HIROSHIMA MATH. J.
18 (1988), 53-58

On the steady state of the heat conduction on
a Riemannian symmetric space

Hiroshi KAyiMmoTO
(Received April 28, 1987)

§1. Introduction

Let (X, g) be a Riemannian manifold and 4 the Laplacian associated to the
Riemannian metric g. For any bounded continuous function f on X, the heat
equation which has the initial value f is given by the following:

0ulot = — Au on X x (0, o0)
u(x, 0) = f(x) for xeX,

where the solution u(x, t) is a function in C%(X x [0, o0)) and is assumed to be
twice continuously differentiable in x and once continuously differentiable in ¢,
for (x, f)e X x (0, c0). These equations describe the conduction of heat through
the homogeneous medium X. When X is a compact manifold or X is a bounded
domain with smooth boundary 0X in a larger Riemannian manifold (in this
case we impose in addition, the boundary condition that

u(b, t) = Y(b)  for (b, H)edX x (0, ),

where  is a bounded continuous function on 6X and the solution u is in C°(X x
[0, 00)), it is known that u(x, t) converges uniformly to a function which does
not depend on t and is harmonic on X as the time ¢t becomes large (cf. [1] Ch.
VI, VII). The limit function is called the steady state. The purpose of the
present article is to describe the steady state when X is a Riemannian symmetric
space of the noncompact type under the condition that the initial value has the
limit along the Martin boundary in the Oshima compactification X of X. When
X is a noncompact manifold, even in the case for X = R there exists an example
of the initial value which does not converge to a steady state (but it has many
w-limits each of which is a constant function [8]).
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§2. The steady state on a symmetric space

Let X be a Riemannian symmetric space of the noncompact type. Then X
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is isometric to a coset space G/K where G is a noncompact connected semisimple
Lie group with finite center and K is a maximal compact subgroup. Let g and
f be the Lie algebras of G and K respectively and let B denote the Killing form of
g. Bisnondegenerate since g is semisimple. Let p be the orthogonal complement
of fing. Then g=f+p is the Cartan decomposition and let § be the Cartan
involution. p is identified with the tangent space T,(X) at o={K}e X. The
restriction B|p x p is positive definite, so defines an invariant Riemannian metric
gon X. Let 4 be the corresponding Laplacian. Fix a maximal abelian subspace
acp and let M be the centralizer of a in K. If « is a linear function on a and
a#0, let g,={X eg|[H, X]=a(H)X for all Hea}. o is called a restricted root
if g,#0. Let a’ be the open subset of a where all restricted roots are #0. Fix
a Weyl chamber a* in a, i.e., a connected component of a’. A restricted root a
is called positive (denoted by a>0) if its values on a* are positive and let IT=
{ay,..., o;} be the corresponding set of simple roots. Let the linear function p
on a be defined by 2p=3,.,m,x where m,=dim g, and denote by n the sub-
algebra 3 ,.,9, and put i=60n. Let 4, N and N be the analytic subgroups of G
corresponding to a, n and # respectively. Then G=KAN is an Iwasawa decom-
position. For ge G we write g=k(g)exp H(g)n(g) with k(g)e K, H(g)ea and
n(g)e N. Put A*=expa*. Let Wbe the Weyl group of (g, a), i.e., W=Ng(a)/M
where Ny denotes the normalizer in K. In order to describe the behavior at
infinity of functions on X we embed X into the Oshima compactification X.
For the detailed definition of this compactification, see [10]. In this compacti-
fication we have the map A*0—[0, 1]cX defined by (exp H)o—(e U, .,
e~*1t)) and the G-orbit B of the point o, corresponding to (0,..., 0) by the above
embedding is called the Martin boundary of X. The stabilizer of o, is P=MAN
and B=G/P=K/M. The normalized Haar measure dk on K induces a K-
invariant measure on B. For h in L®(B) of the bounded measurable functions
on B its Poisson integral on X is given by

Ph(g) = f _W(ghydk.

The Poisson transformation £ is a bijection of L®(B) onto the space of all the
bounded solutions of Laplace equation Au=0 on X.

Let f be a bounded continuous function on X. We consider the heat
equation on X which has the initial value f:
oul/ot + Au =0 on X x (0, o0)
)
u(x,0) =f(x) xeX.

For the existence and uniqueness of the solution, see [1], Ch. VIII, Theorems 3
and 4 or [2]. Our theorem is as follows:
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THEOREM. Suppose that the initial value f has the limit along the Martin
boundary B, i.e., there exists a bounded function f,, on B such that f(x) converges
to f.(b) as x tends in X to a boundary point b. Then the solution u of the heat
equation (1) has the steady state which is the harmonic function given by the
Poisson integral of f,,

lim,, o, u(x, 1) = 2 f(x),
uniformly for x in every compact subset of X.

PrROOF. The heat equation on a symmetric space X =G/K has the following
Gauss kernel by the Plancherel theorem (cf. [4]).

0x) = | et s, () o) 2dviw,  x€G,

where a* is the dual space of a, ¢v(x)=j elv=nHEk)dk is the elementary
K

spherical function corresponding to v in a*, ¢(v) is the Harish-Chandra c-function
and w=#W the order of the Weyl group. By this kernel function the solution u
of (1) is given by

ue 0= [ 0.0y =[0Gy, xeG.

The integral formula for the Cartan decomposition G=KAK yields that for
x=kak', dx=D(a)dkdadk’, D=T1],-, |sinh a|™= and

u(x, 1) = f p g,(a)(Lf(xka)d@p(a)da.

We know that (cf. [4], Prop. 3.1) g,=0 on X and

IG gx)dx = f gda)D(a)da =1 foreach t>0.
A+

We shall prove the following Lemma in the next section.

LeMMA 1. For any compact set C in the closure X in X such that Cn B=g,
we have

f gx)dx — 0 when t— o0.
CnB

Taking this Lemma for granted we proceed as follows. Given ¢>0, by the
assumption (2) we can take an open neighborhood U of o, in the closure Cl (A4 *0)
=~ [0, 1] such that

| f(xka)—f (xko )| <& forany aeU, keK.
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Then KU is an open set in X containing B, therefore C=X — KU is compact and
CnB=g. By Lemma 1, we have

f g(x)dx = f gla)D(ayda — 0 when t— oo.
cnx At-U
Hence we have
u(x, ) = [ fixko)ak + [ gfaDarda | (f(xka)—f(ko. )k,
K At J K
[ at@p@daf (sexkay—sexkonak={ — + | .
At K At-U U
As for the first term put M =supy | f|, then supg|f /<M and
[, st@p@da| 1f(ka)~fulxko,ldk
< 2Mf g{a)D(a)da — 0 when {—s co.
A*t-U
And for the second term,
f g{a)D(a)da f |f (xka)—f .. (xko,)|dk < sj g,(a)D(a)daf dk = ¢.
U K At K
Since we can take ¢>0 arbitrarily small we obtain that

Jv/“ g,(a)D(a)dafK | f(xka)—f(xko,)|dk —> 0 when t— oco0.

§3. Proof of Lemma 1
By the compactness of C it suffices to prove for any x,€ X — B there exists
a neighborhood V of x, in X such that VnB=¢ andf g{(x)dx—0 when
vnx

t—o0. First for x,€ X, take any compact neighborhood V of x, in X. Then
the inequality

0(x) S [ e ol (0 e 2dvw

< to(x) f 1V 101D)]o(v)~2dv)w,

and the Lebesgue convergence theorem yield that when t— o,

[ adx < [ gox [ emrarrriomicmi-2dym — o,
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since |¢(v)|~2 is at most polynomial growth. Next as for x,€ X —(X U B), there
exist g€ G and He Cl(a*), #0 such that x,=lim,_ gexpsHo in X. We shall
fix such g and H for the rest of this section. Since x, € B, there exists a simple
root a €Il such that a(H)=0. Note in this case that rank G/K=2. Here we
recall some of the basic facts on parabolic subalgebras and establish the notation.
For more details refer to [11], 1.2. Now let © be the set of simple roots vanish-
ing at H. @y (or H) defines a parabolic subalgebra p, =gy + n# where gy is
the centralizer of H in gand n#=3%, .09, We have the direct decomposition
gp=my+al=m+a+3, =08, Wheremy=ny+m+ay+ny My=3,u)=0,a>0
8, 0H={Xea|a(X)=0forall e @y}, ay={X ea|B(X, a#)=0}, fiy;=0n, and
m=the centralizer of a in . Note that Hea¥#{0}, ay#{0} and a=a¥ +ay
(direct sum). Put py=0py and ny=0n,. Let Py, My, Ny, NH A, AH P,
NH be the analytic subgroups of G with the corresponding Lie algebras. Then
Py=MzAHNH js the Langlands decomposition and P, is the stabilizer of
Xo in G and also Py =MyzA*NH. Every a € @ has restriction zero on a¥ and
restrictions of @y to ay precisely form the roots of the pair (my, ay). Put Ky
=My n K. Then we have the analytic diffeomorphism Y : N4 x AH x M 4/K y—
G/K defined by y(n, a, yKy)=nayK and for a suitable normalization of the
measures, the invariant measure on G/K is written by dx=a2*"dn da dy where
x=nayK and 2pH =3, y).oa (see [9], §9 or [11], Theorem 1.2.4.11). The
following Lemma holds.

LEMMA 2. LetneNH, a,a’e AH and v, y'e M. We have the formula:

2pH =1,-1572"v'"YAdn
a fnﬂg,(y a ‘na'y')dn
_____(4nt)——lH/Ze—|loga'—logu—2tHo[2/4t g;(y—-ly’),

where 1" =dim A¥, g, is the Gauss kernel for the symmetric space My|Ky and
H,e€a¥ is such that B(H,, X)=pH(X) for X €aH.

For a proof, see [9] Theorem 16.4.1.

Under these preparation we proceed as follows: Recall x,=1lim,_, , g exp sHo.
Let g~'enayK where ne N¥, ae A" and ye M,. Takeany compact neighbor-
hood U of {Ky} in My/Ky,. Then the set V=theclosure of Yy(NH# x A¥ x U) in
X contains the geodesic (exp sH)o and gV forms a neighborhood of x, in X.
We have by Lemma 2,

f g(x)dx =f gigx)dx
gvnx vnx

=j f jg,(y“a‘lﬁa’y’)azl’"dﬁda’ dy’
naJanJu
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— (47‘51‘)"””[ Y e—[X-Ioga—ZtHoP/MdeU g;(y—ly')d)','

- (4nz)-l"/2f

a

. e-lxlzf‘"dXL_wgi(y’)d)"’

a

=f 9.(3") dj' — 0 when 1 —
y~ v

since y~1U is compact in My/Ky. This completes the proof of Lemma 1.
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