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Introduction

In their paper [11, 12], I. Hauser and F. J. Ernst proved in the affirmative
the Geroch conjecture [2, 3] that all stationary axisymmetric solutions of the
Einstein field equations can be essentially derived from the Minkowski space
metric by means of Kinnersley-Chitre transformations. In the subsequent
paper [13], they extended this result to the case of N Abelian gauge fields inter-
acting with gravitation which contains as special cases the Einstein field equations
(N =0) and the Einstein-Maxwell field equations (N =1). We call their equations
the Hauser-Ernst equations.

The purpose of this paper is to give a slightly different formulation of the
Hauser-Ernst equations in such a way that the theory of real semisimple Lie
groups can be easily applied to it; replacing the real simple group SUN+1, 1)
in their formulation by more general real simple Lie groups, we shall prove our
version of the “generalized Geroch conjecture’’. Our formulation is based on
the framework of the theory of homogeneous spaces of Lie groups. The most
striking is the analogy with concepts of finite (or infinite) dimensional generalized
flag manifolds, parabolic subgroups, the Bruhat (or rather the Birkhoff) decom-
position and so on (cf. [14]). In particular we give a new proof, using the
Birkhoff decomposition in place of the homogeneous Hilbert problem.

The paper is organized as follows.

In Section 1 we introduce a certain topology into a group of analytic loops
on a Lie group; provided with this topology the analytic loop group becomes a
topological group. Theorem 1.6 implies that for an arbitrary linear algebraic
group any loop sufficiently near the unit loop has a Birkhoff decomposition.

In Section 2 we follow the idea of Hauser-Ernst to define the action of the
analytic loop group.

In Section 3, with the aid of a certain involutive real automorphism of GL(N,
C), we put the Hauser-Ernst equations into simple formulas, from which we can
easily deduce various group theoretical properties of solutions. Theorem 3.2
describes the dependency of solutions on their axial values.

Finally, in Section 4 we start with constructing a ‘‘seed solution’ which
plays the same role as the Minkowski space metric in the theory of Hauser-Ernst.
Theorem 4.6 assures that our loop group generates solutions. The results of



536 Hideo Doi

this section show that any solution can be obtained by applying a certain element
of our loop group to the seed solution.

The author heartily thanks Prof. K. Okamoto for' his helpful advice and
encouragement.

1. Analytic loop groups

We start with some definitions. Fix a positive real number R and the circle
Sg={se C;|s|=R}. For a complex manifold M, we denote by &/} or ™ the
set of all mappings from S to M such that they extend to holomorphic mappings
from neighborhoods of Sy to M. Let L be a finite dimensional vector space over
C. Naturally oL becomes a vector space over C. We introduce a topology on
L. Take a norm | || on L. For a formal Laurent series f=3,.,f,s" with
f.€ L, we set

”f”s = Znez ”fn“s"~

This is also a formal Laurent series. If we can substitute R into s, we denote its
value by || f|lg. Then &% is made into a normed space by | |z, which is not
complete. We notice that this topology of oL is independent of a norm on L.
For a positive real number b, we set Dy ={XeL; | X| <b} and 2t={few’;
Ifllg<b}. If Fis a holomorphic mapping from D} to C, the composition F(f)=
Fof defines a continuous map from 2% to &€, which we denote by F, too.

Let G be a complex Lie group and g be its Lie algebra. We take a basis
{e;} of g. For xeg, we put ||x||=max; |x;| if x= x,e; with x,e C. We always
use the norm on g of this type. We define a family of subsets of «/%: # = {exp
235, b>0}. ltiseasy to check that # becomes a fundamental system of neighbor-
hoods around the unit of &#¢. Thus we have the following

LEMMA 1.1. 7S is made into a topological group.

It is clear that for a vector group L, the previous topology on L coincides
with the topology defined now. From now on we treat /G as a topological
group given in Lemma 1.1.

PROPOSITION 1.2.  Let H and G be complex Lie groups. (1) Iff: H-G is
a holomorphic homomorphism, then f: o/ — 7% is a continuous homomorphism.
(2) IfH isa closed complex Lie subgroup of G, then o«/¥ is a closed subgroup of
EAR

Proof. (1) follows from the definition of the topology. We show (2).
If g e 279~ H, there exists s, € Sk such that g(sy) € G~~H. Then for any g’ € &€
sufficiently near g, we have g'(sq) € G~H. This means that o is a closed
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subset of &7¢. Let b be the Lie algebra of H. Make a basis of g by extending
a basis of . For a sufficiently small b>0, we know that exp 2} =(exp 2}) n /1.
So 7" is a closed subgroup. [

We try to describe the topology of ¢ for a linear algebraic group G in a
simple way. For an integer N >0, let M(N, C) denote the space of all square
matrices of size N whose entries are complex numbers.  We use the norm ]|'x|| =
max; 3 ; |x;;| for x=(x;;)e M(N, C). Let M(N, &¢) denote &#M®¥.€) and let
GL(N, o€)={g € M(N, «7€); det g is an invertible element of &#¢}. Employ the
topology of M(N, 7€) defined by || ||[g. Then GL(N, 2/€) is open in M(N, 7€)
and becomes a topological group in a natural way.

LEMMA 1.3, &ZGLWN.O)=GL(N, «7€) as topological groups.

Proor. Of course &/¢LN.O)=GL(N, «/€) as abstract groups. For Xe
M(N, 7€), |exp X —1llg<exp [ X|[g—1. We put log¥Y=-3,.,(1-Y)"/n
for Ye M(N, «7€)so that |1 — Y| g<1. Then Y=exp(log Y). Hence the identity
map: Z6LWN.© 5 GL(N, «€) is a homeomorphism. []

COROLLARY 1.4. Let G be a linear algebraic group. Then /6 is a closed
subgroup of GL(N, «€) for a certain integer N >0.

Next we refer to the Birkhoff decomposition. We begin with some notations.
Let G be a linear algebraic group and be embedded in GL(N, C). The complex
projective line P! is CU {oo}, the one-point compactification of C. Let Df=
{se C; |s|<R} and Dg=the closure of P'~~D{. For an open subset U of P!,
we set O(U, G)=the space of all holomorphic mappings from U to G. {0(U, G);
U =D} makes a direct system in a natural way. We denote its direct limit by
P¢=2%. For an open subset U which contains Dy, we set 4 (U, G)={ge
o(U, G); g(co)=1}. Similarly we define the direct limit 4°¢=.4"§. We consider
2¢ and A4°C as abstract subgroups of «7¢ through the inclusion maps Sg— Dg.

LEMMA 1.5. % and 29 are closed in /€.

PrROOF. Let G be a Zariski closed subgroup of GL(N, C). For a formal
Laurent series g=,.z 9,5" With g,e M(N, C), weset g* =3 ,.09d,s" and g~ =
2n<odns". If fe 2 and ge 9, then ||f—gllg=1f—g"lr+19 Iz Soif g
lies in the closure of 29, then we have g~ =0. That is to say, g is a holomorphic
mapping from a neighborhood of D} to M(N, C). Also we know that there
exists fe 2% such that |detf(s)—det g(s)|<|detg(s)] for all seSgz. By the
argument principle,

the number of zero points of det g in D} =

the number of zero points of detf in Df = 0.
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Hence g(D}) = GL(N, C). This implies that g belongs to #6. For 4°¢, the same
argument is valid. [

The following theorem plays an important role in our proof of the main
result.

THEOREM 1.6. The product map: 46 x P6—£C is an open embedding as
topological spaces.

Proor. Step 1. The product map is injective.

For n, me #°6 and p, g € #¢, we assume that np=mgq. Then n"'m=pq=!
on Sg. So we can extend n~'m to a holomorphic mapping from P! to G.
Therefore n~!m is a constant mapping. Notice that n~'m takes the value 1 at
s=o00. Hence n=m and p=g.

Step 2. The theorem holds for G=GL(N, C).

Let f=3 f,s" (resp. F=3 F,s") be a formal Laurent series whose coefficients
are N-square complex matrices (resp. real numbers). If || f,|<F, for all ne Z,
then we write f«F. Take ge ¢ such that |[l—g|g<1/2. We put a=1—g
and A=A,=al, and note that ||g~||,«<A. Set h-a=(ha)~ for he M(N, «€).
We consider this as a right action of a.

(1.1) We set f=—3 509 (-a)". Then f«A/(1—A) and f=f_.

Since Y ,=r g (-a)y"<AA*, we obtain (fg)"=f—f-a=—g~. We set c=1+f.
Then cg=g*+(fg)*. Hence cg is a holomorphic function on a neighborhood
of Dt.

(1.2) cg—1=g—1+fg <A+ A+ A)(1—A) = 24/(1— A).

By (1.1) and (1.2) we can find a neighborhood # of 1 in &% with the property:
For any g € %, we can define ce M(N, 7€) by the above process and then |1—
det ¢(s)| <1 and |1 —det c(s) det g(s)| <1 for all se Sg.

For ge#, we set g,=c™! and g,=cg. Then (1.1) and (1.2) imply the
following estimate.

(1.3) llgp—1llr < 2A/(1-Ag) and [g,—1]g < Ag/(1—-2Ag).

Clearly g,e #%, g,€ 2% and g=g,g,. This shows that % is contained in
NCPG, So N YPC= 4 CPG and #CPC is open in 6.

We prove that the inverse of the product map is continuous. By Step 1,
for g e /6 2C, we set

g = 9gu9p with gne-MG and gpeﬂG.

Fix h=hh,e #°2¢. For any ge #"°2¢ sufficiently near h, we can assume
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that hi'ghy! is in %. Since (h;'ghy'),=h;'g, and (h;'gh;'),=g,h;!, we
have h,—g,=h,(1—(h;'gh;"),) and h,—g,=(1—(h;'gh;"),)h,. Thus (1.3)
completes Step 2.

Let G be a Zariski closed subgroup of GL=GL(N, C). Then the following
diagram is commutative.

NG PG the inclusion NGLPGL

l lthe inverse map

NCEx PG 5 NGLx pPGL

So the product map A6 x 26— /€ is an into-homeomorphism. The theorem is
proved if we show that 492G is open in .&7C.

Step 3. If G has no nontrivial rational character, the theorem is true.

It is enough to show that"0L2GL n 7€ is contained in A4 626, From the
assumption, it follows that there exist a rational GL-module V" and an element v
of V such that G={keGL; kv=v}. If nes %L, pe 6L and npe %, then
we have p(s)v=n(s)"!v for all se S;. Hence p(s)v extends to a holomorphic map
from P! to V. Since n(o0)=1, we have pp=n—'v=v. Thus n and p belong to
6.

Step4. Let 1-F->G—->H—1 be an exact sequence of linear algebraic
groups. If the theorem is true for F and H, then it is also true for G.

F is a Zariski closed normal subgroup of G and H is the quotient group G/F.
Let k be the canonical surjection G—>G/F. Let {, g and ) denote the Lie algebras
of F, G and H respectively. We understand g={+1 as vector spaces. Fix a
basis of g which is a union of bases of {f and . We define a norm || | on g as
above. A real number ¢>0 is taken so as to satisfy the following conditions:

(i) The exponential maps D!—G, DI—-F and D'—H are into-homeo-
morphisms.

(ii) FnexpDi=exp D].

(ili) exp 2]c A FPF and exp Q) c N HPH,

For (iii), we use the assumption of Step 4. Next we take b>0 such that b<c¢
and the followings hold:

(iv) We set j(k(exp X))=exp X for X e D). Then j is a local cross section
from the subset x(exp D}) of H to the subset exp D} of G.

(v) (exp 2))exp 28)exp 2) n «F is contained in o7 F2F,
In addition, we choose 0 <a <b such that (exp 2)), and (exp 2}), are contained
in exp 2). For geexp 28, we set h=k(g), w=j(h,) and x=j(h,). If a is
sufficiently small, we can assume that 1 (D%) and h,(Dy) are contained in exp Dj.
Then we 90 exp 2§ and xe 29N exp2). By (v), we write (wx)“!'g=yz
with ye #'F and ze 2f. Note that g=w(xyx~!)xz, xyx~'e/F and xz e £6.
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Then “g—xyx~!"" defines a continuous map from exp 28 to &/, which sends 1
to 1. Therefore if a>0 is sufficiently small, this map sends exp 28 into 4F2F,
Thus exp 29 is contained in 4" P2C,

Step 5. We recall basic exact sequences for linear algebraic groups.

1 — [alg. torus] — [reductive gr.] — [semisimple gr.] — 1.

1 — [unipotent gr.] —- [linear alg. gr.] — [reductive gr.] —— 1.
We can apply Steps 3 and 4 to these sequences. [

CoROLLARY 1.7 (cf. Shubin [16]). Let U be a neighborhood of Sg, M be
an analytic manifold and Y be an analytic map Ux M—G. If Y(-, m) belongs
to #°62C for any me M, then Y(-,-), and Y(-,-), are analytic on Ux M.

COROLLARY 1.8. Let x be a rational character of G and g be an element of
&9 so that x(g)=1. For he /G and Y, Ze 4, if ghY equals hZ in «7G|P6,
then we have y(Y)=x(Z).

Proor. Take an element p of 2¢ such that ghY=hZp in &/¢. Then
x(ghY)=xy(Wx(Y)=x(h)y(Z)x(p). Hence x(Z)"'x(Y) defines a holomorphic
function on P!. Clearly this function equals 1. [

In the remainder of this section we treat «¢ in a geometric method. First
we explain a basic device. We take affine open subsets of P! = C U {o0} as follows:
Uyo=P'~{o0} and U,;=P'~{0}. The unit circle S, is contained in Uon U, =
C~~{0}. «%isto be defined for S,. For an element g of &#¢, we assign a holo-
morphic principal G-boundle over P! in the following way: Choose open subsets
Woc U, and Wy c U, such that P!=W, U W, and g is defined on W, n W,. The
assigned bundle is to be P,=(W;x G U W, x G)/~, where “~ "’ is the glueing so
that for (wg, ag)e Wy x G and (w,, a,)e W; x G, (wo, ap)~(w,, a,) means that
wo=w, in Wy n W, < W, and a, =g(wy)a,.

For example, “G=C%*, g=g(s)=s"" is assigned to the associated principal
bundle of the tautological line bundle. Here “s”’ denotes the standard coordinate
of C*.

We notice that for g, he 2% P, and P, are isomorphic as holomorphic
G-bundles iff g lies in GA#"¢h?S. The set of all isomorphic classes of holomorphic
principal G-bundles over P! is denoted by H!(P', G). Let G be a connected
reductive linear algebraic group over C and T be a maximal torusof G. W(T)
denotes the Weyl group of G associated with T. An element of H!(P!, T) is
represented by a 1-parameter subgroup of T through the above assignment &/T—
H'(P', T). In fact, the abelian group Hom (C*, T) is isomorphic to H!(P!, T).
So the Weyl group W(T) acts on H!(P', T) naturally. Grothendieck’s classi-
fication theorem shows that the canonical map HY(P', T)/W(T)—H!'(P!, G)
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is bijective [5, Théoréme 1.1, Corollaire 1]. Therefore, any g e€.«/G is written
in the form g=qhp with e G#"°¢, he Hom (C*, T) and pe £9. We call g=
ghp a Birkhoff decomposition of g. Here we apply Grothendieck’s theorem to a
connected complex semisimple Lie group G of adjoint type, i.e. G with a trivial
center. We denote the root system of the pair (G, T) by R=R(G, T). 1t is
well known that Hom (T, C*) is a free abelian group with a basis which consists
of simple roots. All coroots of R make a root system RY. Through the natural
dual pairing Hom (7, C*) x Hom (C*, T)— Z, we identify Hom (C*, T) with the
weight lattice of RY, which is performed in the abstract root theory. We call
elements of this lattice “coweights’’. Using these terminologies, we have for a
connected complex semisimple Lie group G of adjoint type,

H'(P!', G) = {the dominant coweights of R(G, T)} as sets.
Next we give another specialization of Grothendieck’s theorem (cf. Birkhoff [1]).
HY(P', GL(N, €)) = Z™ = {(my,...,my)€ ZN; m; > --- > my}

as sets. Note that an N-tuple (mq,..., my) represents a l-parameter subgroup
diag (s™,..., sm~) for se C*.

DEFINITION 1.9. Let P and Q be holomorphic principal bundles over a
complex manifold. If there exists a holomorphic 1-parameter family of principal
bundles {P,; t in a nonempty open subset of C} such that P,=P except for a
finite number of t and P,,=Q for some t,, then we call Q an elementary deformation
of P. If there exists a chain of elementary deformations from P to Q, we say that
Q is a deformation of P and write P> Q.

In H'(P', GL(N, C)), the partial ordering ‘>’ is described as combinatorics.
Gohberg and Krein introduced an ordering on ZM™: For m=(m;) and k=(k;)e
zm,

m<k iff X,m;=>;k; and
Zm;Zp(mi_p)SZk.-Zp(ki—p) forany peZ.

LeMMA 1.10. For any me Z™™), Let P,, denote the assigned principal
GL(N, C)-bundle. Then for m and ke ZM), P, > P, iff m<k.

Proor. The “only if”” part is an immediate consequence of Gohberg and
Krein [4]. But there is a simple explanation in our situation. Let E_ be the
associated CM-bundle to P,, and E* be its dual bundle. Let H be the hyperplane
bundle over P!. The tautological line bundle L is the dual bundle of H. For
any pe Z, put EX(—p)=EX®I?=3; H™ P (a direct sum). Then the dimension
of the 0-th cohomology group HY(P', EX(—p)) is X ,.>,(m;—p+1).  Hence
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if P, is a deformation of P,, then by the semicontinuity of the cohomology,
we know that 3 ,.-,(m;—p+1)< >, ,(k,—p+1) for any pe Z. This implies
that 3, ., (m;—q) <3 ;.. ,(k;—q) for any ge Z. Also we notice that the
Chern number ¢,(EX)=3,m,; is a topological invariant.

Next we prove the “if”” part. Suppose that m# k. Tensoring L7 for some
large interger p, we can assume that all m; and k; are strictly positive. An ele-
mentary argument of combinatorics shows that there exist n=(n)e Z™ and
integers 1<a<b<N such that n;=k; for i#a, b, n,=k,—1, n,=k,+1 and
m<n<k. So it is enough to give a proof for N=2. For t#+1e C and an
integer r>1, we set

sTotstt
g, = and
ts 1

N [ 1 0 ‘I [ s tst!
= g: = .
' L—t“s“'*‘ 1| (t=t"1s 0

Let E, be the C?-bundle defined by g,. We remark that h, defines the same
bundle as E, for t#0.

I

0 t
Forfo=[ll and f‘=LOJ’ b fo=s"11, .

1 ] I 0
and f;=[t_t_l . hf=sf1.

—t7ls |

For f; =[

Therefore E,=L"'+L for t#0, +1. Clearly Eo=L"+ L% and (r—1, 1)<(r, 0)
in Z2), Asseen above, L+ L° is an elementary deformation of L=+ L. []

Let {g,} be a holomorphic family of elements of /¢ and g,=gq,h,p, be a
Birkhoff decomposition. If g, and p, are holomorphic in ¢, then h, is constant in
t, as h, lies in a discrete space Hom (C*, T). Hence g,’s are assigned to the
same principal bundle. The converse of this observation is also true for local
parameters, cf. Réhrl [15, Lemma 4.1, Corollary 2]. From this point of view,
it is an interesting problem to ask whether a holomorphic family of elements of
/6 defines isomorphic bundles.

DerINITION 1.11.  An element g of /¢ is said to be rigid if there exists a
real number >0 such that any element of {he.«/G; |g(s)—h(s)|<¢ for all se€ S,}
defines the same holomorphic principal bundle as g does. The bundle defined
by such g is called rigid. We denote the set of all isomorphic classes of rigid
principal G-bundles by 2(G).
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We will list up all rigid bundles for connected simple linear algebraic groups
over C. For that purpose the next lemma is useful.

LEMMA 1.12. Let G—G' he a covering homomorphism of complex Lie
groups. For an element g, of /¢, we denote its projection to /S by g;. Then
go is rigid iff gy is rigid.

ProoOF. In the category of topoloical spaces, the natural map Map (S;, G)—
Map (S,, G') is a local homeomorphism. Let g, € .27 be rigid and h' e &% be
sufficiently near g;. Here we use “near’’ with respect to the compact open topo-
logy. Let heMap(S,, G) be a lift of h’ sufficiently near g,. Then he €.
Hence there exist ne G#°¢ and pe 29 such that ngop=~h. Clearly n'gip’=h'.
So gy is rigid.

Conversely we assume that gg is rigid. Let he o/ be sufficiently near g,.
Then the projection h' of h is sufficiently near gj. By the assumption, we can
write h'=n'g;p’ for some n'€e G'4°% and p’e€ 22¢°. Since n’' is a map from a
disk to G’, n’ has a lift ne G479, Similarly p’ has a lift pe 2¢. Then (ng,p)' =h'.
So there exists ny € G such that nongop=h. Thus g, is rigid. [J

PROPOSITION 1.13. (i) An element m of Z'™ defines a rigid principal
GL(N, C)-bundle iff m is of the form (m,..., m,, m —1,..., m;—1).

(ii) Let G=PGL(N, C)=GL(N, C)/C*. Fix a maximal torus Ty of
GL(N, C) consisting of diagonal matrices. Then {diag(s,..., s, 1,..., 1) Hom
(C*, Ty/C*); 0< the number of s< N} is exactly assigned to 2(G).

PrROOF. (i) is an immediate consequence fo Lemma 1.10 and Gohberg
and Krein [4].

(i) We set Y= {(‘Cl ﬂe GL(2, C)}. Then the canonical projection
Y->PGL(2, C) is an opeﬁ immersion. Hence for an integer r>0, a |-parameter
subgroup diag (s, 1) is assigned to a rigid principal GL(2, C)-bundle iff r=0 or 1.

Let g=diag(s™,...,s™¥ -1, 1)e Hom (C*, T/C*) be assigned to a rigid
principal G-bundle. Then x=diag(s™, s™2)e Hom (C*, GL(2, C)) corresponds
to a rigid principal GL(2, C)-bundle. Otherwise, we have an element h of
&/ GL(2.©) which is sufficiently near x and assigned to a different bundle from
P,. Let h=ndiag(s*,, s¥2)p be a Birkhoff decomposition. Then {k,, k,}#
{m,, m,} and hxdiag(s™,..., s"~-t, 1)e Hom (C*, Ty/C*) is sufficiently near
g. Clearly this leads to a contradiction. Similarly we see that diag(s™i, s™/)
is rigid for all 1<i<j<N. Here we understand my=0. Thus |m;—m;|=0
or 1. If we assume that m,;>--->my_, >0, then g gets the form stated in the
proposition.

Let g=diag(s,.... s, 1,...,1). Since g(s) lies in an affine open subset of
PGL(N, C), we can treat g as an element of &/GL(V.€) Evidently g is rigid in
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L GLN-©) and so in & PELN.C) ]

COROLLARY 1.14. Let G be the c-fold covering of PGL(N, C). Then
{diag (s,..., s, 1,..., )e Hom (C*, Ty/C*); the number of s is smaller than N
and devided by c} naturally represents #(G).

Proor. Using Lemma 1.12, we shall find rigid 1-parameter subgroups of
PGL(N, C) such that they have lifts in Hom(C*, G). Let g=diag(s,..., s,
1,..., 1) be a l-parameter subgroup of GL(N, C). We assume that detg=s°
for some 0<a<N. Let y=y(s) be a branch of s¢/N such that y(1)=1. Then
gy~ defines a 1-parameter subgroup of G iff y(e?"i)=e?7ia/N equals (e2mic/N)k
for some integer 0<k < N/c. This condition implies that a=ck. [

LEMMA 1.15. For SO(4, C), there exists only one isomorphic class of
nontrivial rigid principal bundles. Let T=S0(2, C)x SO(2, C) be a maximal
torus of SO(4, C) and f be the standard generator

[ (s+s7/2  —(s—s7Y)2i

) , of Hom (C*, SO(Q2, C)).
(s—s™1/2i (s+s71))2

Then the element 1,xf of Hom(C*, T) corresponds to the nontrivial rigid
bundle.

Proor. We have a 2-fold covering SO(4, C)—SO(3, C)x SO(3, C). Hence
we pick up rigid SO(3, C)x SO(3, C)-bundles which lift to SO(4, C)-bundles.
The possibility of lifting of loops can be judged by their restrictions on compact
real forms. So we work on two coverings of compact Lie groups

Spin(4) = Sp(1) x Sp(1) > SO(4) — SO(3) x SO(3).

Here sp denotes the spin representation. Let H be the field of quaternion
numbers and Sp(1)={a e H; the norm of a is 1}. For xe R*=H and a, be
Sp(1), we set sp(axb)x=axb!. Considering SO(3)=Sp(1)/{£1}, we have
naturally the second covering. Take the standard basis {1, i, j, k} of H. Using
this, we get a representation of sp(a x b) by a matrix.
We notice that a 1-parameter subgroup of SO(3)x SO(3) is described with
a branched lift to Sp(1) x Sp(1). For s=e'9, the restrictions of rigid 1-parameter
subgroups of SO(3, C)xSO(3, C) are 1x1, 1xs'/2, s'/2x1 and s'/2xs!/2
Also
“cosfl —sind
f=f(e% = [ }

sin 0 cos 0

Their images by sp are 1, x 1,,f~1/2x f1/2 flizx f-1/2and 1, xf. Clearly1,x1,
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and 1, x f are loops in SO(4) and the others are not. []

ProrosITION 1.16. For SO(N, C), N>3, we have a unique isomorphic
class of nontrivial rigid principal bundles, which is defined by the 1-parameter
subgroup fx 1y_,. Here f is the standard generator of Hom (C*, SO(2, C)).

PrROOF. For N =3 and 4, the proposition has been shown, and hence we
assume N >5. Let k be the integral part of N/2 and T=S0(2, C)x --- x SO(2, C)
(k pieces) be a maximal torus of SO(N, C). Suppose that a 1-parémeter subgroup
g=fmx---xfm of T defines a nontrivial rigid SO(N, C)-bundle. SO(4, C)x
SO(N —4, C) is a subgroup of SO(N, C), which has the maximal torus T in
common. Hence f™ xfm is a rigid 1-parameter subgroup of SO(4, C). So
{m;, my}={0, 0}, {1,0} or {0, —1}. The others {m;, m;} are similar. With
the action of the Weyl group, we can assume that m;>--->m,. Then g equals
fx1y_, or 1y_,xf~!, each of which defines the same bundle.

Next we prove that g=fx 1y_, defines a rigid bundle. Let {g,} be a holo-
morphic family of elements in &/S9W.€) such that go=g. As g, is an element
of wZGLW.€) it defines a CV-bundle E,, We notice that E,=L+ L'+ CN~2
(a direct sum). Let ¢ be sufficiently near 0. By Lemma 1.10, we known that E,
equals E, or the trivial bundle. Evidently g, is nontrivial in 7;SO(N, C). So
E,=E,. That is to say, g,’s define the same GL(N, C)-bundle. Therefore, from
Grothendieck [5, Proposition 3.1], it follows that g,’s define the same O(N, C)-
bundle. Let g,=n,gp, be a Birkhoff decomposition in «?®%-©, Note that
(Iy_y x(=1D)g(1y_; x(—1))=g. Hence we can take n, and p, in &S°N.©), ]

PROPOSITION 1.17. Let G be a connected complex simple Lie group of
adjoint type. Then Z(G) consists of the trivial bundle and the bundles defined
by the coweights corresponding to the roots ® in the Dynkin diagram. Here
the word ‘“‘bundle’” means a holomorphic principal bundle over a complex
projective line. There exists no root @ in Eg, F, and G,. The Dynkin diagrams
of A,, B,, C,, E¢ and E, are as follows.

A, @ —— @i —o— @
B, @ ——— O—cererireiiii — 0 =20
C" (O T B — O &—e@
—c<:
EE e—o—o0——o0o——e0

o
E, o—O0—O0—o0o0—0o0—e

|
(@}
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ProOF. G=A,=PGL(n+1, C): We can choose simple roots such that
diag(s,..., s, 1,..., 1)’s in Proposition 1.13 are made into fundamental coweights.

G=B,=S0(2n+1, C): Let h be the nontrivial rigid 1-parameter subgroup
given in Proposition 1.16. If we take a suitable simple system of roots {a,,..., a,},
then its Dynkin diagram is é), —— e ,{a,, h)=1and <a;, h)=0fori>2.

G=C,=Sp(n, C)/{£1}: Let T’ be a maximal torus of Sp(n, C) consisting
of diagonal matriccs. Naturally Sp(l, C)x Sp(n—1, C) is considered as a sub-
group of Sp(n, C), which contains T’. An element of Hom (C*, T’) is factorized
into a 1-parameter subgroup of Sp(1, C) and that of Sp(n—1, C). Hence an
inductive argument shows that a rigid Sp(n, C)-bundle is trivial. Note that
Sp(n—1, C)=(1,xSp(n—1, C))/{+1}. We now get an exact sequence:

1— Sp(n—1, C) — (Sp(1, C)x Spn—1, C))/{+1} — PSp(1, C) — 1.

Let T=T'/{+1}. Elements of Hom (C*, T) are represented by their branched
lifts to Sp(n, C). Let ge Hom(C*, T) be rigid and x be the projection of g
to PSp(1, C). If x has a lift x'eHom (C*, Sp(1, C)), then we have
(x'x1,,_,) 'g=1, x y, where y is an element of Hom (C*, Sp(n—1, C)). Since
g has a lift in Hom (C*, Sp(n, C)), g defines the trivial bundle by Lemma 1.12.
We now assume that x has no lift in Hom (C*, Sp(1, C)). Treat g as a branched
lift to Sp(n, C) and factorize g into x X y, where y is a branched lift of an element
of Hom (C*, PSp(n—1, C)). Then g(e?")= —1 since g is nontrivial. We put
h=diag (s, s~')e Hom (C*, SL(2, C)) and understand Sp(1, C)=SL(2, C). Let
x=n"1hm2p~1 be a Birkhoff decomposition in oZPSr(1.€), We notice that n
and b are lifted to Sp(1, C). If n and b also denote their lifts, then the following
is well defined: nxb=h™2in Sp(1, C). Hence (nx 1,,_,)g(bx1,,_,)=h"2xy.
This implies that x is a nontrivial rigid 1-parameter subgroup of PSp(1, C). So
we can assume that g=h'2x...x h!'/2 (n pieces). Clearly h'/2=diag(s, 1)
in PGL(2, C). Hence h'/2x ---x h'/2 is rigid in &/ PGL2".©C) and so in PSP C),
It is easy to find a simple system {a,,..., a,} for R(PSp(n, C), T) such that its
Dynkin diagram is --- O <:c(i)’ {a,, g>=1and <a;, g>=0 for i<n.

G=D,=PS0(2n, C)/{+1}: Let T'=S0(2, C)x --- x SO(2, C)be a maximal
torus of SO(2n, C) and T=T'/{+1}. An element of Hom (C*, T) is written
with its branched lift to SO(2n, C). Let f be the standard generator of Hom (C*,
SO(2, C)). Then geHom(C*, T) has the form fm/2x...xfmn/2_ Taking
the action of the Weyl group into account, we may assume that m,>--->m,_, >
Im,|. Note that SO(2n—4, C)=(1,xS0(2n—4, C))/{+1} and observe the
next exact sequence:

| — S0(2n—4, C) — (SO(4, C)x SO2n—4, C))/{+1}
— PSO(4, C) — 1.
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Let g be a nontrivial rigid element of Hom (C*, T) and x x y be a branched lift
of g to SO(4, C)xSO0(2n—4, C). If x lies in Hom (C*, SO(4, C)), then g=
(xx1,,_4)(1,x y) belongs to Hom (C*, SO(2n, C)). Therefore g=fx1,x--- %
1,. Moreover, for a simple system {a,,..., a,} of R(PSO(2n, C), T), its Dynkin

diagram is T e {ay, g>=1 and <a;, g>=0 for i>1. If x does not
1

lie in Hom (C*, SO(4, C)), then x is a nontrivial rigid 1-parameter subgroup of
PSO(4, C). Therefore x is f1/2xf1/2 or f!/2xf~1/2, Hence g equals g,=
fU2x.xfl2 or g, =fYix.-xfU2xf~Y2. We notice that f~diag(s,
s7h) in SL(2, C) and f'/?2~diag(s, 1) in PGL(2, C), where “~'" means “is
conjugate to’’. Therefore g, ~diag (s,..., s, 1,..., 1)~g,_, in PGL(2n, C). Thus
g, and g,_, are rigid in o/ PGL2m.C) and so in o PS0C2".C) We can easily choose
a simple system {a,,..., a,} such that its Dynkin diagram is

S
S an—l’

{ap, guy=1,<a;, g,»=0fori#n,{a,_, g,—1y=1and <a;, g,_,>=0for i#n—1.
G=E: Fix a maximal torus T and a system of simple roots such that its
Dynkin diagram is as below, where an integer ““i>’ indicates a simple root a;.
1 3 4 5 6
O 00— 0 —0 (@)
o2
|

[}

Let a; be the negative maximal root , —(a,+2a,+2a;+3a,+2as+a,). Let
{g;e Hom (C*, T); i=1,..., 6} be the dual basis of {a;; i=1,...,6}. Let H be a
connected semisimple subgroup of E, such that H contains T and {a,, as, a,, ds,
ag¢} U {a,} becomes a system of simple roots. Put T'=T/(the center of H).
Let {he Hom(C*, T); i=1, 3,...,7} be the dual basis of {a;;i=1, 3,...,7}.
Naturally Hom (C*, T)cHom(C*, T"YcHom(C*, T)® Q. Then h,=g,—
9212, hy=g3—g2, hs=94—392/2, hs=gs—g,, he=ge—9,/2 and h,=—g,/2.
We note that H/(the center of H)=Asx A, and 2(H)={0, h,—h,, h;, hy—h-,
hs, he—h,}. W=W(T) denotes the Weyl group of E,. Then h,—h,=g,,
Why=Wge, W(hy—h;)=Wg,, Whs=Wg, and hy—h,;=g,. Hence 2(H)c
{0, g4, g2, 9o} Let K be a connected semisimple subgroup of E, such that T
is a maximal torus of K and {a,, a,, as, a,. a;} U {ae} is a system of simple
roots. Put T~=T/(the center of K). Then {k,=g,—9s/2, k,=¢g,—9s, k3=9;
—gs, ka=9gs—395/2, ko= —9g5/2} U {ke=9g¢—95s/2} is a basis of Hom (C*, T~).
Note that K/(the center of K)equals Asx A4,. Thus2(K)={0, k,—ke, kj, ki,
kia—ke ki—ke}. Also W(k,—k¢)=Wge, Wk,=Wg,, Wky=Wg,, W(k,—ke)
=W(gs+ges) and W(k,—ko)=Wg,. Therefore #(E¢)={0,g;, e, 95+9e}
From the form of the maximal root, it follows that Ad(g,) and Ad(ge) are
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represented by diagonal matrices, whose entries are s, s~! or 1.  We notice that g,
and g, are different in 1, E;. Hence Lemma 1.10 implies that #2(E¢)={0, ¢, g¢}-
G=E,: Let T be a maximal torus and a simple system of roots be as follows:

1 3 4 5 6 7
@] O ) — O (@] O
|

o2

Let a; be the simple root indicated by “i’’ for i=1,..., 7 and ag be the negative
maximal root, —(2a,+2a,+3a;+4a,+3a5+2a,+a,). Let {g;e Hom (C*, T);
i=1,..., 7} be the dual basis of {a;; i=1,..., 7}. Let H be a connected semisimple
subgroup of E, such that H contains T and a system of simple roots is {a;; i=8,
1, 3,...,7}. Let {heHom(C*, T'); i=8,1,3,...,7} be the dual basis of
{a;; =8, 1, 3,..., 7}, where T’ denotes T/(the center of H). Then #(H)={0, h, =
gi—9ga2 ha=9gs—29,, he=9ge—9g,}. Let W=W(T) denote the Weyl group of
E,. It is easy to see that Wh,=Wg,, Wh,=Wg, and Wh,=Wg,. For {ag} U
{a;; i=2,..., 7}, we take the subgroup K as above and put T~ =T/(the center
of K). Let {k;e Hom(C*, T~);i=8,2,...,7} be the dual basis of {a;;i=8,
2,...,7}. Then kg=—g,/2. So g, is not rigid in ozX since K/(the center of K)=
A, xDg. We know that g, is rigid by the form of Ad g,. Thus #2(E,)={0, g,}.

G=Ejg: Let Tbe a maximal torus and a simple system of roots {a;; i=1,..., 8}
be as follows:

1 3 4 5 6 7 8

O O O O — O —0

|
o2

O

O

Let a4 be the negative maximal root, —(2a, +3a,+4a3+6a,+5a5+4a¢+3a,+
2ag). Let {g;e Hom(C*, T); i=1,..., 8} be the dual basis of {a;; i=1,..., 8}.
Let H denote the connected semisimple subgroup corresponding to {a;; i=2,..., 9}.
We notice that H/(the center of H) equals Dg. Let {h;e Hom (C*, T/(the center
of H)); i=2,...,9} be the dual basis of {a;; i=2,...,9}. Then Z(H)={0, h;=
gs—24g,}. For W=W(T), the Weyl group of Eg, we know that Wh;= Wy,.
Similarly, for {a;; i=1,..., 7} U {ay}, we get the subgroup K and the dual basis
{k;e Hom (C*, T/(the center of K)); i=1,...,7,9}. Since ko= —gg/2, gg is
not rigid in oK. Hence #(Eg)={0}. '

1 2 3 4
G=F,: 0 ——0O—0—=—>0~——0. LetH be the connected semisimple

subgroup corresponding to {the negative maximal root, a,, a,, as}. Then H
is equal to Spin(9, C), so #(F,)={0}.
1 2

G=G,: © O====> 0. Let H be the connected semisimple subgroup
corresponding to {the negative maximal root, a,}. Then H=SL(3, C). Thus
2(Gy)={0}. O
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2. A family of flat connections

Let Y,=Y,;(x, y) be a function in an open subset of R? with values in
M(N, C). We try to rewrite the next equation in some geometric form.

(2.1) y(02+02)Y, — [0,Y,0,Y,]=0.

Let * be the standard Hodge operator on R2. That is to say, xdx=dy, *dy=
—dx, xl=dxndy and *(dx Ady)=1. Let s denote a complex parameter. We
put z=x+iy and Z=x—iy. For a smooth function Y;, we set

(2.2) QYY) =2"YH(s—2) "M +ix)dY; +(s—2) /(1 —ix)dY,}.
Note that (s —z)(1 4 i*)+(s—Z)(1 — ix)=2(s—x — y*) and
(2.3) QYY) =(—2)"(s=2) W (s—x—y*)dY;.

LEMMA 2.1. Let d be the exterior derivative on R?>. Then (2.1) is equivalent
to the following equation for Q=Q(Y,):

2.4 dQ+ QA Q=0.

Proor. For 1-forms a and b on R? with complex matrix coefficients, xa A b
= —aAxb. Note that (1 —ix)dz=0, (1+i*x)dz=0. So dzA(l1+ix)dY;=0 and
dZA(1—ix)dY,=0. Then we have

dQ =2"Y(s—z) lidxdY, — (s —2) tid*dY,} = — (s—z) ! (s—Z) 'yd*dY;.
For 1-forms, (1+i*)(1—i*)=0, (1+ix)(1+4ix)=2(1+ix) and (1 —ix)(1—ix)=
2(1—ix), since *x=—1. So we have

(1+ix)dY, A (14+ix)dY, = (1—ix)dY; A (1—ix)dY, = 0.
(2.5) (1+ix)dY, A (1—i*)dY; = 2dY, A (1—ix)dY,,
(2.6) (1—ix)dY; A (1+ix)dY, =2dY; A (14+ix)dY,.

QAQ=4Y(s—2)"(s—2)"H{(2.5)+(2.6)} = (s—z)"(s—2Z)"'dY; A dY;.

Therefore,
dQ + Q A Q= (s—2) ' (s—2)" {—y(02+02)Y,+[0,Y, 0,Y,1}dx A dy. O

A 1-form Q on R? with coefficients in M(N, C) defines a connection D=d + Q.
Then the curvature of D equals DD=dQ+Q A Q, and hence (2.4) means that the
connection is flat. Let U be a nonempty open subset of P! x R2. For a fixed

real number §>0, we set L={se P!'=CU {w0}; [s|>5}. Let p denote the
natural projection from P!x R? to P!. We assume that U contains L x (0, 0)
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and that pU=L. Let Q=€(s, x, y) be a smooth 1-form on U which does not
have terms ds and d§. Also we assume that Q; is holomorphic in s. In a word,
Q, is a holomorphic family of 1-forms.

LEMMA 2.2. Suppose that Dy=d+Q; is a flat connection and p~'snU is
1-connected for all se L. Then there exists a smooth mapping Y,=Y(s, x, y)
from U to GI(N, C) such that Y, is holomorphic in s and Y;1dY,=Q,.

Moreover, if Q(o0,-,-)=0, then we can take Y(c0,-,-)=1.

Proor. For a fixed se L, we have a smooth mapping Y,= Y (x, y)such that
Y;'dY,=Q, since p~'sn U is 1-connected. Since we have assumed that L x (0, 0)
is contained in U, we can take Y0, 0)=1. For any (s, x,, y;)€ U, we take a
smooth curve z,, 0<t<1, in R? such that z,=(0, 0), z, =(x,, y,) and (s, z,)e U
for all t. Then (d/dt)Y(z,)=Y(z,)2,(z,) for any s sufficiently near s,. By the
elementary theory of ordinary differential equations, we see that Y(s, x, y)=
Y(x, y) is holomorphic in s. If Q_ =0, then Y, =a constant. [

DErINITION 2.3. Let R and 6§ be positive real numbers. We define D(d),
A 50 Nr,s and Py 5 as follows.

D(0) = {(x, y) e R?; x>+ y2<6?}.

&/ s denotes the set of all mappings from Sgx D(6) to GL(N, C) such that
they are restrictions of analytic mappings in s, x and y.
N rs={Yey s, Y can be extended to an analytic mapping from Dy x D(J)
to GL(N, C) and Y(oo, x, y)=1}.
Prs={X el 5; X can be extended to an analytic mapping from D} x D(5)
to GL(N, C)}.

For Y, € 4 5 We set Q=Y 'dY and consider the following property.

2.7) Q,+i*Q;and Q,—ixQ_ are extended on P' meromorphically in s. Their
poles are of order at most one. Their locations are just x+iy and x—iy
respectively.

LEMMA 2.4. Let Y,=1+4+3,.0Y,s™" with Y,=Y,(x,y) be the Laurent
expansion of Y,e #r 5. If Y, has the property (2.7), then Y;'dY; equals Q(Y;)
for Q(Y,) given in (2.2).

ProOF. Let z=x+iy and Z=x—iy. Our assumption means that Q.+
i*Q.=(s—z)"'Aand Q,— i*Q ,=(s—Z)"'B, where A and B are 1-forms independent
of s. For ¢ and se C such that |s|>]|c|, we have (s—c¢) '=s"! 3,50 (c/s)".
In the equations (1+i*)dY,=(s—z)"'Y,A and (1—i*)dY,=(s—2Z)"'Y,B, we
compare the coefficients of s™!. Then we see that (1 +i*)dY, =4 and (1 —ix)dY, =
B. Hence Q=2"Y(s—z)"W(1+ix)+(s—2) "Y1l —i*x)}dY,. [
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Next we state some invariance of the property (2.7), which is basic for our
treatment of nonlinear equations.

LEMMA 2.5. For Y% YeAN s X€Pr s and ge A GEN-O ) we assume that
gY°X=Y. If Y° has the property (2.7), then so does Y.

ProoF. We notice that Y 1 dY=X"1dX+X"1(Y%)'dY°X, since dg=0.
So Y~'dYis extended to D} meromorphically. Since X and X! are holomorphic
on D}, the poles of Y~!dY are contained in the set of poles of (Y°)~'dY°. [J

3. The nonlinear equations

Let o be a fixed involutive real automorphism of GL(N, C). We assume
that o is a conjugation of inner type or a holomorphic automorphism of outer
type. Put G={ge GL(N, C); o0g=g}. We extend ¢ to an automorphism of
g 5 as follows: For g e o7y 5, we set (ag)(s, x, y)=0(g(5, x, y)) or a(g(s, x, y)),
respectively.

For Z=Z,=Z(s, x, y) € &g 5, We study the following properties:

3.1 Q = Z~'dZ has the property (2.7).
3.2) (6Z)"'Z and (6Z)~'dZ are polynomials of s.

For any ae Hom (C*, GL(N, C)), we define a parabolic subgroup P,=
{g e GL(N, C); limy_q a(s)ga(s)~! converges in GL(N, C)}.

DEFINITION 3.1.  An element a of Hom (C*, GL(N, C)) is said to be nice
(with respect to o) if @ and oa are commutative and if a and (oa)~'a are poly-
nomials of degree at most 1. Moreover, if G is isomorphic to Sp(N/2, C), then
we require that {ve CV; a(s)v=v for all se C*} has an even dimension.

THEOREM 3.2. Let Y be an element of Az s and a be a nice element of
Hom (C*, GL(N, C)). Let Q, denote the parabolic subgroup opposite to P,.
We assume:

(3.3) a(s)Y(s, x, 0)a(s—x)~! is a function independent of s.
(3.4) the above function takes values in an open orbit of G\GL(N, C)/Q,.

Furthermore let Y;=1+3%,., Y, s™" be the Laurent expansion of Y.

If Z=a(s)Y; has the properties (3.1-2), then Y is determined by Y,(x, 0)
and 0,Y,(x, 0). ‘

Moreover if 0,Y,(x, 0)=0, then Y is an even function with respect to y.

For its proof, we give some preliminaries. The niceness of a implies that



552 Hideo Dor

there exists a basis {e;; i=1,..., N} of CV such that a(s) and (ca)~!(s) are
represented by the following diagonal matrices:

a(s) = diag(sl,, 1,,1,) and (oa)™'(s) = diag(1,, sl,, 1,).

Here p+p+r=N. Fix such a basis. Now we identify Hom.(CV, CV) with
M(N, C) through this basis.

If o is a conjugation of inner type, then there is J in GL(N, C) such that
gg=AdJ '(*g') for ge GL(N, C). Hence * denotes the hermitian conju-
gation on M(N, C). Since g=a(og)=Ad (J™1*J)g, we see *J=cJ for some
ce C. We note that J=*(*J)=ccJ. For b=c'/?2, we have *(bJ)=bJ. Hence
we can assume that og=Ad J~'(*¢~!) and *J=J. We define an hermitian form
as follows: (w, wy)=*w,w, for w,, w, e C¥. Here we understand that elements
of CV are column vectors with respect to the basis ¢, Note that *a(s)J =J(oa)
(5)"" and *(ca)(s)J=Ja(5)"'. Therefore we have (Je;, a(s)e;)=(J(ga)5) e,
e;) and (Je;, (ga)(s)e;)=(Ja(5) e, e;).

If o is a holomorphic automorphism of outer type, then there is J € GL(N, C)
such that ag=Ad J~!('g~!) for ge GL(N, C*). Here ! denotes the transpose on
M(N, C). “0%2=1" implies that ‘J=cJ for some ce C. Since (*J)=J, we
have ¢2=1. We define a symmetric bilinear form as follows: (w;, w,)="'w;w,
for w,, w,eCM Then (Je, a(s)e;)=(Joa(s) ‘e, e;) and (Je, ca(s)e;)=
(Ja(s) te;, e)).

Hereafter, we use the notation ' for * or ! according as ¢ is a conjugation of
inner type or a holomorphic automorphism of outer type. Then we have

0 j O
J=| ¢c'j 0 0 |,
0 0 j,
for a p x p matrix j and an r x r matrix j, such that 'j, =¢j, with ¢2=1. Put
0 j O 0 0O
Jo=| ¢'j 0 0 and J, =, 0 0 O
000 0 0 j,.
Then J=Jy,+J, and 6g=Ad J~1(Tg~") for g e GL(N, C).

LemMMA 3.3. Let a and Y be as in Theorem 3.2. For Z=aY, we set M =
J(6Z)'Z and Q=Z"'dZ. Then
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M=sJo+J,+ JoY, + Y Jo,
MQ = JydY,
= s YsJodY  +(x—yx)Jod Y, +(J +JYi + 1Y, Jo)dY,}.
In particular,
3.5) yedodYy = (xJo+J, +Jo Y+ 1Y Jo)dY, .

ProOF. Since we assume (3.2), M and MQ are polynomials of s. We
notice that a(sa)~'=diag(sl,,, 1,). Hence,

M = 1YJ(ea)'aY =TY(sJo+J,)Y
=(1+1Y;s7)(sJo+J)(1+Ys7Y) + O(s72)
=sJo+J, + Y Jy + JoY,;.

MQ =TY(sJy+J)dY

=(1+1Y;s™ ) (sJo+J)s71dY, + O(s72) = JodY;.
Letz=x+iyand Z=x—iy. Since we assume (3.1), by Lemma 2.4, we obtain
Q =2"H(s—2)" (1+ix)+(s—2)"'(1-ix)}dY,
= 271571 3 o {(@/s)"(1 +ix)+(Z[s)"(1 —ix)}d Y,
= 27157 2+ (z/s)(1 + i%) + (Z/s)(1 — ix)+---}d Y,
Hence
MQ = s W sJo+J,+TY Jo+J Y} {l+5s7 U (x—y*)+---}dY,;
=sYsJo+J + Y Jo+JoYi+(x—y$)Jo+---}dY,. O
We put

Y, =[IL{ ﬁ} ,where H is a square matrix of size 2p,

Jo =[c9j (j)] , a square matrix of size 2p, and
h = xjg' + Hjs' + jo' 'H — Bj;''B.
LEMMA 3.4. Retain the above notations. Then
(3.6) hjodH = yxdH, hj,dB = y*dB.
3.7 dL= — ji''Bj,dH, dK = — j7'1Bj,dB.

Proor. We rewrite (3.5) as follows:
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(xjo+joH+"Hjo)dH + joBdL = yj,*xdH.

(Xjo+JjoH +1Hj,)dB + joBdK = yjo*dB.

'BjodH + j,dL=0, 'Bj,dB + j,dK = 0.
So (3.7) is clear. It is easy to show (3.6) as well. O

Put W=(H, B), a px N matrix. We define W,, H,, B,, and h, by the Taylor
expansions W=3,-, W,y" with W,=W,(x)=(H,, B,) and h=3,.,h,y" with
h,=h,(x). Then a simple calculation gives

(38) axVVk-—2 = Zm+n=k hijnVVn’
(39) - kVVk = Zm+n=k hm.iOaxVVn’
(3.10) he = Hyjo' +jo' "Hy — X sn=k Buii' 'B,-

(0]
LEMMA 3.5. hy= [}6 8—I, where h° is a nonsingular p x p matrix.

Proor. From (3.3), it follows that Y(s, x, 0)=1+4s""'Y;(x, 0) and

Y,(x,00=| 0 01, 0

0 0 01, _
Here u and v are some functions of x. Since a(s)=diag(sl,, 1,.,), Q, is a sub-
x! 0
group of GL(N, C) consisting of all matrices whose shapes are ['*i'*** 1 where
ok kkk

0 is the px(p+r) zero matrix. All linear subspaces of dimension g=p+r in
C" make the Grassmann variety Gr(q, N). Let V¢ be the subspace generated by
e; for i=p+1,..., N. The mapping from GL(N, C)/Q, to Gr(q, N), which is
defined by the correspondence gQ,—gV?, is an isomorphism. Put J(w;, w,)=
tw,Jw, for w,;, w,€ CN. Then J(-,-) is a hermitian, symmetric or symplectic
form on C¥. We note that G={ge GL(N, C); 'gJg=J}. Hence for Ve Gr(q,
N), V belongs to an open orbit in G\GL(N, C)/Q, iff J(-,-) is nondegenerate
on V.

Let V be the element of Gr(g, N) corresponding to a(s)Y(s, x, O)a(s—x)~1.
Then the restriction of J(-,-) on V is represented by the matrix

0 j O u v
fu 1, 0

Jc*joO 1, 0 .
0 0 j, | Ol,J

o 0 1, .
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r1, —choj, -

Note that L
0 1

y=

T Tuj+cTju— ctjvjiloj O }

TUJ. Ji -

r -

Therefore V belongs to an open orbit in G\GL(N, C)/Q, iff det (c'j "Tu—uj'—
vj71Tw)#£0. By (3.10), we easily obtain

ety Mu—uj -t —oji"v 07
h0= . E]
; 0 0

PrOOF OF THEOREM 3.2. First we show that the above W,, k>2, are deter-
mined by W, and W, by induction on k. We set

[ o Be W J
W, = .
O & Lk

Here o, B, 0, and g, are p x p matrices and y, and {, are p x r matrices. By (3.8),

we have hgjoW,=0,W;_2— 3 1<n<k Nk—njonW,. Using Lemma 3.5, we see that
T h%ié,  h%e, hOj(,
hojo Wi = .
0 0 0

Hence §,, ¢, and {, are determined by W,, n<k. Weread (3.9) as follows: —kW, =
hejo0xWo+(---). Here the part (---) is to be determined by induction. By (3.10),
hy=H,js'+jo'"Hy—Boj 1"'By— By ji'"Bo+(-+-). Hence

? oty
e[ 7

?
Note that

-0 0 0
Jo0 Wy = .
—ctj cjo,u ctjéw

Therefore we obtain —ka,=—o, +(---), —kfy=0du+(---) and —ky,=o, v+
(---). So a, B, and y, are determined by induction.

By (3.7), we know that L and K are determined up to additive constants.
Thus Y, =Y(x, y) is determined completely. From (3.1) and Lemma 2.4, it
follows that Y~!dYis unique. For Y'e 4%, if (Y)"'dY'=Y~!dY, then we have
d(Y'Y"1)=0. That is to say, Y'=gY for some ge«§L™.©  In addition,
assuming Y'(s, x, 0)=Y(s, x, 0), we get g=1. Thus the first half of Theorem 3.2
is proved.

Clearly, the properties (3.1-2) are invariant under the transformation “‘y—
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—yp”’. Hence, if Z(s, x, y) has the properties (3.1-2), then so does Z(s, x, — y).
Thus, if 0,Y,(x, 0)=0, the first half of Theorem 3.2 implies Y(s, x, y)=Y(s, x,

-y). 0O

Let 95={g € P{LN- O = g GLN.O; gg=g}. We remark that the properties
(3.1-2) have an apparent invariance under the left action of ¢3. If Zew,;
has the properties (3.1-2) and g is an element of ¢, then gZ also has the properties
(3.1-2).

Let a, a’ e Hom (C*, GL(N, C)) be polynomials of degree at most 1. For
Y and Y e 4% we assume aY=a'Y’. Then a simple argument implies that
a=a and Y=Y'.

In some physical context [9, 10], the conditions (3.3-4) appear naturally.

DEFINITION 3.6. Let a be a nice element of Hom (C*, GL(N, C)) and Y
be in AR, If Y and a satisfy the conditions (3.3-4), then we say that (Y, a)
is in the Hauser-Ernst gauge.

4. The generation of solutions

We start with seeking a solution. Freely we employ the notations in
Section 3.  We suppose that o is represented as in the proof of Theorem 3.2.

LEMMA 4.1. Let u be a constant px p matrix such that det (¢'ju+Tuj)=0.
Let w=—2"1j"Yuj~'+cTj=' Tu)~'. We set

(l+2uw)/s"‘ —u/s"! {01
¢ = 2w , 0= 1 and y=[0 R

o | 1o

where & and 6 are N x p matrices and y is an N xr matrix. Let n=20w and
t=s{(1 —x/s)2+(y/s)?}'/2. Here we understand that x/s and y|s are suffi-
ciently small and that 1'/2=1. Let

Y(s, x, y) = [(x—s)+1&, J, v]

and a(s)=diag(sl,, 1,,,). Then Z=aY has the properties (3.1-2) and (Y, a)
is in the Hauser-Ernst gauge.

1

r -

ProOOF. We notice that

—x1, u O "!
Yix, )= y*w 0 0 |
LO 0 OJ
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Let Q=1"2(s—x—yx)dY,. Then 12YQ=1?[ndx+¢&dt, 0,0]=12dY. Since
Y-ldY=Q, (2.3) implies (3.1). We put a=1(1+2uw)+2(x—s)uw and f=2tw+
2(x—s)w. Then

[ TBetjou+TajB TBetju+Taj O °
1ZJZ =| cljo+tujp  ctju+tuj O | and
L 0 0 Ji
TBctjda+Tajdf 0 O

1ZJdZ =| cljda+Tujdp 0 0

1

0 0 0

We notice that jw=c'w'j and (u+c'j~""uj)w=—1/2. A direct calculation
shows that

TBetjo + Tojf = 2y2jw, cljo + TujB = (s—x)ctj,
TBctjda + Tajdf = 2jwydy and c'jda + Tujdf = — cfjdx.

Thus Z has the property (3.2). It is easy to see that (Y, a) is in the Hauser-Ernst
gauge. [

DEFINITION 4.2. For (Y, a), which is in the Hauser-Ernst gauge, we define
a function a(Y)(x)=a(s)Y(s, x, 0)a(s—x)"'Q,. This takes its values in GL(N,
O)/Q..

LemMMA 4.3, Let (Y, a) and (Y, a) with Y° Yes ;s be in the Hauser-
Ernst gauge. We assume that gaY°X =aY for g=g(s)e PGLN-© and X € Py ;.
Then a(Y)(x)=g(x)a(Y°)(x) in GL(N, C)/Q,.

PROOF. We are assuming that (a(s)Y(s, x, 0))~'g(s)a(s)Y%(s, x, 0) for |s|<R
is holomorphic in s. Computing its residue at s=x, we can deduce that (a(s)Y(s,
x, 0))~'g(x)a(s)Y(s, x, 0) belongs to Q,. [

LemMA 4.4. Let aeHom (C*, GL(N, C)) be nice. For ge¥%g, XePy;
and YO, Ye Ny s we assume that gaY°X =aY and that aY® has the properties
(3.1-2). Then aY also has the properties (3.1-2).

Proor. We put Z=gaY? Clearly Z has the properties (3.1-2). We
recall that Y(s, x, y) for |s|>R and X(s, x, y) for [s| <R have no pole. Since
@Y) 'd(aY)=X"1Z"1dZX + X~'dX, aY has the property (3.1).

g@Y) laY=(6X)"W(¢Z) 'ZX.
o(aY) ld(aY) = (6X)"W(6Z) '(dZ)X + (6 X)W (6Z) 'ZdX.
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Hence it is easy to see that aY has the property (3.2). [J

Let #%.={9€%%; g(s) belongs to P, for |s|<R}. We notice that the
solution given in Lemma 4.1 is an even function with respect to y. We now
introduce a special class of solutions.

DEFINITION 4.5. % ;,={0€ A4 5; aY has the properties (3.1-2), (Y, a)
is in the Hauser-Ernst gauge and Y(s, x, y)=Y(s, x, —)}.

THEOREM 4.6. Let Y°e %y s, and ge #y,. Then for some e>0, there
exists Ye Py, . such that gaY®=aY in oty [Py ,.

PrOOF. We notice that a(s)"'g(s)a(s)Y(s, x, 0) lies in #"E2% as a function
of s. Here P denotes the parabolic subgroup defined by a. By Theorem 1.6
and Corollary 1.7, we can find a real number £¢>0 such that a~'gaY® belongs to
AN rePre S0 weset a~lgaY®=YX with Yety, and Xe Py, Clearly Y and
X are expanded in power series of y2. From the explicit form of a(s)Y(s, x, 0),
it follows that (Y, a) is in the Hauser-Ernst gauge. By Lemma 4.4, we know
that Y belongs to & .,. [

DEeFINITION 4.7. Let ae Hom (C*, GL(N, C)) be nice. Put Va={ve CV;
av=v} and g=dim V% We define 0;,={f(x); —d<x<9, f is analytic and
takes its values in an open orbit of G\Gr(q, N)}.

PROPOSITION 4.8. Let Y°, Ye S5, and ge@g. If g(x)o YO)Ux)=a(Y)(x)
in Os,, then there exists a positive real number ¢ such that gaY°=aY in oy [
PR.e

PrROOF. Working on GL(N, C), we assume that (a(s)Y(s, x, 0))7'g(x)a(s)
YO(s, x, 0) belongs to Q,. As seen in the proof of Lemma 4.3, (a(s)Y(s, x, 0))~!-
g(s)a(s)Y%(s, x, 0) has no pole in |s|<R. By Theorem 1.6, we obtain a real
number £>0 such that (aY) 'gaY? lies in A} Pr,. So we can put gaY’=
aYY’'X with Y e/}, and X € #;,. Observe that Y’ and X are even functions
with respect to y and that Y'(s, x, 0)=1. Because YY' is in the Hauser-Ernst
gauge, Lemma 4.4 implies that YY’ belongs to &% .,. By Theorem 3.2, we know
that YY'=Y. O

ProrosiTION 4.9. Let ae Hom (C*, GL(N, C)) be nice and f be in O;,.
Then there exist positive real numbers R and ¢, ge G and Ye Sy, for b=
gag~! such that a(Y)(x)=b(s)Y(s, x, 0)V? equals f(x) in Gr(q, N).

Proor. If b=gag™' and Ye %%, then gVe=V? and g 'Yg€ Sr.ca
Therefore we suppose that f has an analytic representative in P,. Then there
exists h(s) € sy, for some 0<R<J such that h(x)f(0)=f(x) in Gr(q, N). By
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Lemma 4.1, we get a solution Y such that a(Y°%)(x)=f(0). Now the proposition
follows from Theorem 4.6. []
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