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1. Introduction

This paper is concerned with the oscillatory (and nonoscillatory) behavior of

proper solutions of neutral linear functional differential equations of the type

(A) ^[x(ί)-h(t)x(τ(t))-] + σ £ Pi(t)x(gi(t)) = 0,
at i = ι

where n ^ 2 , c r = l o r — 1 , and the following conditions are assumed to hold without

further mention:

(a) h: [α, co)-+R is continuous and satisfies \h(t)\f^λ on [α, oo) for some

constant λ<ί;

(b) τ: [α, oo)->/? is continuous and incresing, τ(ί) < t for t ;> a and l i m ^ x τ(ί)

= oo;

(c) each pt: [α, oo)->(0, oo) is continuous, l^i^N;

(d) each g{. [α, oo)->/? is continuous and satisfies limf_oogfi(ί)= oo, 1 gi^iV.

By a proper solution of (A) we mean a function x: [Tx, oo)->/? which satisfies (A) (so

thatx(ί) — h(t)x(τ(ή) is n-times continuously differentiable) for all sufficiently large t

and sup {|x(ί)|:ί ̂  T} > 0 for any T ^ Tx. Such a solution is called oscillatory if it has a

sequence of zeros tending to infinity; otherwise it is called nonoscillatory.

In recent years there has been a growing interest in oscillation theory of

functional differential equations of neutral type; see, for example, the papers [1-6,9—

15] and the references cited therein. Most of the literature, however, is focused on

first order linear equations with constant coefficients and deviations, and very few

results are available for higher order equations with variable coefficients and

deviations. To the best of the authors' knowledge, the first step toward a systematic

investigation of the second kind was taken by Ruan [12] who studied the existence

of nonoscillatory solutions of second order equations of the form

^j[x(ί) - λx(t - τ)] + p(t)x(0(ί)) = 0,
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where λ and τ are positive constants.

The purpose of this paper is twofold. First, we want to generalize Ruan's results

[12] to π-th order equations of the form (A) involving much more general deviating

arguments. This is done in Sections 2 and 3; we classify the possible nonoscillatory

solutions of (A) according to their asymptotic behavior as ί-» oo, and construct, with

the aid of fixed point techniques, nonoscillatory solutions x(t) having the following

types of asymptotic behavior

(I)k ιimx(t)-h(ήx(τ(t))

for some /e{l, 2,...,n—1}.

Secondly, we intend to establish criteria for oscillation of all proper solutions of

equation(A). This is done in Section 4; we first derive "ordinary" functional

differential inequalities of the type

which must possess nonoscillatory solutions if equation (A) is assumed to have a

nonoscillatory solution, and then show that such a situation is impossible by

applying nonexistence criteria for the above inequalities recently obtained by

Kitamura [8]

2. Classification of nonoscillatory solutions

A) Kiguradze's lemma. We begin by classifying all possible nonoscillatory

solutions of equation (A) according to their asymptotic behavior as ί->oo, on the

basis of a well known lemma of Kiguradze [7] stated below.

LEMMA 2.1. Let ueC π [ί 0 , oo) be such that

(2.1) u ( ί ) / 0 and σu{t)u(n\t) < 0 for t^t0.

Then, there exist an integer /e{0, l,...,n} and at^t0 such that(— l)n~ι~1σ= 1 and

(2.2),

I ( - l)l~'u(ty°(i) > 0, t^tl9 l^iύn.
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A function u(t) satisfying (2.2)z is termed a function of (Kiguradze) degree /. The

asymptotic behavior of a function of degree / is as follows:

i) If / = 0 (which is possible only when σ= 1 and n is odd, or σ= — 1 and n is

even), then either

l i m ^ ^ ί ) = const ^ 0 or l i m ^ ^ ί ) = 0;

ii) If 1 ̂ l^n— 1, then one of the following three cases holds:

hm ~Y = const / 0
ί->oo t

hm -j—j- = const φ 0
ί->oo£

lim—p = 0 and Iim-y3γ=oo or —00;

iii) If l = n (which is possible only when σ= — 1), then either

h m — r = constτ^0 or hm—τ=oo or —00.
/-Π ~ 1 fit — 1

In what follows we use the notation

(2.3) τ°(ί) = ί, τί(ί) = τ(τι-1(0), τ~\t) = τ-
1(τ- ( i-1 )(ί)X i = 1, 2,...,

where τ~x(ί) is the inverse function of τ(ί).

B) Classification of nonoscillatory solutions. Let x(ί) be a nonoscillatory

solution of equation (A). From (A) it is clear that x(t) — h(ήx(τ(ή) is eventually one-

signed, so that either

(2.4) x(t)lx(t)-h(t)x(τ(tm>0

or

(2.5) x(t)lx(t)-h(t)x(τ(tm<0

for all sufficiently large t. If (2.4) holds, then the function u(ή = x(ή - h(t)x(τ(ή)

satisfies (2.1) for all large ί, and so, by Lemma 2.1 u(t) is a function of Kiguradze

degree / forsome /e{0, l,...,n} with(— l)n~ι~1σ= 1. Let us denote by «yΓz

+ the set of

solutions x(t) of (A) which satisfy (2.4) and for which x(t) — h(t)x(τ(t)) are of degree /.

On the other hand, if (2.5) holds, then u(t) = h(t)x(τ{ή)-x(ή satisfies (2.1) (with σ

replaced by — σ) for all large ί. However, the Kiguradze degree of u(t) must be zero.

In fact, from (2.5) we have \x(t)\^\h(t)x(τ(t))\^λ\x(τ(ή)\9 and hence |x(τ"m(ί))|
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g,λm|x(ί)|, m= 1,2,..., which implies lim ί^oox(ί) = 0. Thus the set of all solutions x(t)

of (A) satisfying (2.5) is denoted by Jf Z. It is clear that the class JT~ for (A) is empty

if (_ \γ- i σ = i9 that is, if σ = 1 and n is odd, or if σ= -1 and n is even. Summarizing

the above observations, we have the following general classification relations for the

set Jf of all nonoscillatory solutions of (A):

(2.6) ^ = ^ i + ( J ^ 3 + U U ^ + - i U ^ o for σ = l and n even,

for σ=landnodd,

for σ = - 1 and n even,

for σ=-landnodd.

We note here that if h{t) is either oscillatory or eventually negative, then (A)

cannot possess a nonoscillatory solution x(ή satisfying (2.5), so that in this case the

class J^Q should be removed form (2.6).

C) Asymptotic behavior of nonoscillatory solutions. From what were stated

in the above subsections it follows that a nonoscillatory solution x(t) of (A) falls into

one of the following four cases:

(I) limx(t)~h(

t

(ID l im^)yτω)=0> ^ > y » g B or
ί-*oo ί ί-»σo ί

for some /e{l, 2,..., n-\) with (-1) / I" z" 1σ= 1;

(III) hm ^zr\ = o o or — oo

t

(IV)
ί-»-oo

We will see how the asymptotic behavior of x(ή — h(t)x(τ(ή) reflects on that of

the solution x(t) itself. It suffices to consider only the solutions x(t) of (A) satifying

(2.4). Let x(ή be one such solution. Then, u(t) = x(t) - h(t)x(τ(ή) satisfies (2.2), for

some /e{0, l,...,π} with ( — l ) I I " l " 1 σ = l . Let t2>t1 be such that τ(ή^t1 for ί^ ί 2 .

Using the relation

(2.7) x(ή = u(t) + h(t)x(τ(ή)

repeatedly, we find
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(2.8) x(t)= Σ H/ίMτJW) + HM(ί)(ίWτw(ί)(O), t>t2,

where n(t) denotes the least positive integer such that t± < τn(t)(t) ^ t2 and Hm(t\ m = 0,

1, 2,..., are defined by

(2.9) H 0 ( ί ) = l ,
ι = 0

From (2.8) and the fact that \Hm{t)\^λm it follows that

(2.10)

i f /^ l , and

(2.11) \x{t)\ύjzj + ξ9 t*t29

if /=0, where ξ>0 is a constant.

If Λ(ί) is eventually positive, then we have

(2.12) |x(ί)| ^ |w(ί)| for all large t.

Otherwise, using (2.7) we get

x(t) = tit) + h(t)u(τ(ή) + Mί)Mτ(0Mτ2(0),

which shows that if

(2.13) /ι(ί)ft(τ(ί))^0 for all large t

and if the Kiguradze degree / of u(ί) is positive, then

(2.14) |x(ί)| ^ (1 - λ)\u(t)\ for all large t.

In view of (2.10), (2.11), (2.12) and (2.14) we conclude that under the hypothesis (2.13)

(which includes the case of one-signed h(t)) the following four types of asymptotic

behavior are possible for nonoscillatory solutions x(ή of equation (A):

(I) 0<liminf^P^lim sup^ί<oo for some fce{0, 1,..., n-l};

(II) lim ^ = 0 and lim ^ = oo

for some/e{l, 2,...,n-l} with ( - 1 ) " - | - I σ = 1;
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(III) l i m i ^ f = o o ; (IV) limx(ί) = 0.
ί-*oo * ί-*oo

3. Existence of nonoscillatory solutions

A) Solutions of type I. The objective of this section is to obtain criteria for

equation (A) to have nonoscillatory solutions of types I and II described in Section

2. We start with type-I solutions, and show that such solutions can be completely

characterized in case (2.13) is satisfied.

THEOREM 3.1. Suppose that (2.13) holds. Equation (A) has a nonoscillatory

solution x(t) satisfying (2.4) and

(3.1) l i m x ( 0

for some /ce{0, l,...,n—1} if and only if

(3.2) Σ Γt»-k-1lgι{t)Ypι(t)dt<π-

PROOF. (The "only i f part) Let x(t) be a solution of (A) satisfying (2.4) and

(3.1). Since

lim -^[x(ί) - h(t)x(τ{i))-] = 0, fc + 1 g i g n - 1,
t-+oodt

if k<n— 1, repeated integration of (A) shows that

(3.3) £ Γtn-k-'Pi(t)\x(gi(t))\dt<π
i = i j r

provided T> a is large enough. If k = n — 1, an integration of (A) guarantees the truth

of (3.3). On the other hand, from (2.13) and (3.1) we have

(3.4) l i m i n f » J > 0 , i g i g J V .

The desired inequality (3.2) then follows from (3.3) and (3.4).

(The "if" part) Let T>a be large enough so that

(3-5) T0 = min{τ(7), inf#1(ί),...,inf gN(t)} ^ a
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and

(3.6) Σ
i

(1-λ)2

We denote by Xk the set of all functions xeC[T 0, oo) such that x(t) is nondecreasing

and

c(t — T\k r(t — T\k

- ύ x(t) ύ ,, t for t^T and x(t) = x(T) for t0 ^ t ^ T,
k\ λk\

where c > 0 is an arbitrary but fixed constant. (Note that x(t) = 0 for T o ^ ί ^ Tif k

> 1.) Following Ruan [12], with each xeXk we associate a function x: [To, co)-+R

defined by

(3.7)

x(t)=

x(t) =

x(T)
)9 t>T9

x(T)

where n(t) denotes the least positive integer such that To < τn(t)(t) ^ Tand Hm(t% m = 0,

1, 2,..., are given by (2.9). It is easily verified that xeC[T 0, oo) and satisfies the

functional equation

(3.8) x(t) - h(t)x(τ(t)) = x(t), t ^ T.

Now, using the abbreviation

N

(3.9) /(ί, χ(g(t))) = X Pi(ήχ(gi(ή),

we define the mapping !F\ Xk-+C[T0, oo) in the following manner: if fe^ 1, then

δc{t-Tf

(3.10)

k\

- i r k

= 0,

f = Γ '

if /c = 0, then
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(3.11)

= δc ( - 1)"- ̂  Γ ( S "̂ V(5,
J ί VW A J

-1)""xσHV^iV/fe
JT (n-l)\

where δ = 1 if (—1)"-*"^= 1 and σ= I/A if ( - l ) π " k " 1 σ =

Let xeΛΓk. Using (3.7), we have

which implies that

- 1 .

and

, t^τ, for fc^

^7^ for fc = 0.

From the above inequalities and (3.6) we see that if k^ 1, then

ί > T

and if fc = 0, then

0 g l J /(5,
J ί (1—1)!

2r

λ(\—λ)i =

1—2
- —

λ
c, ί ^ T.

Using these inequalities in (3.10) and (3.11), we conclude that ̂ xeXk, which implies

that 3* maps Xk into itself. It is not difficult to verify that $F is continuous and ^(Xk)

is relatively compact in the topology of C[T0, oo). Therefore, the Schauder-

Tychonoff fixed point theorem ensures the existence of an element x*eXk such that

x* = , which is equivalent to the equation
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/(r, x*(g(r)))drds, t^T for k ^ 1,

x*(t) = δc + (- l γ - ' σ Γ ( S 5 f(s, x*(g(s)))ds, t^T for fc = 0.
J ί \ft •*•/•

Taking the relation (3.8) (with x = x*) into account, we obtain

δc(t-T)k

x*(t)-h(t)x*(τ(t)) = -
k\

t^T for

i (t) - h(t)x*(τ(ή) = & + (- l r ^ σ p ^ ^ V f e *

ί ^ T for fc = 0,

which implies by differentiation that x*(ί) is a positive solution of (A) satisfying (2.4)

and (3.1). This completes the proof.

B) Solutions of type II. We now consider nonoscillatory solutions of type II

of equation (A), that is, those solutions x(t) which satisfy (2.4) and

/ ^ ^ i x(t)-h(t)x(τ(ή) Λ 1# x(ί)MίWτW)
(3.12) h m - ^ y v w = 0 , h m - ^ — f

v _ ; v w / = QO or - oo
ί-^OO ί ί-» QO ί

for some ίe{l, 2,..., n - 1 } such that ( - l ) w " / " 1 σ = l .

If x(t) is one such solution of (A), then integration of (A) gives

i = i j r

and

for some T>a sufficiently large. Suppose that (2.13) holds. Combining these

inequalities with the inequalities

WOl^αί 1 " 1 and \x(t)\^βtι for ί ^ T ,

α and β being arbitrary positive constants, which follow readily from (2.10), (2.13)
and (3.12), we see that
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N Λoo

(3.13) Σ tn~l~1LQi(t)y~1Pi(t)dt<co

t = l j α

and

(3.14) i=lja

Thus, (3.13) and (3.14) are necessary conditions for the existence of a solution x(t)

satisfying (2.4) and (3.12) of equation (A) for which (2.13) is satisfied.

The following theorem provides sufficient conditions for the existence of such a

solution of (A) in the case where h(t)^.O for t^a. We have been unable to obtain a

corresponding result for the case of negative h(t).

THEOREM 3.2. Suppose that h(t)^Ofor t^a. Let /e{l, 2,..,, n— 1} be such

that( — iy i ~ z ~ 1 σ= 1. Equation (A) has a nonoscillatory solution x(t) satisfying (2.4)

and (3Λ2) if

(3.15) £ Γtn-ι-1lgi(t)yPi(t)dt<π

and

(3.16)

PROOF. Choose T>a so large that (3.5) holds and

(3.17)

Let c > 0 be fixed and consider the set Xx consistisng of all functions xeC\TQ, oo)

such that

and

x(t) = x(T) for T0^t^T.

If xeXh then since x{ή^ctι/{l-1)!, ί̂ > 7; the function x(t) defined by (3.7) satisfies

and so the mapping #" defined by
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(3.19) βΓx(ή = 09 T0£t£T9 for / > 1 ,

= c9 T0£t£T, for / = 1 ,

maps Xι into itself. Since the continuity of & and the relative compactness of

can be proved without difficulty, there exists an element x* eXt such that x* =

As in the proof of Theorem 3.1, the x*(ί) associated with x*(ί) via (3.7) satisfies the

integral equation

cU—T)1'1x*(ή-h(t)x*(τ(t))= {

{ l l y

(3.20)

J Γ
That x*(ί) is a solution of equation (A) follows from differentiation of (3.20). To show

that x*(ί) has the desired asymptotic behavior, we note that

(3.21) l^lx^ή-hiήxWtm = c + £ | ^ ^ - L i / ( r , *<Wr)))drds

and

(3.22) ^[A*(t)-Λ(t)

for t ^ T In view of (3.8) with x = x* and (2.14), we have

x*(t) = x*(t) + h(t)x*(τ(t))

(3.23)
§= (1 - A)x*(ί) ^ ( 1 - λ ) c ( ί - Γ T 7 C - 1 )

for all large ί. Combining (3.23) with the inequality

c + |
-1

which is a consequence of (3.21), we obtain

On the other hand, (3.22) implies that
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It follows that x*(ί) satisfies (2.4) and (3.12). This completes the proof.

C) Remarks and examples. Consider the special case of (A) with N=l:

(3.24) ΓTΓM') ~~ M0*M0)] + σ/KO*(0(O) = °

In addition to (a)-(d) assume that (2.13) is satisfied. Conditions (3.2), (3.15) and (3.16)
for this equation reduce to

(3.25) I ίπ"*"1[flf(ί)]fcp(ί)Λ<oo,

(3.26)

and

(3.27)

respectively. Suppose that g(t) satisfies

(3.28) 0<liminf — ^ l i m s u p — < o o .
t-*oo * ί-*oo ί

(Examples of such g(t) are

flf(ί) = ί ± δ, g(t) = μί, g(t) = t + sin ί,

where <5 and μ are positive constants.) Then, the set of (3.25) for all fc = 0,1,..., n— 1
reduces to a single condition

(3.29) f-^iήdt <oo.
Ja

From Theorem 3.1 it follows that if (3.29) holds, then (3.24) has a solution x(t)
satisfying (3.1) for every fce{0, 1,..., n — 1}, and that if

(3.30) Γ 0 0 iJ . '
then (3.24) cannot have a solution x(ί) satisfying (3.1) for any fce{0,1,..., n— 1}. We
note that Theorem 3.2 is not applicable to equation (3.24) subject to (3.28), since in
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this case conditions (3.26) and (3.27) are not consistent for any I.
Next, suppose that g(ή = tθ, where 0e(O,1) is a constant. Then, (3.26) and (3.27)

become

(3.31)

and

(3.32)

J a

J a

which may hold simultaneously; for example, the function p(ί) = ίy, γ being a
constant, satisfies both(3.31)and(3.32) if a>0 and( l-θ)( l- l )-n^y<(l-θ) l-n.
According to Theorem 3.2, conditions (3.31) and (3.32) for some /e{l, 2,..., n— 1}
with (— l)n~ι~ ισ = 1 guarantee the existence of a solution x(ί) of (3.24) which has the
asymptotic behavior (3.12).

EXAMPLE 3.1. Consider the equation

£
dt2

(3.33) lx{i)-λx(t-p)-] + (λer- iy-i>'χ(vί) = 0, ί £ 0,

where 0<Λ<l, p>0and v>0.
(i) Suppose that λep > 1. Then, (3.33) is a special case of (3.24) in which n = 2, σ

= 1, /i(ί) = A, τ(£) = ί-p, p(t) = (A^ — l)β(v~1)f and g{t) = vt. From (2.6) we have Jί
= ^ i + 0 ^ o for (3.33). Note that Jί^φφ, since (3.33) has a solution x(t) = e~t

belonging to this class. The possible asymptotic behaviors of the members x(t) of
Jit are:

(3.34) l i

(3.35) lim [x(ί) - λx(t - p)] = const φ 0,
ί-*oo

and

(3.36) lim = 0, lim [x(ί) — λx(t — p)] = oo or — oo.

If v < 1, then (3.29) (n = 2) holds, and so (3.33) has a solution satisfying (3.34) as
well as a solution satisfying (3.35). However, there is no solution of (3.33) which has
the asymptotic property (3.36), because the condition (3.14) which is necessary for
the existence of such a solution is violated for equation (3.33).

^ 1, then (3.30) (n = 2) holds, so that (3.33) has neither a solution satisfying
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(3.34) nor a solution satisfying (3.35). Since (3.13) is not satisfied, (3.33) does not

admit a solution with the property (3.36).

(ii) Suppose that λep < 1. Then, (3.33) is a special case of (3.24) in which n = 2, σ

= - 1 , h(t) = λ9 τ(t) = t-p, p(t) = (l~λep)e(v~1)t and g{t) = vt. The classification (2.6)

then reduces to Jf = Jf§ (JΛ^ί, and the possible types of asymptotic behavior of

nonoscillatory solutions x(ί) of (3.33) are (3.34), (3.35),

(3.37) lim[x(ί)-Ax(ί~p)]=O

and

(3.38) lim

Exactly the same statements as in (i) hold for solutions which satisfy (3.34) and

(3.35), depending on whether v < 1 or v ̂  1. Equation (3.33) has a solution x(ί) = e~t

satisfying (3.37). No information can be drawn about the solutions x(ί) of (3.33)

which satisfy (3.38).

EXAMPLE 3.2. Consider the equation

(3.39) jjίx(t)~λx(t-p)'] - d(\-λe~p)e%~tθx{tθ) = 0, t ^ 0,

where 0 < Λ , < l , p > l and θ>0. The classification and the asymptotic behavior of

nonoscillatory solutions of (3.39) are the same as in (ii) of Example 3.1. This equation

possesses a solution x(t) = et satisfying (3.38). It is not known if there is a solution of

(3.39) satisfying (3.37). It is easy to see that if θ> 1, then (3.39) has two types of

solutions with asymptotic behaviors (3.34) and (3.35), and that if θ^ 1, then (3.39)

admits neither of these two types of nonoscillatory solutions.

4. Oscillation of all solutions

A) Lemmas. We are interested in the situation in which all proper solutions

of equation (A) are oscillatory. Since this situation is equivalent to the nonexistence

of nonoscillatory solutions of (A), the problem is to obtain conditions under which

none of the solution classes appearing in the classification relation (2.6) has a

member. The derivation of the desired results are based on the following lemmas

due to Kitamura [8, p. 487] which provide oscillation criteria for "ordinary"

functional differential inequalities of the form

(4.1) {σu<nXή + p(t)u(g(t))}sgnu(t) ^ 0,
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where «^2, σ = ± l , p: [0, 00 )-•((), 00) is continuous, g: [a, 00 )-•((), 00) is

continuous, and limf_>oogf(i)=oo. We use the notation:

g*(t) = max{#(ί), t}9 α[^] (ί) = mm

(4.2)

gj$) = min{fif(ί), t}9 p[g] (t) =

LEMMA 4.1. Letσ=\ αndn be even. There is no nonoscillαtory solution o/(4.1)

if

(43) Γίg*(mn~1lβ(t)rεp(t)dt=<x> for some ε > 0 .
Jα

LEMMA 4.2. Let σ = 1 and n be odd. If

(4.4) Γίg*(t)γ-2lg(t)y-εp(t)dt =oo for some ε > 0 ,

then all possible nonoscίllatory solutions <?/(4.1) are of degree 0. Such nonoscillatory

solutions are precluded if

( 4 . 5 ) , i m
im sup

for some ie{0, 1,..., n — 1}.

LEMMA 4.3. Let σ= — 1 and n be odd. If

f(4.6) ί [ ^ ( 0 Γ " 2 [ ^ ) ] " ε p ( 0 ^ = o o for some ε > 0 ,

/Λ̂ « all possible nonoscillatory solutions are of degree n. Such nonoscillatory solutions

are precluded if

(4.7) lim sup r ^ V ^ Γ W f ' ^ > 1
t-oo Jί (n— - l ) ! 7!

for some je{0, l , . . . ,« —1}.

LEMMA 4.4. Leί σ = — 1 β«J « ό^ even. If

I(4.8) t[0, l«(O]""3[0(t)]1" εP(t)^=oo for some ε > 0 ,

ί/zen gfery nonoscillatory solution o/(4.1) is either of degree 0 or of degree n. Solutions

of degree 0 [resp. degree ή] are precluded provided (4.5) holds for some ΪG{0, 1,..., n
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-1} [resp. (4.7) holds for some ;e{0, 1,..., w-1}].

B) Oscillation criteria. First we examine the case where h(ή is eventually

positive. Let x(t) be a nonoscillatory solution of equation (A). Then, the function

x(ή[x(ή—h(t)x(τ(t)y] is either eventually positive or eventually negative.

Consider the case where x(t)lx(t) — h(t)(τ(t))']>0 for large t. Put v(t) = x(t)

-h(t)x(τ(ή). Since, in this case, \v(t)\ ^ |x(ί)| for large t (cf. (2.12)), we see from (A) that

provided t is large enough. It follows that v(t) is a nonoscillatory solution of each of

the differential inequalities

(4.9), {συ^) + Plt)v{gi{t))}sgMt) fg 0, IZi^N,

for all sufficiently large ί, and that x(t) is a member of Jf* (cf. (2.6)) if and only if v(t) is

a solution of degree / of (4.9)f, l^i^N.

Next consider the case where x(ί)[x(ί) — h(t)x(τ(t))] is eventually negative. Put

w(t) = h(t)x(τ(t))-x(t). Since |w(ί)|gΛ(ί)Mτ(ί))I^A|x(τ(ί))|, we find \w(τ-\t))\/λ

^\x(t)\9 which combined with (A), yields

{(- σ)w(M)(ί) + λ - * £ Pj(t)w(τ "xtoi(/)))} sgnw(/) g 0.

It follows that

(4.10), {(-σ)w^\t)^λ-1pi(t)w(τ-\gi(t)))}^riw(t) g 0, 1 ̂  i ̂  JV,

for all sufficiently large ί, which shows that x(ί) is a member of «yΓ^ if and only if w(ί)

is a solution of degree 0 of (4.10)t for each Ϊ, l^i^N.

Let us now turn to the case where h(t) is eventually negative and the case where

h(t) is oscillatory and such that

(4.11) h(ήh(τ(t))^0 for all large t.

In these cases, as was remarked in Section 2-B, there is no solution of (A) satisfying

x(t)[x{t)-h{t)x{τ(t)y] < 0 for large ί, and, for a solution x(t) of (A) such that x(t)[x(ή

— h(t)x{τ(t))]>0 for large t, the function v(t) = x(t) — h(t)x(τ(ή) satisfies

(4.12) (1 - λ)\v(t)\ ^ \x(t)\ for all large ί,

provided the Kiguradze degree of x(t) is positive. From (A) and (4.12) we see that v(t)

satisfies

(4.13),
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for all sufficiently large t, and that xeJff with / ^ 1 if and only if v(t) is a solution of

degree / of (4.13),-, l^ί^N.

To derive oscillation criteria for equation (A) it suffices to obtain conditions

which preclude all the possible solution classes Jff, 0 ̂  / ̂  n, and Jf$ appearing in

the classification (2.6). That this is indeed possible can be seen from the above

observations combined with Lemmas 4.1-4.4 which apply directly to the functional

differential inequalities (4.9)ί9 (4.10)t and (4.13)t, l^i^N. The following theorems

follow in this manner.

THEOREM 4.1. Let σ = 1 and n be even.

(i) Suppose that h(ή is eventually negative or that h(t) is oscillatory and satisfies

(4.11). All proper solutions of (A) are oscillatory if there is ie{l,..., N} such that

(4.14) ldi*{t)Y~ 1LGi(t)l~εPi(t)dt = oo for some ε > 0,

where gi^(t) = min{gi(t), t}.

(ii) Suppose that h(t) is eventually positive. All proper solutions of (A) are

oscillatory if there are i, 7e{l>..., N}such that (4.14) holds and

(4.15) lim
9β(t)

im sup
t->co Jp[ t~l 0

Pj(s)ds > λ
(n-fc-1)!

for some ke{0, 1,..., n-l}, where p C τ " 1 ^ ] (ί)

THEOREM 4.2. Let σ=l and n be odd.

(i) Suppose that h(t) is eventually positive. All proper solutions of (A) are

oscillatory if there are Uje{!,..., N} such that

ΓW
Ja

(4.16) I lgiM
n~2lGi^)V~ePiif)dt=^ for some ε > 0

and

(4.17) lim sup Γ "" rιfJJX~" ^"'^'^[L Pp)ds:
ί-̂ oo Jpigβ(t) k. (n k 1).

for some fce{0, 1,..., n — 1}.

(ii) Suppose that h(t) is eventually negative or that h(t) is oscillatory and satisfies

(4.11). If(4.16) holds, then every proper solution of (A) is either oscillatory or belongs to

class Jίt.
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THEOREM 4.3. Let σ= - 1 and n be odd.

(i) Suppose that h(t) is eventually negative or that h(t) is oscillatory and satisfies

(4.11). All proper solutions of (A) are oscillatory if there are i,ye{l,..., N}such that

(4.18) ί[^*(0]π"2[^(0]" εPi(0^ = oo for some ε > 0
J a

and

for some μe{0, l , . . . , n - l } .

(ii) Suppose that h(t) is eventually positive. All proper solutions of (A) are

oscillatory if there are i,j, ke{l9..., N} such that (4.18) holds,

(4.20) lim sup w v v ~ ^ - " ^ i-uyjw -j ( s ) ί / s > t

ί-̂ oo Jί μ' (n — μ—ly.

for someμe{0, 1,..., /ι — 1}, α«rf

(4.21) lim sup
ί-oo Jp[τ Xcogk](t) V!

(π —v— 1)!

for some ve{0, 1,..., « — 1}.

THEOREM 4.4. Let σ = — 1 <z«d « be even.

(i) Suppose that h(t) is eventually positive. All proper solutions of (A) are

oscillatory if there are i,j, ke{l, :.., N} such that

(4.22) Γtlgi*(t)r-3lgi(t)y-*pi(t)dt=n for some ε>0,
Ja

(4.23) lim sup Γ { - ^ ^ W M P ^ ) - ^ ) } " ^ -
'-oo Jp μ! ( n - μ 1 ) !( n - μ -

/or some μe{0, 1,..., π— 1}, and

for some μe{09 1,..., Λ - 1 } , and

,4.24) hm sup Γ W - ™ ) ("MίtfC^,,,^ > ,
,^oo J ί v! (n-v—l)l

for some ve{0, !,...,« — !}.
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(ii) Suppose that h(t) is eventually negative or that h(t) is oscillatory and satisfies

(4.11). Every proper solution of (A) is either oscillatory or belongs to class Jf§ if there

are ί,ye{l,..., N} such that (4.22) holds and

,4.25) Dm sup Γ « t β " k f ' t Γ W Λ
μ! (n — μ—l)l l—λ

for some μe{0, 1,..., n— 1}.

PROOF OF THEOREM 4.1. According to (2.6), Jff, /e{l, 3,..., n-1}, and Λ ^

are the possible classes of nonoscillatory solutions of (A) with σ = 1 and even n. Our

task is, therefore, to show that all of these solution classes are empty if the

hypotheses of the theorem are satisfied.

(i) In this case JVQ is necessarily empty. Suppose that Jf* Φ φ for some Ze {1,

3,..., n— 1}. Then, each of the inequalities in (4.13) possesses a nonoscillatory

solution of degree Z. However, this is impossible, because from Lemma 4.1 applied to

(4.13)f it follows that (4.14) prevents (4.13)f from having a nonoscillatory solution of

any kind. Thus we must have Jff = φ for all Ze{l, 3,..., n— 1}.

(ii) If Jf* φ φ for some Ze{l, 3,..., n— 1}, then all inequalities in (4.9) have

nonoscillatory solutions of degree /. On the other hand, applying Lemma 4.1, we see

that, because of (4.14), (4.9); has no nonoscillatory solution. This contradiction

shows that Jff= φ for Ze{l, 3,..., n— 1}. If Jί^ Φ φ, then each of the inequalities in

(4.10) admits a nonoscillatory solution of degree 0. However, from (4.15) and the

second statement of Lemma 4.4 it follows that (4.10)7- cannot have a solution of

degree 0. Therefore, Jf$ = φ as well.

PROOF OF THEOREM 4.2. (i) If Jff Φ φ for some Je{0, 2,..., n-1}, then the

inequalities in (4.9) must possess nonoscillatory solutions of degree I. However, this

is impossible, because the first statement of Lemma 4.2 implies that under (4.16),

(4.9); cannot possess a nonoscillatory solution of degree Ze{2,4,..., n— 1}, while the

second statement of Lemma 4.2 implies that, under (4.17), (4.9) j does not admit a

solution of degree 0. It follows in view of (2.6) that all proper solutions of (A) are

oscillatory.

(ii) In this case Jff = φ for all /e{2, 4,..., n— 1}, since, by Lemma 4.2, (4.16)

ensures the nonexistence of solutions of degree I for each of the inequalities (4.13)f.

However, the possibility Jf§ Φ φ cannot be excluded.

PROOF OF THEOREM 4.3. (i) It is obvious that Jf§ = φ. Lemma 4.3 (the first

part) applied to (4.13)£ shows that Jff =φΐoτ ZG{1, 3,..., rc-2}, and Lemma 4.3 (the

second part) applied to (4.13),- shows that Jf* = φ

(ii) Apply the first and second parts of Lemma 4.3 to (4.9); and (4.9)j9

respectively. Then, we see that Jff = φ, le {1,3,..., n — 2}, and JΓ* = φ, respectively.

That Jf$ = φ follows from the second part of Lemma 4.2 applied to (4.10)fe. The
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conclusion of the theorem then follows from (2.6).

PROOF OF THEOREM 4.4. (i) It suffices to prove that Jff = φ for all le {0, 2,...,

n}. First, from (4.22) and Lemma 4.4 (the first part) we see that (4.9)̂  has no

nonoscillatory solution of degree Ze{2, 4,..., n - 2 } , which implies that Jί+ = φ,

/e{2, 4,..., n — 2}, for (A). Then, applying the second part of Lemma 4.4 to (4.9)j and

(4.9)k, we conclude that (4.23) implies Jf% = φ and (4.24) implies JΓ+ = φ.

(ii) Lemma 4.4 applied to (4.13)£ and (4.13),- shows, in view of (4.22) and (4.25),

that Jff = φ for /e{2, 4,..., n}. This completes the proof.

C) Examples. Consider the equations

(4.26)± ^ O ( ί ) ± λx(at)-] + p(t)x(βt) = 0,

where 0</l< 1, 0 < α < l , β>0 and p: [α, oo)->(0, OQ) is continuous, α>0. This is a
special case of (A) in which σ = 1, N = 1, h(t) =+λ, τ(t) = at, p1(ή=p(t) and g^t) = βt.

Noting that

0 l j | e(ί) = min{l, β}t, pί^~1°g1](t) = {β/cc)t if a>β, p\_g{]= βt if β < l ,

we have the following oscillation criteria for (4.26)+ from Theorems 4.1 and 4.2.

(i) Let n be even. All proper solutions of (4.26)+ are oscillatory if

(4.27) \ f ~1" εp(t)dt = oo for some ε > 0.
Ja

All proper solutions of (4.26) _ are oscillatory if, in addition to (4.27), 0 < β < a and

(4.28) lim sup ΐ^.^1 Γ (s~^)V~s)"~'"'PW8 > λ

for some ΐe{0, 1,..., n— 1}.

(ii) Let w be odd. All proper solutions of (4.26) _ are oscillatory if, in addition

to (4.27), 0 < β < l and

(4.29) lim sup ^ ^ Γ (s-βtY(t-s)"-j-1p(s)ds> I

for some7'e{0, 1,..., n— 1}. If (4.27) holds, then every solution of (4.26)+ is either

oscillatory or tends to zero as ί-»oo.

Conditions (4.27), (4.28) and (4.29) are actually satisfied if p(t) = tδ with δ > - n.

Next consider the equations
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(4.30)± ^ [ x ( ί ) ± λx{*t)] - p(t)x(βt) - q(t)x(yt) = 0,

where λ, α, β and p(t) are as in (4.26)o, y > 0 and q: [α, oo)->(0, oo) is continuous. This

is a special case of (A) in which σ = — 1, N = 2, h{t)— +λ, τ(ί) = αί, Pι{t) = p{t\ p2(t)

= q(t% gι(ή = βt and g2(ή = γt, and Theorems 4.3 and 4.4 give the following

oscillation criteria for (4.30)o.

(iii) Let n be odd. All proper solutions of (4.30)+ are oscillatory if the

following conditions (4.31) and (4.32) are satisfied:

f ° ° - 1 _
(4.31) either f λ εp(t)dt = oo for some ε > 0 , or

J a

f ~1 ~ εq{t)dt = oo for some εf
(4.32) either β>l and

for some /e{0, 1,..., n— 1}, or y > l and

"?^Pfl(»-Vl)lΓ(5- tWyt-ar'"1^ )&>ϊ3Λ
for some zΈ{0, 1,..., n-\}.

All proper solutions of (4.30) _ are oscillatory if, in addition to (4.31), β > 1,0 < y < α,

βi Γβt

(4.33) lim sup \ (s - t)\βt - s)n"f" V(s)rfs > 1

for some /e{0, 1,..., «—1}, and

(y/α)""7'"1 Γ / y V
(4.34) lim s u p - ^ s--t )(t-s)n-J-1q(s)ds>λ

i\(γi 7 \\\ I, \ 0L J

for some ye{0, 1,..., n — 1}

(iv) Let n be even. All proper solutions of (4.30)_ are oscillatory if, in addition

to (4.31), β>l and (4.33) holds for some/e{0, 1,..., « - l } , and 0 < y < l and

(4.35) lim sup (s-γήk(t-s)n-k-ίq(s)ds> 1
t->oo K.yn — K— ι)\ Jγt

for some /ce{0,1,..., π - 1 } . Every proper solution of (4.30)+ is either oscillatory or

tends to zero as ί-»oo if (4.31) holds, β> 1 and



530 Jaroslav JAROS and Takasi KUSANO

(4.36) limsup β. \ (s-t)i(βt-s)n-i-1p{S)ds>-^-ι
r->oo ι\n — i—A J ί 1 — /

for some ίe{0, 1,..., n-l},or if (4.31) holds, y>\ and

(4.37) lim sup — : —

for some ϊ'e{0, 1,..., n— 1}.

It is easy to see that the functions p(t) = q(ή = t\δ>-n, satisfy all the integral
conditions in (4.31)-(4.37).

Our final example is

(4.38)± ^[x( ί) + Asinί.χ(ί-2π)] ±px(tθ) = 0,

where 0<λ< 1, p>0 and 0>O. Since the function h(t)= -λsint satisfies (4.11), we
conclude from Theorem 4.1 [resp. Theorem 4.3] that all proper solutions of (4.38) +
[resp. (4.38)_] are oscillatory if n is even and 0<θ< 1 [resp. n is odd and θ> 1].
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