Universal Wu classes

Dedicated to Professor Masahiro Sugawara on his 60th birthday

Toshio YOSHIDA (Received January 16, 1987)

§ 1. Introduction

Let BO be the space which classifies stable (real) vector bundles, and consider its mod 2 cohomology $H^*(BO; Z_2)$ (the coefficient Z_2 will be omitted often). Then, $H^*(BO)$ is the polynomial algebra over Z_2 on the universal Stiefel-Whitney classes $w_i \in H^i(BO)$ for $i \ge 1$ [2, Th. 7.1]. Let $v_i \in H^i(BO)$ be the universal Wu classes (cf. [1, p. 225], [4, p. 315]) defined inductively by

(1)
$$v_0 = 1 = w_0$$
 and $w_i = \sum_{j=0}^{i} Sq^j v_{i-j}$; i.e., $w = Sqv$ or $v = Sq^{-1}w$

(Wu's formula, cf. [2, Th. 11.14]) for $w = \sum_i w_i$, $v = \sum_i v_i$ and the Steenrod squaring operator $Sq = \sum_i Sq^i$ with Sq^{-1} given by $Sq^{-1}Sq = 1 = Sq Sq^{-1}$.

In this note, we prove a formula representing v_i by w_i 's modulo

- (2) the ideal $I^{(2)} = (w_1^2, w_2^2,...)$ of $H^*(BO)$ generated by the squares w_i^2 for $i \ge 1$:
- THEOREM. (i) (Stong) $v_a \equiv v_{a_1} \cdots v_{a_l} \mod I^{(2)}$ for any $a \ge 1$, where $a = a_1 + \cdots + a_l$ is the dyadic expansion of a.
 - (ii) $v_{2a} \equiv v_a^{(2)} + \sum_{i=0}^{a-1} w_i w_{2a-i} \mod I^{(2)}$ for any power a of 2, and $v_1 = w_1$. Here, the notation $x^{(2)}$ for $x \in H^a(BO)$ is used in the following sence:
- (3) If $x \equiv \sum_{i=1}^k x_i \in H^a(BO) \mod I^{(2)}$ with monomials x_i on w_j 's, we have uniquely $x^{(2)} \in H^{2a}(BO) \mod I^{(2)}$ given by

$$\begin{array}{lll} x^{(2)}(=&(x^2-\sum_{i=1}^k x_i^2)/2)=\sum_{1\leq i< j\leq k} x_i x_j & and & x^{(2)}=0 & if & k\leq 1\,;\\ (x+y)^{(2)}\equiv &x^{(2)}+y^{(2)}+xy & and & (xy)^{(2)}\equiv 0 \mod I^{(2)} & for & any & x, & y. \end{array}$$

COROLLARY. $v \equiv 1 + \sum w_{i_1} \cdots w_{i_l} \mod I^{(2)}$, where \sum is taken over all sequences $1 \leq i_1 < \cdots < i_l \ (l \geq 1)$ satisfying

(4) $\{i_1,\ldots,i_l\} = \{\alpha_1, \beta_1,\ldots,\alpha_m, \beta_m, \gamma_1,\ldots,\gamma_n\}$ $(l=2m+n, m \ge 0, n \ge 0)$ such that $\alpha_i + \beta_i$ and γ_i are all powers of 2.

A formula modulo the ideal generated by w_i^2 and $\prod_{j=1}^4 w_{i_j}$ is previously known to the author. Theorem (i) is due to Professor Robert E. Stong, and the author is most grateful to his valuable advices during this work.

§ 2. Proof of Theorem (i)

Let RP^k be the k-dimensional real projective space, and consider the m-fold product space $X_{n,m} = (RP^1 \times RP^n)^m$ with the projections $p_i \colon X_{n,m} \to RP^1 \times RP^n$ to the ith factor, $q_1 \colon RP^1 \times RP^n \to RP^1$ and $q_n \colon RP^1 \times RP^n \to RP^n$ ($n \ge 2$). Moreover, let ξ_k be the canonical line bundle over RP^k , and consider the vector bundle

$$\eta_{n,m} = \bigoplus_{i=1}^{m} (p_i^* q_n^* \xi_n \oplus \zeta_i^{\perp}), \ \zeta_i = p_i^* q_1^* \xi_1 \otimes p_i^* q_n^* \xi_n, \text{ over } X_{n,m},$$

where ζ^{\perp} is a bundle such that $\zeta \oplus \zeta^{\perp}$ is the trivial bundle.

Then, the total Stiefel-Whitney (resp. Wu) class $w(\eta_{n,m}) = \sum_i w_i(\eta_{n,m})$ (resp. $v(\eta_{n,m}) = \sum_i v_i(\eta_{n,m}) = Sq^{-1}w(\eta_{n,m})$) of $\eta_{n,m}$ is given by the following

LEMMA 2.1. Put $\alpha_i = w_1(p_i^*q_n^*\xi_n)$ and $\sigma_i = w_1(p_i^*q_1^*\xi_1)$. Then:

- (i) $H^*(X_{n,m}; Z_2) = Z_2[\sigma_1, \alpha_1, ..., \sigma_m, \alpha_m]/(\sigma_1^2, ..., \sigma_m^2, \alpha_1^{n+1}, ..., \alpha_m^{n+1}).$
- (ii) $w(\eta_{n,m}) = \prod_{i=1}^{m} \{1 + \sigma_i (1 + \alpha_i)^{-1}\}; i.e., w_i(\eta_{n,m}) = \sum_{i=1}^{m} (\prod_{k=1}^{r} \sigma_{i_k} \alpha_{i_k}^{s_k}), \text{ where } the sum is taken over all } 1 \leq i_1 < \dots < i_r \leq m \text{ and } s_k \geq 0 \text{ } (1 \leq k \leq r) \text{ with } r + \sum_{k=1}^{r} s_k = i.$
- (iii) $v(\eta_{n,m}) = \prod_{i=1}^{m} (1 + \sum_{r \geq 0} \sigma_i \alpha_i^{-1+2r});$ i.e., $v_i(\eta_{n,m}) = \sum (\prod_{k=1}^{r} \sigma_{i_k} \alpha_{i_k}^{-1+r_k}),$ where the sum is taken over all $1 \leq i_1 < \cdots < i_r \leq m$ and powers t_k of $2(1 \leq k \leq r)$ with $\sum_{k=1}^{r} t_k = i$.
- PROOF. (i) holds by the definition of ξ_k . $p_i^*q_k^*\xi_k$'s are line bundles, and the basic properties of the Stiefel-Whitney classes for line bundles imply that $w(p_i^*q_n^*\xi_n)=1+\alpha_i$, $w(\xi_i^\perp)=(1+\sigma_i+\alpha_i)^{-1}$ and (ii), because $\sigma_i^2=0$ and so $(1+\alpha_i)(1+\sigma_i+\alpha_i)^{-1}=1+\sigma_i(1+\alpha_i)^{-1}=1+\sigma_i(1+\alpha_i)^{-1}$. (ii) implies (iii), because the basic properties of Sq (cf. [3]) show that Sq $\sigma_i=\sigma_i$, $Sq(\alpha_i^t)=\alpha_i^t+\alpha_i^{2t}$ for $t=2^t$, and

$$Sq(1+\sum_{r\geq 0}\sigma_i\alpha_i^{-1+2r})=Sq\{1+\sigma_i(1+\sum_{r\geq 0}\alpha_i^{2r})^{-1}\}=1+\sigma_i(1+\alpha_i)^{-1}.$$

LEMMA 2.2. Put $w_i = w_i(\eta_{n,m}) \in H^i(X_{n,m}; Z_2)$. Then:

- (i) $w_i^2 = 0$ for any $i \ge 1$, and $w_i \cdots w_{i_l} = 0$ for any $i_k \ge 1$ and l > m.
- (ii) In $H^i(X_{n,m}; Z_2)$ with $i \le n+1$, the monomials $w_{i_1} \cdots w_{i_l}$, for $1 \le l \le m$, $1 \le i_1 < \cdots < i_l$ and $\sum_{k=1}^l i_k = i$, are linearly independent.

PROOF. Lemma 2.1 (i) and (ii) show the lemma, because $w_{i_1} \cdots w_{i_l} = \sum_{1 \le i_1, ..., i_l \le m} (\prod_{k=1}^l \sigma_{i_k} \alpha_{j_k}^{-1+i_k}) + \sum_{l' > l} (\prod_{k=1}^{l'} \sigma_{i_k} \alpha_{j_k}^{s_k}).$

LEMMA 2.3. Let $(t_1,...,t_r)$ be a sequence of powers t_k of 2 with $\sum_{k=1}^r t_k = a$.

Then, for any $b \ge 1$, the number of all subsequences $(t_{j_1}, ..., t_{j_s})$ $(1 \le j_1 < \cdots < j_s \le r)$ with $\sum_{k=1}^s t_{j_k} = b$ is congruent to $\binom{a}{b} \mod 2$.

PROOF. If $t_k = 1$ for all k, then the lemma is trivial. Assume $t_k \ge 2$ for some k; and consider $T = (t_1, \dots, t_{k-1}, u, v, t_{k+1}, \dots, t_r)$ with $u = v = t_k/2$, and its subsequences $S \subset T$. Then, $\#\{S \mid S \ni u, S \ni v\} = \#\{S \mid S \ni u, S \ni v\}$ and $\#\{S \mid S \ni u, v, v\} = \#\{\text{all subsequences of } (t_1, \dots, t_r)\}$, where # denotes the number of elements. Thus the lemma holds by induction. \square

PROPOSITION 2.4. $v_a(\eta_{n,m}) = \prod_{i=1}^l v_{a_i}(\eta_{n,m})$, where $a = a_1 + \cdots + a_l$ is the dyadic expansion of $a \ge 1$ (i.e., $a_1 > \cdots > a_l$ and they are powers of 2).

PROOF. Compare the both sides by Lemma 2.1 (iii), by noticing that $\sigma_i^2 = 0$. Then the equality follows from Lemma 2.3, since $\binom{a}{a_i} \equiv 1 \mod 2$. \square

PROOF OF THEOREM (i). Take n and m to satisfy $n+1 \ge a$ and (m+1)(m+2) > 2a, and let $\tilde{\eta}_{n,m} \colon X_{n,m} \to BO$ be the classifying map of the bundle $\eta_{n,m}$ over $X_{n,m}$. Then, $\tilde{\eta}_{n,m}^*(v_a) = v_a(\eta_{n,m}) = \prod_{i=1}^l v_{a_i}(\eta_{n,m}) = \tilde{\eta}_{n,m}^*(\prod_{i=1}^l v_{a_i})$ by Proposition 2.4; hence $v_a - \prod_{i=1}^l v_{a_i}$ is in $I^{(2)}$ by Lemma 2.2. \square

§ 3. Proof of Theorem (ii)

LEMMA 3.1.
$$\sum_{i=0}^{q-1} Sq^i(xv_{q-i}) = \sum_{i=0}^{q-1} (Sq^ix)w_{q-i}$$
 for any $x \in H^*(BO: \mathbb{Z}_2)$.

PROOF.
$$\sum_{i=0}^{a} Sq^{i}(xv_{a-i}) = \sum_{i=0}^{a} \sum_{j=0}^{i} \left[= \sum_{j=0}^{a} \sum_{i=j}^{a} \right] (Sq^{j}x) (Sq^{i-j}v_{a-i})$$

= $\sum_{i=0}^{a} (Sq^{j}x)w_{a-i}$ by (1), and the lemma holds since $v_{0} = 1 = w_{0}$.

LEMMA 3.2. Let a be a power of 2, and $0 \le b < 2a$. Then,

$$\begin{split} w_{2a+b} + Sq^b v_{2a} + \sum_{i=0}^{b-1} w_{b-i} Sq^i v_{2a} &\equiv \sum_{i=0}^{a-1} w_{a+b-i} Sq^i v_a \quad if \quad b < a, \\ &\equiv \sum_{i=b-a+1}^{a-1} (w_{a+b-i} + \sum_{j=0}^{b-a} w_{b-i-j} Sq^j v_a) Sq^i v_a \quad if \quad b \geq a, \quad \text{mod } I^{(2)}. \end{split}$$

PROOF. Hereafter, 'mod $I^{(2)}$ ' is often omitted. We notice that

(5)
$$Sq^{i}(I^{(2)}) \subset I^{(2)}$$
, and $Sq^{i}v_{k} \equiv 0$ if $i \ge k \ge 1$ (e.g., $k = 2a + b - i \le a$),

by the definition of $I^{(2)}$ in (2) and the dimensional reason. Hence

$$\begin{split} &\sum_{i=0}^{b} Sq^{i}v_{2a+b-i} \equiv \sum_{i=0}^{b} Sq^{i}(v_{2a}v_{b-i}) = \sum_{i=0}^{b} (Sq^{i}v_{2a})w_{b-i} = A, \text{ and} \\ &w_{2a+b} + A \equiv \sum_{i=b+1}^{c-1} Sq^{i}v_{a+c-i} \equiv \sum_{i=b+1}^{c-1} Sq^{i}(v_{a}v_{c-i}) \quad (c=a+b) \\ &= \sum_{i=b+1}^{c-1} \sum_{j=0}^{i} \left[= \sum_{j=0}^{b} \sum_{i=b+1}^{c-1} + \sum_{j=b+1}^{c-1} \sum_{i=j}^{c-1} \right] (Sq^{j}v_{a})(Sq^{i-j}v_{c-i}) = B, \end{split}$$

by (1), Theorem (i) and Lemma 3.1. Moreover, if $0 \le b < a$, then

$$B \equiv \sum_{j=0}^{b} (Sq^{j}v_{a})(w_{c-j} + C) + \sum_{j=b+1}^{a-1} (Sq^{j}v_{a})w_{c-j}$$
, where

$$C = \sum_{i=0}^{b-j} Sq^{i}v_{c-j-i} \equiv \sum_{i=0}^{b-j} Sq^{i}(v_{a}v_{b-j-i}) = \sum_{i=0}^{b-j} (Sq^{i}v_{a})w_{b-j-i};$$

hence $\sum_{j=0}^{b} (Sq^{j}v_{a})C \equiv 0$. If $a \leq b < 2a$, then

$$B \equiv \sum_{i=b-a+1}^{a-1} (Sq^{i}v_{a})(w_{c-i}+C)$$
 and $C \equiv \sum_{i=0}^{b-a} (Sq^{i}v_{a})w_{b-i-i}$.

Now, since $v_1 = w_1$, Theorem (ii) follows from the following

Proposition 3.3. Let a be a power of 2. Then,

$$v_{2a} \equiv w_{2a} + \sum_{i=0}^{a-1} w_{a-i} Sq^i v_a$$
 and $v_{4a} \equiv v_{2a}^{(2)} + \sum_{i=0}^{2a-1} w_i w_{4a-i} \mod I^{(2)}$.

PROOF. Lemma 3.2 implies the first congruence by taking b=0, and the second one by (3) as follows: $w_{4a}+v_{4a}+w_{2a}v_{2a}\equiv\sum_{i=1}^{2a-1}w_{2a-i}Sq^iv_{2a}\equiv\sum_{i=1}^4A_i$, where

$$\begin{array}{l} A_1 = \sum_{i=1}^{2a-1} w_{2a-i} w_{2a+i}, \ A_2 = \sum_{i=1}^{2a-1} \sum_{j=0}^{i-1} \left[= \sum_{j=0}^{2a-1} \sum_{i=j+1}^{2a-1} \right] w_{2a-i} w_{i-j} Sq^j v_{2a} \\ \equiv 0, \end{array}$$

$$A_3 = (\sum_{i=1}^{a-1} \sum_{j=0}^{a-1} + \sum_{i=a}^{2a-1} \sum_{j=i-a+1}^{a-1}) \left[= \sum_{j=0}^{a-1} \sum_{i=1}^{a+j-1} \right] w_{2a-i} w_{a+i-j} Sq^j v_a \equiv 0,$$

$$A_{4} = \sum_{i=a}^{2a-1} \sum_{j=i-a+1}^{a-1} \sum_{k=0}^{i-a} \left[= \sum_{0 \le k < j < a} \sum_{i=a+k}^{a+j-1} w_{2a-i} w_{i-j-k} (Sq^{j} v_{a}) (Sq^{k} v_{a}) \right]$$

$$\equiv \sum_{0 \le k < j < a} w_{a-k} w_{a-j} (Sq^{j} v_{a}) (Sq^{k} v_{a}). \quad \Box$$

§ 4. Proof of Corollary

For the set N of all positive integers, denote by $N_2 \subset N$ the subset of all powers of 2, and consider the collection \mathfrak{S} of all finite subsets $S \subset N$ satisfying

(6)
$$S = \{t_1 - r_1, r_1, ..., t_l - r_l, r_l, t_{l+1}, ..., t_m\}, \sharp S = m + l \ge 1 \text{ and } 0 \le l \le m,$$
 for $t_i \in N_2$ $(1 \le i \le m)$ and $r_i \in N$ with $r_i < t_i/2$ $(1 \le i \le l)$, (see (4)).

LEMMA 4.1. In (6), m, l, t_i and r_i are unique for S, by ordering elements to satisfy $t_i > t_{i+1}$, or $t_i = t_{i+1}$ and $t_i < t_{i+1}$ for i < l, and $t_i > t_{i+1}$ for j > l.

PROOF. We note that $t_i/2 < t_i - r_i \in N_2$ for $i \le l$ in (6). Hence, if $S \subset N_2$, then l = 0 and so $m = \sharp S$ and the lemma holds. Let $S \subset N_2$. Then $l \ge 1$ and $s_1 = \max(S - N_2) = t_1 - r_1$ by the above order. Here, $t_1/2 < t_1 - r_1 = s_1 < t_1$; hence $t_1 \in N_2$ is unique, and so is r_1 . Since $S - \{s_1, r_1\} \in \mathfrak{S}$, the lemma is proved by induction. \square

For any $a \in \mathbb{N}$, put $\mathfrak{S}(a) = \{S \in \mathfrak{S} \mid \sum_{s \in S} s = a\}$. Then, we have the following

LEMMA 4.2. Assume that $a = a_1 + a_2$ for $a_1 \in N_2$ and $a_2 \in N$ with $a_1 \ge a_2$. Then:

- (i) $S_1 \cup S_2 \in \mathfrak{S}(a)$ for $S_k \in \mathfrak{S}(a_k)$ with $S_1 \cap S_2 = \phi$; and $\sharp (S_1 \cup S_2) \ge 3$ if $a_1 = a_2$.
- (ii) Conversely, for any $S \in \mathfrak{S}(a)$ with $\sharp S \geq 3$ if $a_1 = a_2$, there are an odd number of unordered pairs $\{S_1, S_2\}$ of $S_k \in \mathfrak{S}(a_k)$ with $S_1 \cap S_2 = \phi$ and $S_1 \cup S_2 = S$.

PROOF. (i) is clear by definition. For $S = \{t_1 - r_1, r_1, \dots, t_l - r_l, r_l, t_{l+1}, \dots, t_m\} \in \mathfrak{S}(a)$ and any $S_k \in \mathfrak{S}(a_k)$ in (ii), Lemma 4.1 means that if $t_i - r_i \in S_k$ ($i \le l$), then $r_i \in S_k$. Thus, the number of all such $\{S_1, S_2\}$ is equal to that of all subsequences $(t_{i_1}, \dots, t_{i_n})$ of (t_1, \dots, t_m) satisfying $\sum_{j=1}^n t_{i_j} = a_1$ (resp. $i_1 = 1$, in addition, if $a_1 = a_2$). Now, the latter is congruent to $\binom{a}{a_1}$ (resp. $\binom{a-t_1}{a_1-t_1}$) if $a_1 = a_2$) mod 2 by Lemma 2.3, which is odd by assumption. Thus (ii) is proved. \square

Now, according to this lemma, the Theorem implies immediately that $v_a \equiv \sum_{S \in \mathfrak{S}(a)} \prod_{s \in S} w_s \mod I^{(2)}$ by induction, which is the Corollary by definition.

References

- [1] J. W. Milnor, On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965), 223–230.
- [2] J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Studies 76, Princeton Univ. Press, Princeton, 1974.
- [3] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Studies 50, Princeton Univ. Press, Princeton, 1962.
- [4] R. E. Stong, Notes on cobordism theory, Princeton Math. Notes, Princeton Univ. Press, Princeton, 1968.

Faculty of Integrated Arts and Sciences, Hiroshima University