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Introduction

There have been many attempts to clarify geometric meanings of Bochner
curvature since S. Bochner [3] introduced it as a Kaehlerian analogue of
conformal curvature in 1949. S. Tachibana [12] gave the expression of
Bochner curvature tensor in real form, M. Matsumoto and S. Tanno [10]
proved that a Kachlerian space with vanishing Bochner curvature tensor and of
constant scalar curvature is a complex space form or a locally product of two
complex space forms of constant holomorphic sectional curvature ¢ (>0) and
—c. Y. Kubo [8], I. Hasegawa and T. Nakane [5] obtained necessary condi-
tions for a Kaehler manifold with vanishing Bochner curvature tensor to be a
complex space form.

On the other hand, M. Matsumoto and G. Chuman [9] defined the
contact Bochner (briefly, C-Bochner) curvature tensor in a Sasakian space and
studied its properties. A Sasakian space form is a space with vanishing C-
Bochner curvature tensor.

In this paper, we discuss properties of fibred Sasakian spaces with vanish-
ing C-Bochner curvature tensor and construct an example of Sasakian space
with vanishing C-Bochner curvature tensor which is not a Sasakian space form.
As to notations and terminologies, we refer to the previous papers [7, 13].

Throughout this paper, the ranges of indices are as follows:

A B,C,D,E=1,2,...,m,
hijk1=12...,m,
abcde=12..,n,
opB,y,06e=n+1,...,n+p=m.

The author expresses his gratitude to his teacher Y. Tashiro for valuable
advices, in particular, the construction of the example in §4.

§1. Preliminaries

Let {M, M, §,n} be a fibred Riemannian space, that is, {M, g} is an
m-dimensional total space with projectable Riemannian metric §, M an
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n-dimensional base space, and n: M - M a projection with maximal rank
n. The fibre passing through a point P in M is denoted by M, and it is
p-dimensional, n + p = m.

We take coordinate neighborhoods (U, z*) in M and (U, x°) in M such that
n(0) = U, then the projection = is expressed by equations

1.1) x? = x(z"),
with Jacobian (0x%/0z°) of maximum rank n. Take a fibre M such that
MAU # . Then there are local coordinates y* in M n U and (x4, y*) form a

coordinate system in U.
If we put

a h
(1.2) Es 0x 0z

] - h = —
P and c’, PR

then E/ are components of a local covector field E* in U for each fixed index a,
and C", are those of a vector field C, for each fixed index a. The vector fields
C, form a natural frame tangent to M and

(1.3) EfC =

The induced metric tensor g in each fibre M is given by
(1.4) 9,5 = 4(C,, Cp) .

If we put

(1.5) 9ep = §(E., Eyp),

then g, are components of the metric tensor g with respect to (x°) in the base
space M. We put

Eha = ghigabEib and Cia = gihﬁaﬂchﬂ .
We write the frame (Ejp) for (E,, C;) in all, if necessary. Let h,,* be compo-

nents of the second fundamental tensor with respect to the normal vector E,
and L = (L.*) the normal connection of each fibre M. Then we have

(1.6) hyg® = hg,* and L, +L,*=0.

Denoting by ¥ the Riemannian connection of the total space M, we have the
following equations [6, 7, 13]:

V.E", = IGEfE", — L,"EfC", + L,°,C/E", — h,*,C/C",,

V,Cty = LEfE", — (hg*. — P4 )EfC", + h,,"C/E*, + T5CC,,

ViEf = —TSEFEY — L*(EfCF + CPEf) — h,,"CCF,

Z‘Cia = Ly EfE} + (hy". — P4Y)ESCF + h % CEP — _;/;C}vciﬁ ’

(1.7)
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where I' ¢ and I} are connection coefficients of the projection ¥ = p¥ and ¥
of the induced metric g in M.
The curvature tensor of M is defined by -

RX,VNZ =WWZ — ViViZ — Vig 2
for any vector fields X, ¥ and Z in M. We put
(1.8) K(Ep, Ec)Eg = Rpcs"E, + Kpes®C,

then K,z* are components of the curvature tensor with respect to the frame
(Eg). Denoting by K,;* components of the curvature tensor of M in (U, z"),
we have the relations

(1.9) KDCBA = KkjihEkDEjCEiBEhA .

The structure equations of M are written as follows:

(1.10) chba = Kiop" — Lo":Lo" + L Lay" + 2L Ly

(1.11) Rt = —*V,L* + *V.Ly* — 2L, h?,

(1.12) R, = *V.hg*s — *V by + 2**V,L,* + L, LS
— L, "L’ — h'shg’. + hS.hgy

(1.13) Ry =*V,L,", — L h* + Ly°h,® — L% h},

(1.14) Ryt = —*V;h% + **V,Ly* + L& Lo* + htyh2,

(1.15) R = Loy + hs'yhy* — h5yhst

(1.16) Ry, = **Vsh,,* — P, hsg”

(1.17) R;p* = Ksyp* + hsgth,®, — hyg®hy?,

where we have put

(1.18) Kar® = 0udiy — 005 + Tiol sy — Il

(1.19) *ViLey™ = 04Ley” — I?fiLeb“ — TG L. + Qu’Lay’

(1-20) *Vchatx = achaﬂ + 1—:1‘; ch e p Q.zpeLc £

(1.21) *Vih," = Oghyg" + Tighys® — Quheg® — Qug’hy”

(1.22) *Vahg™y = Oahy™y — Iiphg®e + Qg™ — Qup’h"y

(1.23) **VsLoy* = 05Ley" + Loy — L%5Ley" — Ly*5Le"

(1.24) **,L,% = 0;L,% — T35y + L% L% — Ly%L.1%,

(1.25) *Pih,g" = Oshyp® — T hy — Tih," + LOshy,°

(1.26) **Vshg™y = Oshg™y + fa‘ihﬁsb - raﬂhs » — Ly%shg’.

(1.27) L;," = 66L,,"y — 0,Ly%s + L%Ly°, — L, L%,

(128) K_ayﬂa = 5,; yB a I:SB + 1:551-‘ F“l}ﬂ
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We denote by K¢p, K, and IZW, components of the Ricci tensors of {M, g},
the base space {M, g} and each fibre {M, g} respectively. Then we have the
relations

(129) ch = ch - 2Lce£Lbee - haechsab + (1/2) (*Vchssb + *Vbhsec) ’
(130) Kyb = **Vyhssb - **Vehysb + *VeLbey - 2hy£eLbes 5
(1.31) R, =K,; — hy°ht, + *V,h* — LS LS%.

Denoting by K, K and K the scalar curvatures of M, M and each fibre M
respectively, we obtain the relation

(1.32) R = KX+ K — Ly L — hgh? — b7 kP + 2%V, hte

where KL is the horizontal lift of K.

§2. Complex space form and Sasakian space form
We recall properties of a complex space form and a Sasakian space form in
connection with Bochner curvature tensor and C-Bochner curvature tensor, for

the sake of the future.
We consider an n-dimensional Kaehlerian space M and denote the com-

plex structure by J. The tensor H,, defined by

(2.1) H,, =J K,,

is skew-symmetric in the indices. The Bochner curvature tensor on M is
defined by

1
Bio" = Kiep" + —— (K0! — K67 + gan K" — 9 Ks*
n+4

+ HyJ* — HypJ)" + JpH® — JpH + 2H, Jy*
2.2) K
20, H%) + —————(g 4,07 — 44+ J,J°
+ 2J;.H, )+(n )0 +4)(gdb e — g0 + JapJe
= Jpdd® + 2Jac )
[3, 8, 10, 12]. .
A Kaehlerian space M is called a complex space form if the curvature
tensor is of the form

(2.3) K" = (c/)(0§9er — 0 Gap + Ji"Jep — I ap — 2Jacy’) -

The constant holomorphic sectional curvature ¢ of M is equal to 4K/n(n + 2).
The following proposition is well known [12].
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ProposITION 2.1. A Kaehlerian space M is a complex space form if and
only if M is an Einstein space and the Bochner curvature tensor B,," vanishes.

Next we consider a p-dimensional Sasakian manifold M and denote the
contact metric structure by (4% &% 74, g5,). They satisfy the relations

$*=—-1+7®%, T®F=0, ¢ =0, p&=1,
r=¢, (Fzxd)Y=g(X, )¢ -n(Y)X
[1], where ¥ is the Riemannian connection on M and X, Y are arbitrary vector

fields. The tensor Hy, defined by Hy, = $5'K,, is skew-symmetric in « and §.
The C-Bochner curvature on M is defined by

(2.4)

Bss* =Ksyp" + p—i—g{ﬁ‘,,é; — K368 + G55K,* — .5 K"
+ Hypd® + Hyys* — dspH + s He® + 2Hy, 6% + 265, Hy®
— KT, & + KogTsE* — 151, K,* + 7,77, K 5
—(k+p-— 1)($¢$ﬂ$ya - %@“ + 25@53“)
— (k — 9)(Gsp07 — 7,555
+ E(JMYE“ + 75150y — Eypﬁaf“ —1,M595)} ,
where k = (K + p — 1)/(p + 1). It can be constructed from the Bochner curva-

ture tensor in a Kaehlerian space by the fibering of Boothby-Wang (see [9]).
If the Ricci curvature K4, on M is of the form

(2.5

(2.6) Ky, = agp, + b7, ,
with constants a and b, we call M an y-Einstein space. Since we have the
equation
Izﬂaf’ =(p—n,
in a Sasakian space, the constants a and b satisfy the relation

2.7 a+b=p—1.

A Sasakian space M is called a Sasakian space form if the curvature
tensor is of the form

= c+3 . _ c—1 . _ — —
K" = T(aggyﬁ - 6’796[?) " (95 Nylg — 5y NsNg

2.8) S
+ Gy5MsE% — Gspt,C° + Goph,® — Pypbs” + 205,057) -

Contracting this equation in o and f, we see that the Sasakian space form is an
n-Einstein space with constants
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a={c(p+1)+3p—5}/4 and b=(p+ 1)1 —-7)4.

The constant ¢ is conversely given by ¢ = (4a — 3p + 5)/(p + 1) by means of
(2.8) and it is known that the C-Bochner curvature tensor of the Sasakian space

form vanishes identically.
Conversely we assume that M is an z-Einstein space and the C-Bochner

curvature tensor vanishes. Then we get

K=(p-1
29) 5 (p—D@+1)),
k=(p—-1D@+2/p+1)
and
_ 1 _ _
K" = m{@a —k + 4) (057, — 0;955) — (2a — k — p + 1)(357,75
(2.10)

- 6;ﬁaﬁp + gyﬂﬁﬁza - g&ﬁﬁyza + a&ﬂgya + ayﬂaéa + 25&}’5{}‘1)}
by use of b=p—a— 1. Therefore M becomes a Sasakian space form of

constant ¢-holomorphic sectional curvature ¢ = (4a — 3p + 5)/(p + 1). Thus
the following result is valid.

PROPOSITION 2.2. A Sasakian space M is a Sasakian space form if and only
if M is n-Einstein and has the vanishing C-Bochner curvature tensor.

§3. Fibred Sasakian space with vanishing contact
Bochner curvature tensor

We consider a fibred Riemannian space M such that the base space M is
almost Hermitian and each fibre M is almost contact metric, and denote the lift
of the almost Hermitian structure of M to the total space M by the same
characters (J, g) and the almost contact metric structure of each fibore M by
(6, &,7,3). The present author [7] has introduced an almost contact metric
structure (@, &, 7, §) on the total space M by putting

$=JE*QE, + $;°C* ® C,,
(3.1) ¢=¢&c, f=nC" and

§=0E'®E + gﬁacp ®C.
The structure is said to be induced on M. Conversely, it is known [13] that a
fibred almost contact metric space with g-invariant fibres tangent to & defines

an almost Hermitian structure in the base space and an almost contact metric
structure in each fibre.
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If the horizontal mapping covering any curve in M is an isometry (resp.
conformal mapping) of fibres, then M is called a fibred Riemannian space with
isometric (resp. conformal) fibres. A necessary and sufficient condition for M to
have isometric (resp. conformal) fibres is h,” =0 (resp. h," = g,;4° where
A = A°E, is the mean curvature vector of each fibre M in M), see [6, 13].

We recall the following propositions for the later use.

ProroSITION 3.1 ([7]). The induced almost contact metric structure (q;, g
#i, §) on M is Sasakian if and only if
(1) the base space M is Kaehlerian.

(2) each fibre M is Sasakian,
(3 Ly = Jcbfy,
4 hté* —h}tJ =0and
(5) *V.4) =0,
where we have put
Wb = 08 + (Pg? — hg' )@, — (PP — hF)gy .

PROPOSITION 3.2([7]). If a fibred Sasakian space M with induced structure
has conformal fibres, then M has isometric and totally geodesic fibres.

Now we assume that a fibred Sasakian space M has conformal fibres and
the C-Bochner curvature tensor on M vanishes. If we put ﬁji = tlﬁykkk.-, then
the tensor ﬁji satisfies the equations

(3.2) A;+H,=0,

(3.3) Hjigj =0,

(3.4) Hki#’;jk = _kji + (m — D7,
(3.5) B¢i=R-m+1,

and, by means of the equation in M similar to (2.5), the curvature tensor I?,,ﬁ"
of M is given by the expression

Kkjih = —m—_lp—3 (Kkifsjh - Kjiél:. + gkinh - gjikkh + ﬁkiq;jh
- Hjiﬂzkh + (gkiﬁjh - ‘i;jiﬁkh + Zijﬂgih + 2¢;kjﬁih
(3.6) - Kkiﬁjgh + Kjiﬁkgh — thﬁkﬁi + Kkhﬁjﬁi)
= (k+m = 1D)(@ud" — bib" + 26,8
— (k = 4)(Gud! — 300
+ E(gkiﬁjgh + i 0f — Gjiﬁkgh — ;f:0¢)} »
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where k = (R + m — 1)/(m + 1)
By the equations (1.29) ~ (1.32), Propositions 3.1 and 3.2, we have

]

3.7 jiEJcEib =Ky — 29
(3.8) R,E.Cy=0,

(3.9) R;iCl,Cly = K,y + 1,y
(3.10) A,EE'y = Hy, — 2J,,,
(3.11) A.E.C',=0,

(3.12) H,C,Cly=H,

and

(3.13) K=K+ K—n.

Referring the expression (3.6) to the frame (E,) = (E,, C,), we obtain the
equations

1
K, = ———= (K308 — K08 + Kga — Kigep + HypJ.*
dcb m+3( db 594 9av d 9eb db

— HyJ)" + HJy — HJ + 2Hy D" + 2H,"J,,)
K+K+p—1
(m+ 1)(m + 3)
+ gads’ — 9ev9i) 5
K0y — (k — 2)(gapdy + Jdbaya) + Izyagdb +k+n—m-— l)gdbﬁyza
+ Ko + Kp* ¢ Jy — Ky, €% =0

(3.14)
Uad" — Jepdd® + 2Je 0"

(3.15)

and
Ksp® = —%H{(Kaﬁéf — K05 + K% Gop — K5y + Hypd,”

— Hypds" + H,*sp — Hi*$y5 + 2Hy, 05" + 2Hy" b5,

— K1, & + K1 & — K, sTlp + K" Tg,)
(3.16) + n(smgéy — ﬁyﬁﬁgéa + ﬁyf“%ﬁ - ﬁaf“ﬁyp)

- (E +m— 1)(5@,9‘11-“ - ayﬁa.sa + 2$6y$ﬂ¢)

— (k — 4) (5507 — 7,555

+ E(ﬁagﬁyf“ + NsMg0y — gyﬂﬁéga —7,7505)}
by means of the equations (1.9), (1.10), (1.14), (1.17) and (3.9) ~ (3.13). More-
over, contracting g% and the indices y and « in (3.15), we obtain

(3.17) P—Dp+DK+nn+2)(K+p—1=0.
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By use of this equation and (3.14), the curvature tensor of M is given by

1
K" = —;1—+p—+3—(de5: — K0i + K gap — Ki'gep + HypJ."
(3.18) — H,J+ H%Jy — HfJ, + 2H, J,* + 2H,*J,.)
Kin—p+1)

Ja — J2 a a __ ay
n(n + 2)(" +p+ 3) (Jdb ¢ Jenda" + 2Jchb + gdbéc gcbad)

Hence, comparing this expression in the case of p =1 with (2.2), we can state
that

PROPOSITION 3.3. If a fibred Sasakian space M has 1-dimensional fibres
and the C-Bochner curvature tensor of M vanishes, then so does the Bochner
curvature tensor of the base space M.

In the case of p # 1, by the contraction in the indices a and d of (3.18), we
get

(319) ch = (K/n)gcb s
and the base space M is an Einstein space provided n > 2. Substituting (3.19)
into (3.18) and noting H,, = (K/n)J,,, we get

(3.20) Ky' = (9608 — 9ap0: + Jepds" — Jip " — 2J4cdy") -

n(n + 2)
Hence we can state

LEMMA 3.4. Let M be a fibred Sasakian space with conformal fibres of
dimension p # 1. If the C-Bochner curvature tensor of M vanishes, then the base
space M is a complex space form provided n > 2.

On the other hand, from the equation (3.17), we get

K 1
(3.21) K:_n(n+2){(p——l)(p+1)+p+1}'

Substituting this into (3.16), we see that the curvature tensor of the fibre M has
the expression

1
_n+p+3

— Hyyds* + HP sy — Hi*$,5 + 2Hs, 85" + 2H,*§s,
- Izéﬂﬁyéu + Kypﬁaga - Izyaﬁé;iﬁ + Ks*77,)
+ n(fs705 — 7,708 + 1M,E%sp — M58 Typ)

K" = [(K«w‘s'; — K405 + K93 — K5"9,p + Hyp)"
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1 n(n + 2) = n(n+2)
_n+p+1{<1_(p+1)(p—1)>K_ p+1 +(n+p)2+p}

X (J.sp@“ - Jyﬂ%“ + 25@@“)
1 n(n + 2) —  nn+2)
_n+p+l{(1_(p+l)(p——1))K_ p+1 _4"_3”_5}
(3.22) X (géﬂéya - gyﬂég)

1 n(n + 2) =~ n(n+2)
+n+p+l{<1_(p+1)(p—l)>K_ p+1 +p—1}

X (éaﬂﬁyf“ + 7510, — éwﬁaf“ - ﬁvﬁﬂég):l .

Then the contraction with respect to « and § gives

— n — —
nK,; = _p__—T(K”v"ﬂ — Kg,p)

(3.23) + {np+n—p+ 14 @F 1)(: ;;)+_1"("+2)} 7iy7ig
nn+2)—(p+ (-1 _
+{p—2n—1+ n+p+1 }gyﬂ

Differentiating covariantly this equation on M, noting 7,,12,” = (1/2)(¥,K) and
using (2.4), we have

U L
(3.24) VK = p_—T{VBK — (V,K)&7j5} .
Transvecting &¥, we see E#7,K = 0 and furthermore
(3.25) 7K =0

provided p > 3, that is, K is constant on each fibre M. Therefore it follows
from (3.23) that the Ricci tensor Kz, of M has the form

(326) Eﬁa = a_g_ﬂa + bﬁﬂﬁa >

where the constant coefficients a and b are put by

a=%{p—2n—1+"("+2)'(”+1)(”_1)+ . IZ},

n+p+1 p—1
1 Hp—1)-— _
h=- n+np_p+1+(p+)(p )—nn+2) o o
n n+p+1 p—1
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and satisfy
a+b=p—1.

Substituting (3.26) into (3.16) and taking account of H,, = ady,, we obtain
the equation

p = ﬁ?{za(éggyﬂ - 5;(745;1)
—(p— a— DGsMp — 037,75 + GopTT,&* — Fopllsl”)
+ a(géﬁﬁyza - g,,,;ﬁ,;g“ + 6,715 — O5MgM,)
- 2a($5ﬂ$ya - avﬁaéa + Zgéyaﬂa)
— n(MsNg0y — M,Mg05 + ﬁyf“%ﬁ - ﬁaz“ﬁw)
+ (1z +n+p-— 1)((Zap$ya — (Eﬂf%" + 25‘;75,3“)
+ (k- 4)(gs50y — G,505)
— k(Gsp1, &% + TsTp05 — Fyp11sC" = y71505)}

that is,
R = ——1{(a + D657,y — 52sp)
p+1
(3.27) +(p — a — 1), 75 — ;575 — T, C* + Gyplial”
+ Gosf," — Ppds” + 205,057}
by use of
(328) i = _(a+2)(n—p+ 1)‘

p+1

Thus we obtain

LEMMA 3.5. Let M be a fibred Sasakian space with conformal fibres of
dimension p > 3. If the C-Bochner curvature of M vanishes, then the fibre M
is a Sasakian space form of constant ¢-holomorphic sectional curvature ¢ =
(4a—3p+ 5/p + 1)

Combining Lemmas 3.4 and 3.5, we have established

THEOREM 3.6. Let M be a fibred Sasakian space with base space M of
dimension n > 2 and conformal fibres of dimension p > 3. If the C-Bochner
curvature of M vanishes, then the base space M is a complex space form and each
fibre M is a Sasakian space form.



192 Byung Hak KM

§4. Examples

As we have shown in [7], a Sasakian space form E™(—3) is a fibred space
having a Euclidean base space E" of even dimension and a Sasakian space form
EP(—3) as fibre. It is a trivial example.

Next, we shall give a fibred Sasakian space with vanishing C-Bochner
curvature tensor, which is not a Sasakian space form.

Let C"2 be a complex space of complex dimension n/2 and denote complex
coordinates by x°, s =1, 2, ..., n/2, and their conjugates by x*. If we consider
the real valued function

F=Q2/c)logS, S=1+(/2)),x°x*
with real constant ¢, then the metric tensor

_0’F 4, cX°x!
Jsx = osox' S 282

defines a Fubini-Study metric of constant holomorphic sectional curvature c
[2]. If we put
.OF ix*® _OF _ix®

41 ok X _;0F _ix*
(41) D= Tk G =R

then the fundamental 2-form J = 2ig, dx* A dx' is given by
42 Jab = (1/2) (0,05 — Op®,) .

If ¢ >0, then the 1-form w = w,dx? is locally defined in the complex space
form M. If ¢ <0, the 1-form w is globally defined in the open domain

{x*|)s x°x* < —2/c}

in C"2, which is the underlying space of the complex space form M. If ¢ =0,
the 1-form w is globally defined in the complex Euclidean space M = C"? by
putting S = 1 in (4.1). The equation (4.2) may be valid in real coordinates.

Let (M, ¢, &, g) be a p-dimensional Sasakian space form with constant
#-holomorphic sectional curvature —c —3. We take the product space
M x M as the underlying space of M, and put

~ <gba + WpW, wbﬁa)

9;i = - —
nﬂwa gﬁa
~ J,° 0
4.3 = ( b > and
*3) ¢ —hlw,E® ¢ﬁa

o-(2)
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with respect to the coordinate system z" = (x% y®). Then we have
i = g,-hf" = (wy, 1)

and verify that (4, &, 7, §) is an almost contact metric structure on M. The
covariant components of the metric § are equal to

gih=< g—ba _wbz-——>
~o® g+ (w,0")EPE%)°
where w® = w,g%.

The vector fields E* = (E%, C*) and E, = (E,, C;) are given by
Ef =(5,0), C = (E*wy, OF)

(4.4) . (0
E"“(—w@“)’ C"“(é;)

and E, form a frame field in M and we have the relations
(4.5) JE,E)=9g5 and  §(Cy C) =G, -

Therefore the space M has an induced almost contact fibred structure.

By straightforward computations on account of properties of the Kaehlerian
structure in the base space M and the Sasakian structure in the fibre M, the
connection ¥ of § in the total space M has the following coefficients with
respect to the coordinate system z" = (x4, y®):

R

ca = 1:"1: + Jcawb + Jbawc ’
= %(wac + Vcwb)za + (Jacwb + Jabwc)wnza s

R

o

R

a

b
a
b
B = Jcaﬁﬂ s
B

5= ﬁwe‘]ceﬁﬁia - wc¢ﬂa s

C

o

(4.6)

R

w=0,
Ta __ Ja
B SyB>
where I3 and I} are connection coefficients of ¥ in M and ¥ in M respec-

tively. Then it follows from the equations (1.7) that the second fundamental
tensor h = (h,,") with respect to E, is equal to

4.7) hg =T =0
and the normal connection L = (L_*) of each fibre M in M is
(4.8) Lyt = J4E°.

Therefore each fibre is totally geodesic. According to (4.6), we can see that
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7(‘&[3:1 = ac&[ia - Eﬂf&du - f;%&ya - fc‘:g&ﬁd - EZJ[N
are equal to zero. From this fact and (4.4), we have
*Vebpe = (7 f) . CyC", = 0.

Hence, by means of Proposition 3.1, M is a fibred Sasakian space with the base
space M and the fibre M.

Put ¢ = n/2 and r = (p — 1)/2 for short, and take a ¢-basis {e,,...,e,} at
every point of M such that e,, ..., € €gi1 = Jel, ey €y = q?eq are horizontal

vectors and €.y, -+ -5 €uirs Cpirsr = PCpits -ons Cuipy = Peuy,, €, = £ are vertical
vectors. We denote by H(X, Y) the sectional curvature with respect to the
plane spanned by X and Y. By means of (1.10) ~ (1.17) and (4.7) ~ (4.8), we

obtain

H(es’$e5)=c—3 for ISSSq,

H(es,e,)=£ for 1<s,t<q,s#t,
H(e,,,q?ea)=—c—3 for n+1<a<n+r,
H(ea,ep)=—-§ for n+1<a,f<n+r,a#p and
H(e,, e5) =0,

and see that the relation
(4.9) 8H(e;, e,) — 6 = H(e,, ge;) + He,, de,) (A # )

is satisfied for 4, p=1, ..., g, n+1, ..., n+r. That the equation (4.9) is
satisfied for a ¢-basis is an equivalent condition to the vanishing C-Bochner
curvature tensor in a Sasakian space of dimension m > 5 [cf. 4, 11]. Hence M
is a Sasakian space with vanishing C-Bochner curvature tensor but not of
constant ¢-holomorphic sectional curvature because H(e,, de,) # Hle,, de,).
This is an example we seek for.
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