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1. Introduction

Let u be a function which is locally p-precise in D = {x = (xί9...9 xn); x π >0},

n ̂  2, and satisfies

(1) I Igrad u(x)\px*dx < oo, 1 < p < oo, — l < α < / ? — 1
J D

(see Ohtsuka [12] for (locally) p-precise functions). Many authors have tried

to find a set F<=D such that u(x) has a finite limit as x tends to the boundary dD

along F (see Aikawa [1], Carleson [2], Mizuta [5], [7], [8], [9], Wallin [13]).

They were mainly concerned with the nontangential case, that is, the case where

F=£ξ = {ζ + (09 t);t>0} o r F = Γ(ί,fl)Ξ{χ = ( χ ' , χ B ) e R - - 1 x R 1 ; \x'-ξ'\<axn};

if u(x) has a finite limit as xn | 0 along £ξ9 then u is said to have a perpendicular

limit at ξ, and if u(x) has a finite limit as x->ξ along Γ(ξ9 a) for any α > 0 , then

u is said to have a nontangential limit at ξ. The existence of tangential limits of

u at ξ was discussed by Aikawa [1] and Mizuta [9]. The proof of the existence

of these limits can be carried out by local arguments in fact it requires to find

conditions near ξ which assure the existence of limits.

In this paper we investigate a global behavior of u near the boundary dD.

More precisely, we aim to find a function A(x) such that Λ(x)u(x) tends to zero

as x tends to dD along a set FczD. In order to evaluate the size of F, we use the

capacity:

Cp(E;G) = inf\\f\\'p9

where the infimum is taken over all nonnegative measurable functions / on Rn

such t h a t / = 0 outside G and I |x — y\1~nf(y)dy'^ 1 for every x e £ ; || | |p denotes
J G

the Lp-norm in Rn. As in Aikawa [1], we introduce a notion of thinness of a

set in D, near the boundary dD; we say that a set E is Cp-thίn near dD if there

exists a positive integer j 0 such that

in case p < n, Σf=jo 2'<"-*>Cl,(£/; D) < oo,

in case p = n, Σ^=i 0

 c

P(
Ej Π ^ i G2) < °°
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for any bounded open sets Gί9 G2 such that Gί (the closure of Gλ) is included in

G2, and

in case p > n, WjLy0 Ej *s empty,

where Ej = {x = (x\ xn)sE\ 2~J ^xn<

First we shall establish the following result.

THEOREM 1. Let — 1 <oι<p— 1. Ifuis a function which is locally p-precise

in D and satisfies (1), then there exists a set EaD such that E is Cp-thin near

dD and

limX n^O j c e D_E x(

n"-p+a)/Pu(x) = 0, in case n - p + α > 0,

limXιi_>OfJC6l)_£ [ l o g f o ^ M + l ) ) ] 1 " " 1 ^ * ) = 0, in case n - p + α = 0,

^0 > J c e D_ j E(|x| + l)(/ι"^+α)/p|w(x)| < oo, in case n - p + α < 0.

Next we study the boundary behavior of functions u satisfying the additional

condition that l i m ^ o u(x', xn) = 0 for almost every x' e Rn~λ for such a function

u we can prove later the existence of a sequence {ψj} of functions in CQ(D) such

that I |grad(w — ψj)\pxldx^»0 as /-•oo (see Proposition 3). It will be expected
J D

naturally that such functions behave better than those in Theorem 1, near the
boundary dD. In fact, we can prove the following result.

THEOREM 2. Let α and p be as in Theorem 1. Let u be a function which

is locally p-precise in D and satisfies (1). 7/limί^ow(x/, t) = 0 for almost every

x' eR"~l, then there exists a set E which is Cp-thin near 3D and satisfies

K™Xn*O.xeD-EX(nH-p+a)/Pu(x) = 0.

As applications of Theorems 1 and 2, we shall discuss the existence of radial

and perpendicular limits of u multiplied by a suitable weight function. If in

addition u is assumed to be harmonic in D, then it will be shown that u multiplied

by a weight has a limit as the variable tends to the boundary of D. Naturally, if

we apply the same methods, then we can prove the existence of nontangential

and parabolic limits in the usual sense; for related results, see Cruzeiro [3],

Mizuta [10], Nagel, Rudin and Shapiro [11] and Wallin [13].

2. Lemmas

In order to prove Theorem 1, we prepare several lemmas. First we

establish an integral representation of functions satisfying (1), which is a main
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tool in our discussions. For this purpose, we consider the functions kj(x, y) =

(Xj-yj)\x-y\-"-(-yj)\y\-H if I ) Ί > 1 a n d kj(x, y) = (xj-yj)\x-y\-» if \y\^l,

for j = 1,..., n. Then it is easy to see that

(2) \kj(x, y)\ ^ M\x\ \y\~n whenever \y\ ^ 2\x\ > 2

with a positive constant M.

LEMMA 1 (cf. [5; Lemma 6]). Let —\<a<p—\ and f be a nonnegatίve

function in LP(Rn), and define

u(x) = fax, y)f(y)\yn\-"*dy.

Then u is locally p-precise in D and locally q-precise in Rn for q such that

l < g < m i n {p, p/(cc+l)}. Further, u satisfies

with a positive constant M independent off

PROOF. With the aid of (2), it follows from Holder's inequality that I (1 +

\y\)~n\f(y)\\yn\~oc/pdy<oo for feLP(Rn). For R > 1 , letting B(0, R) denote the

open ball with center at the origin and radius R, we write

u(x)={ kj(x, y)f(y)\yn\-*i'dy + Γ fc/x, y)f(y)\yH\-"dy
J B(O,R) J R"-B(O,R)

Then u' is locally p-precise in D Π B(0, R) in view of Lemma 3.3 in [4] and u" is

continuously differentiable in £(0, JR). Hence it is seen that u is locally p-precise

in D. If 1 <q <min {p, p/(oc +1)}, then we have by Holder's inequality

a \q/p/ Γ \ι — q/p

f(y)pdy ) ( I \y \~^tι^lp^l^~ίilp^ dy ) <c oo
for any bounded open set G c R " . Consequently we see as above that u is

locally ^-precise in Rn.

Let cn = (2—n)~ί if n ^ 3 and c/J = 2~1 if n = 2. Define /cε(x) = cπ(|x|2 + ε 2 ) ( 2 ~ π ) / 2

in case n ^ 3 and fcε(x) = c2 log (|x — y\2 + ε2) in case n = 2, and set kεj(x, y) =

((dldxj)kε)(x-y) if \y\£l and kεJ(x9 y) = ((dldXj)kE) (x-y)-((dldxj)kε)(-y) if

LH>1. We further define

In view of Lemma 3.3 in [4], we see that (d/dxi)uε(x) tends to {djdx^)u{x) in

Lp

0C(Rn — dD) as ε->0. Thus we have only to prove
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with a positive constant M2 independent of ε and /. For this, we first note

J r
(dldxl)(dldxj)klx-y)f(y)\yn\-*lPdy. Setting vε(x) = (βjdxj)

kε(x-y)f(y)dy9 we have

(4)

by the proof of Lemma 3.2 in [4], and further

where M 3 and M 4 are positive constants independent of ε and /. By the proof
of Lemma 6 in [5], the ί/-norm in R" of the right hand side is dominated by

M 5 | | / | | p as long as Γ \l-y-a/p\\i-y^y'^dy^ co, or - l < α < / ? - l ,
J o

with a positive constant M5. Thus, with the aid of (4), we can establish (3),
and the proof of Lemma 1 is completed.

LEMMA 2 (cf. Ohtsuka [12; Lemma 9.16]). // h is a function which is
harmonic in R" and satisfies (1) with D replaced by Rn and with α such that
— l<oι<p—l, then h is constant.

PROOF. By the mean value property of harmonic functions and Holder's
inequality, we have

\(didXi)h(x)\ = \Mιr~" Γ (δidyi)h(y)dy\
J B(x,r)

ί M,r- ( Γ \yβ\-'Ί>dy\"' ( Γ Igrad h(y)\'\yH\'dy
\J B(x,r) J \J B(x,r)

Igrad h(y)\ >\yn\'

1"

B(x,r)

where Ml9 M2 are positive constants independent of x, r and
Letting r-^oo, we establish

(djdxdKx) = 0,

from which it follows that h is constant.

By Lemmas 1 and 2, we establish an integral representation of functions
satisfying (1).

LEMMA 3. Let — 1 <oc<p— 1. For functions w, v which are locally p-precise
in D and satisfy (1), set w(x\ xn) = u(x\ xn) when xn>0 and w(x\ xn) = v(x\ —xn)
when xn<0. If \imtiOu(xf, t) = \imtiov(x', t) for almost every x', then w
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is extended to a function w* which is locally q-precise in Rn for any q such that

l < g < m i n {p, p/(α+l)}. Further there exist a number A and a set E such

that Cp(E ίlG; G) = 0for any bounded open set GaR" and

w(x) = c Σ]=i Jfc/x, y)(dldyj)w*{y)dy + A

for every xeD — E, where c is a constant depending only on the dimension n.

REMARK. If p>n, then any locally p-precise function on D is continuous

there, and the above integrals converge absolutely at any xeD and are continuous

on D. Moreover, if p>n and CP(E n G; G) = 0 for any bounded open set

then E is empty.

PROOF OF LEMMA 3. If l < g < m i n {p, p/(α+l)}, then, as in the proof of

Lemma 1, Holder's inequality yields I |grad u\qdx< oo for any bounded open
J G

set GczD. In view of Ohtsuka [12; Theorem 5.6], w is extended to a function

w* which is locally ^-precise in Rn; here we remark that w* is an ACL function on

Rn if we define w*(x', 0) = lim inff i0 u{x\ t), and hence grad w* is well-defined

almost everywhere and measurable on Rn.
Set W(x)=Σj=i\kj(x, y)(d/dyj)w*(y)dy. Then, in view of Lemma 1,

Wis locally ^-precise in Rn and satisfies (1) with D replaced by the whole space Rn.

We shall prove that A(w* — cW) = 0 for some constant c. For this purpose,

let φ e Co(Rn) and note by Fubini's theorem that

§W(x)Aφ(x)dx =

= c' I w*(y)Aφ(y)dy

with a positive constant c' depending only on n. By Lemma 2, by letting c = c'~\

we see that w* — cW is equal to a constant A a.e. on Rn. Since w and W are

locally p-precise in D, E = {xeD; w(x)ΦcW(x) + A} satisfies the required con-

ditions.

COROLLARY. Let — l<oc<p— 1, n — /? + α > 0 αnί/ w be a function which is

locally p-precise in D and satisfies (1). Then the function u(x', \xn\) on Rn — dD

is extended to a function ΰ which is locally q-precise in R" for q such that l<q<

min {p, p/(α+l)}. Moreover, there exist a number A and a set E such that

Cp(E Π G; G) = 0for any bounded open set GaRn and

u(x) = c Hn

j=^{xj-yj)\x-y\-n{dldyj)ΰ{y)dy + A
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for every xeD — E, where c is the same constant as above.

This is an easy consequence of Lemma 3, since, in case n — p + oc>O, 1(1 +

\y\y~n\f(y)\dy <oo for any measurable function/ on R" such that I |/(>')lp

\yn\"dy <oo.

We here give a technical lemma for later use.

LEMMA 4. Let β<n,γ> -land r1>2r2>0. If x = (*', xn) e D and xn ̂  2r2,
then

r ί (r{+y + rβ

2

+y) in case β + γ φ 0,
\χ-y\β-n\yn\

ydyύM\
J B{o,ro-B{X,r2) [ log ( Γ J / ^ ) in case β + γ = 0,

where M is a positive constant independent of x, r1 and r2.

PROOF. Let x = (x\ xn) satisfy 0 < x n ^ 2 r 2 . First we note that

Γ \χ-y\β-n\yn\
ydy

J B(0,rί)-B(x,r2)

^ Γ \χ- y\β~n\yn\
ydy + Γ \χ-y\β-"\yn\

γdy
J B(0,rι)-B(x,rί) J B(x,rι)-B(x,r2)

ύr\-"{ \y.\'dy+( \χ-y\β-n\yn\
ydy

J B(0,n) J {yeB(x,n)-B{x,r2); yn^Xn/2}

+ Γ I* - y\β-"\ynVdy = /, + i2 + i3.
J {yeB(x,ri)-B{x,r2)>,yn<xnl2}

Since y> —1, I1=M1r
β

ι

+y with a positive constant Mί. Letting z = (x', 0), since
\x-y\>\z-y\ if yn<xj2, we see that {yeB(x9 rx); yn<xJ2}czB(z, r,), so that
we obtain

h ^ ί k - ^ K - ' Ί J J 7 ^ + Γ I* - ^ " I Λ N J
J fi(z,n)-B(z,r2) J B(z,r2)-B(x,r2)

^ Γ
J B(0,n)-B(0,r2)

n)-B(0,r2)

If 7<0, then

\χ-y\β-n\χn-yn\
γdy

B(x,n)-B{x,r2)

= f \y\β-"\yn\
ydy.

J B(0,n)-B(0,r2)

If y^O, then |^II/|x-^||^l+x l l/|x-y|^3 if \x-y\>xn/2, so that

I2 ^ 3? Γ |x-^+y-"ί/j; = 3̂  Γ ^
J β(jc,ri)-B(x,r2) J B(0,ri)-B(0,r2)

Thus the lemma is proved.
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LEMMA 5. Let p and α be as in Theorem 1. Let f be a nonnegative function

in LP(Rn) and set u(x)= Γ k.(x, y)f{y)\yn\~*lPdy. Then there
JΛ"-B(0,2|JC|)

exists a positive constant M>0 independent of f such that

\u(x)\ S

for any xeD-B(0, 1/2).

PROOF. Since there exists M x >0 such that |/c/x, J O I ^ ^ I M M " " whenever
\y\ > 1 and |^| ^2|x|, we have by Holder's inequality

I Γ fc/χ, y)f(y)\yn\-*/pdy
\J R»-B(0,2\x\)

\y\-»P'\yn\-«p'/pdy
Rn-B(0,2\x\)

forsLnyxeRn-B(0, 1/2).

3. Proof of Theorem 1

Let u be a function which is locally p-precise in D and satisfies condition (1).
Then, in view of the corollary to Lemma 3, there exist a number A and a set
FczD such that Cp{F Π G; G) = 0 for any bounded open set GaRn and

Φ) = c Σ?=ijfc/*, y)(Wyj)ύ(y)dy + A

holds for any xeD — F, where U is defined as in the corollary to Lemma 3. It
is easy to see that F is Cp-thin near dD. Therefore, letting / be a nonnegative
function in Lp(Rn), we have only to prove Theorem 1 for the function

U(x)=$k£x,y)f(y)\yH\-lPdy.

Let

U1(x)=\ kj(x, y)f(y)\yΛ\-"*dy,
J Rn-B(0,2\x\)

U2(x)= Γ k/x, y)f(y)\yH\-">dy
J B(0,2\x\)-B(x,xn/2)

and

V3(x)= Γ kj(x,y)f(y)\yn\-";pdy.
J B(x,xn/2)

Then we see that U^x) and U2(x) are finite for x e D but U3(x) is finite for x e D
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except those in a set F' satisfying Cp{F' (]G; G) = 0 for any bounded open set

GaR\

First we treat the function Ut.

LEMMA 6. Ifn-p + a>0, then lim^ o xi

n"-p+a)/PU1(x) = 0.

PROOF. If x eD — B(0, 1/2), then Lemma 5 implies

for some positive constant M1 independent of x. Hence we have

We next assume that xe£(0, 1/2). If 0<2x π <ε, then it follows from Holder's

inequality that

\u,(x)\ ύ M2(\x\ Γ \y\~nf{y)\yn\-*lpdy
\ J R"-B(0,l)

+ Γ \x-y\l--f(y)\yn\-"»dy
J {yeB(0,ί)-B(0,2\x\);\yn\^ε}

+ Γ \χ-yV-nf(y)\yn\-alpdy
J {yeB(0,l)-B(0,2|jf|);|yn|<ε}

ύ MA\\f\\p + B*-» Γ f(y)\yn\-»dy
I J 5(0,1)

f(y)pdy
{y;\yn\<ε}

with positive constants M 2 and M 3 independent of x and ε. Consequently, we

obtain

which implies by arbitrariness of ε that the left hand side in equal to zero. Thus

the required statement is established.

In the same manner as Lemma 6 we can derive the following two results.

LEMMA 7. Ifn-p + a<0, then (\x\ + iyn"P+a^PUί(x) is bounded on D.

LEMMA 8. Ifn-p + ot = 0, then limXni0 [log(l/xπ)]-1^'C/1(x) = 0.

Next we treat the function U2 in the case n — p + α = 0, that would be the

most difficult case.

LEMMA 9. Ifn-p + ot = O, then l i m ^ o [log((|x| + l)lxn)T1/p'U2(x) = 0.
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PROOF. For xeD-5(0, 1/2), we have

\U2(χ)\ ^ M / Γ \χ-y\ι-nf(y)\yn\-"/pdy
\J B(0,2\x\)-B(x,xn/2)

+ ί \y\l-nf{y)\yn\-*lpdy)
J β(0,2|x|)-β(0,l) /

with a positive constant M x independent of x. If §<4xn<2δ2<2<δu then we

have by Lemma 4

Γ |x-j>K<1-»>|j;J-"''/Pί/>, ̂  M.log^i/^)
J B(0,$i)-B(Jc,δ2)

with a positive constant M2 independent of δί9 δ2 and x. Hence it follows that

Γ \χ-yV-nf(y)\yJrΛlpdy
J J*(0,2|x|)-B(0,Ji)-B(x,jcn/2)

^ M3[log ((|x| + \)lxn)γi*' ( Γ

J B(O,δi)-B(x,<52)

and

Γ \χ-y\ι-nf(y)\yn\-a/pdy
J B(x,52)-B(x,JCM/2)

1/P

with a positive constant M 3 . In the same manner we have

Γ \y\i-Λf(y)\yΛ\-»dy
J B(0,2|x|)-β(0,l)

^ M 4 {[log (4IXI)]1/"' ( Γ

where <5X > 2 and M 4 is a positive constant independent of δ^ and x. From these

facts we obtain

lim suP j C M_0 > J c e D_β ( 0,1 / 2 ) [log ((|x| + \)lxn)Yχι*' U2(x)

a \\/p / r \\/p

f(yydy) +MJ\ f(yydy) ,
which implies that the left hand side is equal to zero. If x e D fl B(Q, 1/2), then

\χ-y\ι~nf{y)\yn\-Λlpdy
B(0,2\x\)-B(x,xn/2)
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with a positive constant M5. Hence, by the same considerations as above, we
deduce

and Lemma 9 is established.

In the same manner we can prove the following results.

LEMMA 10. Ifn-p + a>0, then \imXniox
{

n

n-p+a)ΐPU2(x) = 0.

LEMMA 11. Ifn-p + a<0, then \x\(»-*WU 2(x) is bounded on D.

REMARK. If n — p + α<0and ξedD, then we can show that I \kj(ξ, y)\f(y)

\yH\-»dy <co and \\mx^xeΓ(ξ>a)(t/1(x)+ U2(x)) = J kj(ξ9 y)f(y)\yn\-'»dy =

U(ξ) for any a>0.

LEMMA 12. If p^n, then there exists a set EaD which is Cp-thin near
3D such that

^Xn->0,XeD-EX(

n

n-p+a)/PU3(x) = 0.

PROOF. First we note that Σf=i I f(y)pdy<oo, whereDy= {}> = (/, yH);
J Dj

2~j~ι <yn<2~j+2}. Hence we find a sequence {α7} of positive numbers such that

Mπij^^ aj=co and Σ"=i aj I f(y)pdy<oo. Consider the sets
J Dj'

Ej = {x = (x\ xn)eD\ 2~J^xn<2-J+\ |C/3

and E=\jf=ί Ej. Since B(x, xn/2)^Dj if 2~j^xn<2~J+ι, we can find a positive
constant Mx independent of j , x such that

(5) ll/aMI^Λf^ /'f \x~y\1-"f(y)dy
J B(x,xn/2)

whenever 2~J^xn<2~j+1. Let Gγ and G2 be open sets for which there exists a
number c such that 0<c<l/2 and £(x, cxn)c:G2 for any x e G ^ Then easy
calculation gives

\x - y\i~nf(y)dy ^ M22^n-p^p(\ f(y)pdy)
J B(x,xn/2)-B(x,cxn) \J Dj J

ί Γ V
= M-)\2^n~p^ipa~llpΛ\ a I f(v)pdv )

\ J Dj /

for x such that 2~j^xn<2~j+ί, where M2 is a positive constant independent of
x and j . Consequently, if j is large enough, say ;^/ 0 , then we see from (5) that

j. \x-y\1~nf(y)dy ^
B(x,cxn)
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whenever x e Ej. Hence we have by the definition of Cp

Cp(Ej n Gx Dj n G2) ^ {IM^l'^^aj Γ f(yYdy
J Dj

for j^jo, from which it follows that

(6) Σj=Jo 2j^-p)Cp(Ej n Gx Dj n G2) < oo.

If p<n, then (6) with G1=G2 = D means the Cp-thinness of £ near 3D. If p = n,

then (6) implies the Cp-thinness of E near dD. Clearly,

limsupX n^o > J C 6 D_£x^-ί> + α )^|[/3(x)| ^ 2^n-p+a^p\im suρ7_>O0 αy1/^ = 0.

Hence £ satisfies all the conditions in Lemma 12, and the proof of Lemma 12 is

completed.

LEMMA 13. If p>n, then l im J C n ; o x^ + α ) /p[/ 3 (x) = 0.

PROOF. By Holder's inequality we have

|l/3(x)| g MlX--ip Γ \x-y\1~nf(y)dy
J B(x,xn/2)

B(x,xn/2)

with positive constants M1 and M 2 . Hence the required equality follows readily.

PROOF OF THEOREM 1. By Lemmas 6~13, the proof of Theorem 1 is com-

pleted.

For simplicity, we define A(x) = x(

n

n~p+(t)lP if n — p + α > 0 , Λ(x)= [log((|x| +

l)Mn)]~1/p' if π-/? + α = 0 and yl(x) = (|x| + l ) ( " - p + α ) / p if n - p + a < 0 . Further

we set a — V^-rt if n - p + a > 0 , a~jp-γ2j^n-^ if n-/? + a = 0 and aj = 2~aj

if M —p + α < 0 for each positive integer 7. In view of the proof of Theorem 1

we can establish the following result.

PROPOSITION 1. Let —l<a<p— 1, p^n and u be a function which is locally

p-precise in D and satisfies I |grad w|px;ίdx<oo. Then there exists a set EczD
J D

satisfying

(7) ΣjT=i ajCp(Ej n Gί Dj fl G2) < c»

for any open seίs Gx anJ G2 /or which there exists a number c > 0 swc/i ί/iaί

J3(x, cx n )dG 2 whenever x e G 1 ?

lim J C n i 0 ) J c e D_ f ; ^4(x)w(x) = 0 in case n — p + a ^ 0,



84 Yoshihiro MIZUTA

lim sup J C M | O x e D _ £ A(x)u(x) < oo in case n — p + α < 0.

REMARK. If n — p + α>0, then (7) is equivalent to the Cp-thinness of E

near dD.

We shall show below that Proposition 1 is best possible as to the size of the

exceptional sets.

PROPOSITION 2. Let - l < α < p - l , p<^n and E be a bounded subset of D

satisfying Σΐ=ιajCp(Ejl G ί)Dj)<oo9 where G is a bounded open set including

the closure of E. Then there exists a nonnegatiυe function fe Lp(Rn) such that

and UmXni0ιXeEA(x)u(x)=co.

PROOF. By the definition of Cp, for each j we can find a nonnegative measur-

able function/,- such that/ , = O outside G Π Dp \\f j\\p

p<Cp{Ej', G[\Dj) + Bj and

J \x — y\ι~nf:(y)dv^i for every x e L where {ε,} is a sequence of positive
GODj

numbers such that Σ"=i ajεj < °° Further we can find a sequence {bj} of positive

numbers such that limJ^00bJ=oo and Ydy=ιbjaj{Cp{Ej', G Π Dy) + εy}<oo. We

now consider the function / = Σj?=i b)lPa)lPfj. Then

§f(yydy S 3 Σ7=i bjajff/yydy ^ 3 Σ?=i bjaj{Cp(Ej 9 G n DJ) + BJ} < oo.

Moreover, if x e Ej9 then we have

u(x) ^ by?ayr§\x-y\i-»fj(y)\yn\-«!Pdy ^ Mb)l*>A{x)-\

where M is a positive constant. Since/ vanishes outside G, w(x)#oo. Hence/

has the required properties in the proposition.

j
REMARK. In view of the proof of Lemma 1, the above function u satisfies

Igrad u\p\xn\
adx<co.

4. Proof of Theorem 2

We begin with the following result.

LEMMA 14. Let — l<oc<p— 1 and let u be a locally p-precise function on

D satisfying (1). If \imtiou(x\ t) = 0 for almost every x'eRn~ι

9 then there

exists a set EczD such that Cp(E Π G; G) = 0 for any bounded open set GaD and

Σι}=i Γ (χj-yj)(\χ-y\-n-\χ
J D

2cxn Γ \x-y\-"(dulδyn)(y)dy
J D
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for any xeD — E, where x = (xr, —xn)forx = (x\ xn) and c is the absolute constant

given in Lemma 3.

PROOF. Setting u*(x\ xn) = u(xr, xn) if xn>0 and w*(x) = 0 otherwise, we

note that w* is locally ^-precise in Rn for q, l < g < m i n {p, 2?/(α+l)}. Hence we

can apply Lemma 3 and obtain

u*(x) = c Σ]=ι§kj(x, y)(du*ldyj)dy + A

for xeRn — E, where A is a constant depending on u and Cp(E(] G; G) = 0 for

any bounded open set G cz Rn. If xeD — E and x^E, then

u(x) = ιι (x) - ιι*(x) = c Σ3=i J(^(x, Λ-fc/x, y))(du*ldyj)dy9

which implies that w satisfies the required equality.

By this lemma we can establish the following result.

PROPOSITION 3. If u is as in Lemma 14, then there exists a sequence {</>;}<=

CQ(D) such that I |grad(<p, — u)\px%dx tends to zero as j->co.
J D

PROOF. For N >0, set

uN(χ) = c Σ5-i Γ (k/x, y)-kj(x, y))(duldyj)dy

with the constant c given above. In view of Lemma 1, we find a positive number

Mί (independent of N) such that

Γ \gmd(uN-u)\?x*ndx^Mί Γ IgradiiKx dx,
J D J D-B(O,N)

from which the left hand side tends to zero as N-*co. For ε>0, define

uN,Λ(χ) = cΣU f
J {y=(3'',>'n);)'n>ε}nβ(θ

Then uNε is continuous on dD and vanishes there. Moreover, uN ε(x) tends

to zero as |x|-»oo, and, again by Lemma 1,

Γ \gτ2iά{uΉ>ε-uN)\Pχldx^M1 Γ
JD J {yeB(O,N);O<yn<ε}

Finally, we set uNiEd(x) = ma.x {uNε(x) — δ, 0} + min {uN ε(x) + <5, 0} for δ>0.

Then uNtEtδ vanishes outside some compact set in D and

Γ |grad(nN f β,,-MN i β)|*x;dx >0 as ί i 0.
J D
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Thus we can find a sequence {vj} such that each Vj is a p-precise function on D

with compact support in D and

ί \graά (vj-u)\Pχa

ndx >0 as j
J D

0 0 .

By a routine method of regularization of functions vj9 we obtain a sequence {ψj}

with the required properties.

PROOF OF THEOREM 2. Let u be as in Theorem 2. In view of Lemma 14,

the equality

u(x) = c Σ3=i f (*/*> y)-kj(x, y))(duldyj)dy
*) D

holds for xeD — E, where Cp(Ef)G; G) = 0 for any bounded open set G. We

note here that E is Cp-thin near 3D.

We see from elementary calculation that |fc/x, y) — kj(x, y)\^Mxxn{yn\x —

y\ι~n\x — y\~2 + \x — y\~") for any x and y in D, with a positive constant M t .

Hence we can find a positive constant M 2 such that

|ιι(x)| g M 2 ( x w Γ |
\ J D-B(x,xn/2)

+ f |x->'|1-
J JB(jc,xn/2)

for xeD — E. For δ>xJ2 we have by Holder's inequality and Lemma 4

£Λ(x) ^ M 3 x J - ( " + W Γ |grad iι|

\J Dnβ(χ,δ)-B(x,xn/2)

Igrad u\pya

ndy

D-B(x,δ) /

with a positive constant M 3 . Therefore it follows that

lim s u p X n i 0 x{

n

n~p+a)lpUιix) ύ M3( Γ Igrad u\*>x«n

which implies that the left hand side is equal to zero. As in the proofs of Lemmas

12 and 13, we can find a set E' aD which is Cp-thin near dD and satisfies

^ o ^ D E 2(x) = 0.

Now the proof of Theorem 2 is completed.

Set Gx(x, y)=\x-y\1~n-\x-y\1~n. Then by elementary calculation we

find M > 0 such that



Boundary behavior of /^-precise functions 87

M-'xnyn\x-yV-"\x-y\-2 < Gx(x, y) < Mxnyn\x-yγ-«\x-y\-2

whenever x any y are in D. Hence we can find a positive number M' such that

I* — y\1~nύM'Gί(x, y) whenever y eJ3(x, xJ2). Thus we obtain the following

result.

THEOREM 2'. If u is as in Theorem 2, then there exists a set EaD such that

and

(8) Σ?=i2""-rtCGl(Ej;Dj)<co,

where CGι(F; G) = inf ||#||£, the infimum being taken over all nonnegative

measurable functions g on Rn such that g = 0 outside an open set G and I Gx(x,
J G

y)g(y)dy^l for any x in a set F.

REMARK. If E satisfies (8), then E is Cp-thin near dD; in case p<n, (8) is

equivalent to the Cp-thinness near dD.

We shall show below that Theorem 2' is best possible as to the size of the

exceptional sets.

PROPOSITION 4. Let -l<oc<p-l and p^n. If EaD satisfies (8), then

there exists a function u such that I |gradw|pxjί/x<oo, lim ί i ow(x /, t) = 0 for

almost every x ' e i ? " " 1 and \imXni0 xeEx(

n

n~p+<x)/pu(x) = oo.

PROOF. By the definition of C G l , we can find a nonnegative measurable

function /,. such that /, = () outside Dj9 Γ G^x, y)fj(y)dy^l and ||/J-||S<
J Dj

CGi{Ej\ Dj) + Sj, where {ε̂  } is a sequence of positive numbers such that

Σ"=i 2j(n~phj<co. Letting {bj} be a sequence of positive numbers such that

limy.^ bj= oo and Σ^=i ^j2j{n~p){CG)(Ej\ Dj) + Sj}<ao, we consider the function

M(X)= Γ Gι{x9y)f{y)dyi where f=Σ7=ιbyp2j(n~p+a)/p fj. Then / vanishes
•J D

outside D and

f f(y)"y*ndy ύ M1 Σy=i bμje-?^ Γ φYy-dy
%) D %j D

^ Mx Σ?=i bj2Jl"-P){CGι(Ej; Dj) + sj} < αo

with a positive constant M1. Thus, in the same way as in the proof of Lemma 1,

we can prove that I |grad u\px^dx< oo. On the other hand, we have for x e Ej
J D

x<

π"-"+')"'u(χ) ^ M2b)ip [ d (x , y)fj(y)dy ^ MJoψ,
J D

where M 2 is a positive constant. This implies that \imXniOxeE x(

n

n-p+a)/pu(x)=co.
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What remains is to show that l im ί i 0 u(x\ t) = 0 for almost every x' e R"'1. For

this, it suffices to note that if N>0, then I \x — y\1~nf(y)dy is ^-precise in
J B(O,N)

Rn for q with l < g < m i n { p , p/(α+l)}, and hence it is absolutely continuous on

the line ^ , = {(*', t); teR1} for almost every xreRn~ι.

5. Boundary behavior near the origin

We say that a set E is Cp-thin at the origin 0 if

Σf=1 2""-riCp(E()B(09 2~J+1)-B(0, 2-J); 5(0, 2~'+2)) < oo.

For a>0, we set Γ(α) = {x = (x', xw); \x'\<axn).

LEMMA 15. For any a>0, Γ(a) is not Cp-thίn at 0.

PROOF. For each nonnegative integer /, set

Γj(a) = Γ(ά) n B(0, 2-;+1) - B(P, 2~J).

Then Cp(Γ/έi); B(0, 2-J+2)) = 2-Ji"-P>Cp(Γ0(a); 5(0, 4)) and Cp(Γ0(a); B(0, 4))>

0, so that Γ(α) is not Cp-thin at 0.

LEMMA 16. Lei £c=Γ(α), α>0. / / p ^ π απJ Σ^=i <*fv(E n Γ » ; 5(0, 2))

<oo, then E is Cp-thin at 0, where aj = 2J(n~p) if p<n and aj^j"'1 if p = n.

PROOF. We shall give a proof only in the case p = n. For simplicity, set

Ej = EnΓj(a). Assume that Σcj=Jn~1Cn(Ej\ 5(0, 2))<oo. Let fj be a non-

negative measurable function on Rn such that I \χ — y\ι~nfXy)dy^l for
J B(0,2)

any xeEj9fj = 0 outside 5(0,2) and H/J^C^E,-; 5(0, 2))+;"". Then, by

Lemma 4, we have for x e Ej

J B(0,2)-B(x,xn /2)

ύ M2(j"-1Cn(Ej; 5(0,

with positive constants Mx and M 2 . Since ΣJ=\Jn~ιCn(Pj\ B(®> 2))<oo by our

assumption, if j is large enough, then

\χ-y\1-"f/y)dy>2-ί

B(x,xn/2)

for any x e Ey If x ε Ep then 5(x, xB/2) c:5(0, 2~J+2)9 so that

Cn(Ey; 5(0, 2~j+2)) ^ 2Π | |/J ||S < 2M[Cπ(£y; 5(0,

for large j , which implies easily that E is Cπ-thin at 0.
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The above proof shows that if p<n and £<=β(0, 1) Π D, then the Cp-thinness

of E near 3D is equivalent to Σ?=ι 2'<Π-*>CJ,(E/; £(0, 2) n Dj)<ao. For a>0,

if we take k0 such that 2 f c o >(α 2 +l) 1 / 2 , then £nr/fl)cWJS°= 0£ i + k, so that

ajCp(E Π Γ » ; 5(0, 2~^)) g Σΐ°=o aJ+kCp(EJ+k n Γ(a); B(0, 2)). Hence we

obtain

COROLLARY. If p<n and E n Γ(α), α>0, is Cp-thin near 3D, then E Π Γ{a)

is Cp-thin at 0.

PROPOSITION 5. If u is as in Theorem 1, ί/ieπ ί/iere exists a set E<^D such

that E Π Γ(a) is Cp-thin at 0 for any a>0 and

\imx_+OxeD-.Ex(

n

n-p+a)/Pu(x) = 0, in case n - p + α > 0,

l i m ^ o ^ . s [log(l/xn)]'i-1^'u(x) = 0, in case n - p + α = 0,

lim^o x e D _ £ u(x) exists and is finite, in case n — p + α < 0.

PROOF. The case where p^n and n — p + α ^ 0 is proved by Proposition 1

together with Lemma 16. The case p>n and n — p + a^0 is a consequence of

Theorem 1. In case n — p + α<0, with the notation in the proof of Theorem 1,

we see that

J R»-B{x,\x\/2)

for j = l,..., n, where the integrals converge absolutely. Moreover, as in the

proof of Lemma 12, we see that j fc. (x, y){djdyλΰ{y)dy tends to zero
J*(*, |*|/2)

as x-^0 outside an exceptional set E such that E n Γ(α) is Cp-thin at 0 for any

α>0.
In the same manner we can establish the following result.

PROPOSITION 6. If u is as in Theorem 2, then there exists a set EczD such

that E Π Γ(a) is Cp-thin at Ofor any a>0 and

\imx^xeD_Exin-P+^fPu(x) = 0.

The next two propositions show the best possibility of Propositions 5 and 6

as to the order of convergence.

PROPOSITION 7. Let —l<a<p—landn — p + (x^0. If h is a nonincreasing

positive function on (0, oo) such that lim ί U ) h(t)= oo, then there exists a function

MeC°°(D) satisfying (1) such that \imnou(xf, t) = 0 for xfeRn~l~{0} and

l i m ^ o ^ h(xn)x(

n

n~P+a)/Pu(x)= oo for some A which is not Cp-thin at 0.
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PROOF. Take a sequence {î -} of positive integers such that ij + 2<ij+i

and Σ"=i a~jp<oo, where aJ = h(2~iJ+l). Further take a sequence {bj} of positive

numbers such that hmJ_o0aJbj=co and Σ7=i bPj<co. Let φ be a function in

Q?(Λ") such that φ=l on 5(0, 1/4) and φ = 0 outside 5(0, 1/2). Setting *><•>) =

(0, 2"-') e D, we define

Then it is easy to see that lim, ; o u(x\ t) = 0 for xVO and

Γ

^ const. Σ7=i &J < °°

If we set A = \jfsslB(e«J\2-iJ-2)9 then AcΓ(l/2). Since Cp(5(e<ω, 2" ί ' ~ 2 ) ;

5(0, 2-iJ+2)) = 2-iJ(»-p">Cp(B(e(°\ 1/4); 5(0, 4)), A is not C^-thin at 0. Further,

if xeB(e(iJ\ l'1^2), then /i(xM)x^-^+a)^M(x)^2-</l-^+a>^ayfei, so that limx^0,xe^

h(xn)x(

n

n-p+a)Pu(x)= oo.

PROPOSITION 8. Lei α = p —n> —1. // /i is as above, then there exists a

nonnegative measurable function f such that f=0 outside D Π 5(0, 1), I f(y)p

J D
y*dy <oo and

= co

for some A which is not Cp-thin at 0, where u(x)= I \x — y\1~"f(y)dy.

REMARK. Since/has compact support, u satisfies (1).

PROOF OF PROPOSITION 8. As in the proof of Proposition 7 take a sequence

{bj} of positive numbers such that limj^aobJh(2'2iJ+1) = oo and Σ f = i ^ y < ° ° j

here we assume that 2ij<ij+ί. Define fJ(y) = bj\y\-1(\og \y\~x)~llp if yeΓ(l) n

5(0, 2-'0-B(0, 2'2iJ) and/y = 0 otherwise. Set^Σj^i//^)- Then

Γ KyYyldy = Σ5°=i Γ
tJ D %) D

=!

where M t is a positive constant. Consider the sets Aj = {xeΓ(l); 2 ~ 2 ί ' < | x | <

2-20+1} a n d A = \jcf>

=1 A}. Then, as in the proof of Lemma 15, we see that A

is not Cp-thin at 0. Further, if x e Aj9 then

u(x) = ̂ \x-y\1

with a positive constant M 2 , so that

= oo.
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6. Radial and perpendicular limits

In this section, as applications of Theorems 1 and 2, we study the existence

of radial and perpendicular limits of functions satisfying (1).

THEOREM 3. Let u be a function which is locally p-precise in D and satisfies

(1) with α such that — l<a<p— 1. Then there exists a set E'adD such that

Cp(Ef Π G; G) = 0for any bounded open set GaRn and

l im f i 0 t("-P+aVPu(x', t) = 0, in case n - p + α > 0,

lim ί i 0 (log(l/0)~1/p'w(x\ 0 = 0, in case n - p + α = 0,

u(x', t) has a finite limit as t | 0, in case n — p + α < 0,

for any x' such that (x1', 0) φ. E'.

REMARK. In case α^0, we can find a set E"<^dD such that B1_a/pp(E") = Q

and u(x\ t) has a finite limit as 11 0 for any x' with (x\ 0)edD — E'\ where Bβp

denotes the Bessel capacity of index (β, p) (see [8; Theorem 3] for details). In

case α<0, from this fact we can find E"adD such that BίtP(E") = 0 and u(x\ t)

has a finite limit as 11 0 for any x' with (*', 0)edD — E". We note here that

BUp(F) = 0 if and only if Cp(FnG; G) = 0 for any bounded open set GaR".

Hence we see that in case α:gθ, Theorem 3 follows readily from [8; Theorem 3].

For a proof of Theorem 3, we need the following fact.

LEMMA 17. Let EczD satisfy

(9) Σ7-1 Cp(Ej ΓΊ B(09 r); 5(0, 2r)) < oo /or any r > 0.

Then there exists a set E'<^dD having the following properties:

(i) CP(E' Π G; G) = 0for any bounded open set GczRn.

(ii) For each ξedD — Ef there exists <5>0 such that ζ + (0, i)φE whenever

0<t<δ.

PROOF. In view of Lemma 1 and its proof in [6], we first note that Cp(Ej n

B(0, r); B(0, 2r))^Cp(EJ Π B(0, r); β(0, 2r)), where EJ denotes the projection of

Ej to the hyperplane dD. Set Ef = rλ%>

=ί(\j<?=1 EJ). Then C p (£ 'nB(0,r) ;

B(0,2r))SΣ7=kCp(E*nB(0,r);B(0,2r)) for any fe. Hence it follows that

Cp{E' Π B(0, r); β(0, 2r)) = 0. On the other hand, if ξ e dD n 5(0, r ) - £ r , then

there exists /c such that ξ£\jJ=kEJ. This implies that ξ + (O,t)£E whenever

0<t<2~k+1. Thus the lemma is proved.

If E is C -thin near 3D, then it satisfies (9). Hence, by the aid of Theorem 1,
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we obtain Theorem 3 in case n — p + α < 0, we need to notice the Remark after

Lemma 11.

Theorem 2 together with Lemma 17 gives the following result.

THEOREM 4. If u is as in Theorem 2, then there exists E'adD such that

Cp(E' Π G; G) = 0for any bounded open set GaD and

l im f i 0 tin-P+a)/pu(x\ r) = 0 whenever (xf, 0)edD - E'.

Next we give radial limit theorems for functions satisfying (1).

THEOREM 5. Let u be as in Theorem 1. Then, for each ξedD, there exist

a set EξadB(ξ, 1) f] D and a number cξ such that Cp(Eξ; B(ξ, 2)) = 0 and

\imri0 A(r)u(ξ + r(η-ξ)) = cξ if ηeD n δB(ξ, 1) - Eξ,

where A(r) = r^-P+a)^ if n-p + oc>O, A(r) = (\og(llr))~1^' if n-p + oc = O and

A(r) = l ifn-p + (x<0.

Theorem 5 is a consequence of Proposition 5; instead of Lemma 17, we have

only to note the following

LEMMA 18. Let E^D. If E is Cp-thin at 0, then there exists a set E~czD n

dB(0, 1) satisfying the following conditions:

(i) Cp(£~;*(0,2)) = 0.
(ii) For each ηeD Π dB(0, 1) — £~, there exists δ>0 such that rη^E

whenever §<r<δ.

By Proposition 6 and Lemma 18 we can establish the following theorem.

THEOREM 6. If u is as in Theorem 2, then, for each ξedD there exists a set

EξczdB(ξ, 1) n D such that Cp(Eξ; B(ξ, 2)) = 0 and

-ξ)) = 0 for every ηeD n dB(ξ, 1) - Eξ.

7. Boundary behavior of harmonic functions

If u is harmonic in D, then, by Green's formula,

Σ-3=i f (xj-yj) \x-y\-n(du/dyj)dy = 0
J B(x,xn/2)

for xeD. Consequently, the proof of Theorem 1 gives the following result.

THEOREM 7. Let u be a function which is harmonic in D and satisfies (1)

with α such that —l<a<p—l. Then
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x(

n

n~p+a)/pu(x) = 0, in case n — p + α > 0,

[log (x^HI^I + l))]~1/p'"(^) = 0, in case n - p + α = 0,

< oo, in case n - p + α < 0.

We can also prove the existence of tangential boundary limits of harmonic
functions in D.

THEOREM 8. Let u be a function which is harmonic in D and satisfies (1)
with ccsuch that n — p + oc^iO andα> —1. Letting h be a positive nondecreasing
function on the interval (0, oo) such that h(2r)<Mh(r) for r>0 with a positive
constant M, we set

Eγ = IξedD; Γ \ξ-y\^\gmάu(y)\dy<oo\ ,

E2 = iξedD; lim r.o Λ(r)-» Γ \gτadu(y)\p\yn\"dy=θ\ .
I J B(ξ,r) )

If ξedD-E1\)E2, then u{x) has a finite limit as x->ξ, xe Th(ξ, a) ={x eD;
h(\x — ξ\)^aΛ(x — ξ)}, for any α>0, where A(x) = xn

n~
p+Cί if n — p + α>0 and

/xn)γ-P if n-p + α = 0.

REMARK 1. In view of [8; Lemma 4], β 1 _ α / p p (£ 1 ) = 0. On the other hand
we can prove that Hh(E2) = 0 in the same way as Lemma 2 in [9], where Hh

denotes the Hausdorff measure with the measure function h. If fo(r) = ry("~p+α)

in case n-p + oc>O and /i(r) = [log(2H-r"1)]1-^ in case n-p + oc = 0, then Tγ(ξ9 a)
is included in some Th(ξ, b), where Tγ(ξ, a) = {x = (x\ xw); |(x', 0)~ί |y<αxJ.
Hence Theorem 8 implies the existence of limits of u along the sets Ty(ξ, a) (cf.
Cruzeiro [3], Mizuta [10], Nagel, Rudin and Shapiro [11]).

REMARK 2. If u is a function on D which is harmonic in D and satisfies (1)
with α such that —l<α</? —n, then u has a finite limit at any boundary point.

In fact, the sets Ex and E2 with h = 1 in the theorem are shown to be empty,
and, moreover, the proof below will show that u has a finite limit at any ξedD —
Eί U E2\ see also [10; Theorem (iii)].

PROOF OF THEOREM 8. To prove Theorem 8, we use the integral repre-
sentation of u given in Lemma 3 and write u as

u(x) = cΣhi J fc/*> y)Vΰlδyj)dy + C

= cΣ3=i f k{x, y)(dΰldyj)dy
J R»-B(ξ,2\x-ξ\)
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+ c Σϊ=i Γ /c/x, y)(dΰldyj)dy + C

= Wχ(x) + u2(x) + C.

We remark here that since dΰ/dyj are continuous on D, the integrals are continuous

on D and the equalities hold everywhere on D. If ξedD — E1, then I \kj(ξ, y)\

Igradw(^)|^y<oo for each j and ux has a finite limit as x->ξ, x e D . Since, as in

the proof of Lemma 9, \u2{x)\^Mf (A{x-ξ)-χ Γ |grad u(y)\p\yn\*dy\'P

\ J B(ξ,2\χ-ξ\) J

with a positive constant M', M2(X) tends to zero as x-*ξ, xe Th(ξ, a), if ξedD — E2.

Thus the theorem is obtained.
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