)e Horn (Cx, TN/CX) is sufficiently near
g. Clearly this leads to a contradiction. Similarly we see that diag(sW ί, smJ)
is rigid for all \<i<j<N. Here we understand mN = 0. Thus \mi — m y |=0
or 1. If we assume that W j > >m Λ Γ _ 1 >0, then g gets the form stated in the
proposition.

Let # = diag(s,..., s, 1,..., 1). Since g(s) lies in an affine open subset of
PGL(N, C), we can treat g as an element of J/GHN.C^ Evidently^ is rigid in
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COROLLARY 1.14. Let G be the c-fold covering of PGL(N, C). Then
{diag(s,..., s, 1,..., l )e Horn (Cx, TN/CX); f/?e number of s is smaller than N
and devided by c} naturally represents

PROOF. Using Lemma 1.12, we shall find rigid 1 -parameter subgroups of

PGL(N, C) such that they have lifts in Hom(C x ,G). Let # = diag(s,..., s,
!,..-., 1) be a 1-parameter subgroup of GL(N, C), We assume that det# = sfl

for some 0<c/<N. Let y = y(s) be a branch of sa(N such that y(\)=\. Then
gy~l defines a 1-parameter subgroup of C iff j;(e2πl') = e2πία/N equals (e

2πic!N}k

for some integer 0</c<N/c. This condition implies that a — ck. Π

LEMMA 1.15. For S0(4, C), there exists only one isomorphίc class of
nontrivial rigid principal bundles. Let T=SO(2, C) x SO(2, C) be a maximal
torus of S0(4, C) and f be the standard generator

-(S_s-i)/2ί
of Hom(Cx, S0(2, C)).

Then the element I 2

χ / of Hom(Cx, T) corresponds to the nontrivial rigid

bundle.

PROOF. We have a 2-fold covering S0(4, C)->SO(3, C) x SO(3, C). Hence
we pick up rigid 5O(3, C) x S0(3, C)-bundles which lift to S0(4, C)-bundles.
The possibility of lifting of loops can be judged by their restrictions on compact
real forms. So we work on two coverings of compact Lie groups

Spin(4) = Sp(l) x Sp(l) -^ SO(4) - > SO(3) x SO(3).

Here sp denotes the spin representation. Let H be the field of quaternion
numbers and Sp(\) = {aeH', the norm of a is 1}. For xeR4 = H and a, be

Sp(\), we set sp(axb)x = axb-}. Considering SO(3) = Sχi)/{±l}, we have
naturally the second covering. Take the standard basis {1, i,j, k] of H. Using
this, we get a representation of sp(a x b) by a matrix.

We notice that a 1 -parameter subgroup of SO(3)xSO(3) is described with

a branched lift to Sp(\) x 5p(l). For s= eiθ, the restrictions of rigid 1-parameter
subgroups of SO(3, C) x SO(3, C) are 1x1, Ixs 1 / 2 , s j / 2 x l and s'^xs1/2.

Also

[ cos θ — sin θ

sin θ cos θ

Their images by sp are 12 x 12,/~1/2 x/1/2,/1/2 x/~1 / 2 and 12 x/. Clearly 12 x 12
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and 12 x/are loops in 50(4) and the others are not. Π

PROPOSITION 1.16. For SO(N, C), N>3, we have a unique isomorphic
class of nontrίvial rigid principal bundles, which is defined by the \-parameter
subgroup fx \N-2 Here f is the standard generator 0/Hom(C x, SO(2, C)).

PROOF. For N = 3 and 4, the proposition has been shown, and hence we
assume N > 5. Let k be the integral part of TV/2 and T= S0(2, C) x - x SO(2, C)
(k pieces) be a maximal torus of SO(N, C). Suppose that a 1-parameter subgroup
g = f ' " i χ . . . χ f » » < of T defines a nontrivial rigid SO(N, C)-bundle, 5O(4, C)x
SO(N — 4, C) is a subgroup of SO(N, C), which has the maximal torus T in
common. Hence fmι x/"12 is a rigid 1-parameter subgroup of SO(4, C). So
{m1? m2} = {0, 0}, {1,0} or {0, -1}. The others {mί5 m,.} are similar. With
the action of the Weyl group, we can assume that m^ ^m^. Then g equals

fx \N-2 or \N-2

 χ/~ l> each of which defines the same bundle.
Next we prove that g=fxlN-2 defines a rigid bundle. Let {gt} be a holo-

morphic family of elements in J^SO(N,C) suc^ t^at gQ = g. As gt is an element

of Λ?GL(N,C^ it defines a Cv-bundle Et. We notice that E0 = L + L-l + CN~2

(a direct sum). Let t be sufficiently near 0. By Lemma 1.10, we known that Et

equals E0 or the trivial bundle. Evidently gt is nontrivial in πίSO(N9 C). So
Et = E0. That is to say, gt's define the same GL(N9 C)-bundle. Therefore, from
Grothendieck [5, Proposition 3.1], it follows that #/s define the same O(N, C)-
bundle. Let gt = ntgρt be a Birkhoff decomposition in j^°^'c>. Note that
(!„_! x (- l))g(lN.ΐ x (- !)) = #. Hence we can take nt and pt in j*s°v* c\ Q

PROPOSITION 1.17. Let G be a connected complex simple Lie group of
adjoint type. Then £%(G) consists of the trivial bundle and the bundles defined
by the coweights corresponding to the roots in the Dynkin diagram. Here
the word "bundle" means a holomorphic principal bundle over a complex
projective line. There exists no root in £8, F4 and G2. The Dynkin diagrams
of An, Bn, Cn, E6 and EΊ are as follows.

n

n

n

6

7

w w ..

O . .

O (~\ A

1
0

0 0 o ^

1
O

— v w

" ^̂ ^
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PROOF. G = An = PGL(n + \, C): We can choose simple roots such that
diag(s,..., s, 1,..., l)'s in Proposition 1.13 are made into fundamental coweights.

G = Bn = SO(2n + \, C): Let h be the nontrivial rigid 1 -parameter subgroup

given in Proposition 1.16. If we take a suitable simple system of roots {aί9...9an}9

then its Dynkin diagram is o --- o ---- , < f l l, /j> = l and <cίί, ft> = 0 for ί>2.
#ι

G = Cn = Sp(n, C)/{±\}: Let T be a maximal torus of Sp(n, C) consisting
of diagonal matrices. Naturally Sp(l, C)xSp(n — 1, C) is considered as a sub-
group of Sp(/ι, C), which contains Γ'. An element of Horn (Cx, T') is factorized
into a 1 -parameter subgroup of Sp(l, C) and that of Sp(n— 1, C). Hence an
inductive argument shows that a rigid Sp(n, C)-bundle is trivial. Note that

Sp(n— 1, C) = (l 2xSp(π-l, C))/{±1}. We now get an exact sequence:

1 - >Sp(n-l, C) - >(Sp(l, C)xSpOι-l, C))/{±1} - >PSp(l, C) - > 1.

Let T=Γ7{±1). Elements of Hom(Cx, T) are represented by their branched
lifts to Sp(n, C). Let 0eHom(C x , T) be rigid and x be the projection of g

to PSp(l, C). If x has a lift x'eHom(C x, Sp(l, C)), then we have

(x' x ^2n-2)~l9 — ^2 x y> where y is an element of Horn (Cx, Sp(n — 1, C)). Since
gr has a lift in Hom(Cx, Sp(n, C)), g defines the trivial bundle by Lemma 1.12.
We now assume that x has no lift in Horn (Cx, Sp(l, C)). Treat g as a branched
lift to Sp(n, C) and factorize g into x x y9 where y is a branched lift of an element

of Hom(Cx, PSp(n— 1, C)). Then g(e2πi)= — 1 since g is nontrivial. We put
ft = diag(s, s-1)eHom(C x, SL(2, C)) and understand Sp(l, C) = SL(2, C). Let
x = n~1hm/2b~ί be a Birkhoίf decomposition in ^^5P(i,c) \γe notjce that n

and b are lifted to Sp(l, C). If n and b also denote their lifts, then the following

is well defined: nxb = hm/2 in Sp(l, C). Hence (n x l2l,-2)0(* x l2π-2) = ̂ w/2 x y
This implies that x is a nontrivial rigid 1-parameter subgroup of PSp(l9 C). So
we can assume that g = hl/2 x •-• x hl/2 (n pieces). Clearly /ί1/2 = diag(s, 1)
in PGL(2, C). Hence / ϊ 1 / 2 x - . - x /i 1 / 2 is rigid in jtfPGL(2n,o and so in ^psp(n,c)

It is easy to find a simple system {#!,...,«„} for R(PSp(n9 C), T) such that its

Dynkin diagram is ••• o <=o , <«„, ^> = 1 and <af, ^> = 0 for f < π .

G = Dn = PSO(2n, C)/{±1}: LetT' = SO(2, C ) x - xSO(2, C)bea maximal
torus of SO(2n, C) and T=Γ'/{±1}. An element of Hom(C x, T) is written
with its branched lift to S0(2n, C). Let / be the standard generator of Horn (Cx,

S0(2, C)). Then 0eHom(C x, T) has the form /""/2 x ••• x f m " / 2 . Taking
the action of the Weyl group into account, we may assume that ml> > mπ_ ί >

\mn\. Note that SO(2n-4, C) = (l 4x SO(2n-4, C))/{±1} and observe the
next exact sequence :

SO(2π-4, C) - ̂ (50(4, C)xSO(2«-4,

- >PSO(4, C) - > 1.
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Let g be a nontrivial rigid element of Horn (Cx, Γ) and x x y be a branched lift

of g to S0(4, C)xSO(2n-4, C). If x lies in Hom(Cx, SO(4, C)), then g =

(xx I2 π_4)(l4x>;) belongs to Hom(Cx, SO(2n, C)). Therefore #=/x 12 x ••• *
12. Moreover, for a simple system {fl1?..., an} of R(PSO(2n9 C), T), its Dynkin
diagram is o --- o ---- , <#ι, #> = 1 and <<7f, #> = 0 for />!. If x does not

aι
lie in Hom(Cx, SO(4, C)), then x is a nontrivial rigid 1-parameter subgroup of
PSO(4, C). Therefore x is/ 1/^/ 1/ 2 or f * / 2 x f - V 2 . Hence g equals ga =

fWx .xf1'2 or ^ I _ 1 =/ 1 / 2 x x/1 / 2x/-1 / 2. We notice that /~diag(s,
s-1) in SL(2, C) and / J/2-diag(s, 1) in PGL(2, C), where "~" means "is
conjugate to". Therefore #,,~diag (5,..., 5, 1,..., l)̂ ,,.̂  in PGL(2n, C). Thus
gn and #„_! are rigid in ̂ ^^(2/1,0 ancj so m ^pso(2n,c) ^γe can easjiy choose

a simple system {α^..., αj such that its Dynkin diagram is

<>„, #„> = !, <fl,, 5f π >=0for iVw, <«„-!, flfβ-ι> = l and <fli, g f l l _ 1 > = 0fo
G = Eβ: Fix a maximal torus Γ and a system of simple roots such that its

Dynkin diagram is as below, where an integer "/" indicates a simple root a^

1 3 4

1
o 2

1

5 6

Let <77 be the negative maximal root , — (aί+2a2 + 2a3 + 3a4 + 2a5 + ab). Let

{^ ίeHom(Cx, T); /=!,..., 6} be the dual basis of {Λ,; /=!,...,6}. Let H be a
connected semisimple subgroup of E6 such that H contains Tand {0,, 03, α4, α5,

^0} U {ί/7} becomes a system of simple roots. Put 7" = T/(the center of //).
Let {/7 f .eHom(C x , 7); / = ! , 3,..., 7} be the dual basis of {#,.; /= 1, 3,..., 7}.

Naturally Horn (Cx, T)c Horn (Cx, T')c:Horn (Cx, T)(g)zβ. Then / ι ,=^j-

flf2/2, A 3 = 03-02> //4 = ̂ 4-3^2/2, hs=g5-g2, hβ = g6-g2/2 and HΊ=-g2l2.
We note that f//(the center of //) = Λ 5 x Λ , and ^(//) = {0, A ι - A 7 , A 3, h4-hΊ,
hS9h6-h7}. W=W(T) denotes the Weyl group of £6. Then Hl-h7=gl9

Wh3=Wg6, W(h4-h7)=Wg2, Wh5 = Wgt and h6-hΊ=gβ. Hence ^(//)c

{0, #!, ^2» ^ό} Let X be a connected semisimple subgroup of £6 such that T

is a maximal torus of X and {<7j, #2> #3* α4^ aι] U {^βl 1S a system of simple
roots. Put T~ = T/(the center of K). Then {kl=gl~g5/2, k2 = g2-95ι k3 = g3

-9s, k4 = g4-3g5/2, kΊ=-g5/2} [) {k6 = gβ-g5l2} is a basis of Horn (Cx, T~).
Note that X/(the center of K) equals X 5 xAv. Thus ^(/C) = {0, /c t -/c6, /c2, ίc3,

k4-k^kΊ-k6}. Also ^^-^=^6, Wk2 = Wg69 Wk3=Wgl9 W(k4-k6)
= W(g5+gβ} and ^(/c7-/c6)= W^. Therefore ^<£6)c{0, flf,, ̂ 6, g5+g6}.
From the form of the maximal root, it follows that Ad(0j) and Ad(^6) are
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represented by diagonal matrices, whose entries are s, s"1 or 1. We notice that g1

and gβ are different in nlE6. Hence Lemma 1.10 implies that ^(£6) = {0, g^ g6}.

G = E7: Let Tbe a maximal torus and a simple system of roots be as follows:

1 3 4 5 6 7

Let ai be the simple root indicated by "/" for / = !,..., 7 and a8 be the negative

maximal root, —(2aί+2a2 + 3a3 + 4a4 + 3a5 + 2a6 + a7). Let {#t e Horn (Cx, T);
/= 1,..., 7} be the dual basis of {#,•; /= 1,..., 7}. Let H be a connected semisimple
subgroup of EΊ such that H contains Tand a system of simple roots is {0f; / = 8,

1,3,..,,7}. Let {Λ j eHom(C x , r); ι = 8, 1,3,...,?} be the dual basis of
{#,; / = 8, 1, 3,..., 7}, where T denotes T/(the center of //). Then ^(//) = {0, / 7 j =

9ι~92' h4 = g4-2g2, hβ = gβ-g2}. Let py=W(T) denote the Weyl group of
Ej. It is easy to see that Whί = WgΊ, Wh4=Wgl and Wh6=Wg7. For {α8} U
{0.; / = 2,...,7}, we take the subgroup X as above and put T~ = T/(the center

of K). Let {/c /eHom(C x, T~);/ = 8, 2,...,7} be the dual basis of {at\'/ = 8,
2,..., 7}. Then fc8= —gι/2. So ^t is not rigid in J2/K since X/(the center of K) =
Al x D6. We know that gΊ is rigid by the form of Ad gΊ. Thus ^(E7) = {0, gΊ}.

G = ES: Let Tbe a maximal torus and a simple system of roots {α f; ί=l,..., 8}

be as follows:

1 3 4 5 6 7 8

o 2

Let fl9 be the negative maximal root, — (2
2a8). Let {^eHom(Cx, T); ί=l,,..,8} be the dual basis of [a^ ΐ=l,.. .,8}.
Let H denote the connected semisimple subgroup corresponding to {a^ / = 2,..., 9}.
We notice that ///(the center of //) equals D8. Let {ht e Horn (Cx, T/(the center

of //)); ι = 2,..., 9} be the dual basis of {at\ ι = 2,..., 9}. Then ^(//) = {0, ft3 =
^3-2^!}. For W=VF(T), the Weyl group of £8, we know that WH3 = Wgs.

Similarly, for {#,.; /=!,..., 7} u {^9}, we get the subgroup K and the dual basis
{/c /eHom(C x, Γ/(the center of X)); /=!,..., 7, 9}. Since k9=-g8/2,,gs is
not rigid in j/*. Hence ^(£8) = {0}.

1 2 3 4
G = F4: o o o -=> o o. Let H be the connected semisimple

subgroup corresponding to {the negative maximal root, <z l 5 a2, a3}. Then H
is equal to Spin(9, C), so ^(F4) = {0}.

1 2
G = G2: o o -ZΞΞ> o . Let H be the connected semisimple subgroup

corresponding to {the negative maximal root, a^}. Then H = SL(3, C). Thus

= {0}. D
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2. A family of flat connections

Let Yί = YI(X, y) be a function in an open subset of R2 with values in

M(N, C). We try to rewrite the next equation in some geometric form.

(2.1)

Let * be the standard Hodge operator on R2. That is to say, *dx = dy, *dy =
— dx, *l=dxΛdy and *(c?x Λ dy) = \ . Let s denote a complex parameter. We

put z = x + iy and z = x — iy. For a smooth function Yί9 we set

(2.2) Ω(Yl) =

Note that (s-z)(l + ι*) + (s-z)(l-ί*) = 2(s-x-3;*) and

(2.3)

LEMMA 2.1. Let d be the exterior derivative on R2. Then (2.1) is equivalent

to the following equation for Ω = Ω(Yl):

(2.4) dΩ + Ω Λ Ω = 0.

PROOF. For 1-forms a and b on R2 with complex matrix coefficients, *a Λ b

= -aΛ*b. Note that (l-ί*)Jz = 0, (l + i*)dz = 0. So d z Λ ( l + i*)dy1=0 and
ί/zΛ( l — /*)ί/F1 =0. Then we have

dΩ = 2-l{(s-zΓlid*dYί-(s-zΓlid*dYί} = - (s-zY^s-z

For 1-forms, (l + ι*)(l-ί*) = 0, (l + i*)(lH-i*) = 2(H-i*) and (l-i*χi-ΐ*) =
2(1 — ί*), since **= — !. So we have

j Λ (i-i*)dy! = o.
(2.5) (i + /*)dyt Λ (i-i^dYί = 2dYl Λ

(2.6) (l-i*)dYι Λ (l + i*)^ = 2dYl Λ

β Λ Ω = 4-1(s-z)-1(s-z)-1{(2.5) + (2.6)}

Therefore,

dΩ + Ω Λ Ω = (s-z)-1(s-zY1{-y(d2 + d2)Yl + [_dxY1, dyY^dx Λ dy. D

A 1-form Ω on /?2 with coefficients in M(N, C) defines a connection D =

Then the curvature of D equals DD = dΩ + ΩΛΩ, and hence (2.4) means that the
connection is flat. Let U be a nonempty open subset of P1 x R2. For a fixed

real number δ>Q, we set L = {sGP1 = Cu {oo}; |s|><5}. Let /? denote the
natural projection from P1 x R2 to P1. We assume that U contains Lx(0, 0)
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and that pU = L. Let Ωs = Ω(s, x, y) be a smooth 1-form on U which does not
have terms ds and ds. Also we assume that Ωs is holomorphic in s. In a word,
Ωs is a holomorphic family of 1 -forms.

LEMMA 2.2. Suppose that Ds = d + Ωs is a flat connection and p ~ l s Γ \ U is
l-connected for all seL. Then there exists a smooth mapping Ys=Y(s, x, y)

from U to GL(N, C) such that Ys is holomorphic in s and Y~ldYs = Ωs.

Moreover, // ί2(oo, , ) = 0, then we can take Y(oo, , •)= 1.

PROOF. For a fixed s e L, we have a smooth mapping Ys= Ys(x, y) such that

Y~ldYs = Ωs since p~ls n U is l-connected. Since we have assumed that L x (0, 0)
is contained in U9 we can take 7S(0, 0)=1. For any (s1, x l 9 y^ε U, we take a
smooth curve zf, 0<ί< 1, in /?2 such that z0 = (0, 0), z1=(x1, y t ) and (s l5 z f)e (7
for all t. Then (d/dt)Ys(zt)= Ys(zt)Ωs(zt) for any s sufficiently near s{. By the

elementary theory of ordinary differential equations, we see that Y(s, x, j;) =

7s(x, y) is holomorphic in s. If £2^=0, then 7^= a constant. Π

DEFINITION 2.3. Let R and 5 be positive real numbers. We define D(δ),

j t f , Λ* and 0>Rό as follows.

j t f R t δ denotes the set of all mappings from SR x D(δ) to GL(N9 C) such that
they are restrictions of analytic mappings in s, x and y.

Λr

Rtδ={Ye*$tfRtδl Yean be extended to an analytic mapping from D'RxD(δ)

to GL(N, C) and 7(oo, x, y)=l}.
0>R δ — {X E£/R δ\ X can be extended to an analytic mapping from DR x D(δ)

to GL(N, C)}.

For yse^ΓR^, we set Ωs= Y~λdYs and consider the following property.

(2.7) Ω s+/*ί2 sand Ωs — i*Ωs are extended on Pl meromorphically in s. Their

poles are of order at most one. Their locations are just x + iy and x — iy

respectively.

LEMMA 2.4. Let Ys=l + Σn>oYns~" with Yn=Yn(x, y) be the Laurent
expansion of YseΛ*Riδ. If Ys has the property (2.7), then Y~ldYs equals Ω(Y^
for Ω(Yl) given in (2.2).

PROOF. Let z = x + iy and z = x — /y. Our assumption means that Ωs +
i*Ωs = (s — z)~lAandΩs — i*Ωs = (s — z)~lB, where A and B are 1-forms independent

of 5. For c and seC such that |s|>|c|, we have (s — c)~l=s~~l Σ«>o(Φ)"

In the equations (l + i^dY^s-z)-^^ and (l-i*)dYs = (s-z)~lYsB9 we
compare the coefficients of s"1. Then we see that (1 -f i^)dYί —A and (1 — i*)dYt =

B. HmceΩs = 2'1{(s-zΓί(i + i*) + (s-z)-l(l-i*)}dYί. D
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Next we state some invariance of the property (2.7), which is basic for our

treatment of nonlinear equations.

LEMMA 2.5. For 7°, Ye^R^ X<=έ?R,δ and gεrf%L(N<c\ we assume that

gY°X= Y. If Y° has the property (2.7), then so does Y.

PROOF. We notice that Y-ldY=χ-ldX + χ-l(Y*YldY*X, since dg = 0.

So Y~l dYis extended to DJ meromorphically. Since X and X~λ are holomorphic

on D£, the poles of Y~ldYare contained in the set of poles of(Y°)-1dY°. D

3. The nonlinear equations

Let σ be a fixed involutive real automorphism of GL(N, C). We assume

that σ is a conjugation of inner type or a holomorphic automorphism of outer

type. Put G = {geGL(N, C)\σg — g}. We extend σ to an automorphism of

*/Rtδ as follows: For ge^Rίδ, we set (σg)(s, x, y) = σ(g(s, x, y)) or σ(g(s, x, y)),

respectively.

For Z = Zs = Z(s, x, y)Ej&Rtδ, we study the following properties:

(3.1) Ω = Z~ldZ has the property (2.7).

(3.2) (σZ)-1Z and (σZ)"1 dZ are polynomials of 5.

For any α G H o m ( C x , GL(N, C)), we define a parabolic subgroup Pa =

{geGL(N, C); \\ms^a(s)ga(sYl converges in GL(ΛΓ, C)}.

DEFINITION 3.1. An element a of Hom(C x, GL(N, C)) is said to be nice

(with respect to σ) if a and σa are commutative and if a and (σa)~la are poly-

nomials of degree at most 1. Moreover, if G is isomorphic to Sp(N/2, C), then

we require that {i e C'v; a(s)v = v for all se Cx} has an even dimension.

THEOREM 3.2. Lef y be an element of Λ"Rδ and a be a nice element of

Hom(Cx, GL(N, C)). Let Qa denote the parabolic subgroup opposite to Pa.

We assume:

(3.3) a(s)Y(s, x, 0)α(s — x)"1 is a function independent of s.

(3.4) the above function takes values in an open orbit of G\GL(N, C)/Qa.

Furthermore let Ys=\ + Σπ>o ^n s~" ^e tne Laurent expansion of Y.
If Z = a(s)Ys has the properties (3.1-2), then Y is determined by yt(x, 0)

and dyY^x, 0).
Moreover if dvYι(x9 0) = 0, then Y is an even function with respect to y.

For its proof, we give some preliminaries. The niceness of a implies that
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there exists a basis {ef; /=!,..., Λf} of CN such that a(s) and (σa)~l(s) are
represented by the following diagonal matrices:

a(s) = diag(sl_, 1,, lr) and = diag(l,, si,, 1Γ).

Here p + p + r = N. Fix such a basis. Now we identify \iomc(CN, CN) with
M(N, C) through this basis.

If σ is a conjugation of inner type, then there is J in GL(N, C) such that

σg = ΔdJ~l(*g~l) for geGL(N,C). Hence * denotes the hermitian conju-
gation on M(N9 C). Since g = σ(σg) = Ad(J~l*J)g, we see *J = cJ for some
CE C. We note that J = *(*J) = ccJ. For b^c1/2, we have *(bJ) = bJ. Hence

we can assume that σ# = Ad J~}(*g~l) and *J = J. We define an hermitian form
as follows: (w^ w2) = *wlw2 for wu w2 e CN. Here we understand that elements
of Cv are column vectors with respect to the basis et. Note that *a(s)J = J(σa)

(s)~l and *(σa)(s)J = Ja(s)~l. Therefore we have (Jeh a(s)ej) = (J(σa)(sYlei,

If σ is a holomorphic automorphism of outer type, then there is J E GL(N, C)
such that σg = ΔdJ~l(tg~l) for geGL(N, O). Here r denotes the transpose on
M(N9 C). "σ2 = \" implies that *J = cJ for some ceC. Since t ( t J ) = J, we
have c2 = l. We define a symmetric bilinear form as follows: (wί9 w2) =

 r w 1 w 2

for W j , w2 E CN. Then (Jef, a(s)ej) = (Jσa(s)~lei9 βj) and (Jei9 σa(s)ej) =

(Ja(s)-lel9 βj).
Hereafter, we use the notation τ for * or ' according as σ is a conjugation of

inner type or a holomorphic automorphism of outer type. Then we have

0 j 0

cV 0 0

0 0 jl

for a p x p matrix / and an r x r matrix j^ such that V i = C71 with c2 = 1. Put

0 y 0

cV 0 0

0 0 0

and

0 0 0

0 0 0

o o jl

Then J = geGL(N, C).

LEMMA 3.3. L^ί α and Y be as in Theorem 3.2.
J(σZ)~lZ and Ω = Z~ldZ. Then

For Z = aY, we set M =
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Λί = sJ0 + Ji

MΩ = J0dYί

In particular,

(3.5)

PROOF. Since we assume (3.2), M and MΩ are polynomials of 5. We

notice that 0(σα)~ l=diag(sl2 p, lr). Hence,

M =

Let z = x + iy and z = x — iy. Since we assume (3. 1), by Lemma 2.4, we obtain

Ω = 2-l{(s-z)-1

sze

Hence

D

We put

[ H B~\
j κ ,where H is a square matrix of si

y 0 = t . / , a square matrix of size 2p, and

h = xjo1 + Hj^ + j? tH - β/Γ> tβ.

LEMMA 3.4. Retain the above notations. Then

(3.6) Λ/oέHί = y*dH, hj0dB = y*dB.

(3.7) dL= - yT1 tB/V^ dX = - yΓ1 ^

PROOF. We rewrite (3.5) as follows:
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= 0,

j0BdL = yj0*dH.

= yj0*dB.

+ K = 0.

So (3.7) is clear. It is easy to show (3.6) as well. Π

Put W=(H, B),apxN matrix. We define Wn, //„, £„, and hn by the Taylor
expansions W=Σn^Wny

n with Wn=Wa(x) = (Hn, Btt) and h = Σn^hny
n with

hn = hn(x). Then a simple calculation gives

(3.8) c

(3.9)

(3.10) hk = HkJQl + jo* T#Λ — Σm+w = Λ BmJΊ1 ^ ̂ n

Γ/,0 QΠ

LEMMA 3.5. ft0

= Q 0 ' w^ere h° is a nonsingular pxp matrix.

PROOF. From (3.3), it follows that Y(s, x, 0)= 1 +S"1 Y,(x, 0) and

xl,

Yι(x, 0) = 0 Ol p 0

0 0

Here u and v are some functions of x. Since

group of GL(N, C) consisting of all matrices whose shapes are I *

Ol r

= diag(slp, lp+ r), Qa is a sub-

, where
0

0 is the p x ( p + r) zero matrix. All linear subspaces of dimension q = p + r in

CN make the Grassmann variety Gr(q, N). Let Va be the subspace generated by
et for / = /?+!,..., N. The mapping from GL(N, C)/ββ to Gr(q, N), which is

defined by the correspondence gQa-*gVa, is an isomorphism. Put J(w l 5 w2) =
T w 1 Jw 2 for w 1 ? w2 e CN. Then J( , ) is a hermitian, symmetric or symplectic
form on CN. We note that G = {g e GL(N, C); *gJg = J}. Hence for Fe Gr(g,

N), V belongs to an open orbit in G\GL(N, C)/Qa iff J( , ) is nondegenerate

on K
Let K be the element of Gr(^f, N) corresponding to a(s)Y(s, x, 0)α(s —x)"1.

Then the restriction of J( - , ) on V is represented by the matrix

Jv =

tM

t»
1P ° 1

0 lr

" 0 j 0 Ί

cV 0 0

_ 0 0 y, J

W V

IP 0

ιr
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Therefore ^belongs to an open orbit in G\GL(N, C)IQa iff det (Jj-
. By (3.10), we easily obtain

0 0
. G

PROOF OF THEOREM 3.2. First we show that the above Wk, /c>2, are deter-
mined by WQ and Wl by induction on fc. We set

<>k εk Cfc _

Here αfc, j8Λ, δfc and εk are p x p matrices and γfc and ζk are p x r matrices. By (3.8),

we have hQjQWk = dxWk_2 — Σι<n<k ^k-n/o / l^n- Using Lemma 3.5, we see that

Jo Wk =
°7*<5* Λ°yεΛ A°yζΛ

0 0 0

Hence <5fc, εΛ and ζfc are determined by Wn, n<k. We read (3.9) as follows: —kWk =
hkj0dxW0 + (- ). Here the part (•••) is to be determined by induction. By (3.10),

k^BJ^Bk-Bkj^B0 + (-'). Hence

Note that

0 0 0

Therefore we obtain — kxk= —α fc + (•••), — ̂ A = α f cδ J CMH-( ) and — /cyfc = αfc5xι;4-
(•••). So αfc, )8k and yk are determined by induction.

By (3.7), we know that L and K are determined up to additive constants.

Thus Yλ = Ύl(x, y) is determined completely. From (3.1) and Lemma 2.4, it
follows that y-^yis unique. For Ύ'e^R^ \f(Y'Y*dY'=Y-λdΎ, then we have

d(Y'Y~l) = Q. That is to say, Y' = gY for some #e^L(N'C). In addition,
assuming y'(s, x, 0)= y(s, x, 0), we get g = 1. Thus the first half of Theorem 3.2

is proved.
Clearly, the properties (3.1-2) are invariant under the transformation "y-»
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— y". Hence, if Z(s, x, y) has the properties (3.1-2), then so does Z(s, x, — j;).

Thus, if dyY^x, 0) = 0, the first half of Theorem 3.2 implies Y(s, x, 3;)= 7(5, x,

-y) D
Let ̂  = {^e^gL ( N 'C )dj^GL(N,c). σg = g}. We remark that the properties

(3.1-2) have an apparent invariance under the left action of ^£. If Zeja^

has the properties (3.1-2) and g is an element of ^£, then #Z also has the properties

(3.1-2).

Let a, a' e Hom(Cx, GL(N, C)) be polynomials of degree at most 1. For
y and Ύ'e^Rδ, we assume aΎ—a'Ύ'. Then a simple argument implies that

α = α'and Y=Y'.
In some physical context [9, 10], the conditions (3.3-4) appear naturally.

DEFINITION 3.6. Let a be a nice element of Hom(Cx, GL(JV, C)) and Y

be in Λ^^. If K and # satisfy the conditions (3.3-4), then we say that (7, a)

is in the Hauser-Ernst gauge.

4. The generation of solutions

We start with seeking a solution. Freely we employ the notations in

Section 3. We suppose that σ is represented as in the proof of Theorem 3.2.

LEMMA 4.1. Let u be a constant pxp matrix such that det (

Let w = - 2 " l " " 1 ( M " 1 + cty~1 ^Γ1- We set

(l+2uw)/s

2w

0

, δ =

u/s

1,

0

and y =

" 0 -

0

_ 1Γ -

where ξ and δ are Nxp matrices and y is an Nxr matrix. Let η = 2δw and

τ = s { ( i — x / s ) 2 + (y/s)2}V2. Here we understand that x/s and y/s are suffi-

ciently small and that 1 1 / 2 =1. Let

Y(s, x, y) = [(x-s)η + τξ, δ, y]

and c/(s) = diag(sl p , lp+r). Then Z = aY has the properties (3.1-2) and (Y, a)

is in the Hauser-Ernst gauge.

PROOF. We notice that

-x\p u 0

y2w 0 0

0 0
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Let = τ-2(s-x-y*)dYίt Then
γ-ldY=Ω, (2.3) implies (3.1). We put α =
2(x — s)w. Then

= τ2[_ηdx + ξdτ, 0, 0] = τ2dY. Since
and β = 2τw +

ϊZJZ=

^ZJdZ=

0

0

0 0

0 0

0 0

0

0

Ji J

and

We notice that yw = c tw ty and (M + cTy~ 1 Tw/)w = — 1/2. A direct calculation
shows that

ϊβc^joi + τα/7? = 2y2jw, c^joc + TMyj8 = (s — x)c*j,

iβcϊjda + tα/dj5 = 2jwydy and cV^α + tMjd)S = - c^'dx.

Thus Z has the property (3.2). It is easy to see that (7, 0) is in the Hauser-Ernst

gauge. Π

DEFINITION 4.2. For (Y9 a), which is in the Hauser-Ernst gauge, we define
a function α(Y)(x) = α(s)Y(s, x, 0)α(s — x)"1^. This takes its values in GL(ΛΓ,

LEMMA 4.3. Lei (Y0, α) απJ (F, α) wiίh 7°, Ye^R,d be in the Hauser-
Ernst gauge. We assume that gaY°X = aYfor g = g(s)e0>%L(N>C) and X

Then α(10(x) = 0(x)α(r0)(jr) in GL(N, C)/Qa.

PROOF. We are assuming that (a(s)Y(s, x, 0))~1^(s)α(s)y°(5, x, 0) for |s| <R
is holomorphic in s. Computing its residue at s = x, we can deduce that (a(s)Y(s,
x, 0))-^(x)α(5)y°(5, x, 0) belongs to Qa. Π

LEMMA 4.4. Let αeHom(C x , GL(N, C)) 6e nice. For )

and y°, YEΛ*Rfδ, we assume that gaY°X = aY and that aY° has the properties
(3.1-2). Then aY also has the properties (3.1-2).

PROOF. We put Z = gaY°. Clearly Z has the properties (3.1-2). We

recall that 7(5, x, y) for |s|># and X(s, x, y) for |s|<J? have no pole. Since
χ-1Z-ίdZX + χ-1dX, αYhas the property (3.1).

σ(aY)~laY=

σ(aY)'ld(aY) =
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Hence it is easy to see that 07 has the property (3.2). Π

Let JfΛ f f l = {0e#J; g(s) belongs to Pa for |s|<K}. We notice that the
solution given in Lemma 4.1 is an even function with respect to y. We now
introduce a special class of solutions.

DEFINITION 4.5. ^Rtδta = {Qe^RtΛ; aY has the properties (3.1-2), (Y, a)
is in the Hauser-Ernst gauge and 7(s, x, y) = Y(s, x, — y)}.

THEOREM 4.6. Let y°e^Λα and ge3eR9a. Then for some ε>0, there

exists 7e^R>ε?α such that gaY° = aYin ^,ε/^Λ,ε.

PROOF. We notice that a(s)~ lg(s)a(s) Y°(s, x, 0) lies in Λ^R0>R as a function
of 5. Here P denotes the parabolic subgroup defined by a. By Theorem 1.6
and Corollary 1.7, we can find a real number ε>0 such that a~lgaY° belongs to

Λ^.ε^Λ.ε So we set a~{gaY°=YX with Ye^RtB and X e 0>^ε. Clearly Y and
X are expanded in power series of y2. From the explicit form of a(s)Y(s, x, 0),
it follows that (7, a) is in the Hauser-Ernst gauge. By Lemma 4.4, we know

that y belongs to ^Λ,ε,fl. D

DEFINITION 4.7. Let αeHom(C x , GL(/V, C)) be nice. Put Va = {veCN:

av = v} and g = dim Va. We define ,̂β = {/(x); — <5<x<<5, f is analytic and
takes its values in an open orbit of G\Gr(q, N)}.

PROPOSITION 4.8. Let Y°, Ye&>Rtδta and ge&σ

R. If 0(x)α(y0)(x) = α(y)(x)

in Θδa, then there exists a positive real number ε such that gaY° = aY in <8?RJ

*v.
PROOF. Working on GL(N, C), we assume that (a(s)Y(s, x, 0))~}g(x)a(s)

y°(s, x, 0) belongs to Qa. As seen in the proof of Lemma 4.3, (a(s) Y(s, x, O))"1

g(s)a(s)Y°(s, x, 0) has no pole in |s |<R. By Theorem 1.6, we obtain a real
number ε>0 such that (aY)~lgaY° lies in ^Rε^Rε. So we can put gaY° =

aYY'X with Y' e^ΓΛjε and Xe^R}£. Observe that Y' and X are even functions
with respect to y and that y'(s, x, 0)=1. Because YY' is in the Hauser-Ernst

gauge, Lemma 4.4 implies that YY' belongs to ^Λ,ε,α. By Theorem 3.2, we know

that yy ' = y. D

PROPOSITION 4.9. Let 0eHom(C x , GL(JV, C)) be nice and f be in Θδt0.

Then there exist positive real numbers R and ε, g e G and Ye^Rt£tb for b =
gag'1 such that a(Y)(x} = b(s)Y(s, x, 0)Kb equals /(x) in Gr(q, N).

PROOF. If b = gag~l and Yε&>R^b, then gVa = Vb and g

Therefore we suppose that / has an analytic representative in Pa. Then there

exists Λ(s)e^Λιf l for some 0<R<δ such that Λ(x)/(0)=/(x) in Gr(q, N). By



Nonlinear equations on a Lie group 559

Lemma 4.1, we get a solution Y° such that α(y°)(x)=/(0). Now the proposition
follows from Theorem 4.6. Π
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