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§1. Introduction

Let BO be the space which classifies stable (real) vector bundles, and consider
its mod 2 cohomology H*(BO; Z,) (the coefficient Z, will be omitted often). Then,
H*(BO) is the polynomial algebra over Z, on the universal Stiefel-Whitney
classes w;e Hi(BO) for i=1 [2, Th. 7.1]. Let v;e Hi(BO) be the universal Wu
classes (cf. [1, p. 225], [4, p. 315]) defined inductively by

(1) vo=1=wo and w;=3i_; Sqiv;,_;; i.e., w=Sqv or v=Sq"'w

(Wu’s formula, cf. [2, Th. 11.14]) for w=3Y;w; v=>;v; and the Steenrod
squaring operator Sq=Y"; Sq’ with Sq~! given by Sq~'Sq=1=Sq Sq~*.
In this note, we prove a formula representing v; by w;’s modulo

(2) the ideal I®=(w}, w},...) of H*(BO) generated by the squares w? for i>1:

THEOREM. (i) (Stong) v,=v, v,
a;+---+a, is the dyadic expansion of a.

mod I? for any a=1, where a=

(i) 0y,=02+ 3228 w,w,,_; mod I® for any power a of 2, and v,=w,.
Here, the notation x? for x € H*(BO) is used in the following sence:

) If x=3X%,x;€e HY(BO)mod I® with monomials x; on w;’s, we have
uniquely x® € H2¢(BO) mod I® given by

x(=(x?— T xD)2) = ZigicjsuXix; and xP =0 if k=1
(x+y)PD=x@ +yD +xy and (xy)» =0 mod I® for any x, y.

COROLLARY. v=1+3 w;---w; mod I,
where Y. is taken over all sequences 1<i,<---<i; (I1=1) satisfying

@ iy iy ={ag, Bireevs Wy Bons Vise-os Yu} (I=2m+n, m=0, n20) such that
o;+B; and y; are all powers of 2.

A formula modulo the ideal generated by w? and []4-, w;, is previously
known to the author. Theorem (i) is due to Professor Robert E. Stong, and the
author is most grateful to his valuable advices during this work.
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§2. Proof of Theorem (i)

Let RP* be the k-dimensional real projective space, and consider the m-fold
product space X, ,=(RP!xRP")m with the projections p;: X, ,,—RP!xRP" to
the ith factor, q,: RP!'x RP"—>RP! and q,: RP!' x RP"—»RP"(n=2). Moreover,
let &, be the canonical line bundle over RP*, and consider the vector bundle

rln,m = ®'in=l (p:"qtén@gf‘)’ Ci = p:kqalkél ® p:kq:tém over Xn,m’

where (1 is a bundle such that {@{?! is the trivial bundle.
Then, the total Stiefel-Whitney (resp. Wu) class w(y, )= ; w(#, ) (resp.
v(rln.m)= Zi vi(r’n,m)=sq—lw('1n.m)) Of r’n,m iS giVCl’l by the fOHOWing

LEMMA 2.1.  Put o;=w,(p¥q*&,) and o,=w,(pFqF&,). Then:
(1) HXX,n; Z)=2Z,[0,, 0y,..., 0, 2, 1/(02,..., 62, a7F .., antt).

(i) w,m= [T {1+o(1+a)71}; ie, Wil m)=2 (ITh=1 G;,08%), where
the sum is taken over all 1<i;<---<i,<m and 5,20 (1=Zk<r) withr+ Y5, s,

=I.

(i) oy, =TT (1+ 2050 oY), e, 0{nm) = 2 Th=y 05051 F"),
where the sum is taken over all 1Zi,<---<i,<m and powers t, of 201 <k<r)
with Yoo t,=1i.

ProOOF. (i) holds by the definition of £,. p¥qf&,’s are line bundles, and
the basic properties of the Stiefel-Whitney classes for line bundles imply that
w(p¥q*&) =140, w({})=(+0;+0)" ! and (ii), because 62=0 and so (1 +o;)(1+
gito) '=14+0(l+o,+a) ' =1+0(l+a)"!. (i) implies (iii), because the
basic properties of Sq (cf. [3]) show that Sqo,=0;, Sq(a})=ai+a?" for t=2r,
and

Sq(1+ X ,50007 ") =Sq{l+ 01+ X,500) '} =140l +a)'. O
LemMMA 2.2.  Put w,=w(n, .)€ H(X,n: Z,). Then:
(i) w%=0 for any iz1, and w;---w;,=0 for any i, =1 and |>m.

(i) In H(X,.: Z;) with iSn+1, the monomials w;---w;, for 1<I<m,
1Si,<--<ijand ¥k~ i,=i, are linearly independent.

ProOF. Lemma 2.1 (i) and (ii) show the lemma, because
Wi W, = <jyniem [k=1 03057+ 3 10 (TTh=1 05,05%). O

LeEMMA 2.3. Let (ty,..., t,) be a sequence of powers t, of 2 with 3 i_ t,=a.
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Then, for any b= 1, the number of all subsequences (t
with 35, t; =b is congruent to (Z) mod 2.

i) (1), < <j,=7)

FTEARED)

Proor. If t,=1 for all k, then the lemma is trivial. Assume t,=>2 for some
k; and consider T=(t,..., t,_q, U, U, tyyqs---» t,) With u=v=1,/2, and its subse-
quences ScT. Then, #{S|S>3u, S%v}=#{S|SHu, Sov} and #{S|S>u, v,
or S%u, v}=#{all subsequences of (¢,,...,t,)}, where # denotes the number of
elements. Thus the lemma holds by induction. []

ProposiTION 2.4.  v,(n,,)=T1!=; Vo (n.m), Where a=a,+---+a, is the
dyadic expansion of a=1 (i.e., a;>--->a, and they are powers of 2).

Proor. Compare the both sides by Lemma 2.1 (iii), by noticing that ¢?=0.
Then the equality follows from Lemma 2.3, since (Z.) =1lmod2. [

ProOF OF THEOREM (i). Take n and m to satisfy n+1=a and (m+ 1)(m+2)
>2a, and let 7, ,: X, ,—BO be the classifying map of the bundle 5, ,, over X, .
Then, 7% w(0) = 0ulflnm) = [Ti1 alllnm) =% m(IT=1va) by Proposition 2.4:
hence v,— [T!-1v,, is in I® by Lemma 2.2. []

§3. Proof of Theorem (ii)
LemMA 3.1. X424 Sqi(xv,-)= 984 (Sq'x)w,_; for any xe H*(BO:Z,).

PROOF. 9o Sq(xv,-) = Lo Lioo [= X0 24-;1(Sq7x) (Sqi~Vv,_;)
=3_4(Sq’x)w,_; by (1), and the lemma holds since vo=1=w,. [

LEMMA 3.2. Let a be a power of 2, and 0<b<2a. Then,
Waatp + SqP020 + 2020 Wp-iSq'v30 = 282 Wa4-iSq'v, if b <a,
= Y15 a1 Wasp—i+ 2528 Wi ;Sq70,)Sq'v, if b=a, modI?.
Proor. Hereafter, ‘mod /(2)” is often omitted. We notice that
(5) Sqi(I®)cI®), and Sqiv,=0if izZk=1 (e.g., k=2a+b—i<Za),
by the definition of I® in (2) and the dimensional reason. Hence
Y0 8qM0,4p-i = 2059 (v200p-1) = Lh-0(Sq'v3.)W,_; = A, and
Waarp + A= 250041804 i = 265041 Sq(v0.-)) (c=a+Db)
=200 Lizo [= 200X 2041 + 52041 262)1(Sq7v,)(Sq* v, ;) = B,

by (1), Theorem (i) and Lemma 3.1. Moreover, if 0<b<a, then
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B=3"bo(Sq/v,)(W._;+C) + X4}, (Sqiv,)w,._;, where
= 202d Sqiv. ;i = X4 Sqi vy j-) = X4 (Sqivwy- i
hence ¥ %_,(Sq/v,)C=0. If a<b<2a, then

B = Z?;fly—a+l (Sq’v)(w._;+C) and C bzs (Sqiva)wh—j—i- O
Now, since vy =w,, Theorem (ii) follows from the following
PROPOSITION 3.3.  Let a be a power of 2. Then,

= -1 i . = pl2) 2a-1
Vyg = Wae + 2920 W,-iSq'v, and v, =037 + 235" wiwy,;mod [12).

PrOOF. Lemma 3.2 implies the first congruence by taking b=0, and the

second one by (3) as follows: Wy, +v4,+Wy02,=2 227" wy,_;:Sqiv,, =34, A,
where
2a-1 2
Al lwZa iWaa+is AZ—Z a [ Z u ! 201+l]w2a ii— qu vZn
=0,
_ -1 2a-1 1 -1 +j— j
3 = (Z‘iz=l 0 + Z a a =i- a+l) [ ‘11'=0 Z?=lj l] W2a-iwa+i—j quva
=0,

220 ! J 1 a+IZk U[ zo<k<1<021 a+k]w2a in l Ji— I\(Sqlv )(Sq va)
= 20§k<j<awa—-kwa—j (Sq!va)(Sq va)' D

§4. Proof of Corollary

For the set N of all positive integers, denote by N, <N the subset of all
powers of 2, and consider the collection € of all finite subsets S< N satisfying

(6) S={t;—Fis Firees t;=Fp Fiy L 1seees by #S=m+[>1 and 0Z/<m,
for t;e N, (1=i<m)and r;e N with r;<t;/2 (1ZiZ]), (see (4)).

LEmMmA 4.1. In (6), m, |, t; and r; are unique for S, by ordering elements
to satisfy t;>t;,, or ti=t;yy and r;<r;,, for i<l, and t;>t;, | for j>I.

ProoF. We note that t;/2<t;—r;& N, for i</ in (6). Hence, if ScN,,
then /=0 and so m=4#S and the lemma holds. Let SXN,. Then I=1 and
s, =max (S—N,)=t, —r; by the above order. Here, t,/2 <t,—r,=s,<t;; hence
t, € NV, is unique, and so is r;. Since S—{s;, r,} € S, the lemma is proved by
induction. [J

For any ae N, put S(a)={Se S| Y, ss=a}. Then, we have the following

LEMMA 4.2. Assume that a=a,+a, for a,e N, and a,e N with a,Za,.
Then:
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(i) S,US,eS(a) for S,eS(a,) with S;nS,=¢; and #S,US,)=3 if
a;=d,.

(i) Conversely, for any Se S(a) with $S=3 if a,=a,, there are an odd
number of unordered pairs {S,, S,} of Sy € S(a,) withS;nS,=¢ and S, US,=S.

ProOOF. (i) is clear by definition. For S={t; —ry, Fi,eeco ;=11 Py Ly 15eees
t.} € S(a) and any S, € S(a,) in (ii), Lemma 4.1 means that if t,—r,eS, (iZ]),
then r;eS,. Thus, the number of all such {S,, S,} is equal to that of all subse-
quences (t;,,..., t; ) of (,,..., t,) satisfying 3"n_, ti,=ay (resp.i;=1, in addition,
ifa,=a,). Now, the latter is congruent to(f >( resp. (;1 —_tt‘ > ifa, =a2> mod 2
1. 1 1
by Lemma 2.3, which is odd by assumption. Thus (ii) is proved. [

Now, according to this lemma, the Theorem implies immediately that v,=
> sez@ I IsesWs mod 12 by induction, which is the Corollary by definition.
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