HIROSHIMA MATH. J.
19 (1989), 109-139

Abstract quasi-linear equations of evolution
in nonreflexive Banach spaces

Nobuhiro SANEKATA
(Received January 20, 1988)

Introduction

In [7] T. Kato established the existence of classical solutions to the
abstract quasi-linear equations of the form

du(t)/dt + A(t, u@®))u(t) = ft,u(®)), 0<t<T,

(CP) u@0) =a,
and applied his theory to a wide variety of problems from mathematical
physics. In his theory two reflexive Banach spaces X and Y are used in such a
way that Y is continuously and densely embedded in X, the solution u(t) of
(CP) lies in some open subset W of Y and du(t)/dt is found in X. The
reflexivity of X (and hence that of Y) is essential for the theory, and it is
important from the theoretical point of view to eliminate this restriction for the
spaces X and Y. Furthermore, in order to apply the theory to partial differen-
tial equations in suitable function spaces, it is required to extend this theory to
the case of nonreflexive Banach spaces.

The first purpose of the present paper is to establish an existence theorem
for the classical solutions of (CP) in a pair of general Banach spaces X o Y.
We shall show that the solutions are continuous in Y-norm and continuously
differentiable in X. In order to construct such solutions, we employ the
following type of difference approximation of (CP):

f) —
u_At(—)_t&+A(tk’uk)uA(t)zf(thuk)’ L<t<tly, 0Sk<N-1,
— I
(D)
us0) =a,

where 4:0=1t,<t; < ' <ty=T is a partition of the interval [0, T] and
u, = uy(t,). This approach is one of the main features of our argument. In
case the operators A(t, w) and f(t, w) are independent of ¢ and of the form A(w)
and f(w), it was proved in [14] that for any initial value a € W, one finds a
T > 0 such that the solution u, of (D) exists in W, and that {u,} converges in X
to a unique weak solution (in the sense of [13]) of (CP) as |4| = max (t, —
tr—;)— 0. In this t-independent case the proof of the convergence of {uy(t)}
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was straightforward since a general convergence theorem for the difference
approximation of nonlinear evolution equations formulated for quasi-dissipative
operators can be applied to our case. (The result due to Y. Kobayashi [10]
was employed in the previous paper [14].) Similar results were obtained for
“quasinonlinear” equations by Crandall and Souganidis [1], and in their sub-
sequent paper [2] it was proved that {u,} converges in Y-norm provided X is
reflexive. However, the methods used in these works do not seem to be
effective enough to prove the same results even for the case in which the
operators A(t, w) depend on ¢ € [0, T] in the sense of Kato [7].

The second purpose of this paper is to extend the results of [2] and [14] to
the case in which the operators A(t, w) and f(t, w) depend on t € [0, T]. It will
be seen that our assumption on the t-dependence of A(t, w) is weaker than that
of [7]. The significance of our results here is that the reflexivity assumption
for X (and hence Y) is eliminated. These results are stated in Section 4.

Consider the sequence of Cauchy problems

du™(t)/dt + A"(t, u"(t))u(t) = f"(@t, u"(@t)), 0<t<T,

(€F) u"(0) =a",

where ne N= Nu{ow} and N={1,2,...}. Kato showed in [7; Theorem 7]
the uniform convergence of {u"(t)},.n (to u®(t)) in Y-norm under appropriate
assumptions. Our third purpose is to give a simple proof of this convergence
result by applying our existence theorem. Consider the set ¢(X) of all conver-
gent sequences x = {x"} in X. ¢(X) is a Banach space with respect to the
norm | x|l.x, = sup, [x"|l. The sequence of Cauchy problems (CP") can be
regarded as a single Cauchy problem

du(t)/dt + A(t, u(t))u(t) = f(t, u(t)), 0<t<T,

(€P) u@) =a,

in the Banach space ¢(X). The uniform convergence of {u"(t)} in Y is equiva-
lent to the existence of the classical solution u(t) of (CP). Indeed, we can apply
our results obtained in Section 4 to (CP) and find the solution u(t). It should
be noted that ¢(X) is nonreflexive even if X is reflexive, and so one cannot
apply previous results (for instance [13]) to (CP). These results are stated in
Section 5 along with some other related results.

Other applications and further extensions of our results will be published
elsewhere.

§1. Basic hypotheses and main results

We consider two real Banach spaces X and Y with norms ||-|| and ||y,
respectively. The operator norm of a bounded linear operator 4 on Y to X is
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denoted by |Aly,x. However, we write ||:|| (or |||y) for the operator norm
Il-lx,x (or ||-|ly,y) for brevity in notation. The symbol B(X) (or B(Y)) denotes
the set of all bounded linear operators on X (or Y) into itself.

In this paper we put one condition on the Banach spaces X and Y,
four conditions on the operators A(t,w) and three conditions on the

nonlinear operators f(t, w). First we impose the following condition on the
pair (X, Y):

(X) Y is continuously and densely embedded in X. There is a linear isometry
S of Y onto X. There is a nonvoid open subset W of Y.

It should be noted that under assumption (X), X is reflexive if and only if
Y is reflexive.

Let X* be the dual space of X. The value of x* € X* at x € X is denoted
by <x, x*>. The duality mapping of X is denoted by F, i.e.,

F(x) = {x* € X*; {x, x*) = ||x||* = || x*||*} forxe X .
For the operators A(t, w) we assume (A1) through (A43) below.

(A1) There are positive numbers T, and o« such that for each ¢t € [0, T;] and
we W, —A(t,w) is the infinitesimal generator of a (C,)-semigroup
{exp [—sA(t, w)]}ss0 on X satisfying [exp [—sA(t, w)]| < e* for s > 0.
The domain D(A(t, w)) of A(t, w) includes Y.

Under assumption (A1), the set {4 > «} is included in the resolvent set of
— A(t, w), and

(1.1) I[1 + hA@E W] < (1 — ho)™!

for each h > 0 with ha < 1, t € [0, T,] and we W.
The next assumption is concerned with the restriction of A(t, w) to Y,
which is a bounded linear operator on Y to X by the closed graph theorem.

(A2) There is a positive number y; such that
AL, w) — A, 2)lly,x < pyllw — 2|

for all te [0, T,] and w, ze W. For each we W and ye Y, A(t,w)y is a
continuous function from [0, T;] into X.

From assumption (A42) it follows that for any bounded subset B of W there
is a Kz > 0 such that

(1.2) 4G wlly,x < Kpg

for all t € [0, T,] and w € B.
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(A3) For each t € [0, T,] and w € W, there is a bounded linear operator B(t, w)
on X into itself such that
SA(t, w)S~t = A(t, w) + B(t, w),

and ||B(t, w)|| < 4, for some positive number A; which is independent of
te[0, T,] and we W.

We next make two hypotheses on the operators f(t, w).
(f1) Foreachte[0, T,] and we W, f(¢t, w) € Y and
£ Wy < 4,

for some positive number A, which is independent of t e [0, T,] and
we W.

(f2) There is a positive number y, such that

1/t w) — f(t, 2]l < pzllw — z]|

for each te[0, T,], we W and ze W. For each we W, f(t,w) is an
X-valued continuous function on [0, T;].

Throughout this paper the above conditions (X) through (f2) are always
assumed. Under these assumptions, exp [—sA(t, w)](Y) = Y for each s> 0,
te [0, T,] and we W, and the restriction of {exp [—sA(f, w)]}sso to Y is a
(Co)-semigroup on Y such that

lexp [—sA(t, w)]lly < e®*40*
for each s > 0, t € [0, T,;] and we W. Therefore, we have

LT + hA(E, w)17H Iy = [IL1 + h(A(, w) + B(t, w))17'|

(1.3) .
<1 —h(x+ 4,))

for each h > 0 with h(ex + 4,) < 1, t € [0, T,] and we W. See [5].

The existence of the solution uy(t) of the difference scheme (D) (as intro-
duced in the Introduction) follows from assumptions (X) through (f2) above.
Let u (0) = uo = a. We begin by defining u,(t) on the first subinterval [0, ¢, ]:

uy(t) =[1 + tAO, a)]'a + t[1 + tA(0, a)]7'f(0, a)
for t € [0,t,]. Suppose that u, € W is given. Then uy(t) on [t, t,,,] is de-
fined by

ug(t) = [1 + (t — t) At w)1 ',

(1.4) -
+(t — )1 + (¢ — t) A, w )] (6, w) -
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This is well defined for ¢ with (t — t,)a < 1. Here and after we always assume
that

418 <1/2,
where |4| = max; <, <ny(ty —t,—;) and f=a + 1;. We write
A, = Aty w), B,=B(t,,u) and f,=f(t,w) fork=0,1,...,N,and
Jo = [+ (s — AT, Re=[1 + (tesr — t) (A + B)]™
and hy =t — t fork=0,1,...,.N—1,

for simplicity in notation. Now, we have:

PropPOSITION 1.1. Let ae W. Choose ¢ € W and r > O such that a € B(¢, r)
and B(¢,r) = W, where B(¢,r)={ye Y; |y — dlly <r} and B(@,7) is the closure
of B(g,r)in Y. Let Te (0, Ty] be sufficiently small so that

inf,.y {e*"lla — lly + (1 + e*T)[S¢ — z|| + M. Te*T} <7,

where M, = Ky nllzlly + Azl + 4, and Kpgy , is given in (1.2). Then the
solution uy(t) of (D) exists in B(g,r) (cW) for any partition 4 = {t,}1-o of
[0, T].

PROOF. u4(0) =a is given and belongs to B(g, r). Suppose that {uy(t);
0 <t <t} is contained in B(¢, r) for some k. Then uy,(t) on [t;, t;,,] is given
by (1.4) and belongs to Y. We will show that u,(t)e B(¢,r) for ¢, <t < t,;.
Multiplying both sides of (D) by S and using the relation in (43), we have
Suy(t) = [1 + (t — t,)(4y + B)17'S{ue + (£ — t)fi} -
Therefore, by (1.3), (1.2), (43), (f1) and the relation (1 — ) <e* for 0 <t <
1/2, we have
ISut) — zll < L1 + (¢ — t)(Ax + B)] ' {Su, — 2}
+ 1+ (¢ — t)(A + B)] 'z — 2|
+ (¢ — Il + (¢ — t)(Ax + BI1 'S
< e2PW|Su, — z|| + M,(t — t,)e*F™
forany ze Y and t, <t < t;,,. By induction it follows that
Suae) — 2l < e Sa — 2| + M, Fheo hye?eV
< e*T|Sa — z|| + M, Te**T .

Thus we have
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lug(t) — Blly < lISuy(t) — 2zl + [z — SAl
< e¥T|Sa — z| + M,Te*T + ||z — S¢||
< e7T||Sa — S|l + (1 + €27)||S$ — z|| + M, Te?T

for any z € Y, which implies that u,(t) € B(¢, r). Q.E.D.

Here and after we fix ae W, B(¢,r) and Te (0, T,] as above, unless
otherwise stated.

The convergence of {u,} in X can be obtained under the same assump-
tions. See Section 2. To obtain the convergence of {u,} in Y, we make
additional assumptions:

(A4) There is a positive number p; such that
I1B(t, w) — B(t, 2)|| < psllw — zlly

for each t € [0, T,], we W and ze W. For each we W, B(t, w): [0, T,] -
B(X) is strongly measurable.

(f3) There is a positive number u, such that

11t w) — [, Dlly < pallw — 2|y

for all te [0, T,], we W and ze W. Foreachwe W, f(t,w):[0, T,] > Y
is strongly measurable.

(Bf) For each weW, B(t,w): [0, T,] > B(X) and f(t,w):[0, T,]—>Y are
strongly continuous.

Conditions (A44), (f3) and (Bf) will be used in Sections 4 and 5. The limit
of u, can be found under the conditions as mentioned above and it gives the
desired solution of (CP). Our main results are stated as follows:

THEOREM A. Let (X), (A1), (A2), (A3), (f1) and (f2) hold. Then there is an
X-valued continuous function u(t) on [0, T] with u(0) = a such that limu,(t) =
u(t) in X, uniformly for te[0, T]. Moreover, the function u(t) is the mild
solution of (CP) in the sense that u(t) satisfies

t

(M) u(t) = U*(t, 0)a + f U“(t, s)Z (s, u(s)) ds

0
for te[0, T].

This theorem is proved in Sections 2 and 3 and is formulated in Theorems
24 and 34. The operators Z(t,w) are defined in the paragraph before
Theorem 3.4. The family of bounded linear operators {U*(t,s);0 <s<t < T}
on X is constructed in Lemma 3.3. By Lemma 3.7 and Theorem B below, we
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will see that w(t) = U%(t, s)y with ye Y is the solution of the initial value
problem

(L) dw(t)/dt + At, u(®))w(t) =0, s<t<T, u(s)=y.

It should be noted that the linear operators A(t, u(t)) are not well defined under
the assumptions of Theorem A.

THEOREM B. Let (X), (A1)-(A4), (f1)—(f3) hold. Then there is a sequence
{4(m)} of partitions of [0, T] such that lim|4(m)| =0 and that {u,(t)} con-
verges in Y, uniformly on [0, T], to the unique classical solution u(t) of (CP).

Theorem B is the existence theorem for the classical solutions and is
proved in Section 4. The convergence problem mentioned at the end of the
Introduction is treated in Section 5 and the results are summarized in Theorem
5.2.

§2. Convergence of {u,} in X

Throughout this section, we assume that conditions (X), (A1), (42), (43),
(f1) and (f2) are satisfied. We do not need conditions (A44), (f1) and (Bf).

Let 4:0=ty,<t; <'-<ty=T be a partition of [0, T], and let u,(t) be
the solution of (D) on [0, T]. uy(t) is given by formula (1.4). Note that
Bl4| < 1/2 is always assumed. It is easy to see that u,(t) is continuous on [0, T]
into Y, and is continuously differentiable on each interval (¢, t,,,) 0 <k <
N — 1) into X. duy(t)/dt on (t, t,.,) is given by

@1 duy(@)/dt = [1 + (¢ — t)A] 7 {—Aus) + fi} -

In this section, we will show that {u,(t)} converges in X-norm uniformly,
as |4| = 0, to a continuous function u(t) in X. Once this is done, it is easy to
see that the step functions {v,(t)}, defined by

UA(t) = uk_l onte [tk—l’ tk) P’y 1 S k S N P’y and UA(T) = uN N
also converges uniformly to u(t). To prove the convergence of {uy(t)}, we
prepare some lemmas.
LemMa 2.1. For each ¢ >0 there is a partition A(s):0=1t{ <t; <<
the = T of [0, T] such that
(i) |4l <e,

(ii)  Nuge)(t) — vaeyt)lly < € for t e [t;, tie1], 0 <k < N(g) — 1,
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(i) {A@", w)[1 + (' — A", u)] ™" — AfJuse(@)ll <& for t, t', t" € [1,
tis11, 0<k<N()—1, and

(iv) [+ (& — DA, w17 S, we) — [t wll < e for t, t', t" € [£, tivy],
0<k<N()—-1,

where uy(t) is the solution of (D) for A(e), and w; = uy,(t;) and A; = A(tg, ug)
for 0 < k < N(e).

Proor. We put t§ =0 and uy,(t§) = a. Inductively, we define {t;} and
Uy in the following way. Suppose that {t/;j=0,1,...,k} and {uy,(t);0 <
t < ti} are constructed, and that t; < T. Then, let t;,, € (¢;, T] be the largest
number satisfying (i) to (iv). By the continuity of the functions in (i) to (iv), we .
can choose t;.; > t;. We will show that there is an N(e) such that t3,, = T.
Assume for thecontrary that t: < T for allne N. Let t,, =limt;. Then it will
be shown in Lemma 2.2 that u,(f) converges in Y-norm to an element
u, € B(¢,r), as t > t,,. We use this fact for the moment. Then we have t{,, —

t: < ¢/2 and
luae)(®) — uglly < llugey(®) — oo lly + llue — weclly < €/2,

for sufficiently large k and t; <t <t;,,. Similarly, the left-hand sides of the
inequalities in (iil) and (iv) are less than ¢/2 for sufficiently large k. This
contradicts the definition of {¢;}. QE.D.

Let 4 = {t,} be a strictly increasing sequence in [0, T] satisfying |4|f <
1/220<ty<t; < <t,<---<T. We put t,=limt,. Let {u,} be the
sequence of elements in B(g, r) satisfying

u —Uu
S L Ay, =f,, n=0,1,2 ...,
tn+1_tn

up=a.
Then we have:
LEMMA 2.2. The sequence {u,} converges in Y, as n — 0.
ProoF. Letk>j>i>1and yeY. We put
Uy = Tpmi dy = Juducs == i
for n >i. Here, the notation J, is described in Section 1. Then we have
lts = sy = [ Stty — St |
< ISty — SUSTyI + ISUS™y — Uyl + [ Uey — Uyl
+ Uy — SUS~ 'yl + ISUS™y — Sujuy |l -
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We put I, II, III, II' and I for the terms of the right-hand side of the above
inequality. Then we have
I = |Je(e + hifi) = TU S7'ylly < € uy — U1 Sy lly + Aphye® ™.

By induction, it follows that

I < ety — S7ylly + Ay(tesy — )€t
Similarly, we have

I' < ey, — S7lylly + Ay(tjsy — t)e?Flr
Next, since SU,S™! = [[4=; R,, it follows that

II = [R{[[}=iR, — Ui-y — BB U}yl
< e |SU 87y — Upoy yll + Ay hye*Phee?blcn=t| y| |

Therefore, by induction, we have

II < A e*e1(t,y — 1)yl
Similarly, we have

II'< '1194ﬁ[j+'(tj+1 =)yl
Now, since

Uy—-Uy= Zl;z=j+1 Uy = U,_1y)

= Yh=it1 Sp{Up-1y = (1 + B A) U,y 3}

= —le"=j+1 thpApUp—ly ’
an estimate of III is given by

I < KB(¢,r) Z:=j+1 hpezﬂ(tk+l_'i)||Y||y

< KB(¢,r)e2ﬂT(tk+l = t)lylly -

Combining these estimates, we have
lim supy joo thesr — iy lly < 2{€**|lu; — S7'y|ly
+ Ay(te, — t;)e*P'= + Aye*P=(t,, — t,)lly]}

for every y € Y and i > 1, which implies that

lim; o [lthers — tjag lly = 0. QED.

Let 4:0 =1ty <t; < <ty=T be a partition of [0, T]. Foreachwe W
and ¢ € [t;, 1) (0 < k < N — 1), we write
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Ayt, w) = A(t,, w1 + (t — t) A, w)]171 and
Ja(t, w) = [1 + (t — o) A(te, w171, W),
and for each w e W and ¢t = T, we define
AyTw)=A(T,w) and  f(T,w) = f(T,w),
for simplicity in notation. By our assumptions, we see that
22) I A4t w) — Ag(t, 2)lly.x < pre*Mflw — 2]
for w,ze W and t € [0, T],
(23) (= A4t w)x, x*) < ae? ]2
forwe W, xe Y, x*e F(x) and t € [0, T], and
(2.4) 144 W)y, x < Kpg.ne?

for we B(g,r) and te[0,T]. We put pj =pu,e*’T, o' = xe?*T and K =
Kpg.ne?T. These are upper bounds for p,e*”, ae?®4l and Ky, e, respec-
tively. Similar estimates hold for f:

If4(t Wiy < 4, forte[0,T], weW, and
I1£a(t w) — f4(t, DIl < pylw—z|  for te[0,T] and w,zeW,

where 1, = 4,e?’T and u) = pu, A, Te**T + p,e**T. Now we have:

LemMMA 2.3, Let ¢ >0 and let 4 = {t,}4-, be a partition of [0, T] satisfying
(i) to (iv) of Lemma 2.1. Let 4 = {{;}}_, be any partition of [0, T] satisfying

(2.5) |2| SminlSkSN(tk_ teey) .
Then there is a C > 0 such that

lus(t) — uz(t)| < eC
forallte [0, T].

Proor. Let t€[0, T] and x* € F(uz(t) — uy(¢)). Without loss of general-
ity, we assume that t € (fy, ty+;) N (fj, §j+,) for some ke {0,1,...,N — 1} and
je{0,1,...,N —1}. Then, by (2.1), we have

(d/dr)|luz(t) — us(O)lI* = —2{A4(t, B)uz(t) — Aqt, w)uy(t), x*>
+ 2<f/j(ta ﬁ]) - fA(t’ uk), X*>
=2(I+11),

where #; = uz(f;) and u, = uy(z,). We divide I into 6 terms: I = Y%, (i),
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(1) = —<{A44(t, %) — Az(¢, uz(®)}us(e), x*,
@) = —<{A4(t, uz() — A(t, us(®)}use), x*>,
() = —<A4(t, ug(8)) {ua(e) — us(t)}, x*>,
(@) = —<{As(t, us(t)) — Az, w)bua(t), x*) ,
(5) = —<A4(t, w)uy(t) — A(ty, w)uy(t), x*>  and
(6) = — {{A(ti, we) — Aglt, we) Jua(e), x*> .
By (2.2), we have

(1) < pi llua(@) — & - lua@lly - Nua(®) — ug @)1 -
Since uj(t) € B(¢, r), we have
(2.6) luz@ly <r + 4y =R.
By the equation
up(t) — ;= —(t — 1 + (¢ — {) A, 4)17 {AG;, 4)8; — £, 4)}
we have
2.7 Nluz()) — wll < L|4| < Le,

where L = e*T{Kpy R + 2,87 |x.x}. Note that |t —{;| <|4| <e, by (2.5).
Thus we have

(1) < piLRellug(t) — us(@)| -

By the same way, we have

(2) < piRluz(t) — us@)|>  and

(4) < piLRe|uz(t) — us(@)ll
and by (2.3), we have

() < o' lluz(t) — us 01> .
By (iii) of Lemma 2.1, we have
(6) < ellua(t) — us(@)|l -
Now, since (5) < J - ||uz(t) — uy(t)|, with
J = (|44, w)us(t) — Ay, wuas@)| ,

we consider J. Suppose that {;>1t,. Putt =t—f;+1,. Then we have t —
L=t —t, 4 <t' <ty and t < 8 =1" < b4y, by (2.5). Therefore, by (iii) of
Lemma 2.1, we have
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J={AW", w)[1 + (' — t)AC", w)1™" — Alty, w) Jus(t)| <.
Next, we consider the case ; < t,. Since
J < {44t we) — Azt we—y) bua@O + 11 A4, wp—q) {us(@) — w
+ A5t ey )y — A(ty—ys eyt || + [I{A(e=1, Wy—y) — Aty Ue—y) 4y |
+ (| Aty the—y) {1y — udt)}|| + I{A(te, p—1) — A(ty, w)}us(®) ,

we have
J<(uiLR+ K"+ 1+ Kpy , + p LR)e

+ A4, eyt — A(ti—y» Up—1) 1|l

by (2.2), (2.4), (2.6), (2.7) and (ii) and (iii) of Lemma 2.1. Putt' =t — fj + t—y-
Then, since t — {; =t' — t,_; and ¢/, {; € [t,,, t;] by (2.5), the second term of the
right-hand side of the above inequality is written as

[l {A(fja ) [1 + (¢ — tk—l)A(fp 1)1 — A(tey, ey ug @)1

and is less than or equal to ¢, by (iii) of Lemma 2.1. Thus, in either case, we
have

J<{(py + pi)LR+ K' + Kpy ,+ 1} €.
Therefore, we have
I < eCy |uz(t) — ug(0)ll + wy luz(t) — uy(0))?,

where w; = iR+ o’ and C; =3uiLR + p; LR + K' + Kpy ,, + 2. An esti-
mate for II is obtained similarly:

IT < eC, lug(t) — us@)ll + w2 lluz(t) — us(@®))?,
for some C, > 0 and w, > 0. Thus we have
(d/dt) [u(t) — us(@®)|* < 2e(Cy + Cy)llua(t) — us(ll + 2(w; + w,)lluz(t) — us (> .
It follows that
lug(t) — us(®)l < e{(Cy + Cr)/(w, + w,)} {e @ — 1} . QE.D.

THEOREM 2.4. There is a continuous function u(t) on [0, T] into X with
u(0) = a such that

lili_,o uA(t) = u(t) in X .
uniformly in t € [0, T].

ProOOF. Let ¢ > 0 by an positive number and let 4(¢) = {ti} be a partition
of [0, T] satisfying (i) to (iv) of Lemma 2.1. We put 6 = ming(t;,; — i)
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Then, by Lemma 2.3, for any partitions 4 and 4’ satisfying [4| < é and |4'| < I,
we have

ug(t) — ug (O < Nlugt) — ugey@O + luge(t) — ug @
<2eC

for all t e [0, T]. This implies the conclusion of Theorem 2.4. Q.E.D.

REMARK 2.5. u(t) obtained by Theorem 2.4 belongs to the X-closure
B(g, r) of B(¢, r). We can prove that u(t) is the unique weak solution of (CP) in
the sense of [13].

§3. Convergence of {Uy(t, s)} in X and existence of mild solutions

Throughout this section, we assume that conditions (X), (41), (42) (A3),
(f1) and (f2) are satisfied. Under these assumptions, we will show that u(f)
obtained by Theorem 2.4 is the mild solution of (CP), and that under the
additional assumptions, u(t) is the unique classical solution of (CP).

A function u: [0, T] — X is called the strong solution of (CP) if it satisfies
the following:

(i) wu(t) is Lipschitz continuous in X and is strongly differentiable in X for
ae. te[0,T], and

(ii) u(t) € W and satisfies (CP) for a.e. t € [0, T].

Furthermore, if u(t) is continuous in Y then u(t) is called the classical solution of
(CP). Note that the clasical solution is continuously differentiable in X. The
notion of the mild solution is described in Theorem 3.4.

Let 4 = {t,}8-, be a partition of [0, T] and let u,(t) be the solution of (D)
for 4. We denote by Q a triangle defined by

Q={ts;0<s<t<T}.

With the aid of u,(t), we define a family of bounded linear operators {U,(t, s);
(¢, s) € 2} on X into itself by

Uglt, ) =1+ (t — )41,
if t, <s <t <t forsome ke {0,1,..., N — 1}, and
Ug(t, ) = [1 + (t = ) AT . [+ (440 — 94,170,

if t;<s<ty, and t, <t <t for some j, ke{0,1,..., N — 1} with j<k
Note that Uy(t,s) depends not only on (t,s) and 4 but also on wuy,(t).
Uy(t, s)(Y) = Y and Uy(t, s) is strongly continuous on Q to B(Y) as well as to
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B(X). It follows from (1.1) and (1.3) that
(3.1) IUse, )l < @™ and  [[Ug(t, s)lly < 2797

for (t,s) € Q. It is easy to see that

(3.2) Ugt,t) =1 and  U,(t, t,) Uylty, 5) = Uylt, s)
for0<s<t <t<T ForeachyeYand(t,s)e\{(t,¢)} we have
(3.3) (0/00)Uy(t, s)y = — A(t, v4(1))Ug(t, s)y ~ and

(3.4) (0/05)Ug(t, s)y = Uy(t, s)Ay(s, v4(s))y »

where v,(t) is the step function defined in Section 2, and for each we W and
(t, s) € 2, we write

2(t, W) = A4t w) (= A, WL+ (t — ) At w17,
(s w) = [1 + (511 — A, WAL, w),
ift;j<s<ty, and t;, <t < t;,, for somej <k, and
Ay(t, w) = A(ty, W1 + (t — ) At w1,
AY(s, w) = [1 + (t — s)A(tg, W] 1AL, W),
if t,<s<t<t,, for some k. (2.2), (2.3) and (2.4) hold true even if A, is
replaced by A% or A3.
LEMMA 3.1. Let ¢>0,5€[0,T) and ye Y. Then there is a partition 4 =
{t}i=o of [0, T] such that
(o) s=t, forsome 0<p<N,
(i) Ml <e
(i) U4, )y — Uglty, S)ylly <& for 4 <t<tey, k=p,....,N—1,

@) {4, w)[1+ (" — AW, W)™ — A Ust, )yl <& for n<t, 1)
t"Stk+15 k=P9"',N_1, and

(i) I{AC", w1 + (' — t)AC", w)]™ — A}yl <e for <t t, t"<
Lit1s k= 0, U, D — l,

where A, = A(ty, wy), u, = uy(t,) and uy(t) is the solution of (D) for A as before.

ProOF. The proof is essentially the same as that of Lemma 2.1. Let
4, = {t; }f-o be a partition of [0, s] satisfying |4,| < ¢ and (iv). Then we can
append points {,}}-,.; in [s, T] to 4, to make an expected partition 4.
These can be done by the same way as in the proof of Lemma 2.1. Q.ED.
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The proof of the next lemma is similar to that of Lemma 2.3.

LEmMA 3.2. Let £¢>0,s€[0,T) and ye Y, and let 4 = {t,}};-, be a parti-
tion of [0, T] satisfying (0) to (iv) of Lemma 3.1. Let 4= {{}}_, be any
partition of [0, T] satisfying

|| < miny ¢ <y (tx — ti—y) -
Then there are C; = C,(|lylly) > 0 and C, = C,(llylly) > O such that
t

1U4(t, s)y — Usa(t, s)yll < eCy + Gy J lva(o) — vi(0)ll do

s

for (t, s) € Q.

Proor. Let te[s, T] and x* € F(Uj4(t, s)y — Uy(t, s)y). Suppose that te
(tes terr) O (s fj+1) for some k and j. Then we have
(0/01) || U(z, )y — Uy(t, s)yl|* = —2{{A5(t, v3(t)) — A%(t, v4(0)} Us(t, 5)y, x*

— 2{A5(t, v4(){Us(t, s)y — Ualt, 5)y}, x*>

— 2{{A4(t, v4(0) — A3 Uglt, 5)y, x*>

—2{{ Ak — A4(t, va(1))} Uglt, 5)y, x*)

< 2{u ¥ Tlylyllva(t) — va@)l + & + J}

U4, )y — Ua(t, )yl + 20 | Us(t, 5)y — Ua(t, )11
where J = ||[{A5(t, v4(t) — Ay} Uy(t, 5)yll.  Suppose that t, < ;. Then J < ¢ by
(iii) of Lemma 3.1. Suppose that fj < t,. Then we have

J < {450 we) — A} {Ug(t, 5)y — Ualty, )y}
+ 1{A5(, ue) — A5, w_y)} Uy(ti, 5yl
+ I{A5(, we—1) — A1} Us(ty, )yl
+ [{Ak-1 — Atk the—1)} Us(ti, )yl
+ I{ Atk 1) — Alty, we) } Us(ty, )yl
<2K'e + pillug — we—y 1€ TlIylly + 26 + py g — w1 € Tllylly -
Therefore, in any case, we have

J <2e(K' + piLe* T |yly + 1).

Integrating the differential inequality, we have
t
U2, s)y — Ug(t, )yl < pye® 20T ylly J lvi(o) — va(0)ll do

+ 2ee*T(K' + u,Le*T-|ylly + 2T. QED.
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LeMMA 3.3. For each se [0, T) and x € X, the limit
lim 4.0 Uyl(t, 5)x = UY(t, 5)x
exists in X uniformly in t € [s, T]. Furthermore, U"(t, s) satisfies the following:

(@) U“(t, s) is strongly continuous on Q to B(X) and | U%(t, s)|| < e*¢9),
(b) U“t,t) =1 and U*(t, 0)- U*(0,s) = U%t,s) for0<s<o<t<T and
(¢) if u(sq) € W for some sq € [0, T] then
(0/0)U"(t, 8)yls=s, = U"(t, 50) Ao, u(so))y and
(0/00)U*(t, 50)¥li=s, = — Also, u(S0))y
foryeYand so <t <T.
Proor. Let 7n>0, se€[0,T) and yeY. Since limyouy(t)=u(t)=
limy 4o v4(t), there is a J; > 0 such that |[u(t) — vs(t)]l < for t € [0, T] and 4
with |4] < 8,. We put ¢ = min (1, §,) and let 4(¢) = {t{}N¢) be the partition of
[0, T] satisfying (o) to (iv) of Lemma 3.1. Put é = min, (tf — t{_,). Then, for
any partitions 4 and 4’ with |4| < 6 and |4']| < 6, we have
[U4(t, )y — Ug(t, )YIl < NU4(E, )y — Ugiey(t, S)YIl + 1 Ugiey(2, 5) — Uge(t, 5)yl
< 2eC, +4C,(t — s)n < 2(C, + 2C, Ty,
by Lemma 3.2. Therefore, limy o Uyl(t, s)y exists uniformly in te[s, T]. On
the other hand, since Y is dense in X and ||Uy(t, s)| is uniformly bounded,
lim 4o Uy(t, 5)x exists uniformly in t € [s, T] for every x € X, and so U“(t, s)x =

lim 4o U4(t, s)x is continuous in t € [s, T].
Next, by (3.4), we have

(3.5) Uyt 5)y — Uylt, s')y = I Uy(t, 0)A4(0, v4(0))y do

for (t,s), (t,s’)e 2 and y e Y. Therefore, we have
1U4(t, s)y — Ualt, s")yll < s — 5’| K'e**T|ylly .
Passing to the limit as (4| — 0, we see that U%(t, s)y is Lipschitz continuous in

s € [0, t] uniformly in t. Therefore, U*(t, s)y is continuous on Q to X, and thus
UY(t, s)x is continuous for every x € X. By (3.5) with s’ = 54, we have

1
s — S

s

{Ua(t, )y — Ua(t, so)y — J Uy(t, 0)A4(0, u(so))y do}

So

1 s
| vt o)t a0 — i utsoD}y o

1 s
j lvg(a) — u(so)l do
— So so

Suiez“rllylly“s
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Passing to the limit as |4| — 0, we obtain
1

s—So

{U“(ts S)y - Uu(ta so)y - J\s U“(t, G)A(G, u(SO))y dO'}

So

< uye*Tliyly- .

1 s
j llu(e) — u(so)ll do
— So so

Since u(t) is continuous, this implies the first part of (¢). To prove the second
part of (c), we will show that

(3.6) 1U*(t, s0)y — exp [—(t — $o) A(So, U(so))1yll = o(t — o), ast]s,.

Once this is done, we have

“ U650l =Y L (s, u(sol)y

t— so
< U“(t, s9)y — exp [—(t — 59) A(So, u(s0))]y
- t—so
Lol s Y7y s
o

-0, astlsy,

which implies the second part of (¢). To this end, we differentiate Uy(t, 0)-
exp [—(o — 5¢)A(se, U(S))]y with respect to ¢ and then integrate the result over
o €[S, t]. Then we have

lexp [—(t — s0)4o]y — Ua(t, so)yll

<

f Uy(t, 0) {A}4(0, v4(0)) — A}4(0, uo)} exp [— (o — So) Aoly do

So

+

J Uy(t, 0) {A4(0, uo) — Ao} exp [—(0 — 59) Aoy do

0

t
< pp e P ylly J llvg(6) — uo |l do
So

t
" eZqu 1{A%(0, ug) — Ao} exp [—(o — 50) A1yl do ,

0
where u, = u(sy) and Ay, = A(sq, o). Passing to the limit as |[4| — 0, we have
lexp [—(t — so)Aoly — U*(t, so)yll

t
< pie®PTyly f llu(@) — u(so)ll do
So

+ eZan I{A(0, uo) — Ao} exp [—(c — so) Ao 1yl do,

So
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which implies (3.6). |U“(t, s)| < e**™ follows from (1.1), and (b) follows from
(3.2). Q.ED.

By (f2), there is a unique function Z(t, w) satisfying (i) Z(t, w) is defined
for te[0, T,] and we W, where W is the closure of W in X, (ii) Z(t,w) =
ft,w) for te [0, T,] and we W, and (iii) |F(t,w) — Z(t, 2)|| < u,|lw — z| for
te[0, T,] and w, ze W, and for each w € W, Z(t, w) is continuous on [0, T,] to
X. With the aid of #(t, w), we obtain the following:

THEOREM 3.4. u(t) obtained by Theorem 2.4 is the mild solution of (CP) in

the sense that u(t) satisfies
t

(M) u(t) = U“(t, 0)a + f U“(t, s)Z (s, u(s)) ds

0

for te [0, T].

Proor. For each partition 4 = {ti}n-o of [0, T], we define a family of
bounded linear operators {Uy(t, s); (¢, s) € 2} and a function f,(s) by

Uylt,s) = Uylt, 1)) if(t,s)e R and t; < s < t;,, for some j,
f4) = f; (= f(t;, us(ty))) ift; <s <t;,, for somej,

U T, T)=1 and f(T)= f(T,us(T)). Then U,(t,s) converges strongly to
U“(t, s) in B(X), and f4(s) converges to Z(s, u(s)) in X. On the other hand, we
have

t
3.7 uy(t) = Uy(t, O)a + J Ug(t, 5)f5(s) ds ,

0
since uy(t) = Uyt t)u, + (¢ — ) Ul t) fy for ¢, <t <tyyy, k=0, ..., N— 1.
Therefore, taking the limit of both sides of (3.7), as |4| — 0, we obtain (M).

Q.E.D.

REMARK 3.5. By (A2), there is a unique family of linear operators {<(t, w);
te[0, T,], we W} satisfying (A1) and (42) with A(z, w) and W replaced by
&(t, w) and W respectively, and A(t, w) = «(t, w) for each t € [0, T,] and w e W.
Using these operators, we can prove

() (0/0s)U(z, s)y = U™(t, )L (s, u(s))y

for (t,s)e Q and ye Y. However, we do not use (c’) in this paper.
Let u(t) be the strong solution of (CP). Then we have

u(t) — U*(t, 0)a = J.' (0/0s)U*(t, s)u(s) ds
0

= JI U(t, s)f(s, u(s)) ds .
0
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Therefore, every strong solution is the mild solution. Conversely, we have:

COROLLARY 3.6. Let u(t) be the mild solution of (CP). Suppose that u(t) €
W for a.e. t € [0, T]. Then u(t) is the unique strong solution of (CP).

Proor. Let t € [0, T] be the point such that u(t)e W. By (b) of Lemma
3.3 and (M), we have

t

u(r) = Uz, )U“(t, 0)a + f U(z, )U“(t, 0)F (0, u(o)) do
0

+ Jt U%(z, 0)% (0, u(o)) do

= Uz, t)u(t) + J‘t U%(z, 0)Z (0, u(o)) do

t

for t <t < T. Therefore, by (c) of Lemma 3.3, we have

u(t) —u@)  {U%r, ) — 1u() + 1

T—t T—t T—t
- —A(t, u(®))u@®) + f(t, u(@®), astlt,

since f(t, u(t)) = Z(t, u(t)). Therefore, the strong right derivative (d/dt)" u(t)

exists and satisfies

(3.8) (d/dt)*u(t) + A(t, u(®))u(t) = f(t, u(t)) ,

whenever u(t)e W. By (2.1), ||duy(t)/dt| < K'(|¢|ly + 1) + A5. Therefore, u,(t)
is Lipschitz continuous uniformly in 4, and so u(t) is also Lipschitz continuous.
Now, since {u(t), x*» is Lipschitz continuous for every x* € X*, we have

jt U*(t, 0)% (0, u(o)) do

Cult) — a, x*y = j " (@/ds) Culs), x*) ds
0

= <J’ (d/ds)* u(s) ds, x*> .
0

This implies that u(t) is strongly differentiable in X for a.e. te[0, T] and
(d/dt)u(t) = (d/dt)*u(t). Thus u(t) is the strong solution of (CP) by (3.8). The
uniqueness of the strong solution can be proved by usual way. Q.E.D.

Suppose that X is reflexive. Then we have B(¢,r) = B(¢,r) by Kato’s
lemma. See [7]. So u(t)e W for all t e [0, T]. Therefore, u(t) is the strong
solution of (CP). However, in the rest of this section, we shall show that u(t) is
a classical solution of (CP), if X is reflexive.
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LemMa 3.7. Suppose that u(t)e W for all te[0, T] and that B(t,u(t)): [0, T]
— B(X) is strongly measurable. Then we have

(@) Ut s)(Y)<=Y, U“t,s) is strongly continuous on Q to B(Y) and
1U(t, )lly < e“~*, and
(d) (0/ot)U (t, s)y = —A(t, u(t)) U¥(t, s)y for every ye Y and (t, s) € 2.

Proor. We employ the method of [3]. Consider the Volterra-type
integral equation

V) W(t, s)x = U(t, s)x — J.t W*(t, 0)B(o, u(o))U*(a, s)x do

for (t,s)e Q2 and xe X. It is easy to see that (V) has a unique solution
W*. For each (t, s) € 2, W¥(t, s) is a bounded linear operator on X, and W* is
strongly continuous on 2 to B(X). Multiplying both sides of (V) by S7!, we
obtain another integral equation

s

(V') Z¥(t, s)x = ST1UY(t, s)x — ﬁ Z"(t, 0)B(a, u(o)) U*(a, s)x do

for (t,s)€ 2 and xe X. (V') has also the unique solution Z"= S™'W* Let
¢>0,s€[0,T)and ye Y, and let 4 = {t,}*-, be a partition of [0, T] satisfying
(o) to (iv) of Lemma 3.1. Then we have
(0/00)U*(t, 0)S ' Uglo, s)y = U*(t, 0)S™' {SA(0, u(0))S™" — Ax(0, v4(0))} Us(o, s)y
= Uu(t9 G)S_l {A(O’, u(a)) - ASA(Ua UA(G))} UA(O-, S)y

+ U“(t, 0)S™'B(o, u(0))Uy(a, 5)y
=I+1I

(3.9

for s<o<t<T Suppose that t, <o <t,,, for some k. Then by (iii) and
(iv) of Lemma 3.1, we have
I < e**T[S71 ]| - {I[A(o, u(a)) — A(, v4(0))]1U4(o, sy
+ [I[A(0, v4(0)) — A(tr, v4(0))1U4(o, 5)y |
+ LAt v4(0)) — A(0, v4(0))1Us(o, s)yll}
< e?T|S7H{u1e* T ylly- llu(e) — va(o)ll + 2¢} .
Therefore, integrating both sides of (3.9) and then passing to the limit as ¢ |0,

we have

t

STIUH(t, s)y — U“(t, 5)S7ly = J U“(t, 6)S™B(a, u(o))U%(a, s)y do .

s
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This implies that U“S™! is also the solution of (V’), and so S™'W* = U*S™..
Thus we have U“(t, s)(Y)< Y and U“(t,s) is strongly continuous on Q to
B(Y). (d) follows from (b) and (c) of Lemma 3.3. Q.E.D.

Let u(t) be the mild solution of (CP). We consider the following condi-
tion:
u(t)e Wforallte[0, T], and
©) B(t,u(t)): [0, T] - B(X) and f(t,u(?)):[0,T]>Y
are strongly measurable .

THEOREM 3.8. Let u(t) be the mild solution of (CP) and let (C) hold. Then
u(t) is the unique classical solution of (CP).

Proor. By Lemma 3.7 and (M), u(t) is continuous in Y, since f(t, u(t)) is
Bochner integrable in Y. Q.E.D.

If X is reflexive, (C) is automatically satisfied. (See [7].) Therefore, we have:

COROLLARY 3.9. Suppose that X is reflexive. Then (CP) has the unique
classical solution u(t).

§4. Convergence of {u,} in Y and existence of classical solutions

Throughout this section, we assume that conditions (X), (A1) through (A44)
and (f1) through (f3) are satisfied. Consider the set B of all continuous
functions v: [0, T]— Y whose values v(f) are contained in B(¢,r). B is the
complete metric space with respect to the metric

d(v, w) = sup, |lv(t) — w(t)|ly forv, weB.
For each v € B, we define &v by
[®v](t) = ST U¥(t, 0)Sa

t
+ J STLU“(t, s){Sf(s, v(s)) — B(s, v(s))Sv(s)} ds
0
for 0 <t < T, where u is the mild solution of (CP), and {U“(t, s)} is the family
of bounded linear operators on X obtained by Lemma 3.3. By (44) and (f3),
Sf(¢, v(t)): [0, T]> X and B(t, v(t)): [0, T] - B(X) are strongly measurable.
Therefore, we see that @v: [0, T] — Y is continuous.

We here explain the use of the operator @ in brief. Suppose for the
moment that there is a classical solution u of (CP). Then, using the relation in
(A43), we see (at least formally) that v = Su is a mild solution of
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do(t)/dt + A(t, u(t))v(t) = Sf(¢t, u(t)) — B(t, u(t))Su(t), 0<t<T,
with v(0) = Sa. In view of equation (L) in Section 2, we see that
Su(t) = U“(t, 0)Sa + f’ U“(t, s) {Sf(s, u(s)) — B(s, u(s))Su(s)} ds
0

= [SPu]() .

This means that u is a fixed point of @.
In the following, we will prove that @ has a unique fixed point u e B and
that @ is the unique classical solution of (CP).

LEMMA 4.1. There is a T € (0, T,] (which is smaller than or equal to that of
Proposition 1.1) such that ®ve B for all ve B.

Proor. We will show that ||[[@v](t) — é|ly <r. By the definition of @, we
have

1810 — dlly < U6, 0)Sa — S4]
e f 18765, o(s)) — Bs, v(s))So(s)] ds
0

< supo<i<r IU(L, 0)Sa — Sal| + lla — ¢y
+e*T{A, + 4 (Iglly + N} T

for all veB. Since ||a — @|ly <r, we have ||[[®v](t) — d|y <r if Te(0, T,] is
sufficiently small. Q.ED.

In the rest of this section, we fix T as above.
LEMMA 4.2. &: B — B has a unique fixed point 4 € B.

Proor. We use the contraction mapping theorem. For each ve B and
w € B, we have

[[Pv](®) — [@w]@®)lly < L 1U(t, $)S{f(s, v(s)) — f(s, w(s)} ds
+ J‘r |U“(t, s){B(s, v(s))Sv(s) — B(s, w(s))Sw(s)}| ds
0
<eT{uy+ us(Idly + 1) + '11}'J‘0 lo(s) — w(s)lly ds .

Put C = e*"{pu, + ps(Idlly + r) + 4;}. Then, it follows that
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I[@"](5) = [@"wI)ly < < J (t — 8" o) — wis)ly ds

a1,
<, w)
n

for0<t< T and ne N. Therefore, we have

cry

n!

d(@"v, d"w) < d(v, w)

for every ne N. Q.E.D.

In the following, we will prove that u =& (e B(¢,r) = W). This implies
that u is the classical solution. To this end, for each 4 = {t,}}.,, we consider
the difference equation

t) —
M"'Akwd(t):G(tk)’ L <t <ty OSkSN'_l,
t—t,
()
w4(0) = Sa,

where w, = wy(t,), A, = A(t,, u,) and
G(r) = Sf(t, u(r)) — B(t, u(r))Su(t)
for 0 <t < T. The solution w,(t) of (W) is written as
t
4.1) wy(t) = Uy(t, 0)Sa + f Uy(t, 5)Gy(s) ds,
0

where G,4(s) = G(t,) if t, <s < t,,, for some 0 <k < N — 1, and G4(T) = G(T).
The notation U,(t, s) is described in the proof of Theorem 3.4. Note that
wy(t)e D(A,) for t, <t < t41, 0<k<N—1.

LEMMA 4.3. There is a sequence {A(m)}w-, of partitions of [0, T] such that
lim,,_, |4(m)| = 0 and that

4.2) lim,, .o, sup; [|Wsgm(t) — Su(?)| = 0.
ProOOF. Since # = ®u, we have
t
4.3) Su(t) = U¥(t, 0)Sa +j U(t, 5)G(s) ds
0

for 0 <t < T. By the well known lemma of Evans [4], there is a sequence of
partitions 4(m) (m € N) satisfying

T
4.4) |[d(m)| < 1/m and f 1G(t) — Gym(®)ll dt < 1/m

0
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for me N, since G(t) is strongly measurable and bounded in X. By (4.1) and
(4.3), we have
IWa40my (&) — Su(®)ll < sup, [{Ugem(t, 0) — U*(¢, 0)} Sal

+ L {Usem(, $) — U*(t, 5)} G(s)|l ds

+ L 1T smy(t, $){G(5) = Gaem($)} Il ds

for0<t<T Weput

(pm(s) = Supte(s.T] ”{Ud(m)(ra S) - Uu(T, S)}G(S)H

for 0<s<T and me N. Then ¢,(s) is the bounded measurable function of
0 < s < T and satisfies lim,,_, ., @,(s) = 0 by Lemma 3.3. Therefore, by (4.4) and
Lemma 3.3, we have

sup; [[Waem(t) — Su(®)| < sup, [{Ugem(t, 0) — U*(t, 0)} Sall

T
+ J Om(s) ds + e**T/m
0

-0,

as m— oo. Q.E.D.

LeMMA 4.4.  For every partition 4 = {t,}}_, of [0, T] satisfying | 4] <(2B)7%,
we have
sup, [lus(t) — ST wa®)lly < Te®T g4,

where © > max [2{p, + ps(r + 4lly)}, 48], and
&g = {la + A1 + p3(r + [I4lly)} - max, {sup, <<, Iwa(t) — Su(t)ll} .

ProOF. Multiplying both sides of (W) by S7!, and then using the relation
S7'4, = A, 87! — S7'B,, we have

M + Az 4(t) = f(2,, ulty))
t— 1t

(2) » N
+ STH{B(tw, w)Sz4(t) — By, u(ty))Sul(ty)}

fort, <t <ty.1,0<k<N—1, where z,(t) = S 'w,(t) and z, = S"'w,. There-
fore, we have
2g(t) = [1 + (t = ) A7 2 + (t — 6 [1 + (¢ — ) A7 f (8, T(t))
4.5) +(t = ) [1 + (t — t) A 7' ST B(ty, wi)S{z4(t) — w(ty)}
+ = t)[1 + ¢ — t)AISTH{B(t, w) — By, u(t,))} Su(t,)
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fort, <t<t,,,0<k<N-—1 By(l4)and (4.5), we have
I24(t) — ug@)lly < €™z, — wylly + pa(t — 1,)€2P ™ |lu, — w(t,)|ly
+ Ay (t — 1,)e*P¢ 7| z,(t) — u(ty)lly
+ us(t — )e?P 7 luy, — a(e )y la)lly -

Therefore, using the inequality

lue — a(@ly < llug — zilly + llze — u@lly

we have

lz4(t) — ug@)lly < e*PC{1 + (¢ — 1) [pg + pa(r + 11y)1} -z — welly
+(t—t)e*Pt W g,

Now, since 1 + h{u, + us(r + |4ly)} < e®"? for h > 0, we have
Iz4(t) — ug@lly < €*7%llz, — willy + (¢ — 1) g4
fort, <t <t,,,0<k<N-—1. It follows that
l4(8) — ug@lly < YKo (tjsg — t;)e ™ 64 < TeT ¢4 Q.ED.

THEOREM 4.5. Suppose that conditions (X), (A1) through (A4) and (f1)
through (f3) are satisfied. Then we have the following:

(i) There is a sequence {A(m)}m-, of partitions of [0, T] such that
lim,,,, |4(m)| = 0 and that {us,(t)} converges in Y, uniformly on [0, T], to the
unique classical solution u(t) of (CP).

(ii) In addition to the assumptions above, assume that (Bf) is satisfied.
Then {u,(t)} converges in Y, uniformly on [0, T], for every sequence {A4(m)}m—,
satisfying lim,,_, ., |4(m)| = 0.

PrOOF. We take {4(m)} as in Lemma 4.3. Then we have

Supy [[ugom(t) — u(@)lly = sup, [|Suqm(t) — Su (@)
46) < sup, St gim(t) — Wam) (Il + sup, W em(t) — Su(t)|l
< Te“T: €4my + SUP; ”wA(m)(t) — Su()||

-0, as m— oo,

by Lemma 4.3 and Lemma 4.4. On the other hand, since {uy,(f)} converges
to the mild solution u(t) of (CP), we have u = . Therefore, u(t) e W and u(t)
is continuous on [0, T] into Y, and thus condition (C) is satisfied. From
Theorem 3.8 it follows that u(t) is the unique classical solution. This proves
(). If (Bf) holds, G(t) is continuous on [0, T] into X, and so (4.2) holds for
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every {4(m)} satisfying lim,,_, |4(m)| = 0. Therefore, (ii) follows from (4.6).
QED.

§5. Convergence of {4} in Y

In this section, we consider the sequence of Cauchy problems (CP")
(ne N= Nu{w}). Throughout this section, we assume conditions (S) and
(C) below.

(S) The operators {A4",f"} satisfy conditions (X), (A1) through (44) and (f'1)
through (f3) uniformly in n € N, by which we mean that all the constants
Ty, &, py, ~**, Mg are independent of ne N. X, Y, S and W in condition
(X) are common to all (CP").

(C) ForeachweWand ye,

(5.1) lim,_,, A"(t, w)y = A®(t, w)y in X uniformly on [0, T,],
(5.2) lim,_, , B"(t, w) = B*(t, w) strongly in B(X)

for each t € [0, T, ], where B"(t, w) = SA™(t, w)S™* — A"(t, w),

(5.3) lim,. . f*(t, w)=f*@t,w) inY

for each t € [0, T;,], and

(5.9) lim, . f"(t, w) = f(t, w) in X uniformly on [0, T] .

Let 4 = {t,}8-o be a partition of [0, T]. Consider the difference approxi-
mation (D") for (CP") of the type (D):

np) — yt
uz(t) u"+A;u;(t)=fk", t<t<ty,, 0<k<N-1,
t_tk
(D") n n
uy(0) =a",

where up = uj(t,), Ay = A"(t,, up) and f = f*(t,, u7). To study the conver-
gence of {uj}, we prepare some notions and notations. Let Z be an arbitrary
Banach space with the norm ||-||;. We denote by c¢(Z) the set of all convergent
sequences z = {z"} in Z. c¢(Z) is a Banach space with the norm |zl =
sup, 12"z (< o) for z = {z"} € ¢(2).

LemMMA 5.1. (i) A function g(t) = {g"(t)}: [0, To] = c(Z) is continuous if
and only if each g": [0, T,] — Z is continuous and the sequence {g"(t)} converges
in Z uniformly in t € [0, Ty].

(i) A function g = {g"}:[0, T,] - c(Z) is strongly measurable in c(Z) if
and only if each g" is strongly measurable in Z and the sequence {g"(t)} converges
in Z at each t € [0, T, ].
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Proor. (i) follows from the Ascoli-Arzela theorem. See [15; p. 85].
Only if part of (ii) is trivial. Suppose that g" (n € N) are strongly measurable
in Z and that {g"(t)} € c(Z) for each t€[0, T,]. Then g* =limg" is also
strongly measurable. For each N € NV, we define gy(t) by

gN(t) = {gl(t)3 Y gN(t)9 gw(t), gw(t)9 o } .

It follows that gy is strongly measurable in ¢(Z) and that

g(t) — gn(llezy = sup,>n lg"() — 9=z~ 0, as N—>oo.
Therefore, g is strongly measurable in ¢(Z). Q.E.D.

Let (X, Y) be the pair of Banach spaces satisfying (X) with the isometry S
and the open subset W < Y. We write X =c¢(X) and Y = ¢(Y). Y is densely
and continuously embedded in X. For each y={y"} €Y, we define Sy by
Sy ={Sy"} (€X). S:Y—> X is a linear isometry onto X. W denotes the
subset of Y consists of all w= {w"} e Y satisfying w"e W for all ne N and
limw"e W. W is the open subset of Y. Therefore, the pair (X, Y) of the
Banach spaces also satisfies (X) with the isometry S and the open subset W.

For each t € [0, Ty] and w = {w"} € W, we define a linear operator A(t, w)
in X as follows:

The domain D(A(t, w)) of A(z, w) is the set of all x = {x"} € X satisfying
x"e D(A"(t, w")) for all ne N and {A4"(t, w")x"} € X, and for each x =
{x"} € D(A(t, w)), we define A(t, w)x = {A"(t, w")x"}.

A(t, w) is the linear operator in X. We will prove that A satisfies (A1) to
(A4) with the same constants o, y,, 4, and p, as for {4"}. By (5.1), for each
w={w"} e Wand y = {y"} € ¥, we have

(5.5) sup, [|A"(t, w")y" — A®(t, w°)y*| -0, asn— oo,
where w® = lim w”" and y® = lim y". Therefore, we have
D(A(t, w)) o Y and t — A(t, w)y is strongly continuous in X,

by Lemma 5.1.
Lette[0, To], w={w"} e W,x={x"} e Xand 0 < ah < 1, and put

y'=[1+ha"(t,w")]'x" (e D(4"(t, w"))).
Then, by (5.1), we have
(5.6) lim,_, [1 + hA"(t, w")] 1x" = [1 + hA°(, w*)] 1 x® in X,

where w® = lim w" and x* = lim x". Therefore, we have y = {y"} € X. How-
ever, since
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lim, ., A"(t, w")y" = {x*° — [1 + hA®(t, w*)] *x*}/h,
we have y € D(A(t, w)), and so y is the unique solution of
y+ hA(t, w)y =x.
Therefore, [1 + hA(t, w)]™! exists in B(X) and satisfies
IL + hA(t, )1 xllx = sup, [[1 + hA"(t, w")]7'x"|
< (1 — ha) ™ |lxl|x

for xeX. Let te[0,T,], w={w"}eW, z={z"}eW and y={y"}eY.
Then we have

[A(t, w)y — A(t, )yl x = sup, [|A"(t, w")y" — A"(t, z")y"|
< pllw —zlix Iylly-

Therefore, we have proved conditions (A1) and (A42) for A.
To prove (43), we put B(t, w)x = {B"(t, w")x"} for each te[0, T,], w=
{w"} e Wand x = {x"} € X. Then, by (44), (43) and (5.2), we have

lim,_,, B"(t, w")x" = B®(t, w*°)x*,
where w® = lim w" and x* = lim x". Therefore, we have
B(t,w)xe X, B(t, w) € B(X) and
t— B(t, w) is strongly measurable in B(X) .
Furthermore, for each t € [0, T, ], w = {w"} € W and z = {z"} € W, we have

IB(, w)lx < sup, [|B"(t, w")| < 4,,  and
I1B(¢, w) — B(t, 2)llx < sup, [| B"(t, w") — B"(t, z")|| < p3llw — zlly-

This proves condition (44) for B.
Next, we prove

(5.7) D(SA(t, w)S™!) = D(A(t, w)) (= D(A(t, w) + B(t, w))), and
(5.8) SA(t, w)S7 = A(t, w) + B(t, w).

For each x = {x"} € D(A(t, w)), we have S™'x € Y = D(A(t, w)) and

59 A(t, w)S™ x = {S7T1A"¢t, w")x" + STIB"(t, w")x"}

G9) = S7'A(t, wx + S71B(t, w)x ,

since A(t, w)x € X and B(t, w)x € X. Therefore, we have

A(t,w)S'xe Y.
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This implies that x € D(SA4(t, w)S™!), and so we have
D(A(t, w)) = D(SA(t, w)S71).
Conversely, let x = {x"} e D(SA(t, w})S™'). Then we have
Ait,w)S'xe Y, and
x"e D(SA"(t, w")S™!) = D(4A"(t, w"))  for neN.
Therefore, the limit
y, = lim,_,, A"(t, w")S™1x"
= lim,_, S71{4"(t, w") + B"(t, w")}x"
exists in Y for each t € [0, T,]. On the other hand, since
lim,_, B"(t, w")x" = B*(t, w*°)x®
in X, we have
lim,_ A"(t, w")x" = Sy, — B®(t, w°)x® in X .
This implies that x € D(A(t, w)), and (5.7) is proved. (5.8) follows from (5.9).
For each te[0, T,] and w = {w"} € W, we put f(t, w) = {f"(t, w")} and
w® = lim w". Then since
lim, ., /"2, w") — f=(t w*)ly =0

by (5.3), we have f(t, w)e Y. Similarly, t — f(t, w) is continuous in X by (5.4).
Conditions (f2) and (f3) for f follow immediately.

Now, we have obtained another system (X, Y, S, W, A4, B, f) which satisfies
(X) through (f3). We are ready to apply our results in Section 4 to the
Cauchy problem (CP) in X, and we obtain the following:

THEOREM 5.2. Let conditions (S) and (C) be satisfied. Then, for each
a={a"} € W with a® = lim a" (€ W), there is a Te (0, Ty] such that the follow-
ing hold.

(i) The solution uy of (D") exists in W for every partition A of [0, T] and
neN.

(i) There is a sequence {A(m)} of partitions of [0, T] such that
lim |4(m)| = 0, and that

(5.10) lim,, ., SUP;, e N [[Wiemy(8) — u" @)y = 0

holds, where each u"(t) (n € N) is the unique classical solution of (CP"). More-
over, we have

(5.11) lim, o, sup, [u"(t) — u(@®)lly =0.
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(iii) In addition to the assumptions above, assume that (Bf) is satisfied for
every (CP") (ne N), and that (5.2) and (5.3) hold uniformly on [0, T,]. Then,
(5.10) holds for every sequence {4(m)} satisfying lim |4(m)| = 0.

PrOOF. Let a={a"} e W and a® =lima"e W. Then, by Proposition
1.1, there is a T€ (0, T,] such that the solution u,(t) = {u4(t)} of

t_
"l:)—t”‘+AkuA(t)=ﬁ, o <t<tiy, O<k<N—1,
—
(D)
uA(O)za’

exists in W for every partition 4= {t,}8-o of [0, T], where u, = uy(t,),
A, = A(t,, ) and f, = f(t,, ). Each component u}j (n € N) of u, is the solu-
tion of (D"). Since uy(t) is continuous in Y,

(5.12) u2(t) = lim,,, , u’}(t)

exists in W. The limit is taken with respect to the Y-norm and the conver-
gence holds uniformly on [0, T]. Taking the limit of the both sides of (D")
(ne N), as n— oo, we see that uf is the solution of (D®). This proves (i).
Choose smaller Te (0, Ty] as in Lemma 4.1. Then, by Theorem 4.5, there is a
sequence {4(m)} of partitions of [0, T such that lim |4(m)| = 0 and that

(5-13)  lim,, o, SUP [|#44m)(t) — u(®)l|y = limy, o SUP;, e v | im)(2) — u"(@)lly = O,

holds, where u(t) = {u"(¢)} is the unique classical solution of (CP). By (5.13),
each component u"(t) (n € N) of u(t) is the unique classical solution of (CP").
Since u(t) is continuous in ¥, {u"(t)},.ny converges in the Y-norm uniformly on
[0, T]. Put u*® =limu”". Then, taking the limit of the both sides of (CP")
(ne N), as n— oo, we see that u® is the unique classical solution of (CP%).
Therefore, we obtain (5.11). Now, by (5.11) and (5.12), we have

sup,en [[u3(2) — u"(O)lly = supnen [lui(e) — u"(@)lly -

Therefore, (5.10) follows from (5.13), and we have proved (ii). (iii) follows from
(ii) of Theorem 4.5 and Lemma 5.1. Q.E.D.

COROLLARY 5.3. Let conditions (S) and (C) be satisfied. Choose Te
(0, T,] as in Theorem 5.2. Then, there is a sequence {A(m)} of partitions of
[0, T] such that lim |4(m)| = 0, and that
1irnm,n—n:o sup, ||u2(m)(t) - uw(t)”)’
(514) = limm—'oo {limn—'oo sup, ” u;(m)(t) - uw(t)”Y}

= limn—*oo {limm—*oo SuPr || u:'i(m)(t) - uoo(t)”Y} = 0 .
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In addition to the assumptions above, assume that (Bf) is satisfied for every
(CP") (ne N), and that (5.2) and (5.3) hold uniformly on [0, T,]. Then, (5.14)
holds for every {A(m)} satisfying lim |4(m)| = 0.

Corollary 5.3 follows immediately from (5.10), (5.11) and (5.12).
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