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Introduction

In [7] T. Kato established the existence of classical solutions to the

abstract quasi-linear equations of the form

du(t)/dt + A{t, u(t))u(t) = /(ί, u(ή), 0 < t < Γ,
I L i J

and applied his theory to a wide variety of problems from mathematical

physics. In his theory two reflexive Banach spaces X and Y are used in such a

way that Y is continuously and densely embedded in X, the solution u(t) of

(CP) lies in some open subset W of Y and du(t)/dt is found in X. The

reflexivity of X (and hence that of Y) is essential for the theory, and it is

important from the theoretical point of view to eliminate this restriction for the

spaces X and Y. Furthermore, in order to apply the theory to partial differen-

tial equations in suitable function spaces, it is required to extend this theory to

the case of nonreflexive Banach spaces.

The first purpose of the present paper is to establish an existence theorem

for the classical solutions of (CP) in a pair of general Banach spaces X =D Y.

We shall show that the solutions are continuous in 7-norm and continuously

differentiable in X. In order to construct such solutions, we employ the

following type of difference approximation of (CP):

Uk + A(tk,uk)uAt) = f(tk,uk), ί k < ί < ί k + 1 , 0 < f c < N - l ,

where A:0 = t0 < ίx < ••• < tN = T is a partition of the interval [0, T] and

uk = uΛ(tk). This approach is one of the main features of our argument. In

case the operators A(t, w) and /(ί, w) are independent of t and of the form A(w)

and /(w), it was proved in [14] that for any initial value aeW, one finds a

T > 0 such that the solution uΔ of (D) exists in W, and that {uΔ} converges in X

to a unique weak solution (in the sense of [13]) of (CP) as \Δ\ = max (tk —

ffc.J-^O. In this ί-independent case the proof of the convergence of {uΛ(t)}
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was straightforward since a general convergence theorem for the difference
approximation of nonlinear evolution equations formulated for quasi-dissipative
operators can be applied to our case. (The result due to Y. Kobayashi [10]
was employed in the previous paper [14].) Similar results were obtained for
"quasinonlίnear" equations by Crandall and Souganidis [1], and in their sub-
sequent paper [2] it was proved that {uA} converges in 7-norm provided X is
reflexive. However, the methods used in these works do not seem to be
effective enough to prove the same results even for the case in which the
operators A(t, w) depend on t e [0, Γ] in the sense of Kato [7].

The second purpose of this paper is to extend the results of [2] and [14] to
the case in which the operators A(t, w) and /(ί, w) depend on t e [0, T\. It will
be seen that our assumption on the ί-dependence of A(t, w) is weaker than that
of [7]. The significance of our results here is that the reflexivity assumption
for X (and hence Y) is eliminated. These results are stated in Section 4.

Consider the sequence of Cauchy problems

dun(t)/dt + An(t9 un{t))un(t) = fn(t9 un(ή), 0 < t < Γ,
(CPn)

un(0) = an,

where neN=Nu{oo} and N = {1, 2,...}. Kato showed in [7; Theorem 7]
the uniform convergence of {un(t)}neN (to M°°(0) in Y-norm under appropriate
assumptions. Our third purpose is to give a simple proof of this convergence
result by applying our existence theorem. Consider the set c(X) of all conver-
gent sequences x — {xn} in X. c(X) is a Banach space with respect to the
norm | |JC| |C W = supπ ||x"||. The sequence of Cauchy problems (CPn) can be
regarded as a single Cauchy problem

du(t)/dt + A(t, u(t))u(t) = /(t, «(t)), 0 < t < T,
Iv/i I

«(0) = α,

in the Banach space c(X). The uniform convergence of {un(ή} in Y is equiva-
lent to the existence of the classical solution u(t) of (CP). Indeed, we can apply
our results obtained in Section 4 to (CP) and find the solution u(t). It should
be noted that c(X) is nonreflexive even if X is reflexive, and so one cannot
apply previous results (for instance [13]) to (CP). These results are stated in
Section 5 along with some other related results.

Other applications and further extensions of our results will be published
elsewhere.

§1. Basic hypotheses and main results

We consider two real Banach spaces X and Y with norms || || and | | | | y ,
respectively. The operator norm of a bounded linear operator A on Y to X is
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denoted by MHy,*. However, we write || || (or | | | | y ) for the operator norm

II '\\x,x ( o r II * \\Y,Y) f° r brevity in notation. The symbol B(X) (or B(Y)) denotes

the set of all bounded linear operators on X (or Y) into itself.

In this paper we put one condition on the Banach spaces X and Y,

four conditions on the operators A(t, w) and three conditions on the

nonlinear operators f(t, w). First we impose the following condition on the

pair (X9 Y):

(X) Y is continuously and densely embedded in X. There is a linear isometry

S of Y onto X. There is a nonvoid open subset W of Y.

It should be noted that under assumption (X\ X is reflexive if and only if

Y is reflexive.

Let X* be the dual space of X. The value of x* e X* at Λ; G X is denoted

by <x, x*}. The duality mapping of X is denoted by F, i.e.,

F(x) = {x* E X*; <χ, x*> = ||x| |2 = ||x*||2} for x e X .

For the operators A(t, w) we assume (Al) through (A3) below.

(Al) There are positive numbers To and α such that for each ί e [0, To] and

w e W9 — A(t, w) is the infinitesimal generator of a (C0)-semigroup

{exp [-sA(t, w)]} s>0 on X satisfying ||exp \_ — sA(t, w)]|| < eas for s > 0.

The domain D(A(t, w)) of A(t, w) includes Y.

Under assumption (Al), the set {λ > α} is included in the resolvent set of

— A(t9 w), and

(1.1) IICl+Λ^wjrMl^α-ΛαΓ1

for each h > 0 with hoc < 1, t e [0, Γo] and w e Ŵ.

The next assumption is concerned with the restriction of A(t, w) to Y,

which is a bounded linear operator on Y to X by the closed graph theorem.

(A2) There is a positive number μι such that

\\A(t,w)-A(t9z)\\γ,x<μι\\w-z\\

for all ί G [0, To] and w, z e W. For each weM^ and y e 7 , ̂ 4(ί, w)y is a

continuous function from [0, Γo] into ^ .

From assumption (A2) it follows that for any bounded subset B of W there

is a X β > 0 such that

(1.2) \\Λ(t,w)\\YfX<KB

for all t e [0, To] and w e ΰ .
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(A3) For each t e [0, To] and w e W, there is a bounded linear operator B(t9 w)

on X into itself such that

SA(t, w)S~1 = A(t, w) + B(t, w),

and ||B(ί, w)|| < λί for some positive number λ1 which is independent of

t e [0, Γo] and w G py.

We next make two hypotheses on the operators /(ί, w).

(/I) For each t e [0, Γo] and w e W9 f(t, w)eY and

for some positive number λ2 which is independent of t e [0, Γo] and

we W.

(/2) There is a positive number μ2 such that

\\f(t,w)-f(t,z)\\<μ2\\w-z\\

for each ί e [0, Γo], w e Ĥ  and z e ^ For each w e W, f(t, w) is an

^-valued continuous function on [0, To].

Throughout this paper the above conditions (X) through (/2) are always

assumed. Under these assumptions, exp [ — sA(t, w)](7) cz Y for each s > 0,

ί e [ 0 , Γo] and w e W, and the restriction of {exp [ — sA(t, w)]} s>0 to Y is a

(C0)-semigroup on Y such that

for each s > 0, t e [0, Γo] and w e W. Therefore, we have

||[1 + hA(t, w)]" 11| y = ||[1 + h(A(t9 w) + B(t, w))]"11|

^ (1 — lι(α + Λi))"1

for each h > 0 with /z(α 4- λx) < 1, ί e [0, To] and w e W. See [5].

The existence of the solution uΔ(t) of the difference scheme (D) (as intro-

duced in the Introduction) follows from assumptions (X) through (/2) above.

Let Wj(0) = u0 = a. We begin by defining uΔ(t) on the first subinterval [0, t^]:

Uj(t) = [1 + tA(0, a)2'xa + ί[l + tA(09 α)]" 1 /^, α)

for ί G [0, ί α ] . Suppose that wfc G VF is given. Then w^(ί) on [ίk, ίfc+1] is de-

fined by

M O = [1 + (ί -

+ (ί ~ ί*)[l + (ί - tk)A(ίfc, i/fe)]"1/^, uk).
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This is well defined for t with (t — tk)oc < 1. Here and after we always assume

that

\A\β<l/2,

where \A\ = m a x ^ ^ ^ ^ — ί ^ ) and β = α + λx. We write

Ak = A(tk,uk), Bk = B(tk,uk) and fk=f(tk,uh) for /c = 0, 1, ..., N , and

Λ = [1 + (ί*+i ~ ω A Γ 1 , Λ* = [1 + (ίk +i - h)(Λk + β,)]" 1

and /zk = tk+1 - tk for /c = 0, 1, . . . , N — 1 ,

for simplicity in notation. Now, we have:

PROPOSITION 1.1. Let aeW. Choose φe W and r > 0 such that a e B(φ, r)

and B{φ, r) a W, where B(φ, r) = {y e Y\ \\y - φ\\γ < r) and B{φ, r) is the closure

of B(φ, r) in Y. Let Te (0, To] be sufficiently small so that

infz e y { ^ τ | | α - φ\\γ + (1 + e2^τ)\\Sφ - z\\ + MzTe2*τ} < r,

where Mz = KB{φtr)\\z\\γ + λx\\z\\ + λ2 and KBiφr) is given in (1.2). Then the

solution uΔ(t) of (D) exists in B(φ,r) (<=W) for any partition A = {tk}k=0 of

[0, Γ] .

PROOF. UA(0) = a is given and belongs to B(φ, r). Suppose that {uΔ(t)\

0 <t <tk} is contained in B(φ, r) for some fc. Then uΔ{t) on [ίfc, ί k + 1] is given

by (1.4) and belongs to Y. We will show that uA(t) e B(φ, r) for tk<t< tk+1.

Multiplying both sides of (D) by S and using the relation in (A3), we have

= [1 + (t - tk)(Ak + BJY'Siu, + (f - tk)fk) .

Therefore, by (1.3), (1.2), (A3), (/I) and the relation (1 - ί)" 1 < e2t for 0 < t <

1/2, we have

\\SuAt) ~ z\\ < ||[1 + (ί - tk)(Ak + BJY'iSu, - z}\\

< c2βit-tk)\\Suk - z\\ + Mz(ί -

for any z e Y and tk<t< tk+1. By induction it follows that

WSuΛt) - z\\ < e2^-^\\Sa - z\\ + Mz ΣU h

< ^ r | | S α - z | | +MzTe2βτ .

Thus we have
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WuAt) - Φ\\Y < \\SuA(t) - z\\ + \\z - sφ\\

< e2βT\\Sa - z\\ + MzTe2βT + \\z - Sφ\\

< e2βT\\Sa - Sφ\\ + (1 + e2βT)\\Sφ - z\\ + MzTe2βτ

for any z e Y9 which implies that uΔ(t) e B(φ, r). Q.E.D.

Here and after we fix aeW, B(φ,r) and Te(0, To] as above, unless
otherwise stated.

The convergence of {uΔ} in X can be obtained under the same assump-
tions. See Section 2. To obtain the convergence of {uΔ} in Y, we make
additional assumptions:

(A4) There is a positive number μ3 such that

\\B(t,w)~B(t9z)\\<μ3\\w-z\\γ

for each t e [0, Γo], w e W and z e W For each w e W, £(ί, w): [0, Γo] -•
B(X) is strongly measurable.

(/3) There is a positive number μ4 such that

\\f(t,w)-f(t,z)\\γ<μjw-z\\γ

for all ί e [0, To], w e ^ a n d z e ^ . For each weW, f(t, w): [0, To] -+ 7
is strongly measurable.

(Bf) For each w e ^ , B{U w): [0, Γo] ^ B(X) and /(ί, w): [0, Γo] -> 7 are
strongly continuous.

Conditions (A4), (/3) and (£/) will be used in Sections 4 and 5. The limit
of uA can be found under the conditions as mentioned above and it gives the
desired solution of (CP). Our main results are stated as follows:

THEOREM A. Let {X\ {A\\ (A2\ (A3), (/I) and (/2) hold. Then there is an
X-valued continuous function u(t) on [0, Γ] with w(0) = a such that lim uΔ(t) =
u(t) in X, uniformly for t e [0, T~\. Moreover, the function u(t) is the mild
solution of (CP) in the sense that u(t) satisfies

f
Jo

(M) u(t) = Uu(t9 0)a + I Uu(t, s)^{s, u(s)) ds

for t e [0, Γ].

This theorem is proved in Sections 2 and 3 and is formulated in Theorems
2.4 and 3.4. The operators ^(ί, w) are defined in the paragraph before
Theorem 3.4. The family of bounded linear operators {Uu(t9 s); 0 < s < t < T}
on X is constructed in Lemma 3.3. By Lemma 3.7 and Theorem B below, we
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will see that w(ί) = Uu(t, s)y with y e Y is the solution of the initial value

problem

(L) dw(t)/dt + A(t, u(t))w(t) = 0 , s < t < T , u(s) = y .

It should be noted that the linear operators A(t9 u(ή) are not well defined under

the assumptions of Theorem A.

THEOREM B. Let {X\ {A\)-{AA\ (/l)-(/3) hold. Then there is a sequence

{A(m)} of partitions of [0, Γ] such that lim|zf(m)| = 0 and that {uΔ(m)(t)} con-

verges in 7, uniformly on [0, Γ], to the unique classical solution u(t) of (CP).

Theorem B is the existence theorem for the classical solutions and is

proved in Section 4. The convergence problem mentioned at the end of the

Introduction is treated in Section 5 and the results are summarized in Theorem

5.2.

§2. Convergence of {uΔ} in X

Throughout this section, we assume that conditions (X), (Al), (A2)9 (A3),

(/I) and (/2) are satisfied. We do not need conditions (A4)9 (/I) and (Bf).

Let A: 0 = t0 < tγ < < tN = T be a partition of [0, Γ], and let uΔ{t) be

the solution of (D) on [0, T]. uΔ{t) is given by formula (1.4). Note that

β\Δ\ < 1/2 is always assumed. It is easy to see that uΔ(t) is continuous on [0, T]

into 7, and is continuously differentiable on each interval (tk, tk+1) (0 < k <

N — 1) into X. duΔ(t)/dt on (tk, tk+i) is given by

(2.1) duΔ(t)/dt = [1 + (ί - tk)AkY
ι{-AkuΔ{t) + Λ} .

In this section, we will show that {uΔ(ή} converges in X-noτm uniformly,

as \A\ -•O, to a continuous function u(t) in X. Once this is done, it is easy to

see that the step functions {vΔ(t)}9 defined by

vΔ(t) = u k . ί o n t e [ t k - l 9 t k ) 9 l < k < N , a n d v Δ ( T ) = u N ,

also converges uniformly to u(t). To prove the convergence of {uΔ(t)}9 we

prepare some lemmas.

L E M M A 2 . 1 . For each ε > 0 there is a partition A(ε): 0 = tε

Q < t\ < ••• <
t*m) = T of [ 0 , T ] such that

(O
(w) \\uΔ{ε)(t) - uΔiε)(tε

k)\\γ <ε forte [ίfc

ε, ί j + 1 ], 0 < k < N(ε) - 1,
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(iii) \\{A(t'\ uε

k)[l + (f - tε

k)A(t\ uDT1 ~ Λί} WOII < e for t, t\ t" e [rj,
tε

k+ιl0<k<N(ε)-hand

(iv) ||[1 + (ί' - tε

k)A(t\ u$rιf(U ui) - f(tl ui)\\ < ε for ί, t\ t" e [tj, ί j+ 1],

0 < k < N(ε) - 1,

where uA{ε)(t) is the solution of (D) for Δ(ε\ and u{ = uA{ε)(tε

k) and A\ = A(tε

ky uE

k)

forO<k< N(ε).

PROOF. We put tε

0 = 0 and uΔ(ε)(tε

0) = a. Inductively, we define {tk} and

uΔ(ε) in the following way. Suppose that {tf j = 0, 1,..., k} and {uΔ(ε)(t); 0 <

t < tl) are constructed, and that tε

k < T. Then, let tk+1 e {tε

k, T] be the largest

number satisfying (i) to (iv). By the continuity of the functions in (i) to {iv\ we

can choose tε

k+1 > tε

k. We will show that there is an N(ε) such that tε

N(ε) = T.

Assume for the contrary that tε < T for all neN. Let t^ = lim tε. Then it will

be shown in Lemma 2.2 that uΔ{ε)(t) converges in 7-norm to an element

u^ 6 B(φ, r\ as t -* t^. We use this fact for the moment. Then we have tε

k+ι —

tε

k < e/2 and

\\uA(ε)(t) - uε

k\\y < \\uΔ{ε){t) - uj\γ + III^ - iιj | | r < e/2,

for sufficiently large k and tζ < t < tk+1. Similarly, the left-hand sides of the

inequalities in (iii) and (iv) are less than ε/2 for sufficiently large k. This

contradicts the definition of {tl}. Q.E.D.

Let Δ = {tn} be a strictly increasing sequence in [0, T] satisfying \Δ\β <

1/2: 0 < t0 < t1 < - - < tn < - - < T. We put t^ = lim tn. Let {un} be the

sequence of elements in B(φ9 r) satisfying

" ~ " Λ « B + 1 = / B , n = 0, 1,2,...,
ln + l ~" ln

uo = a.

Then we have:

LEMMA 2.2. The sequence {un} converges in 7, as n-+ oo.

PROOF. Let k > j > i > 1 and y e Y. We put

for n > i. Here, the notation Jp is described in Section 1. Then we have

||n fc+1 - uj+11| y = ||Snk+1 - Suj+ί ||

< \\Suk+1 - SUJ-iyW + II^^S-1); - Uky\\

y - Suj+ί\
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We put I, II, III, IΓ and Γ for the terms of the right-hand side of the above

inequality. Then we have

I = \\Jk(uk + hkfk) - Jkl/k-iS"Vlly < e2"*\\uk - ^ - i ^ V l l y + λ2hke
2^ .

By induction, it follows that

I < e2βtk+1 | | W . _ S-lyh + λ Λ t k + i _ φ 2 β t k + 1

Similarly, we have

Γ < e 2 ^ \\ut - S-'yWy + λ2(tj+1 - φ2"^ .

Next, since SU^'1 = Πp=ί Λ

P > J t follows that

Therefore, by induction, we have

H £ λ 1

Similarly, we have

π < λie*ι>'^(tj+1 - ti)\\y\\ •

Now, since

Uky - Ujy = Σ * = , + 1 (Upy - Up_ιy)

= Σk

P=m JP{UP-,y - (1 + h

= - Σ ί - J + l hPJPAPUP~iy '

an estimate of III is given by

i«^^,r)ΣΪ-j + iV 2 ' f e + ι ~" ) l l

< KB(φ,r)e
2l>τ(tk+1 - tj)\\y\\Y .

Combining these estimates, we have

lim

for every y e Y and i > 1, which implies that

liπiM-oo Ik+i - uJ+ι \\γ = 0. Q.E.D.

Let Δ: 0 = t0 < t1 < < tN = T be a partition of [0, T]. For each w ε P^

and ί e [ίfc, ίk+1) (0 < A; < N — 1), we write
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AA(t, w) = A(tk, w ) [ l + (t- tk)A(tk, w ) ] " 1 and

fAt, w) = [1 + (t - tk)A(tk, w )]" 1 /^, w),

and for each w e W and ί = Γ, we define

AAT,w) = A(T,w) and fj(T,w) = f(T,w),

for simplicity in notation. By our assumptions, we see that

(2.2) \\AAt,w

for w,zeW and ί e [0, Γ],

(2.3) < -

for w e W, x e Y, x* e F(x) and t e [0, Γ], and

(2.4) \\AΔ(t, w)\\r,x < KB(φ

for weB(φ,r) and t e [0, Γ]. We put μ'ί=μ1e
4βT, cc'= oce2<tT and X ' =

KBiφ,r)e2βT. These are upper bounds for μxe^Δ\ αe 2 α | J | and KB(ί>,r)c
2ίMI, respec-

tively. Similar estimates hold for fA:

UAt,w)\\γ<λ'2 for ί€[0 , Γ ] , w e W , and

WfAt,w)-fAt,z)\\<μ'2\\w-z\\ for ίe[0, Γ] and w,zeW,

where A'2 = A 2 e 2 ί T and μ'2 = μ1λ2TeAβT + μ2e
2xT. Now we have:

LEMMA 2.3. Lei ε > 0 and /eί Δ = {ίiJjJLo be a partition of [0, Γ] satisfying

(i) to (iv) of Lemma 2.1. Let Ά = {t, }7=o o e an)> partition of [0, Γ] satisfying

(2.5) l i

T/ien ίfiere is a C > 0 sucn ί/iaί

ll«j(ί) - uAt)\\

/or all t e [0, T].

PROOF. Let t e [0, Γ] and x* e Fίu^ίf) - Uj(ί)) Without loss of general-

ity, we assume that ί e (ί*, tk+1) n (ί, , iJ+1) for some fc e {0,1,. . . , N — 1} and

j e {0, 1,..., tf - 1}. Then, by (2.1), we have

(d/tit)II"J(D - M O P = ~2<AAt, ύj)u2(t) - AAt, uk)uAt), x*>

= 2(1 + Π),

where άj = uAtj) and uk = uAtk) We divide I into 6 terms: I = £f = 1 (i),
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(2) = -<{4,( t , Mi(ί)) - A2(t,

(3) = -<Λj(t, «„(»)) {«j(ί) - uj(t)}, x*> ,

(4) = -<{^tj(ί, Mi)) - Λj(t, ut)}uj(t), x*> ,

(5) = - (A2(t, uk)uΔ{t) - A(tk, uk)uΛ(t), **> and

(6) = -<{A(tk, uk) - AAU uk)}uΔ{i), x*> •

By (2.2), we have

(l) < μΊ ll«i(0 - ώ/ll ll«i(ί)llr ll«i(0 - «J(0II

Since i/j(ί) e B(^, r), we have

(2.6) ll"j(i)lly<r+Wlr = .R.

By the equation

we have

(2.7) J

where L = e2*τ{KB(φιr)R + λ2 US"1 \\x,x}. Note that \t - ί,| < | J | < ε, by (2.5).

Thus we have

Wuait) - uΔ{t)\\ •

By the same way, we have

(2)<^R\\uAt)-uAt)\\2 and

(4) < μ[LRε\\u3(t) - uAt)\\ ,

and by (2.3), we have

(3)<α'||Mj(ί)-uJ(t)||2.

By (in) of Lemma 2.1, we have

Now, since (5) < J ||"j(0 - «j(ί)||, with

J = \\AAt, uk)uAt) - A(tk, uk)uAt)\\ ,

we consider J. Suppose that ί, > tk. Put t' = t — tj + tk. Then we have ί —

ij = t' - tk, tk<t' < tk+1 and tk < ij = t" < tk+1, by (2.5). Therefore, by (in) of

Lemma 2.1, we have
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J = \\{A(t\ nk)[l + (ί' - tk)A(t\ ujy1 - A(tk9 uk)}uAt)\\ < ε .

Next, we consider the case ί, < tk. Since

J < \\{Aj(t, uk) - Aj(u wfc-i)}wj(OII + Il4j(ί, uk-i)Mt) ~ uk}\\

+ \\Aj(t, Mk-i)Mk - A(th-ί9 Mfc-JlifcH + ||M(ί f c_1 ? Mk_χ) - Λ(ίk, Uk^

+ M(ίfc, Mfc-xXiifc - " i θ } | | + | |μ(r k ,«,_!) - A{tk9 uk)}uΔ{t)\\,

we have

J < (μlLΛ + Kr + 1 + KBiφtr) + μiLR)ε

fc-jMfc - A(th-ί9 Wk-i)wk|| ,

by (2.2), (2.4), (2.6), (2.7) and (if) and (Hi) of Lemma 2.1. Put t' = t - tj + ίk_!.

Then, since t — tj = t' — tk_1 and ί', i7- e [ίfc_!, ίk] by (2.5), the second term of the

right-hand side of the above inequality is written as

\\{A(ij9 uk-x)ll + (f - t^Aitj, Mfc-i)]"1 - A(tk-19 u^uAtM ,

and is less than or equal to ε, by (in) of Lemma 2.1. Thus, in either case, we

have

J < {(μx + μ[)LR + K' + K^r) + l} ε .

Therefore, we have

I < εC, \\u3(t) - uAt)\\ + ω, \\uβ(t) - uAt)\\2 ,

where ωx= μ[R + OL' and Cι = 3μ[LR + μxLR + Kf + XB (^ r ) + 2. An esti-

mate for II is obtained similarly:

II < εC2 \\ut(t) - uAt)\\ + ω 2 | |W i(ί) -

for some C2 > 0 and ω2 > 0. Thus we have

(d/dt)\\uAt) - uAt)\\2 < 2ε(Q + C2)\\uAt) - uAt)\\ + 2(ωx

It follows that

WuAt) - uAt)\\ < ε{(Ct + C2)/(ωx + ω2)} {e^
+»# - 1} . Q.E.D.

THEOREM 2.4. There is a continuous function u(t) on [0, Γ] ίnίo X vvfί/i

w(0) = a such that

l i m M h 0 wj(ί) = w(ί) in AT,

uniformly in t e [0, T].

PROOF. Let ε > 0 by an positive number and let A(ε) = {ίk} be a partition

of [0, T] satisfying (i) to (iv) of Lemma 2.1. We put δ = min k(ί k + 1 - tk).
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Then, by Lemma 2.3, for any partitions Δ and A' satisfying \Δ\ < δ and \Δ'\ < δ,

we have

IIMO - MOII < WuΛt) - uMε)(t)\\ + \\uMε)(t) - uAt)\\

<2εC

for all t e [0, T~\. This implies the conclusion of Theorem 2.4. Q.E.D.

REMARK 2.5. u(t) obtained by Theorem 2.4 belongs to the Jf-closure

B(φ, r) of B(φ, r). We can prove that u(t) is the unique weak solution of (CP) in

the sense of [13].

§3. Convergence of {UA(t, s)} in X and existence of mild solutions

Throughout this section, we assume that conditions (X\ (A\\ (A2) {A3),

(/I) and (/2) are satisfied. Under these assumptions, we will show that u(t)

obtained by Theorem 2.4 is the mild solution of (CP\ and that under the

additional assumptions, u(t) is the unique classical solution of (CP).

A function u: [0, T] -• X is called the strong solution of (CP) if it satisfies

the following:

( Ϊ ) u(t) is Lipschitz continuous in X and is strongly differentiable in X for

a.e. t e [0, Γ], and

(ii) u(t) e W and satisfies (CP) for a.e. t e [0, Γ] .

Furthermore, if u(t) is continuous in Y then u{t) is called the classical solution of

(CP). Note that the clasical solution is continuously differentiable in X. The

notion of the mild solution is described in Theorem 3.4.

Let Δ = {tk}%=0 be a partition of [0, T] and let uΔ(t) be the solution of (D)

for Δ. We denote by Ω a triangle defined by

Ω = {(t,s);0<s<t< T}.

With the aid of uΔ(t\ we define a family of bounded linear operators [UΔ(t, s);

(ί, s) E Ω] on X into itself by

if tk < s < t < tk+1 for some k e {0, 1,..., N — 1}, and

UAU s) = [1 + (t - tk)AkT' ... [1 + (tj+1 - s)Ajy
1 ,

if ίj < s < fy+1 and tk<t< tk+1 for some , /c e {0, 1,..., N — 1} with j < k.

Note that UΔ(t, s) depends not only on (ί, s) and zf but also on uΔ(t).

UΔ(t, s)(Y) c y and l/j(ί, s) is strongly continuous on Ω to Z?(7) as well as to
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B(X). It follows from (1.1) and (1.3) that

(3.1) || UAU s)\\ < e2«~s)* and || UAU s)\\γ < e2«~s)β

for (ί, 5) e Ω. It is easy to see that

(3.2) UAU t) = 1 and UAU h)' UAtk, s) = UAU s)

for 0 < 5 < tk < t < T. For each y e Y and (ί, s) e Ω\{(tk9 tj)}9 we have

(3.3) (d/dt)UAU s)y = -A'AU vAt))UA(U s)y and

(3.4) id Ids) UAU s)y = UAU s)A'As9 vAs))y ,

where vAή is the step function defined in Section 2, and for each w e W and

(ί, s) G Ω, we write

A'AU w) = AAU w) ( = A(tk9 w)[l + (ί - ί*M(ίk, w)]" 1 ),

^ ( 5 , w) = [1 + (tJ+1 - s)A(tj9 w)]-M(ί,., w),

if tj< s < tj+1 and tk<t< tk+ί for s o m e j < k, and

A'AU w) = >l(ίk, w)[l + (ί - s)A(tk9 w)]- 1 ,

A'As, w) = [1 + (ί - s)A{tk9 w)yxA(tk9 w),

if tk < s < t < tk+1 for some k. (2.2), (2.3) and (2.4) hold true even if AΔ is

replaced by Aι

Δ or AS

Δ.

LEMMA 3.1. Let ε > 0, s e [0, T) and y e Y. Then there is a partition Δ =

{tk}k=o of [0, T ] swc/ί ίfcaί

( o ) s = ίp /or some 0 < p < N,

(0 Ml<ε,

(if) \\UAUs)y- UAtk,s)y\\γ<ε for tk<t<tk+u k = /?,..., iV - 1,

(ί/ί) | | μ ( r , n 4 )[l + (f - tk)A(t\ ujy1 - A } UAU s)y\\ < ε for tk < ί, ί',

(ii;) ||{A(r, tt4)[1 + (f - ί k )^(r , w,)]-1 - Ak}y\\ < ε for tk < t9 t\ t" <

tk+ί9 k = 09-"9p-l9

where Ak = A(tk9 uk\ uk = uAtk) and uAt) is the solution of (D) for Δ as before.

PROOF. The proof is essentially the same as that of Lemma 2.1. Let

Δ\ = {h}k=o be a partition of [0, 5] satisfying |zf x | < ε and (iυ). Then we can

append points {tk}k=p+1 in [s, T] to Δx to make an expected partition A.

These can be done by the same way as in the proof of Lemma 2.1. Q.E.D.
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The proof of the next lemma is similar to that of Lemma 2.3.

LEMMA 3.2. Let ε > 0, s e [0, T) and y e Y, and let A = {tk}k=0 be a parti-

tion of [0, T] satisfying (o) to (iv) of Lemma 3.1. Let 3 = {tj}JLo be any

partition of [0, T] satisfying

77i<?n there are CΊ = CΊOylly) > 0 and C2 = C2(||y||j.) > 0 such that

\\UA(t, s)y - V2{t, s)y\\ < εC, + C2 Γ \\vΔ{o) - v2{σ)\\ dσ

for (I, s) e Ω.

PROOF. Let ί e [ s , Γ] and x* e F([/j(ί, s)y - l/j(t, s)y). Suppose that t e

(in tk+ι)<">(ί/' ίj+i) f°Γ some k a n d / Then we have

(dldi)\\U2(t,s)y-UAt,s)y\\2 = - 2 < { ^ ( ί , j j(ί)) - A*3(t,vAt))}U2(t, s)y,x*}

- 2(A%t, vj(t)){U2(t, s)y - UA(t, s)y}, x*>

- 2({A°Δ(t, vA(t)) - Ak} VA{t, s)y, x*}

-2{{Ak - AΔ(t, vΔ{t))}υΔ(t, s)y, x*>

WyWAvzit) - vΔ(t)\\ + ε + J}

t, s)y- UΔ(t, s)y\\ + 2α'|| U3(t, s)y- UA(f, s)y\\2 ,

where J = \\{A2(t, υA(t)) - Ak}UΛ(t, s)y\\. Suppose that tk < i}. Then J < ε by

(Hi) of Lemma 3.1. Suppose that ί, < tk. Then we have

J < llMSfc uk) - Ak} • {UΔ(t, s)y - UA(h, s)y}\\

+ \\{A3(t, uk) - A*2(t, uk^)}UΔ(tk, s)y\\

+ \\{Aj(t,uk_1)-Ak_1}UΔ(tk,s)y\\

+ \\{Ak_1-A(tk,uk-i)}UAh,s)y\\

+ \\{A{tk,uk^)- A(tk,uk)}Uj(tk,s)y\\

< 2K'ε + μ[ \\uk - uk^ || e2ί>τ\\y\\γ + 2ε + μt \\uk - uk^ |

Therefore, in any case, we have

Integrating the differential inequality, we have

\\U2(t, s)y - UΔ(t, s)y\\ < j*1e
(«'+2»τ | |j>|lr [' \\vM - vΔ(σ)\\ dσ

+ 2εe*'τ(K' + μ\Le^τ- \\y\\γ + 2)Γ. Q.E.D.
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LEMMA 3.3. For each s e [0, T) and xe X, the limit

l im, J H o UΔ(t, s)x = Uu(t, s)x

exists in X uniformly in t e [s, T]. Furthermore, Uu(t, s) satisfies the following:

(a) Uu(t9 s) is strongly continuous on Ω to B(X) and \\ Uu(t, s)\\ < e"{t~s\

(b) Uu(t, t) = 1 and Uu(t, σ) Uu(σ, s) = Uu(t, s) for 0 < s < σ < t < Γ, and

(c) if u(s0) e W for some s0 e [0, Γ] then

(d/ds)Uu(t, s)y\s=So = l/"(ί, so)A{sO9 u(so))y and

(d/dt)Uu(t,s0)y\t=So=-A(s0,u(s0))y

for ye Y and so<t < T.

PROOF. Let η > 0, se [0, T) and y e Y. Since lini|j |^0 uA{t) = u(t) =

lim|j|_>oM0> Λ e r e is a <?! > 0 such that \\u(t) — vΔ{t)\\ < η for t e [0, T] and Δ

with \Δ\ <δx. We put ε = min (η, δj and let Δ(ε) = {t^Lε)

0 be the partition of

[0, T] satisfying (o) to (iv) of Lemma 3.1. Put δ = minfc (ίj - ί ^ J . Then, for

any partitions Δ and zf with |zf| < δ and |zi'| < δ, we have

)^ - UAt, s)y\\ < \\Uά(t, s)y - Um(t, s)y\\ + \\Um(t9 s) - UΔ.(t, s)y\\

< 2εC1 + 4C2(t - s)η < 2(Q + 2C2 T)η ,

by Lemma 3.2. Therefore, lim(/d|^0 UΔ(t, s)y exists uniformly in t e [s, T]. On

the other hand, since Y is dense in X and \\UΔ(t, s)\\ is uniformly bounded,

limμμo UΔ{t, s)x exists uniformly in t e [s, T] for every xe X, and so Uu(t, s)x =

lim|j|^0 UΔ(t9 s)x is continuous in t e [s, T].

Next, by (3.4), we have

(3.5) UΔ{t9 s)y - UΔ(t, s')y = Γ UΔ(t9 σ)At

Δ(σ9 vΔ(σ))y dσ
Js'

for (ί, s), (ί, s') e Ω a n d y e K T h e r e f o r e , w e h a v e

\\UΔ(t, s)y - UAt, s')y\\ <\s- s'\ K'e2'τ\\y\\γ .

Passing to the limit as \Δ\->09 we see that Uu(t9 s)y is Lipschitz continuous in

s e [0, t] uniformly in t. Therefore, Uu(t9 s)y is continuous on Ω to X, and thus

Uu{t, s)x is continuous for every x e X. By (3.5) with s' = sθ9 we have

1

S -
, s)y - UΔ(t9 so)y - UΔ(t9 σ)Aι

Δ{σ, u(so))y dσ}
Js0

1 fs

UAt, σ) {A'Aσ, vΔ{σ)) ~ A'Aσ, «(
~ S0 Js0

^/iΊe 2 β Γ l l jΊl i - ί — \ \\vAσ) - u(so)\\ dσ
S0 Js0
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Passing to the limit as \Δ| -> 0, we obtain

s - s0

, s)y - Uu(t, so)y - Γ t/"(ί, σ)Λ(σ, u
Jso

1 fs

~ 5 o J S o

(so))3>

||w(σ)-w(so)

Since u(t) is continuous, this implies the first part of (c). To prove the second

part of (c), we will show that

(3.6) | |£/ u ( ί ,s 0 ) j ;-exp[-(ί-

Once this is done, we have
τu(t, so)y - y

= o(ί - s 0 ) , as 11 s0 .

t —
D, u(so))y

ί, 50)y - exp [-( ί -

t —

exp [-(ί - -y

t- s0

, u(so))y

• 0 , as ί I s0 ,

which implies the second part of (c). To this end, we differentiate ΌΔ{t, σ)

exp [ —(σ - so)A(so, w(so))])> with respect to σ and then integrate the result over

σ e [s 0, i]. Then we have

||exp [ -( ί - so)Ao]y - VΔ(t, so)y\\

ί UΔ{U σ){AΛ{σ, vΔ{σ)) - AΔ(σ, u0)} exp [- (σ - So dσ

f ί, σ){AΔ(σ, u0) - Ao} exp [- (σ - so)Ao']y dσ

Γ
Js0

\\υΔ{σ)-u0\\dσ

+ e2'τ I ' \\{A'j(σ, u0) - Ao} exp [ - ( σ - so)^lo]y| | dσ ,
Js0

where w0 = w(s0) and Ao = A(s0, u0). Passing to the limit as \Δ\ -> 0, we have

\\expL-(t-so)Aoly-Uu(t,so)y\\

Γ
Js0

- Φo)ll dσ

\\{A(σ, u0) - Ao} exp [ - ( σ - so)/4o]>ΊI dσ ,
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which implies (3.6). \\Uu(t, s)\\ < eait~s) follows from (1.1), and (b) follows from

(3.2). Q.E.D.

By (/2), there is a unique function #"(ί, w) satisfying (ί) ^(t, w) is defined

for t e [0, To] and xveW, where W is the closure of W in X, (ίi) J^ί, w) =

/(ί, w) for ί 6 [0, To] and weίf, and (iff) \\&(t9 w) - ^ ( ί , z)|| < μ2 \\ w - z\\ for

t e [0, Γo] and w, z G W, and for each wePF, #"(£, w) is continuous on [0, To] to

X. With the aid of ^(t, w), we obtain the following:

THEOREM 3.4. u(t) obtained by Theorem 2.4 is the mild solution of (CP) in

the sense that u(t) satisfies

(M)

for t e [0, T].

u(t) = ί/M(ί, 0)a + I l/M(ί,
Jo

PROOF. For each partition Δ = {ίfc}£L0 of [0, T], we define a family of

bounded linear operators {UA(t9 s)\ (ί, s) e ί2} and a function /^(s) by

Ϊ7j(ί, s) = Uj(t9 tj) if (t, s)eΩ a n d ̂  < s < tj+ί for s o m e j ,

/j(s) = // (= f(tj, uAtj))) if ίĵ  < s < tj+1 for some j ,

1/̂ (7, T) = 1 and fΔ{T) = f(T, uΔ(T)). Then UA(t, s) converges strongly to

Uu(t, s) in B(X\ and fΔ(s) converges to #"(s, u(s)) in X. On the other hand, we

have

(3.7) uΔ{t) = UA{t, 0)α + UΔ(U s)fΔ(s) ds ,

Jo

since uΔ(t) = UΔ(t, tk)uk + (t - ίk)l/j(ί, ίfc)/fc for ίk < ί < tk+u k = 0, . . . , N - 1.

Therefore, taking the limit of both sides of (3.7), as |Δ\ -+ 0, we obtain (M).

Q.E.D.

REMARK 3.5. By (A2\ there is a unique family of linear operators {srf(t, w);

ί G [0, Γo], w G W} satisfying (^1) and (A2) with A(t9 w) and 1^ replaced by

j/(ί, w) and W respectively, and A(t, w) = s/(t, w) for each ί G [0, To] and w e W.

Using these operators, we can prove

W) (d/ds)Uu(t, s)y = Uu(t, s)s/(s9 u(s))y

for (ί, s)e Ω and y e Y. However, we do not use (c1) in this paper.

Let u(t) be the strong solution of (CP). Then we have

u(t) - Uu(t, 0)a = (δ/ds)Uu(t, s)u(s) ds
Jo

= Γ Uu(t, s)f(s9 u(s)) ds .
Jo
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Therefore, every strong solution is the mild solution. Conversely, we have:

COROLLARY 3.6. Let u(t) be the mild solution of {CP). Suppose that u(t) e

W for a.e. t e [0, T]. Then u(t) is the unique strong solution of (CP).

PROOF. Let t e [0, T] be the point such that u(t) e W. By (b) of Lemma

3.3 and (M), we have

f
Jo

u(τ) = Uu(τ, t)Uu(t, 0)α + l/"(τ, t)Uu(t, σ)&(σ, u(σ)) dσ
Jo

σ, u(σ)) dσ

= l/"(τ, ί)iι(ί) + Γ l/"(τ, σ)JF(σ, u(σ)) d

for t < τ < T. Therefore, by (c) of Lemma 3.3, we have

u(τ) - u(t) {Uu(τ91) - \}u{t) 1 Cτ

 Jju(

τ - 1 J ,
1 C Jju(1 ί/M(τ, σ)&(σ9 u(σ)) dσ

τ 1Jτ-t τ-t

-+-A(U u(t))u(t) + /(ί, u(ή), as τ 11,

since f{t,u(t)) = ^{t,u(t)). Therefore, the strong right derivative [d/dt)+u(ή

exists and satisfies

(3.8) (d/dt)+u(t) + 4(ί, ιι(ί))u(ί) = /(ί, ιι(ί)),

whenever n(ί) e PT. By (2.1), H^W/ΛII < K'(\\φ\\γ + r) + λi. Therefore,

is Lipschitz continuous uniformly in J , and so u(t) is also Lipschitz continuous.

Now, since (u(t\ x*> is Lipschitz continuous for every x* e X*9 we have

-f'
Jo

<u(t) - a, x*> = I (d/dsKu{s\ x*> ds

(d/ds)+u{s)ds,x*f*
This implies that u(t) is strongly diflferentiable in X for α.e. ί e [0, T] and

(d/dt)u(t) = {d/dt)+u(ή. Thus w(ί) is the strong solution of (CP) by (3.8). The

uniqueness of the strong solution can be proved by usual way. Q.E.D.

Suppose that X is reflexive. Then we have B(φ, r) = B(φ9 r) by Kato's

lemma. See [7]. So u(t) e W for all t e [0, T]. Therefore, u(t) is the strong

solution of (CP). However, in the rest of this section, we shall show that u(t) is

a classical solution of (CP), if X is reflexive.
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LEMMA 3.7. Suppose that u(t)e W for all te [0, T] and that B(t,u(ή): [0, Γ]

—• B(X) is strongly measurable. Then we have

(af) Uu(t, s)(Y) a Y9 Uu(t,s) is strongly continuous on Ω to B(Y) and

\\Uu(t,s)\\γ<e«-s)β,and

(d) (d/dt)ΌU{U s)y = - A(t, u(ή)Uu{t, s)y for every y e Y and (r, s) e Ω.

PROOF. We employ the method of [3]. Consider the Volterra-type

integral equation

(V) Wu(t, s)x = Uu(t, s)x - I W\U σ)B(σ, u(σ))Uu{σ, s)x dσ

for (ί, s)e Ω and xe X. It is easy to see that (V) has a unique solution

Wu. For each (ί, s) e Ω, Wu(t, s) is a bounded linear operator on X, and Wu is

strongly continuous on Ω to B(X). Multiplying both sides of (V) by S"1, we

obtain another integral equation

u(t,s)x = S~1Uu(t,s)x- Zu(t,(V) Zu(t,s)x = S~1Uu(t,s)x- Zu(t,σ)B(σ,u(σ))Uu(σ,s)xdσ

for (t9s)eΩ and xeX. (V) has also the unique solution Z" = S~XWU. Let

ε > 0, 5 G [0, T) and y G Y, and let Λ = {ίfc}£L0

 b e a partition of [0, Γ] satisfying

(o) to (iv) of Lemma 3.1. Then we have

, s)y

9 a)S-' {A(σ, u(σ)) - As

A(σ, vΔ{σ))} UA(σ, s)y

+ W(t, σ)S~iB(σ,u(σ))UAσ, s)y

si+ 11

for s < σ < t < T. Suppose that tk< σ < tk+ί for some k. Then by (in) and

(it;) of Lemma 3.1, we have

σ, u(σ)) - A(σ, ^(σ))] UA(σ, s)y\\

||[A(σ, vAσ)) - A{tk9 ^(σ))] L/>, s)y||

ΛσmUΛσ, s)y\\}

\\u(σ) - vA(σ)\\ + 2ε} .

Therefore, integrating both sides of (3.9) and then passing to the limit as ε [ 0,

we have

S^WiU s)y - UU(U s)S~γy = Uu(t, σ)S~1B(σ9 u(σ))Uu(σ, s)y dσ .



Abstract quasi-linear equations of evolution 129

This implies that IΛS"1 is also the solution of (V'\ and so S~XWU = UUS~K

Thus we have Uu(t, s)(Y) c Y and Uu(t, s) is strongly continuous on Ω to

B(Y). (d) follows from (b) and (c) of Lemma 3.3. Q.E.D.

Let u(t) be the mild solution of (CP). We consider the following condi-

tion:

u(t) e W for all t e [0, Γ] , and

(C) B(ί,M(ί)):[0,T]-Λ(X) and /(ί, iι(ί)): [0, Γ]-> 7

are strongly measurable .

THEOREM 3.8. Let u(t) be the mild solution of (CP) and let (C) hold. Then

u(t) is the unique classical solution of (CP).

PROOF. By Lemma 3.7 and (M), u(t) is continuous in Y, since /(£, u(ή) is

Bochner integrable in Y. Q.E.D.

If X is reflexive, (C) is automatically satisfied. (See [7].) Therefore, we have:

COROLLARY 3.9. Suppose that X is reflexive. Then (CP) has the unique

classical solution u(t).

§4. Convergence of {uA} in Y and existence of classical solutions

Throughout this section, we assume that conditions (X\ (Λl) through (A4)

and (/I) through (/3) are satisfied. Consider the set B of all continuous

functions v: [0, T~\-*Y whose values v(t) are contained in B(φ, r). B is the

complete metric space with respect to the metric

d(v, w) = sup f \\v(t) — w(t)\\γ for v9 w e B .

For each v e B, we define Φv by

ί
Jo

S-1Uu(t,s){Sf(s,v(s))-B(s,v(s))Sυ(s)}ds

for 0 < t < T, where u is the mild solution of (CP), and {Uu(t9 s)} is the family

of bounded linear operators on X obtained by Lemma 3.3. By (A4) and (/3),

Sf(t, v(ή): [0, Γ] -• X and B(t, v(ή): [0, T] -> B(X) are strongly measurable.

Therefore, we see that Φv: [0, T] -• 7 is continuous.

We here explain the use of the operator Φ in brief. Suppose for the

moment that there is a classical solution u of (CP). Then, using the relation in

(A3), we see (at least formally) that v = Su is a mild solution of
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dυ(t)/dt + A(t, u(t))v(t) = Sf(t, u(ή) - B(t, u(t))Su(t), 0 < ί < Γ,

with ί (O) = Sa. In view of equation (L) in Section 2, we see that

Su(t) = UU{U 0)Sa + Γ Uu(t, s){Sf(s, u(s)) - B(s, u(s))Su(s)} ds
Jo

This means that u is a fixed point of Φ.

In the following, we will prove that Φ has a unique fixed point W G B and

that ΰ is the unique classical solution of (CP).

LEMMA 4.1. There is a TG(0, Γ O ] (which is smaller than or equal to that of

Proposition 1.1) such that Φv e B for all v e B.

PROOF. We will show that ||[Φt;](ί) — φ\\γ < r. By the definition of Φ, we

have

\\[Φvl(t)-ΦWγ<\\Uu(t,O)Sa-Sφ\\

+ e°τ \ \\Sf(s, υ(s)) - B{s, v(s))Sv(s)\\ ds
Jo

< s u p o < t 5 Γ \\Uu(t, 0)Sa - Sα|| + \\a - φ\\r

for all veB. Since \\a - φ\\γ < r, we have \\[Φv](t) - φ\\γ < r if Te (0, To] is

sufficiently small. Q.E.D.

In the rest of this section, we fix T as above.

LEMMA 4.2. Φ: B -• B /iαs α unique fixed point ΰeB.

PROOF. We use the contraction mapping theorem. For each v eB and

w e B, we have

< ί
J

- f(s, w(s))}\\ ds
o

Jo

e"τ{e"τ{μ4 + μ3(μ||y + r) f
Jo

Put C = eαΓ{iU4 + μ3(\\Φ\\Y + r) + ^ J . Then, it follows that
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\\v(s) - w(s)\\yds
\Tl I). Jo

for 0 < t < T and n e N. Therefore, we have

(CTY
d(Φnv, Φnw) < y——!-d(v, w)

n\

for every ne N. Q.E.D.

In the following, we will prove that u = ΰ (e B(φ, r) c W). This implies

that u is the classical solution. To this end, for each Δ = {ίfc}£Lo> we consider

the difference equation

f Wk + AkwA(t) = G(tk), tk < t < tk+1 , 0 < k < N -
(W)

wj(0) = Sa,

where wk = Wj(ίt), ^ k = A(tk, uk) and

G(ί) = Sf(t, Π(t)) - B(t, ΰ(ί))S«(t)

for 0 < t < T. The solution wΔ{t) of (W) is written as

f
Jo

(4.1) wA(t) = UAt, 0)Sa + UA(t, s)GA(s) ds ,
Jo

where GΔ{s) = G(tk) if tk < s < tk+1 for some 0 < k < N - 1, and GΔ{T) = G(T).

The notation ΌΔ(t, s) is described in the proof of Theorem 3.4. Note that

wΔ(t) e D(Ak) for tk < t < tk+ί9 0 < k < N - 1.

LEMMA 4.3. There is a sequence {Δ(m)}™=1 of partitions of [0, T] such that

limm_00 \Δ(m)\ = 0 and that

(4.2) lirn,^^ suP ί \\wA{m)(t) - Sΰ(t)\\ = 0 .

PROOF. Since ΰ = Φΰ, we have

(4.3) Sΰ(t) = Uu{t, 0)Sa + Uu(t, s)G(s) ds
Jo

for 0 < t < T. By the well known lemma of Evans [4], there is a sequence of

partitions Δ(m) (m e N) satisfying

(4.4) \Δ(m)\<l/m and \\G(t) - GΔ(m)(t)\\ dt < 1/m
Jo
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for meN, since G(t) is strongly measurable and bounded in X. By (4.1) and

(4.3), we have

for 0 < t < T. We put

φm(s) = sup τ 6 [ s , Γ ] ||{ϊ7J(m)(τ, s) -

for 0 < s < T and meN Then φm(s) is the bounded measurable function of

0 < 5 < T and satisfies limm_00 φm(s) = 0 by Lemma 3.3. Therefore, by (4.4) and

Lemma 3.3, we have

suP ί ||wJ(m)(ί) - Sΰ(t)\\ < suP ί \\{UAim)(t9 0) - l/"(

Jo

as m -> oo. Q.E.D.

LEMMA 4.4. For every partition A = {ίk}JL0 °/ [0, T] satisfying \A\<(2β)~1,

we have

where ω > max [2{μ4 + μ3(r + ||^||j-)}, 4)5], αnrf

εj = {̂ 4 + K + μ3(r + \\Φ\\γ)}-τnaxk {sup,k S, s t f c + 1 ||wj(t) - SU(tk)\\} .

PROOF. Multiplying both sides of (W) by S"1, and then using the relation

k = /ifcS"1 - S"1^,,, we have

(Z)
+ S-'iWtt, uk)SzAt) - B(tk, Π(tk))Sΰ(tk)}

for tk<t< ίk+1, 0 < fc < N - 1, where z^(l) = S"1wJ(t) and zfc = S~ιwk. There-

fore, we have

zAt) = [l + (t - ί j ^ T z , + ( ( - t fc)[i + (t - t^A.rVih, u(tk))

(4.5) + (t - ίfc)[l + (t - t ^ p S - 1 * ^ , M,)S{Zj(r) - ΰ(ίt)}

,, uk) - B(tk, ΰ(tk))}SΠ(tk)
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for tk<t< tk+ί9 0 < k < N - 1. By (1.4) and (4.5), we have

WzΛt) ~ uA(t)\\γ < e2βit~^\\zk - uk\\γ + μA(t - tk)e2'™\\uk - ΰ(tk)\\γ

\\uk - ΰ(tk)\\y \\ΰ(tk)\\γ .

Therefore, using the inequality

I!"* - U(tk)\\y < \\Uk ~ Zk\\y + \\Zk ~ ΰ{tk)\\γ ,

we have

WzΛt) - uAt)\\γ < eW-^{\ + (ί -

Now, since 1 + h{μ4f + μ3(r + ll^lly)} < eωhβ for ft > 0, we have

IkjW - uΔ(t)h < e^^Wz, - uk\\γ + (ί - ί ^ - ' ^ βj

for tk<t < tk+l9 0<k<N - 1. It follows that

^(Olly < Σ)=o(tj+i - tj)e**-» εA < Te»τ εΔ . Q.E.D.

THEOREM 4.5. Suppose that conditions (X), (Al) through (Λ4) and (/I)

through (/3) are satisfied. Then we have the following:

(i) There is a sequence {zί(m)}^=1 of partitions of [0, T] such that

limm^00\A(m)\ = 0 and that {uΔ{m)(t)} converges in Y, uniformly on [0, T], ίo the

unique classical solution u(t) of (CP).

(ii) In addition to the assumptions above, assume that (Bf) is satisfied.

Then {uΔ(m)(ή} converges in Y, uniformly on [0, T], for every sequence {^(m)}^=1

satisfying lim,^^ \Δ(m)\ = 0.

PROOF. We take {Δ(m)} as in Lemma 4.3. Then we have

supf ||ιιJ(M)(ί) - ΰ(t)\\γ = supf \\SuΔim)(t) - Sΰ(t)\\

^ supt \\SuΔim)(t) - wJ(m)(ί)|| + sup, ||wΔ(m){i) - Sΰ{t)\\

< TeωT εΔ(m) + suP ί ||wΔ{m)(t) - Su(t)\\

-> 0 , as m -» oo ,

by Lemma 4.3 and Lemma 4.4. On the other hand, since {uΔ(m)(t)} converges

to the mild solution u(t) of (CP), we have u = ΰ. Therefore, u(ί) ε W and w(ί)

is continuous on [0, T] into 7, and thus condition (C) is satisfied. From

Theorem 3.8 it follows that u(t) is the unique classical solution. This proves

(ί). If (Bf) holds, G(ί) is continuous on [0, T] into X, and so (4.2) holds for
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every {A(m)} satisfying lim,^^ \Δ(m)\ = 0. Therefore, («) follows from (4.6).

Q.E.D.

§5. Convergence of {uj} in Y

In this section, we consider the sequence of Cauchy problems (CPn)

(ne N = TVu {oo}). Throughout this section, we assume conditions (5) and

(C) below.

(5) The operators {AnJn} satisfy conditions {X\ {A\) through (A4) and (/I)

through (/3) uniformly in n e TV, by which we mean that all the constants

To, α, μ l 9 , μ4 are independent of n e TV. Jf, 7, 5 and W in condition

(X) are common to all (CPn).

(C) For each w eW and y eY,

(5.1) lim,,^ A"(r, w))> = A°°(t, w)y in Z uniformly on [0, To] ,

(5.2) l i m ^ Bn{u w) = 5°°(ί, w) strongly in B(JQ

for each t e [0, Γo], where £Λ(ί, w) = SAn(t, w)S~1 - An(t9 w),

(5.3) Hm^ β /"( ί ,w) = /»(ί,w) i n 7

for each ί G [0, To], and

(5.4) l i m ^ / ' U w) = /°°(ί, w) in X uniformly on [0, To] .

Let J = {tk}k=o be a partition of [0, Γ]. Consider the difference approxi-

mation (Dn) for (CPn) of the type (D):

Γ —

where ŵ  = un

Δ{tk\ An

k = ^π(ί λ, uk) and /Λ

π = /w(ίΛ, uΐ). To study the conver-

gence of {uj}, we prepare some notions and notations. Let Z be an arbitrary

Banach space with the norm || | | z . We denote by c(Z) the set of all convergent

sequences z = {zn} in Z. c(Z) is a Banach space with the norm \\z\\c{Z) =

s u p j | z l z ( < α ) ) for z = {zn}ec(Z).

LEMMA 5.1. (ί) A function g(ή = {gn(ή}: [0, Γo] -^c(Z) is continuous if

and only if each gn: [0, To] - ^ Z is continuous and the sequence {gn(t)} converges

in Z uniformly in t e [0, Γo].

(ii) A function g = {gn}:[09 To~]-^ c(Z) is strongly measurable in c(Z) if

and only if each gn is strongly measurable in Z and the sequence {gn(ή} converges

in Z at each t e [0, To].
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PROOF, (ί) follows from the Ascoli-Arzela theorem. See [15; p. 85].

Only if part of (ii) is trivial. Suppose that gn (n e N) are strongly measurable

in Z and that {gn(ή} e c(Z) for each t e [0, To]. Then gco = limgn is also

strongly measurable. For each N e TV, we define gN(t) by

It follows that gN is strongly measurable in c(Z) and that

\\9(t) - gN(t)\\c(Z) = s u P π > i V \\gn(t) - d»(t)\\z - 0 , as N - oo .

Therefore, # is strongly measurable in c(Z). Q.E.D.

Let (X, Y) be the pair of Banach spaces satisfying (X) with the isometry S

and the open subset W a Y. We write X = c(X) and F = c(Y). Y is densely

and continuously embedded in X. For each j = {/} e F, we define Sy by

Sy = {Syn} (G X). S.Y-+X is a linear isometry onto X. W denotes the

subset of Y consists of all w = {wn} e Y satisfying w" e W for all neN and

lim wn G W. W is the open subset of Y. Therefore, the pair (X, Y) of the

Banach spaces also satisfies (X) with the isometry S and the open subset W.

For each t e [0, Γo] and w = {ww} e W, we define a linear operator A(t, w)

in X as follows:

The domain D(A(t, w)) of A(t9 w) is the set of all JC = {xn} e X satisfying

xn e Ό(An(t, w")) for all neN and {An(t, wn)xn} e X, and for each x =

{xn} e Ό(A(t, H>)), we define A(t, w)x = {An(t, wn)xn}.

A(t9 w) is the linear operator in X. We will prove that A satisfies (Al) to

(A4) with the same constants α, μί9 λt and μ3 as for {An}. By (5.1), for each

w = {wn} e W and y = {yn} e Y, we have

(5.5) supf \\An(t9 w
n)yn - A°°(ί, w00)};001| -> 0 , as n -> oo ,

where w00 = lim wn and y00 = lim yn. Therefore, we have

Ό(A(t9 w)) ID Y and ί -• A(t9 w)y is strongly continuous in X,

by Lemma 5.1.

Let ί e [0, Γo], w = {wM} eW,x = {xn} e X and 0 < ah < 1, and put

/• = [1 + hA\U wn)T1xn (e Ό{An(t, wn))).

Then, by (5.1), we have

(5.6) l i m ^ [1 + hAn(t, w " ) ] " ^ " = [1 + hA"(t9 w 0 0 ) ] " ^ 0 0 in AT,

where w00 = lim w" and x00 = lim xw. Therefore, we have j = {yn} e X. How-

ever, since
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l im,,^ An(t9 wn)yn = {x00 - [1 + fc4°°(f, w 0 0)]"^ 0 0}//!,

we have y e D(4(ί, w)\ and so y is the unique solution of

y + hA(U w)y = x -

Therefore, [1 + hA(t, w)]" 1 exists in B(X) and satisfies

\\ll+hA(t,w)T1x\\x=supHKl+hA"{t9w")T1x"\\

^(1-ftα)"111*11*

for J C G X Let ί e [0, Γ o ] , w = {wn} e W, z = {zn}eW and ^ = { y π } e F .

Then we have

\\A(t, w)y - A(t, z)y\\χ = supπ \\A"(t, wn)yn - An(t, zn)yn\\

<μi\\w-z\\χ \\y\\γ.

Therefore, we have proved conditions (̂ 41) and (A2) for A.

To prove (A3), we put B(t, w)x = {Bn(t, wn)xn} for each t e [0, To], w =

{wn} e W and x = {xw} e X Then, by (44), (43) and (5.2), we have

where w00 = lim w" and x00 = lim xn. Therefore, we have

B(U w)xeX, B(t, w) e B(X) and

t -• .β(ί, w) is strongly measurable in B(X).

Furthermore, for each t e [0, Γo], w = {wπ} G ̂ F and z = {zπ} e >F, we have

\\B(U w)\\χ < supπ \\B\U wπ)|| < Ax , and

ί, w) - B(t9 z)\\χ < s u p n | | B " ( ί , w " ) - Bn(t, zn)\\ < μ 3 \ \ w - z \ \ γ .

This proves condition (44) for B.

Next, we prove

(5.7) Ό(SA(t9 w)S~') = Ό(A(t, w)) ( = D(4(ί, w) + B(U w))), and

(5.8) SA(t, w)S~x = 4(ί, w) + 5(ί, NF) .

For each JC = {xπ} e D(4(ί, w)), we have S " 1 * e Fez Ό(A(t, w)) and

A(t, w)S'xx = {S^A'fa wn)xn + S"1^1 1^, w")x"}

= S-χA(t9 w)x + S " 1 ^ , w)jr ,

since 4(ί, W)JC e X and /?(ί, W)JC e X. Therefore, we have

A(t9w)Srxxe Y.
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This implies that x e Ό(SA(t, w)S~1), and so we have

Ό(A(t,w))cΌ(SA(t9w)S-1).

Conversely, let x = {xn} e Ό(SA(t, ̂ S'1). Then we have

A(t,w)S~1xeY, and

x" e Ό(SAn(t, wm)S-x) = Ό(An(t9 w
n)) for neN.

Therefore, the limit

Λslim^ 0 0X"(ί,w")S- 1x"

= l i m ^ S-x{An(t9 wn) + B"(ί, wn)}xn

exists in y for each t e [0, 7J>]. On the other hand, since

l i m ^ ^ Bn(t, wn)xn = β°°(ί, w 0 0 ^ 0 0

in X, we have

li Xπ( π ) π S B°°( ^Jx00 in X .

This implies that x e Ό(A(t, w)), and (5.7) is proved. (5.8) follows from (5.9).
For each t e [0, To] and H> = {wn} e W, we put /(ί, w) = {/π(ί, wπ)} and

w00 = lim wπ. Then since

by (5.3), we have /(ί, w) e F. Similarly, ί -•/(ί, w) is continuous in X by (5.4).
Conditions (/2) and (/3) for /follow immediately.

Now, we have obtained another system (X, Y, S, W9 A, B,f) which satisfies
(X) through (/3). We are ready to apply our results in Section 4 to the
Cauchy problem (CP) in X, and we obtain the following:

THEOREM 5.2. Let conditions (S) and (C) be satisfied. Then, for each
a = {an} G W with a°° = lim an (e W), there is a Ts (0, To] such that the follow-
ing hold.

(i) The solution un

Δ of (Dn) exists in W for every partition Δ of [0, T] and
neN.

(iί) There is a sequence {Δ(m)} of partitions of [0, Γ] such that
lim \A(m)\=09 and that

(5.10) l i m , ^ sup t 5 M e ^v \\un

Δ{m){t) - un{t)\\γ = 0

holds, where each un(t) (n e N) is the unique classical solution of (CPn). More-
over, we have

(5.11) l i π w sup, ||M"(t) - uT{t)\\r = 0 .
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(in) In addition to the assumptions above, assume that (Bf) is satisfied for

every (CPn) (n e TV), and that (5.2) and (5.3) hold uniformly on [0, Γo]. Then,

(5.10) holds for every sequence {Λ(m)} satisfying lim |A(m)\ = 0.

PROOF. Let a = {an}eW and α00 = lim an e W. Then, by Proposition

1.1, there is a Te (0, Γo] such that the solution uΔ(t) = {un

Δ(t)} of

Δ)} fk, h<t<tk+1, 0<k<N-ί,

= a,

exists in W for every partition A = {ίΛ}JL0 of [0, Γ], where uk = uΔ(tk\

Ak = A(tk, uk) and fk =f(tk, uk). Each component un

Δ (n e TV) of Mj is the solu-

tion of (£>"). Since uΔ(t) is continuous in F,

(5.12) n J W ^ l i m , , ^ ^ )

exists in W. The limit is taken with respect to the Y-norm and the conver-

gence holds uniformly on [0, T]. Taking the limit of the both sides of (Dn)

(n e TV), as n -• oo, we see that uΔ is the solution of (D00). This proves (i).

Choose smaller Te (0, To] as in Lemma 4.1. Then, by Theorem 4.5, there is a

sequence {A(m)} of partitions of [0, Γ] such that lim \A(m)\ = 0 and that

(5.13) l i m , ^ supf \\uΔ(m)(t) - u(t)\\γ = \\mm^ supfflI6Λr||iι3(w)(ί) - κ"(ί)||y = 0 ,

holds, where u(t) = {un(t)} is the unique classical solution of (CP). By (5.13),

each component un(t) (n e N) of u(t) is the unique classical solution of (CPn).

Since u(t) is continuous in F, {un(t)}neN converges in the Y-norm uniformly on

[0, T]. Put w00 = lim un. Then, taking the limit of the both sides of (CPn)

(n e N)9 as n -> oo, we see that w00 is the unique classical solution of (CP00).

Therefore, we obtain (5.11). Now, by (5.11) and (5.12), we have

supneN\\un

Δ(t) - un(t)\\γ = supneN\\un

Δ(t) - un(t)\\γ .

Therefore, (5.10) follows from (5.13), and we have proved (iϊ). (in) follows from

(ii) of Theorem 4.5 and Lemma 5.1. Q.E.D.

COROLLARY 5.3. Let conditions (S) and (C) be satisfied. Choose Te

(0, Γo] as in Theorem 5.2. Then, there is a sequence {A(m)} of partitions of

[0, Γ] such that lim \A(m)\=0, and that

l i n v , , ^ suP ί \\u\m)(t) - w°°(ί)||y

(5.14) = l i m , ^ { l i m ^ s u P ί \\un

Δ(m)(t) - u«>(t)\\γ}

= lim^ {lim,^^ suP ί ||ιι3(m)(ί) - ιι°°(ί)||y} = 0 .
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In addition to the assumptions above, assume that (Bf) is satisfied for every

{CPn) (neN), and that (5.2) and (5.3) hold uniformly on [0, To]. Then, (5.14)

holds for every {Δ(m)} satisfying lim \Λ(m)\ = 0.

Corollary 5.3 follows immediately from (5.10), (5.11) and (5.12).
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