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1. Introduction

Let u be a function which is locally p-precise in D={x=(xy,..., X,); X,>0},
n>=2, and satisfies

€)) j lgrad u(x)|Px2dx < o0, l<p<oo, —l<a<p-—1
D

(see Ohtsuka [12] for (locally) p-precise functions). Many authors have tried
to find a set F =D such that u(x) has a finite limit as x tends to the boundary D
along F (see Aikawa [1], Carleson [2], Mizuta [5], [7], [8], [9], Wallin [13]).
They were mainly concerned with the nontangential case, that is, the case where
F=£,={{+(0,1); t>0} or F=T(¢, a)={x=(x', x,)e R"" ' x R!; |x'=¢&'|<ax,};
if u(x) has a finite limit as x, | 0 along £,, then u is said to have a perpendicular
limit at &, and if u(x) has a finite limit as x—¢& along I'(¢, a) for any a>0, then
u is said to have a nontangential limit at £. The existence of tangential limits of
u at & was discussed by Aikawa [1] and Mizuta [9]. The proof of the existence
of these limits can be carried out by local arguments; in fact it requires to find
conditions near ¢ which assure the existence of limits.

In this paper we investigate a global behavior of u near the boundary dD.
More precisely, we aim to find a function A(x) such that A(x)u(x) tends to zero
as x tends to 0D along a set F=D. In order to evaluate the size of F, we use the
capacity:

C,E; G) = inf | f|5,

where the infimum is taken over all nonnegative measurable functions f on R”
such that f=0 outside G and f [x=yl*""f(y)dy=1for every xe E; | - ||, denotes
G

the LP-norm in R". As in Aikawa [1], we introduce a notion of thinness of a
set in D, near the boundary 0D; we say that a set E is C,-thin near 0D if there
exists a positive integer j, such that

incase p<n, »%; 2/("PCLYE;; D) < o,

incase p=n, X7; CAE;nGy; G,) < ©
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for any bounded open sets G,, G, such that G, (the closure of G,) is included in
G,, and

in case p > n, \U%;, E;is empty,

where E;={x=(x', x,) € E; 27/ <x, <271},
First we shall establish the following result.

THEOREM 1. Let —1<a<p—1. Ifuisafunction which is locally p-precise
in D and satisfies (1), then there exists a set EcD such that E is C,-thin near
oD and

lim, ¢ vep—g X" PH0/Pu(x) = 0, incasen —p+a >0,
lim, Lo cep-g [log (x;1(Ix|+1))]/P~tu(x) =0, incasen —p+a=0,

lim sup, o rep-g ([X|+1)""PY0/Ply(x)| < 00, incasen —p+ a <O0.

Next we study the boundary behavior of functions u satisfying the additional
condition that lim, ,, u(x’, x,)=0 for almost every x’ € R*~!; for such a function
u we can prove later the existence of a sequence {¢;} of functions in Cg’(D) such

thatf |grad (u —¢;)|Px2dx—0 as j— oo (see Proposition 3). It will be expected
D

naturally that such functions behave better than those in Theorem 1, near the
boundary dD. In fact, we can prove the following result.

THEOREM 2. Let a and p be as in Theorem 1. Let u be a function which
is locally p-precise in D and satisfies (1). If lim,, o u(x’, t)=0 for almost every
x' € R""1, then there exists a set E which is C,-thin near 0D and satisfies

]imx,.-'O,xeD—E x;n—p+a)/pu(x) = 0.

As applications of Theorems 1 and 2, we shall discuss the existence of radial
and perpendicular limits of u multiplied by a suitable weight function. If in
addition u is assumed to be harmonic in D, then it will be shown that u multiplied
by a weight has a limit as the variable tends to the boundary of D. Naturally, if
we apply the same methods, then we can prove the existence of nontangential
and parabolic limits in the usual sense; for related results, see Cruzeiro [3],
Mizuta [10], Nagel, Rudin and Shapiro [11] and Wallin [13].

2. Lemmas

In order to prove Theorem 1, we prepare several lemmas. First we
establish an integral representation of functions satisfying (1), which is a main
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tool in our discussions. For this purpose, we consider the functions k;(x, y)=
(xj=ylx=yIm"=(=pplyl™ if [y|>1 and kj(x, y)=(x;—y)lx—yl™" if |yI<1,
for j=1,...,n. Then it is easy to see that

) lkj(x, »)I < M|x||y|™" whenever |y = 2|x| > 2
with a positive constant M.

LeMMA 1 (cf. [5; Lemma 6]). Let —1<a<p—1 and f be a nonnegative
function in I? (R"), and define

u() = (ke NI y-errdy.

Then u is locally p-precise in D and locally q-precise in R" for q such that
1<q<min {p, p/(a+1)}. Further, u satisfies

[lerad uGoreix,lodx < Mif12
with a positive constant M independent of f.

Proor. With the aid of (2), it follows from Hoélder’s inequality thatf 1+

D=1 fWIlyal~2Pdy < o for fe LP(R"). For R >1, letting B(0, R) denote the
open ball with center at the origin and radius R, we write

u) = [, kx IO nlray + |

R"—B(0,

0 ki(x, Y)F(¥) | yal~2/Pdy
=u'(x) + u"(x).

Then u’ is locally p-precise in D n B(0, R) in view of Lemma 3.3 in [4] and u” is
continuously differentiable in B(0, R). Hence it is seen that u is locally p-precise
in D. If 1<q<min {p, p/(a+ 1)}, then we have by Hélder’s inequality

L (fWyal==P)2dy g(Lf(y)de)'”p(fG |y"|—<aq/p)/(1—q/p)dy>‘"‘”" <o

for any bounded open set G=R". Consequently we see as above that u is
locally g-precise in R".

Letc,=(2—n)tif n=3and ¢,=2"1if n=2. Define k,(x)=c,(|x|?>+&2)(2—m/2
in case n=3 and k/(x)=c, log (|x—y|>+¢?) in case n=2, and set k, (x, y)=
(@fox;k) (x—y) if [YIS1 and k, j(x, 1) =(@/ox))k) (x— 1) —(@fex;)k) () if
|y|>1. We further define

u(x) = f ke, (%, NSO |yal-*/7dy.

In view of Lemma 3.3 in [4], we see that (0/0x;)u,(x) tends to (0/0x;)u(x) in
L},.(R"—0D) as e-0. Thus we have only to prove
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3) flgrad ()Pl l*dx < Myl S|

with a positive constant M, independent of ¢ and f. For this, we first note
that (0/0x;Ju (x)= I(a/axi)(a/ax DX =)Dyl ~*/Pdy.  Setting v(x)= f (0/0x;)
k{x—y)f(y)dy, we have

@ {lerad v.coax = M 111

by the proof of Lemma 3.2 in [4], and further

7@l )~ @loxgu o < My [l g,

where M; and M, are positive constants independent of ¢ and f. By the proof
of Lemma 6 in [5], the LP-norm in R" of the right hand side is dominated by
Milfl, as long as [ |1=yzo/rlli= | y;Vedy,< o0, or —1<u<p-1,
with a positive constant M. Thus, with the aid of (4), we can establish (3),
and the proof of Lemma 1 is completed.

LEMMA 2 (cf. Ohtsuka [12; Lemma 9.16]). If h is a function which is
harmonic in R" and satisfies (1) with D replaced by R" and with o such that
—l<a<p—1, then h is constant.

PrROOF. By the mean value property of harmonic functions and Hdélder’s
inequality, we have

@Iyl = My [ (@jayh(y)ay
- . 1/p’ 1/p
<My (L anderdy) ([ lerad h)lelyledy)
B(x,r) B(x,r)
< My (ZEELY oo ([ Jgrad hPiledy )"
B(x,r)

where M, M, are positive constants independent of x, r and 1/p+1/p'=1.
Letting r— oo, we establish

(0/0x;)h(x) = 0,
from which it follows that h is constant.
By Lemmas 1 and 2, we establish an integral representation of functions
satisfying (1).

LEMMA 3. Let —1<a<p—1. For functionsu,vwhich are locally p-precise
in D and satisfy (1), set w(x’, x,)=u(x’, x,) when x,>0 and w(x’, x,)=v(x', —x,)
when x,<0. If lim, ou(x', t)=lim,,,v(x’, 1) for almost every x', then w
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is extended to a function w* which is locally g-precise in R" for any q such that
1<qg<min {p, p/(a+1)}. Further there exist a number A and a set E such
that C(E 0 G; G)=0 for any bounded open set G=R" and

w(x) = ¢ 2o [k 5 @10 wr0)dy + 4
for every xe D—E, where c is a constant depending only on the dimension n.

REMARK. If p>n, then any locally p-precise function on D is continuous
there, and the above integrals converge absolutely at any x € D and are continuous

on D. Moreover, if p>n and C,(E n G; G)=0 for any bounded open set G< R",
then E is empty.

ProOF OF LEMMA 3. If 1<g<min {p, p/(x+1)}, then, as in the proof of

Lemma 1, Holder’s inequality yields f |grad u|%dx < oo for any bounded open
G

set GeD. In viéw of Ohtsuka [12; Theorem 5.6], w is extended to a function
w* which is locally g-precise in R"; here we remark that w* is an ACL function on
R" if we define w*(x’, 0)=Ilim inf, o u(x’, t), and hence grad w* is well-defined
almost everywhere and measurable on R”,

Set W(x)=2;=,fkj(x, y)(@/oy,)w*(y)dy. Then, in view of Lemma I,

Wis locally g-precise in R" and satisfies (1) with D replaced by the whole space R”.
We shall prove that A(w*¥—cW)=0 for some constant ¢. For this purpose,
let ¢ € C¥(R") and note by Fubini’s theorem that

[ weaeeax = £y, [( [ kix, naodx) @y oy
= = ¢ 231 @105, )00) @12y W)y

o fw*(y)Aq»(y)dy

with a positive constant ¢’ depending only on n. By Lemma 2, by letting c=¢""!,
we see that w*—cW is equal to a constant 4 a.e. on R". Since w and W are

locally p-precise in D, E={xe€ D; w(x)#cW(x)+ A} satisfies the required con-
ditions.

COROLLARY. Let —l<a<p—1, n—p+a>0 and u be a function which is
locally p-precise in D and satisfies (1). Then the function u(x’, |x,|) on R"—0D
is extended to a function ui which is locally g-precise in R" for q such that 1 <q<
min {p, p/(a+1)}. Moreover, there exist a number A and a set E such that
CENG; G)=0 for any bounded open set G=R" and

u(x) = ¢ X1_, f (x;—y,) [x = y["(2/0y a(y)dy + A
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for every xe D—E, where c is the same constant as above.
This is an easy consequence of Lemma 3, since, in case n—p+a>0, f(l +
[yD="|f(y)ldy < oo for any measurable function f on R" such thatj[f(}')lﬂ-

|yal*dy <oo.
We here give a technical lemma for later use.

LEmMMA 4. Let f<n,y>—1land r;>2r,>0. If x=(x',x,)eD and x,<2r,,
then
(81 +rb+Y)  incase B+ 7y #0,

| x=yl=rly,lrdy < M
B(0,r)=B(x,r2) log (r,/r;) incase p+y=0,
where M is a positive constant independent of x, ry and r,.

PrROOF. Let x=(x', x,) satisfy 0<x,<2r,. First we note that

f [x=y|#="ly,l"dy
B(0,r{)~B(x,r2)

<[ b = y1rlylrdy + | Ix = yIP"ly,l7dy
B(0,r1)~B(x,r1) B(x,r1)—B(x,r2)

i f lyaldy + f x— p[#=r]y,|7dy
B(0,ry) {yeB(x,r1)=B(x,r2); yn2xn/2}

IIA

f Ix = y|P iy lrdy = I + L + I,
{yeB(x,r1)—B(x,r2); yn<xn/2}

Since y> —1, I, =M, rf*» with a positive constant M,. Letting z=(x’, 0), since
|x—y|>|z—y| if y,<x,/2, we see that {y e B(x, r,); y,<x,/2}=B(z, r,), so that
we obtain

L < f Iz — yBry,l7dy + j Ix — ylF="|y,l7dy
B(z,r1)—B(z,r2) B(z,r2)—B(x,r2)

< Pty ldy + My,
B(0,r1)—B(0,r2)
If y<O0, then
Ls| b= y=lx, — y,l7dy
B(x,r1)=B(x,r2)

- y1P=ry,lrdy.
B(0,r1)—B(0,r2)

If y=0, then |y,/|x—y[|S1+x,/|x—y|Z3 if [x—y|>x,/2, so that

<3 f x—y|Prrndy = 3yf |y[F+rndy,
B(x,r1)—B(x,r2) B(0,r1)—B(0,r2)

Thus the lemma is proved.



Boundary behavior of p-precise functions 79

LEMMA 5. Let p and o be as in Theorem 1. Let f be a nonnegative function
in LP(R") and set u(x)= f | k;(x, )f(W)|yal~*/?dy. Then there
R"=B(0,2(x])
exists a positive constant M >0 independent of f such that

[u(x)| = M|x|=C=p*a)p| £,

for any x e D— B(0, 1/2).

PRrROOF. Since there exists M; >0 such that |k;(x, y)|SM,|x||y|™" whenever
|y|>1 and |y| =2|x|, we have by Holder’s inequality

| K%, DFl=/edy|
R"—B(0,2]x])

R 1p’
<m0 (| e Iyl rndy) IS,
R"—B(0,2|x])
= Mylx|-emroie| ],

for any x € R"— B(0, 1/2).

3. Proof of Theorem 1

Let u be a function which is locally p-precise in D and satisfies condition (1).
Then, in view of the corollary to Lemma 3, there exist a number A and a set
F <D such that C,(F n G; G)=0 for any bounded open set G=R" and

u(x) = ¢ £, j kj(x, y)(8/0y )a(y)dy + A

holds for any xe D—F, where u is defined as in the corollary to Lemma 3. It
is easy to see that F is C,-thin near dD. Therefore, letting f be a nonnegative
function in LP(R"), we have only to prove Theorem 1 for the function

U(x) =fk,-(x, NI yal=*2dy.
Let

U, = | ky(x, 1S yal-*/7dy,
R"-B(0,2|x]|)

U0 = | ki )10 Ly, l=1ndy
B(0,2|x|)~B(x,xn/2)

and

U = [, ks SOy,

Then we see that U,(x) and U,(x) are finite for x € D but U;(x) is finite for xe D
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except those in a set F’ satisfying C,(F'nG; G)=0 for any bounded open set
GcR".
First we treat the function U,.

LEMMA 6. If n—p+a>0, then lim, o x{"7*®/?U (x)=0.
Proor. If xe D—B(0, 1/2), then Lemma 5 implies
xgprap Uy (x)] £ M (2x,)prale| ]|,
for some positive constant M, independent of x. Hence we have
lim,, 1o, xep-B(0,1/2) X" P**/PU,(x) = 0.

We next assume that x e B(0, 1/2). If 0<2x,<g, then it follows from Hélder’s
inequality that

IASTErACY | VIO, -oledy
R"—-B(0,1)
+f e = Y1)yl dy
{yeB(0,1)~B(0,2|x|);|yn| 2}
+ [ =PI )l dy )
{yeB(0,1)=B(0,2|x]);|yn| <e}

< M {ifl 4ot [ SOy, edy

+ |x|-mprarp (f<y;|y"|<s)f(y)pdy>l/p}

with positive constants M, and M5 independent of x and &. Consequently, we
obtain

. 1/p
lim sups, 1o, cemo,2 X7 U S M ([ fowdy)”,

(y;lynl<e}

which implies by arbitrariness of ¢ that the left hand side in equal to zero. Thus
the required statement is established.

In the same manner as Lemma 6 we can derive the following two results.
LEMMA 7. If n—p+a<O0, then (|x|+1)"~P*t®)/rU (x) is bounded on D.
LemMA 8. If n—p+a=0, then lim, ,, [log(1/x,)]~1/?"U(x)=0.

Next we treat the function U, in the case n—p+a=0, that would be the
most difficult case.

LEMMA 9. If n—p+a=0, then lim, ,, [log ((|x]|+1)/x,)]71/7"U,(x)=0.
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Proor. For xe D—B(0, 1/2), we have

U, = My [ == @) | =Irdy

B(0,2|x])=B(x,xn/2)

+f I )Ly, -rdy )
B(0,2|x|)—-B(0,1)

with a positive constant M, independent of x. If 0<4x,<25,<2<4,, then we
have by Lemma 4

x—y|p’A=m|y 1=ep’/pdy < M. 1 5.1
‘[3(0"’1)—3(::,52)' I [Vl y = M, log(d,/3,)

with a positive constant M, independent of 6, §, and x. Hence it follows that

| [x= Y11= ) y,l=/ndy
B(0,2]x|)~B(0,51)~B(x,xn/2)

< M [log (IxI+ /)1 ( | fopdy) ",

R"-B(0,4,)

_y|l-n —a/ < 1/p’
[ v e s YD) Il ei7dy < MyTlog 61/817 111,

and

f Ix = y1=1f () Ly, ~/Pdy
B(x,02)—B(x,xn/2)

< M [log (62/x)17 ( | foray)”

{y;lyn|So2txn}

with a positive constant M;. In the same manner we have

j 91" £ () [yl =*/ody
B(0,2|x|)—B(0,1)

= M, {Dog @ixn1# (| feordy )" + log 8,7 111,

R"-B(0,4y)

where §,>2 and M, is a positive constant independent of 4, and x. From these
facts we obtain

lim sup,, .o, xep-B(o,1/2y [108 (|| +1)/x,)]71/7" U ,(x)
<o +M)( fowdy) "+ (|

which implies that the left hand side is equal to zero. If x e D n B(0, 1/2), then

N/p
f (y)"dy) ,
R"—-B(0,4,) {y;lyn| <42}

U1 < M [ [x =317 3) I dy

B(0,2|x|)—B(x,xn/2)
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with a positive constant Ms. Hence, by the same considerations as above, we
deduce

lim,, ;0. xepnBo,1/2) (108 (1/x,)]7 /7 U,(x) = 0,
and Lemma 9 is established.
In the same manner we can prove the following results.
LEMMA 10. If n—p+a>0, then lim, o x{""P*®/PU,(x)=0.
Lemma 11. If n—p+a<O0, then |x|("~P*®/PU,(x) is bounded on D.

REMARK. If n—p+a<O0and & € oD, then we can show thatf k(& MIf(y)-
aleirdy <o and lim, s s s, (Us(0+ Uz = | k& 90 Flyil-+7dy=
U(¢) for any a>0.

LeMMA 12. If p<n, then there exists a set Ec D which is C,-thin near
0D such that

limxn—’O,xeD—E xfln—p+a)/pU3(x) = 0

ProOF. First we note that > % lf f(y)rdy<oo, where D;={y=(y', y,);
2-i-1<y,<277%2}, Hence we find a sequence {a;} of positive numbers such that

lim;,,,a;=c0 and 3%, a f_f f(y)pdy <oo. Consider the sets
D;

= {x=(x', x,)€D; 27/ =x,<277*}, [U;(x)| > 2/ ("=p*@)pg71/p}

and E=\U%, E;. Since B(x, x,/2)=D; if 27/ <x,<27/*!, we can find a positive
constant M, 1ndependent of j, x such that
3 sl < Mo [ x— i )y

whenever 27/ <x,<27/*!1. Let G, and G, be open sets for which there exists a
number ¢ such that 0<c<1/2 and B(x, cx,)=G, for any xe G,. Then easy
calculation gives

] b =y f)dy < Mo2ieoie ([ fyyedy )
B(x,xn/2)—B(x,cxn) D; /

= Mz[zf("“m/l’a;‘/P](aj JD f(y)pdy)”p
J

for x such that 27/ <x,<27/*1, where M, is a positive constant independent of
x and j. Consequently, if j is large enough, say j=j,, then we see from (5) that

f [x—yI'="f(y)dy = (2M )12/ (n=P)ipg;1/p,
B(x,cxn)
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whenever x € E;.  Hence we have by the definition of C,

CJ(E;0 Gi3 D, Gy) < @My)2-00va, [ f(yedy
D;
for j=j,, from which it follows that
(6) Fjo 2/ CYE;nGy; DinG,) < 0.

If p<n, then (6) with G, =G, =D means the C,-thinness of E near éD. If p=n,
then (6) implies the C,-thinness of E near dD. Clearly,

lim sup,, o xep—g X5 P*9/P|U5(x)| < 21n=P*al/P lim sup; ., a5/ = 0.

Hence E satisfies all the conditions in Lemma 12, and the proof of Lemma 12 is
completed.

LeEMMA 13. If p>n, then lim, o x{"2+®/PU 4(x)=0.

Proor. By Holder’s inequality we have

Uyl < Mlx;wf =y (1= f()dy

B(x,xn/2)

t/p
< My ([ fyrdy)

B(x,xn/2)
with positive constants M; and M,. Hence the required equality follows readily.

PROOF OF THEOREM 1. By Lemmas 6~ 13, the proof of Theorem 1 is com-
pleted.

For simplicity, we define A(x)=x{""?*®/p if n—p+a>0, A(x)= [log((|x|+
D/x)]"?" if n—p+a=0 and A(x)=(|x|+ 1)"-r+a)/r if n—p+a<0. Further
we set a;=2/""P) if n—p+a>0, a;=jp"12/""P) if n—p+a=0 and a;=2"/
if n—p+a<0 for each positive integer j. In view of the proof of Theorem 1
we can establish the following result.

PROPOSITION 1. Let —1<a<p—1, p<nand u be a function which is locally

p-precise in D and satisﬁesf |grad u|Px%dx < co. Then there exists a set EcD
D

satisfying

@) 2571a;CE;nGy; D;nG,) < ©

for any open sets G, and G, for which there exists a number ¢>0 such that
B(x, cx,)= G, whenever x € G,, and

lim,, 0, xep-£ A(X)u(x) =0 incase n—p+oa=0,
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lim sup,, 10, xep-g A(X)u(x) < 00 incase n—p+ o <O0.
REMARK. If n—p+a>0, then (7) is equivalent to the C,-thinness of E
near 0D.
We shall show below that Proposition 1 is best possible as to the size of the

exceptional sets.

PROPOSITION 2. Let —1<a<p—1, p<n and E be a bounded subset of D
satisfying 3%, a;C,(E;; GnD;)<oo, where G is a bounded open set including
the closure of E. Then there exists a nonnegative function fe LP(R") such that

u(x)=ﬁx—y|1—"f(y>|y,,|-a/vdy 00 and limy, ;o v A(X)u(x)= o0,

PrOOF. By the definition of C,, for each j we can find a nonnegative measur-
able function f; such that f;=0 outside GnD;, |If;|F<Cy,E;; GnD;+e; and

f |x—yl'="f(y)dy =1 for every x € E;, where {g;} is a sequence of positive
GND;

numbers such that 3°%_, a;e;<oo. Further we can find a sequence {b,} of positive
numbers such that lim;_,, b;=c0 and > %, b;a,{C(E;; GnD;)+¢;}<oo. We

J
now consider the function f=3 %, bl/Pal/pf;. Then

ff(y)pdy <332, by f F)dy <3 5%, ba CAE,; GnD,)+e;} < 0.
Moreover, if x € E;, then we have
u(x) 2 bl/ral/e f x— Y177 £,(0) Lyl ~*/7dy = MbYPAx),

where M is a positive constant. Since f vanishes outside G, u(x)# o. Hence f
has the required properties in the proposition.
REMARK. In view of the proof of Lemma 1, the above function u satisfies

f]grad ul?|x,|*dx < co.

4. Proof of Theorem 2
We begin with the following result.

LEMMA 14. Let —1<a<p—1 and let u be a locally p-precise function on
D satisfying (1). If lim,, u(x’, t)=0 for almost every x'eR"!, then there
exists a set Ec D such that C,(EnG; G)=0 for any bounded open set G D and

u() = ¢ ey [ (=3 (x =y = (R =y 0uloy) (1)dy

+ 2¢x, JD |X —y|="(0u/dy,) (y)dy



Boundary behavior of p-precise functions 85

forany xe D—E, where X=(x', —x,) for x=(x', x,) and c is the absolute constant
given in Lemma 3.

PrOOF. Setting u*(x’, x,)=u(x’, x,) if x,>0 and u*(x)=0 otherwise, we
note that u* is locally g-precise in R" for q, 1 <g<min {p, p/(a+1)}. Hence we
can apply Lemma 3 and obtain

wHx) = ¢S ;=1fk,-(x, »)(@u*[ay)dy + A

for xe R"—E, where A is a constant depending on u and C,(E N G; G)=0 for
any bounded open set GeR". If xe D—E and X ¢ E, then

u(x) = u*(x) —u*(x) = ¢ Z'}:J(k,-(x, y)—ki(x, y))(0u*[dy;)dy,
which implies that u satisfies the required equality.
By this lemma we can establish the following result.

PROPOSITION 3. Ifu is as in Lemma 14, then there exists a sequence {¢;} =
C&(D) such thatf |grad (@;—u)|Px2dx tends to zero as j— 0.
D

Proofr. For N>0, set

uy(x) = ¢ 274 f (kj(x, y)—k (X, y))(0u[dy;)dy

DNB(O,N)

with the constant ¢ given above. In view of Lemma 1, we find a positive number
M, (independent of N) such that

f lgrad (uy —u)|Pxzdx < Mlj |grad ulPxadx,
D D—-B(O,N)

from which the left hand side tends to zero as N—oo. For ¢>0, define

uy,(x) = cXj= J {kj(x, y)— kX, y)}(0u[dy)dy.

{(y=(y",¥n);¥n>e} NB(O,N)

Then uy , is continuous on 0D and vanishes there. Moreover, uy (x) tends
to zero as |x|— o0, and, again by Lemma 1,

[, lerad (uy . —ulexzdx <, | lgrad ulrysdy.

{yeB(0,N);0<yn<e}

Finally, we set uy . ;(x)=max {uy (x)—9, 0} +min {uy (x)+6,0} for §>0.
Then uy , ; vanishes outside some compact set in D and

f |grad (uy, . s —uy,)IPx2dx — 0 as ¢ | 0.
D
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Thus we can find a sequence {v;} such that each v; is a p-precise function on D
with compact support in D and

fDIgrad(vj—u)lpx:dx—>0 as j—— oo.

By a routine method of regularization of functions v;, we obtain a sequence {¢;}
with the required properties.

PRrROOF OF THEOREM 2. Let u be as in Theorem 2. In view of Lemma 14,
the equality

u(x) = ¢ Sgr [ (ks 9) = KR, 2) @ujoy )y

holds for xe D—E, where C,(EnG; G)=0 for any bounded open set G. We
note here that E is C,-thin near dD.
We see from elementary calculation that |k;(x, y)—k(X, YIS M x,(yalx—
Y|t x—y|=2+|x—y|™") for any x and y in D, with a positive constant M.
Hence we can find a positive constant M, such that
ueol < M (x, | Jx—yl-"lgrad uldy

D—B(x,xn/2)

o lx= i lgrad uldy) = My(Uy(0+Us(x)
for xe D—E. For 6>x,/2 we have by Holder’s inequality and Lemma 4

1/
Uix) < Myl | lgrad ulryzdy)"”

DNB(x,6)—B(x,xn/2)

1/
+ M6~ (mtaiex, (f |grad uIPyﬁ‘,dy) ’

D—B(x,5)

with a positive constant M ;. Therefore it follows that

1/
lim sup, ;o x{"P*0/PU (x) < M3<f |grad ull’x:‘,dx> ’ ,

{yeD;yn<4}

which implies that the left hand side is equal to zero. As in the proofs of Lemmas
12 and 13, we can find a set E’< D which is C,-thin near dD and satisfies

]imxn-'o,xeD—E’ xfln—p+a)/pU2(x) = 0.
Now the proof of Theorem 2 is completed.

Set G,(x, y)=|x—y|t™"—|x—y|*"". Then by elementary calculation we
find M >0 such that
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M7 1x,y,|lx—y|'7"x—y]"2 < Gy(x, y) < Mx,p,|lx—y|'~"|x—y|~2

whenever x any y are in D. Hence we can find a positive number M’ such that

| x—y['""<M'G,(x, y) whenever ye B(x, x,/2). Thus we obtain the following
result.

THEOREM 2'. Ifu is as in Theorem 2, then there exists a set Ec D such that
lim, ;o xep—g X5"2**/Pu(x) = 0
and
®) 271 2iPCq (Ej; D)) < 0,
where Cgq (F; G)=inf|g|b, the infimum being taken over all nonnegative
measurable functions g on R" such that g=0 outside an open set G and J‘ G,(x,
»g(»)dy=1 for any x in a set F. ¢

REMARK. If E satisfies (8), then E is C,-thin near dD; in case p<n, (8) is
equivalent to the C,-thinness near dD.

We shall show below that Theorem 2’ is best possible as to the size of the
exceptional sets. '

PROPOSITION 4. Let —1<a<p—1 and p<n. If EcD satisfies (8), then
there exists a function u such that jlgrad ulPxtdx<oo, lim,,qu(x’, )=0 for

almost every x' € R"! and lim, o ,cp X{""P**/Pu(x)= co.
ProoF. By the definition of C;,, we can find a nonnegative measurable

function f; such that f;=0 outside D;, jn Gi(x, nfi(»dy=1 and |f;ll5<

Cs(Ej; D) +¢;, where {g;} is a sequenceJ of positive numbers such that
2%, 2/tPg;< 0. Letting {b;} be a sequence of positive numbers such that
lim;_, b;=oc0and 37, b;2/"=P{C; (E;; D;)+¢;} < oo, we consider the function

u(x)=f Gi(x, ) f(y)dy, where f=3 % bl/P2itn=pta)/p f.. Then f vanishes
D
outside D and

[ s0yiay s My S5 b20mr 0 [ pysay

S M X5 b0 P{Cq (Ej; Dy)+e;} < 0
with a positive constant M;. Thus, in the same way as in the proof of Lemma 1,

we can prove thatf lgrad u|Px2dx <oo. On the other hand, we have for x € E;
D

Xgr () 2 Mabye | Gi(x, 3)S0)dy 2 Maby,
D

where M, is a positive constant.  This implies that lim,_, ¢ cg X{""7**/?u(x) = co.
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What remains is to show that lim, o u(x’, t)=0 for almost every x’ e R"~!. For
this, it suffices to note that if N>0, thenJ~ |x yI'""f(y)dy is g-precise in
B(O,N

R* for g with 1<g<min {p, p/(a+ 1)}, and hence it is absolutely continuous on
the line 4, ={(x’, t); te R} for almost every x" e R""1.

5. Boundary behavior near the origin

We say that a set E is C,-thin at the origin 0 if
> 51 2/0=P)C (E n B(0, 27*1)— B(0, 277); B(0, 277*2)) < o0.
For a>0, we set I'(a)={x=(x', x,); |x'|<ax,}.
LemMA 15. For any a>0, I'(a) is not C,-thin at 0.
Proor. For each nonnegative integer j, set
I'(a) =I'(a) n B0, 277*!) — B(0, 27Y).

Then C,(I'(a); B(0, 27i*2))=2"i(=P)C (I'y(a); B(0, 4)) and C,(I'o(a); B(0, 4))>
0, so that I'(a) is not C,-thin at 0.

LEMMA 16. Let EcI'(a), a>0. If p<nand Y%, a;,C(EnT fa); B(0, 2))
<0, then E is C,-thin at 0, where a;=2/(""P) if p<n and a;=j"""! if p=n.

Proor. We shall give a proof only in the case p=n. For simplicity, set
E;=EnTIja). Assume that > %, j" 'C,E;; B(0, 2))<co. Let f; be a non-

negative measurable function on R” such that f |x—y|t="fi(y)dy=1 for
B(0,2

any xeE;, f;=0 outside B(0,2) and |f;|2<C,(E;; B(0, 2))+j". Then, by

Lemma 4, we have for xe E;

f [x—=yl'="f(y)dy = M, (log (4/x,))'~*/*|| f;ll
B(0,2)=B(x,xn/2)
< M,(j"'C,(E;; B(0, 2))+j~H)!/n

with positive constants M, and M,. Since > %, j" 'C,(E;; B(0, 2))<oo by our
assumption, if j is large enough, then

| =y Ay > 27

B(x,xn/2)

for any xe E;. If xe E;, then B(x, x,/2)=B(0, 27/*2), so that
CA(E;; B(0, 277%2)) < 27|| f;lIn < 2"[C(E;; B(O, 2))+j~"]

for large j, which implies easily that E is C,-thin at 0.
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The above proof shows that if p<n and EcB(0, 1) n D, then the C,-thinness
of E near 0D is equivalent to %, 2/("=PC(E;; B(0,2) n D;)<c. For a>0,
if we take ko, such that 2ko>(a2+1)!/2, then ENT (a)c\Uf2o E;,y, so that
a;C,(EnT(a); B, 277*2)) < Y kega;;C,(E;4, N T'(a); B(O,2)). Hence we
obtain

CoROLLARY. If p<n and EnTI(a), a>0, is C,-thin near 0D, then EnI(a)
is Cp-thin at 0.

PROPOSITION 5. If u is as in Theorem 1, then there exists a set EcD such
that E 0 I'(a) is C,-thin at 0 for any a>0 and

lim, g yep—g X" P+0/Py(x) = 0, incase n—p+oa>0,
lim, ¢ yp-g [log (1/x,)]"/?'u(x) =0, incase n—p+a=0,
lim, ¢ ep-g 4(x) exists and is finite, incase n—p+ a <O.

Proor. The case where p<n and n—p+a=0 is proved by Proposition 1
together with Lemma 16. The case p>n and n—p+a=0 is a consequence of
Theorem 1. In case n—p+a<0, with the notation in the proof of Theorem 1,
we see that

.| k(x, 1)(2)2y pi(y)dy
R"—B(x,|x|/2)

- f k(0 ) (8/dy )a(y)dy

for j=1,..., n, where the integrals converge absolutely. Moreover, as in the

proof of Lemma 12, we see that k(x, y)(0/0y,)u(y)dy tends to zero
B(x,|x|/2)
as x—0 outside an exceptional set E such that EnI'(a) is C,-thin at 0 for any

a>0.

In the same manner we can establish the following result.

PROPOSITION 6. If u is as in Theorem 2, then there exists a set Ec D such
that EnI'(a) is C,-thin at 0 for any a>0 and

limx*O,xeD—E xﬁn—p+m)/pu(x) = 0
The next two propositions show the best possibility of Propositions 5 and 6

as to the order of convergence.

PROPOSITION 7. Let —1<a<p—1and n—p+a=0. Ifhisa nonincreasing
positive function on (0, o) such that lim, o h(t)= oo, then there exists a function
ue C*(D) satisfying (1) such that lim, u(x’, t)=0 for x'e R"'—{0} and
lim, o req h(x,)x7P+®/Py(x)= 00 for some A which is not C,-thin at 0.
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PrOOF. Take a sequence {i;} of positive integers such that i;+2<i;,,
and 3 %, ajP <oo, where a;=h(27"*1). Further take a sequence {b;} of positive
numbers such that lim;_, , a;b;=c0 and 3} %, bf<c. Let ¢ be a function in
C3(R") such that ¢=1 on B(0, 1/4) and ¢=0 outside B(0, 1/2). Setting e) =
(0, 2=7)e D, we define

u(x) = = bj2if("—P+¢)/pq;(2ij(x_e(ij)))_

Then it is easy to see that lim,,, u(x’, t)=0 for x’#0 and

[lerad uleix,jedx < 5., b2uero [lgrad p(2tx — e )lrix,

< const. 3%, b} < oo.

If we set A=\U%, B(e!”), 271;72), then AcI'(1/2). Since C,(B(el?), 271i72);
B(0, 271*2))=2-1:tn=)C (B(e®, 1/4); B(0, 4)), A is not C,-thin at 0. Further,
if x € B(ei), 27472), then h(x,)x\"~P+®/Py(x) 2 2-(=p+a)/pq b, so that lim, g .4
h(x,)x{r=p+ary(x) = co.

PROPOSITION 8. Let a=p—n>—1. If h is as above, then there exists a
nonnegative measurable function f such that f=0 outside D n B(0, 1), f f(y)»

D

yédy<oo and

lim,_, o cc h(x,)(log (1/x,))~"/P'u(x) = oo
for some A which is not C,-thin at 0, where u(x)=j|x—y|“"f(y)dy.

REMARK. Since f has compact support, u satisfies (1).

PROOF OF PROPOSITION 8. As in the proof of Proposition 7 take a sequence
{b;} of positive numbers such that lim;_, , b;4(2724*)=00 and 3 7, bh<o0;
here we assume that 2i;<i;.,. Define fi(y)=>b,|y|"'(log|y|~)~1/?if yeI'(1)n
B(0, 271)— B(0, 272%) and f;=0 otherwise. Set f=3 %, f(y). Then

[ 10ryady = 21 1i0ryady S M5 b < o,

where M is a positive constant. Consider the sets 4;={xeI'(1); 272 <|x|<
27241} and A=\U%; A;. Then, as in the proof of Lemma 15, we see that 4

is not C,-thin at 0. Further, if x e 4;, then
u(x) =f|x—y|1-"f(y)dy > 31-n j Y f,(0)dy = Mb (log (1/x,))!/7"

with a positive constant M,, so that

Iimx—'O,xeA h(xn) (log(l/xn))—l/plu(x) = .
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6. Radial and perpendicular limits

In this section, as applications of Theorems 1 and 2, we study the existence
of radial and perpendicular limits of functions satisfying (1).

THEOREM 3. Let u be a function which is locally p-precise in D and satisfies
(1) with o such that —1<a<p—1. Then there exists a set E'cdD such that
C,(E'nG; G)=0 for any bounded open set GeR" and

lim, o t("—Pta)/py(x’, t) = 0, incasen —p+ o >0,

lim, o (log (1/8))~1P’ u(x’, t) = 0, in casen — p + o =0,

u(x’, t) has a finite limitast | 0, incasen—p+ a <0,
for any x’ such that (x', 0)¢ E'.

ReEMARK. In case a=20, we can find a set E"<dD such that B,_,,, (E")=0
and u(x’, t) has a finite limit as ¢ | O for any x" with (x’, 0)e 0D — E”, where B, ,
denotes the Bessel capacity of index (f, p) (see [8; Theorem 3] for details). In
case a<0, from this fact we can find E"<0D such that B; ,(E")=0 and u(x’, t)
has a finite limit as ¢t | 0 for any x’ with (x’, 0)edD—E". We note here that
B, (F)=0 if and only if C(FnG; G)=0 for any bounded open set G<=R".
Hence we see that in case « <0, Theorem 3 follows readily from [8; Theorem 3].

For a proof of Theorem 3, we need the following fact.
LEMMA 17. Let Ec D satisfy
9) > %1 C(E;n B0, r); B(0, 2r)) < oo for any r > 0.

Then there exists a set E'0D having the following properties:
(i) C,E'nG; G)=0 for any bounded open set G=R".
(ii) For each £€0D—E' there exists >0 such that ¢+(0, t) ¢ E whenever
0<t<d.

PrOOF. In view of Lemma 1 and its proof in [6], we first note that C,(E; n
B(0, r); B(0, 2r))=C,(E* n B(O, r); B(0, 2r)), where E* denotes the projection of
E; to the hyperplane dD. Set E'=Ni, (U, E¥). Then C,(E'n B(0, r);
B(0, 2r)) < > %4 C,(E*% n B(0, r); B(0, 2r)) for any k. Hence it follows that
C,(E'n B(0, r); B(0, 2r))=0. On the other hand, if {edDn B(0, r)—E’, then
there exists k such that ¢ \U%, E¥. This implies that {+(0, t) ¢ E whenever
0<t<2 %1 Thus the lemma is proved.

If E is C-thin near 0D, then it satisfies (9). Hence, by the aid of Theorem 1,
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we obtain Theorem 3; in case n—p+a<0, we need to notice the Remark after

Lemma 11.
Theorem 2 together with Lemma 17 gives the following result.

THEOREM 4. If u is as in Theorem 2, then there exists E'c0dD such that
C,(E'nG; G)=0 for any bounded open set G=D and

lim, o t(r~Pta)Py(x’, t) = 0 whenever (x',0)edD — E'.
Next we give radial limit theorems for functions satisfying (1).

THEOREM 5. Let u be as in Theorem 1. Then, for each &€ 0D, there exist
a set E;=0B(¢, 1) n D and a number c; such that C(E;; B(¢, 2))=0 and

lim, o ANu(E+r(n—8) =c, if neD n dB(E, 1) — Eq,

where A(r)=r=p*9/r if n—p+a>0, A(r)=~Iog(1/r))"1?" if n—p+a=0 and
A(r)=1if n—p+a<O.

Theorem 5 is a consequence of Proposition 5; instead of Lemma 17, we have
only to note the following

LEMMA 18. Let EcD. IfE is C,-thin at0, then there exists a set ExcDn
0B(0, 1) satisfying the following conditions:
(i) C,(E~; B(0, 2))=0.
(ii) For each neDndB(0, 1)—E~, there exists 6>0 such that rn¢ E
whenever 0<r<9.

By Proposition 6 and Lemma 18 we can establish the following theorem.

THEOREM 6. Ifu is as in Theorem 2, then, for each £ € 0D there exists a set
E,c0B(&, 1) n D such that C,(E,; B(¢, 2))=0 and

lim, o r(v=pto/ey(E+r(n—¢) =0  for every neD n 0B, 1) — E;.

7. Boundary behavior of harmonic functions

If u is harmonic in D, then, by Green’s formula,

Siei [, G )yl @uidydy = 0
B(x,xn/2)
for xe D. Consequently, the proof of Theorem 1 gives the following result.

THEOREM 7. Let u be a function which is harmonic in D and satisfies (1)
with a such that —1<a<p—1. Then
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lim,, o x{""P*®/Py(x) = 0, in casen — p + a > 0,
lim,, o [log (x;'(Ix| +1))]7/?'u(x) = 0, incasen —p+ a =0,
lim sup,, ;o (Ix[+1)(*=P*®)/Py(x) < 00, incasen —p+ a <0.

We can also prove the existence of tangential boundary limits of harmonic
functions in D.

THEOREM 8. Let u be a function which is harmonic in D and satisfies (1)
with asuchthatn—p+oa=0anda> —1. Letting h be a positive nondecreasing
function on the interval (0, o0) such that h(2r)<Mh(r) for r>0 with a positive
constant M, we set

Eo={eean: | eyl rlgraduGiidy<ool,
B(&,1)nD

E, = {¢eaD: lim, o h()t | Jgrad u(y)iely,*dy=0} .
B(&,r)

If £Ee0D—E, UE,, then u(x) has a finite limit as x—¢&, xe T,(¢, a)={x e D;
h(lx—¢&<ad(x—&)}, for any a>0, where A(x)=x""P** if n—p+a>0 and
A(x)=[log 2|x|/x,)]*7? if n— p+a=0.

REMARK 1. In view of [8; Lemma 4], B, _,;, ,(E;)=0. On the other hand
we can prove that H,(E,)=0 in the same way as Lemma 2 in [9], where H,
denotes the Hausdorff measure with the measure function h. If h(r)=ry(r—pt®)
in case n—p+a>0and h(r)=[log (2+r~')]'"? in case n—p+a=0, then T,(¢&, a)
is included in some Ty(&, b), where T/(¢, a)={x=(x', x,); |(x’, 0)—¢|"<ax,}.
Hence Theorem 8 implies the existence of limits of u along the sets T.(¢, a) (cf.
Cruzeiro [3], Mizuta [10], Nagel, Rudin and Shapiro [11]).

ReEMARK 2. If u is a function on D which is harmonic in D and satisfies (1)
with o such that —1 <a<p—n, then u has a finite limit at any boundary point.

In fact, the sets E; and E, with h=1 in the theorem are shown to be empty,
and, moreover, the proof below will show that u has a finite limit at any £ € 0D —
E, UE,; see also [10; Theorem (iii)].

PrROOF OF THEOREM 8. To prove Theorem 8, we use the integral repre-
sentation of u given in Lemma 3 and write u as

u(x) = eS_, jk,-(x, »)(@afoy)dy + C

—cyn, f kj(x, y)(0/dy,)dy
R"—=B(¢&,2|x—¢&))
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+eXp | ki(x, ) @ifoy,)dy + C
B(&,2(x=¢l)

= uy(x) + uy(x) + C.

We remark here that since dii/dy; are continuous on D, the integrals are continuous
on D and the equalities hold everywhere on D. If £edD—E,, thenf Ik, (&, y)I-
|grad u(y)|dy < oo for each j and u, has a finite limit as x—¢&, x e D. Since, as in

~ 1
the proof of Lemma 9, [u,(x)| <M’ (A(x— £t f lgrad u(y)?| y,,|“dy> v
B(&,2]x=¢)
with a positive constant M’, u,(x) tends to zero as x—¢, x € T(¢, a),if E€e 0D —E,.

Thus the theorem is obtained.
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