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§1. Introduction

Random ergodic theorems were investigated by Kakutani [3], Morita [5]
and others. In this paper we establish generalized random ergodic theorems
which contain the results obtained by Kakutani. A prototype of a generalized
random ergodic theorem is found in the proof of the result that the Hausdorff
measures of almost all random fractals take a common number.

In Section 2 we show Hausdorff measure’s constancy of random fractals to
understand a typical generalized random ergodic theorem. Random fractals
were investigated by Mauldin-Williams [4], Falconer [1] and Graf [2] and they
showed the Hausdorff dimensions of almost all random fractals equal to a
constant under some condition. In this section we show that the Hausdorff
measures of almost all random fractals equal to a constant. In the proof we
use a result which is a prototype of a generalized random ergodic theorem.

In Section 3 we develop generalized random ergodic theorems which
contain the results obrained by Kakutani [3], and in Section 4 we consider
generalized random dynamical systems with random discrete parameter, which
illustrate the idea developed in Section 3.

§2. Hausdorff measures of random fractals

The starting point for the considerations in the present paper is a scheme
used by Graf [2] for producing statistically self-similar fractals. To generate a
fractal at random, Graf starts with a probability distribution x on the set of all
N-tuples of contractions of a given bounded separable complete metric space
X. First he chooses an N-tuples (S;, S,,..., Sy) of contractions at random with
respect to u and sets

A, = va= 1Si(X)-

For every ie{l,..., N}, he chooses independently an N-tuples (S;;,..., S;y) at
random with respct to u and sets

A, = i'v= 1Si(UIIcV= 1Sik(X))-

He continues this process. Then K = J,A4, is a random fractal.
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More formally we proceed as follows: Let X = R? be a compact set with
X+ & where X is the set of all interior points of X. Let d be the Euclidean
metric on R%. Let S be a contraction similality (briefly similality) of X, i.e., S is
a map from X into itself such that there exists an 0 <r = r(S) < 1 satisfying
d(Sx, Sy) = rd(x, y) for all x, ye X. The number r(S) is called the contraction
ratio of S.

For 0 < 6 < 1 we denote by Sim;(X) the set of all contraction similarities S
of X such that r(S) > 6. The space Sim4(X) is equipped with the topology of
pointwise convergence and the Borel field of Sim4(X) is denoted by &,. Let N
denote the set of nonegative integers. Fix a positive integer N > 2. Let

D = D(N) = UnexCom

where C,, = C,(N)={1, 2,..., N}™ for a positive m and C, = {J}. If 6=
(64, 05,..., 0, and T = (74, ..., 7,) are in D, let

aln= (04, 0,..., O,) for n<m
and

O*T =(Gl, O35cees Opy T1y Tosunns T,.).

Our fundamental space is & = (Sim4;(X)")®. Every element ¢e%
= (Sim ;(X))P can be expreseed as

g = (§a’)¢yeD

where S, = (Sgx1(9)s Seu2(9)s..., Soun(0))€SIMy(X)Y and Sy = (S1(9), S,(9),...,

Sn(9))-

Let K(9) = Nm>0UsecnSo11(9)° Sgi2(9) 0 --0 Sgym(0)(X). This K(s) is a non-
empty compact set and is considered as a fractal set constructed from an N-ary
tree of contraction similarities s = (S ,),ep- Let & denote the product Borel
field (&€3)P of (Simy(X)V)P.

Let u be a Borel probalility measure on Sim,(X)", and uP? denote the
corresponding product measure on & = (Simz(X)")P.

Let o' (X) be the space of all non-empty compact subsets of X with the
usual Hausdorff metric. Graf showed that there exists a Borel set %,
< (Sim4(X)¥)? with uP(¥,) = 1 such that a map y: (Sim;(X)")? - 2#(X) defined
by

mm>0 UaeCmSall(d) ° Sa|2(4) Qw0 Sdlm(o)(X) if Ueyo '
Y(o) =
X if ¢,

is Borel measurable. Let P, be the image measure of u” with respect to y,i.e,
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for every Borel set B ¢ X'(X), P(B) = u”(y ~'(B)). P, is the unique “p-self-
similar” probability measure on % (X).

For a set K in RY the Hausdorff measure and the Hausdorff dimension of
K are defined as follows. For 0 <A< oo and 6 >0, let

HHK) =inf{}y2,|U|*: K= UR,U; 0<|U| <8}
where |U| is the diameter of a set U, and let
HHK) = lim,_, o H#HK).

Then % is an outer measure. It is easy to see H#*(S(K)) = r(S)*#*(K) for any
similality S. The restriction of s#* to the o-field of all measurable sets is called
the Hausdorff A-dimensional measure. There is a number 0 < dimy(K) < d,
called the Hausdorff dimension of K, such that #*K) = o if A < dimy(K) and
HAK) =0 if 1> dimy(K).

Graf proved the following theorem:

THEOREM 1  (Graf [2]). Suppose that, for p-a.e. (Sy, S,,..., Sy)€ Simz(X)¥,
SX)NS{X) = & for i, je{l, 2,..., N} with i #j. Then

E[#*K)] = J HHK)P,(dK) < o
H(X)
and

dimy(K) = o for P,iae. KeX(X)

where o is such that

J\Z?; (S8 du(Sy, Sy,..., Sy) = 1.

Furthermore the following statements are equivalent:
1 YN Sy =1 for p-ae. (S;, S,..., Sy)eSimyX)".
2) #(K)>0 for P,ae. KeX(X).
(3) P,({K: #%K)>0})>0.

ReMARK. Indeed the above statements with respect to P,-a.e. Ke X (X)
are derived from the corresponding statements with respect to uP-a.e. se <.

With respect to the Hausdorff measure #*%K(s)), we have the following
theorem.

THEOREM 2. Let the assumption of Theorem 1 be satisfied. Then there
exists a 0 < f < oo such that

H K@) =B  for uP-ae. se.
Hence

HK)=p for P,ae. KeA(X).
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For the proof of Theorem 2, we require two lemmas where we suppose the
assumption of Theorem 1 is satisfied. Define ¢;: (Simy(X)V)? — (Simy(X)")” for
i=1,2,..., N by

S @49)) = Sixels)  for geD.
It is easy to see that each ¢, is uP-measure preserving, i.e., u’(p; }(E)) = u’(E)
for E€e&. Then we have the following lemma.
LemMMA 1.
H*(K(9)) = T r(Si(0) " H 4K (@i(0)))  for pP-a.e. o,
where (S1(s), S3(9),..., Sn(a)) = S z(9).

PROOF. By the definition of K(s), we have
K(9) = Nm>0Usec,So11(9) © Sq12(9) © -+ S m(0)(X)
= U 18€0)(Nm> 0 Usecn Sixa12(9) © Sixa13(9) ° +** © Sixeqpm+ 1(9)(X))
= UL 1S(9K(e49)),
so that
H*(K(9)) < YL #(S{9)K(0(9)))
= Yi-11(SH0))" #(K(9i(9)))
because S(v) are similalities. Integrating both sides with respect to uP, and
using the facts that S (s) and { S ,(s)},+» are independent and that ¢,(s) and o
are identically distributed, we obtain
E[#*(K(9)] < XL 1 E[r(S(0)"#(K(¢:()))]
=Y 1 E[r(S)1E[A#*(K(9:(9))]
=E[Y i 1 (S)JE[#*(K(9))]
=E[A%(K(9))].
Since E[#*K(s))] < co by Theorem 1, we have
HNK(9) = Y, r(Si0) #4K(pls)))  for uP-a.e. 4.
This completes the proof.
LEMMA 2. Assume a Borel probability measure p on Simy(X)" satisfies that

SN r(S) =1 for pae. (Sy, Sp..., Sy)eSImyX)Y. For f(s)e LX((Simy(X)M)P,
uP), we define Uf(s) by
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Uf (o) = L1 7(Si(0))* f(@:(9)).

Then any integrable U-invariant function (i.e., Uf(s) = f(s) for pP-a.e. 5) is equal
to a contant a.e. g.
This lemma is a prototype of a generalized random ergodic theorem which

is investigated in Section 3. It can be proved directly, but we will postpone the
proof until we prove Corollary 1 in Section 3.

PROOF OF THEOREM 2. If the condition Y™, r(S))* = 1 for p-a.e. (Sy, S,,...,
Sy)€Simy(X)¥ does not hold, the statement (3) in Theorem 1 fails, that is,
H*K(s)) = 0 for uP-ae. o

Assume that Y™ r(S)*=1 for p-a.e. (S;, S,..., Sy)eSimy(X)". By
Theorem 1 and Lemma 1, f(s) = #%K(0)) is integrable and U-invariant. Hence
we have a 0 < f <oo such that #%K(s)) = B for uP-a.e. s, using Lemma
2. This completes the proof.

ExaMpLES. (a) (Graf [2]) Let X be the unit inteval [0, 1]. Define
contraction maps 7T; (i =0, 1, 2) by T;(x) = (x + i)/3 for xe[0, 1]. Then r(T,)
=r(Ty) =r(Ty) = 1/3. Let pu= (ero,ry) + ETo.1a) + Ex1,72)/3 0N Simy([0, 1])?
with 0 < 6 < 1/3. Since r(S{)* + r(S,)* = 1 for p-a.e. where a = (log 2)/(log 3),
it follows from Theorems 1 and 2 that

dimy(K) = a for P,-a.e. K,
and
HH(K)=p for P,-a.e. K
where f is some constant > 0.

(b) Let X be [0, 1]%. Define contraction maps Ty, T, T and T,, T,, T;
by Ti(x, y)=(x/3, y/3), To(x, y) =((x + 1)/3, (y + 2)/3), Tz(x, y) = ((x +2)/3,
y/3) and Ti(x, y) = (x/2, y/2), Ta(x, y) = ((x + 1)/3, (y + 2)/3), Ta(x, y) = ((x
+ 5)/6, y/6). Then r(T,) + r(T,) + r(T3) = r(Ty) + r(T,) + r(T3) = 1. Let 1
= (&(11,12,75) + &F1, 5, 79)/2 On Simy([0, 1]%)* with 0 < < 1/6. Since ri(S,)
+ ri(S,) + r'(S;) = 1 for p-ae. , it follows that

dimy(K) =1 for P,-ae. K
and
HYK)=P for P,-ae. K

where f is some constant > 0.

§3. Generalized random ergodic theorems

In this section we develop generalized random ergodic theorems which
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guarantee Lemma 2 in Section 2.

Let (S, # m) be a probability space and ( Y, &, v) another probability space
where (Y, #) is a standard measurable space. Let %, be a sub o-field of # and
{y(s, y): seS} a family of #, x &-measurable probability density functions on

Y, i.e.,, (s, y) >0 and fy(s, y)v(dy) =1 for all seS. Let & ={¢p, yeY} be a

family of m-measure preserving transformations ¢, defined on S with parameter
yeY (e, m(p, '(B) =m(B), Be®, yeY). Assume that & is % x Z-
measurable, ie., {(s, y): ¢/ (s)eB}e#B x F for Be# and that the sub o-
fields V,¢, '# and &, are independent. We call the quadruplet ((S, %, %,
m), (Y, #, v), {y(s, y): seS}, @ ={o,: yeY}) a generalized random dynamical
system.

ReMARk 1. If y(s, y) = 1, our formulation is the same as that of Kakutani
[3] and Morita [5]. They discussed random dynamical systems of the form

Pyn(@) Pyn-1(@) *"* ‘pyl(w)(s)

where {y(w)}{2, are independent identically distributed Y-valued random
variables.

REMARK 2. Consider (Sim;(X))?, & and uP which are introduced in
Section 2. Assume that the measure u on Sim,(X)" satisfies Y-, r(S;)* = 1 for
u-a.e. (S;, S,,..., Sy)€Sim,;(X)N where r(S;) is the contraction ratio of S;. Let S
= (Sims(X)M)P, B =6, m=puP Y={1,2,..., N}, F = the set of all subsets of Y
and w({i})=1/N for ieY Let y(s, i)= Nr(S;(s))* and B, =o({s: S ()

=(S1(s),..., Sy(s)€E}|E€é&Yy). Then {y(s, i) ieY} satisfy that (s, i) > 0,

fy(s, v(di) =1 and y(s, i) is PB,-measurable. The transformations {¢@;(s): S

—S}Y, defined by S ,(¢:(s)) = S ;4.(s) for all ceD are m-measure preserving
and V;p;7'%# and %, are independent. Thus the quadruplet (((Sim4;(X)")?, 4,

'%09 HD)’ (Y= {1, 25---9 N}, '9'—5 V), {Nr(si(s))a: Se(Simé(X)N)D}a {(pi(s): ie Y}) is a
generalized random dynamical system.

A generalized random dynamical system 2 = ((S, %4, %, m), (Y, #, v),
{¥(s, y): seS}, ® = {p,: ye Y}) induces a Markov process, a Markov operator
and a skew product transformation.

Induced Markov process. Let us put, for seS and Be 4%,

P(s, B) = f Ip(9,(9))7(s, y)v(dy).

Y

Then {P(s, B)} are Markov transition probabilities with the invariant distribution
m(B). In fact,
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J P(s, B)m(ds) = J [ J Ig(@,(s))7(s, Y)V(dy)]m(dS)
s sLJy

= J [Jls(fpy(S))m(dS) f (s, y)m(ds)]V(dy)
S S

Y
= (B)J [ f s, y)m(dS)]l'(dy)
Y N

= m(B)f [J (s, y)V(dy)} m(ds) = m(B),
N Y

where we use the facts that random functions {y(s, y)} and {I(¢,(s))} defined on
(S, 9, m) are independent for fixed ye Y and that ¢, are m-measure preserving
transformations. The Markov process with transition probabilities P(s, B) and
the invariant distribution m(B) is called the Markov process induced by a
generalized random dynamical system 2 = ((S, 8, %o, m), (Y, Z, v), {¥(s, y):
seS}, & ={p, yeY}).

Induced Markov operater. Let LY(S) be the space of all integrable
functions defined on (S, 4, m). Let us define a bounded linear operator T on
LY(S) by

Tf(s) = j P(s, di)f(t) = ff (@y(5))¥(s, y)v(dy).
S Y

We call T the induced Markov operator.

Induced skew product transformation. Let Y* be the infinite product space

®,Y of Y. On the product space 2 =S x Y* we define a probability

measure P as follows: For a set E x Fin 2 =S x Y* where E€e# and F = F,
XxFyx«+xF,xYXxYx .- cY* (Fe#), we define P(E x F) by

PE x F) = f [J [J U W@y, _, = @y, (), y.,)V(dy.,)]
E F, Fn-1 Fpn

WPy_s @y, (5)s Yn—1)V(dYn- 1)] < y(s, yl)v(dyl)]m(dS)

=J J f TeS) g, (1) - Ip, Wn)VaV1s Y2s.es Y S)
SJY Y

[Ti=1v(dy)m(ds),
denoting

YaV1s Yasoeos Y 8) = V(S5 Y1)Y(@y,(5), ¥2)---
‘Y((Py,,_,(Py,,_z"'(Pyl(S), .Vn)-
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By Kolmogorov’s extension theorem we have a unique probability measure P
on 2 =S x Y* Let us consider the skew product transformation ¢* defined
by

@*(s, ¥*) = (9,,(5), 0y*) for (s, y*)eQ,

where y* = (y;, V2,...)€ Y* and 6 is the shift transformation on Y*,i.e., (8y*),
= y,4+, for neN.

We show that the transformation ¢* on (S x Y*, P) is P-measure
preserving. It suffices to show that P(¢p* " }(E x F)) = P(E x F) for E€e# and a
cylinder set F=F, x F, x --- X F,x YX Yx --- where F;e%#. Since y(s, y) is
B, x F-measurable, o-fields ¢, '# and &, are independent and {¢,} are m-
measure preserving transformations, we have

P(p* Y E x F)) = P({(s, y*): ¢,,(S)€EE, y,€F,..., yos1€F,})

= j15(¢y,S)IF.(Y2)”‘IF,,(yn+ DP(s, y*))

= J J IE(‘Py,s)In(Y2) IF,.(yn+ )76, yi1)
SJyn+t

n+1

VaV2s Vaseees V1o (pyls)l_[i=1 v(dy;)m(ds)

=f [J (s, Y1)m(d3)] J IE(‘Py,S)IF,(Y2) IF,,(yn+ 1)
YYI+1 S | S

yn(yb cees Yo+ 1; (Pyl S)m(ds)]n:lillv(dyx)

= j l:j ¥(s, y1)m(ds) [f IO (y2) - Tp,(Vn+1)
yn+1 s J S

Va(V2s Vaseoes Yna1s t)m(dt):| 12 ivdyy)

=j fls(t)lr,(Y2)"'IF”(yn+ D2 Y3seees Vs Dm(de)
ynds

H:':zl v(dy;)
= P(E x F).

This P-measure preserving transformation ¢* is called the induced skew
product trasformation of a generalized random dynamical system 2 = ((S, %,
Bo, m), (Y, F, ), {y(s, y): seS}, & ={p, yeY}).

Now we give the definition of ergodicity of a generalized random
dynamical system and summarize other well known definitions.

DEerFINITION 1. A generalized random dynamical system 2 = ((S, 4, 4.,
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m), (Y, Z, v), {3(s, y): seS}, ® = {¢,: yeY}) is called ergodic if J j Ii; 1(8)aB)S)
SJY

y(s, yw(dy)m(ds) =0 implies m(B)=0 or 1 for Be#. The A stands for
symmetric difference.

DEFINITION 2. A Markov process with transition probabilities P(s, B) and
an invariant distribution m(B) is called ergodic if m(E) > 0 and P(s, E) = 1 for
m-a.e. se E implies m(E) =1 for E€%.

DEFINITION 3. A Markov operator T on LY(S, m) is called ergodic if Tf(s)
= f(s) for a.e. seS implies f(s) = constant a.e.

DEFINTION 4. A measure preserving transformation ¢* on a probability
space (2, 4, P) is called ergodic if ¢*~!(E) = E implies P(E) = 0 or 1 for Ec%.

DEFINTION 5. A Markov operator T on I}(S, m) is called mixing if

f T"f(s)g(s)m(ds) — j S (s)m(ds)f g(s)m(ds) (n — o0)
S S S
for f(s)e LI(S, m) and g(s)e L*(S, m).

DErFINITION 6. A measure preserving transformation ¢* on a probability
space (Q, ¢, P) is called mixing if

j f(@*"(@))g(w) P(dw) —>J /i (w)P(dw)f g(@)P(dw) (n— o0)
Q Q o]

for f(w)e L'(22, P) and g(w)e L*(2, P).

Let 2 =((S, B, %o, m), (Y, F, v), {y(s, y): s€S}, ® ={¢p,- yeY}) be a
generalized random dynamical system, and T the induced Markov
operator. The ergodic theorem for the Markov operator T is as follows:

THEOREM 3. Let T be the induced Markov operator by a generalized
random dynamical system and f(s)e L*(S, B, m). Then there exists an integrable
T-invariant function f(s) such that

lim % Sz T (s) = F(s)

n— oo

in the L' sense and ae. seS.

Proor. Because Tf(s) = fP(s, dr)f(t) where {P(s, dt)} are the transition

probabilities of the induced Markov process, the well known ergodic theorem
for Markov operators yields the result.
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Now we show the equivalence of ergodicities in various notions. This is a
generalization of the result given by Kakutani [3].

THEOREM 4. Let 2 = ((S, B, By, m), (Y, F, v), {¥s, y): se€S}, ® =
{o,; yeY}) be a generalized random dynamical system. Then the following
conditions are mutually equivalent.

(@) The generalized random dynamical system is ergodic.

(b) The induced Markov process is ergodic.

(¢) The induced Markov operator is ergodic.

(d) The induced skew product transformation @* is ergodic.

The proof is similar to that of Kakutani [3; Theorem 3], so it is given in
Appendix.

COROLLARY 1. For a generalized random dynamical system 2 = ((S, B, B,
m), (Y, F, v), {¥(s, y): s€S}, @ = {p, yeY}), let Y, ={yeY: ¢, is ergodic and
(s, ¥) > 0 for m-a.e. s€ S}. If W(Y,) > O, then the induced Markov operator T is
ergodic.

Proor. By Theorem 4, it suffices to show that the generalized random
dynamical system is ergodic. Let Be# be such that

J J‘ Lio; 1By (8)7 (s, y)v(dy)m(ds) = 0.
sJy

Since (Yp) > 0, there exists an element yeY such that ¢, is ergodic and
I s 1mapy(s) = 0 for m-a.e. se§, that is, B is ¢y-invariant. It follows that m(B)
=0 or 1, and so the generalized random dynamical system is ergodic.

Using Corollary 1, we prove Lemma 2 in Section 2.

PrROOF OF LEMMA 2 IN SECTION 2. As mentioned in Remark 2 in this
section, the quadruplet ((Simy(X)V)°, #, %, u®), (Y={1, 2,..., N}, &, v),
{N7(S(s)): se(SimyX)")P}, {@ds): ieY}) is a generalized random dynamical
system. Note that y(i, s) = Nr(S{(s))* > N6*>0 and {¢;: i=1, 2,..., N} are
ergodic because P is the product measure of u. It follows that Y, =Y. By
Corollary 1, the induced Markov operator T is ergodic, i.e., any integrable T-
invariant function is constant a.e. se(SimyX)")?. Since the operator U is
identical to the operator T, this completes thq proof.

THEOREM 5. Let T and ¢* be the induced Markov operator and the induced
skew product transformation by a generalized random dynamical system,
respectively. Then T is mixing if and only if @* is mixing.

Proor. For f(s)e L'(S) and g(s)e L*(S), it holds that
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U S (@, 05, 1 0y (N1 5 Vi s) H?=IV(dyi)]
S Y
g(s)m(ds)

=f fH@*"(s, y*))g*(s, y*)Pd(s, y*))
sxy*

J T"f(s)g(s)m(ds) = j
S

where f*(s, y*) =f(s) and g*(s, y*) = g(s). Therefore T is mixing if @* is
mixing. A similar argument used in the proof of (c)=>(d) of Theorem 4 (in
Appendix) shows that ¢* is mixing if T is mixing.

THEOREM 6. Suppose that a generalized random dynamical system ((S, A,
Bo, m), (Y, £, v), {y(s, y): seS}, & ={p,: yeY}) satisfies the conditions
) V20 Viyiyrori P 000 ' Bo =R  and (i) the .o-fields

VIZoV zizaziey 9oy @2, - 01 B, and @y, @;.! - @, ' # are independent for
any y,,---, y,€ Y and neN. Then the induced Markov operator T is mixing.
PROOF. Let B = Vo Vy 1s 5@y, @y - @y,'Bo. By the assumption

that V2,4, =%, it suffices to show that for n >k, jT”f(s)g(s)m(ds)

N

= j f(s)m(ds)J g(sym(ds) where f(s) is a %-measurable function in L'(S) and
S S

g(s) is a %B,_,-measurable function in L>(S). Since y,.,(V1s.-.s Vp+g> S)
=7 V1seees Vo NaWpst1seees Ypias @y, - @y,(5)), we have for such f(s) and g(s)

f T"f(s)g(s)m(ds) = J U Sy 0y (@ 03,(9))) ViVt 1575 Vo
S S Y
Oy 03,.(8) 1V1s 5 Yis O i= 1V(dyi)]g(s)m(ds)
=f Uf(wyn--wyw((pyk-‘-</>y1(S))) Vn-k ks 150005 Vs
yn! N

wyk---wy,(S))m(dS)]H 9S50 Yis S)m(ds)]
S
H?=1V(in)

= U f(t)m(dt)]U g(s)U Iy e 9 [T 1V(dy.-)]m(d5):|
S S Y
= Jf(S)m(dS)f g(s)m(ds)
S S

where in the second equality we used the condition that f(o, - 9,,.,

(@ Py n=iVic 4 15++5 Vs @y =+ @y, (5)) and g(s)7e(y1,-.., Vi 5) are independ-
ent functions defined on (S, #, m) for fixed y,, y,, ---, y, because
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0. 0. -9, # and B, _, are independent. This completes the proof.

COROLLARY 2. The quadruplet (((Sims(X)")°, B, B, u°), ({1, 2,..., N}, Z,
v), {Nr(S(s)): se(SimyX)")P}, {@(s): i€ Y}) introduced in Section 2 is mixing.

This follows immediately from Theorem 6.

§4. Discrete parameter case

In this section we consider generalized random dynamical systems with
discrete parameter space Y.

Consider a generalized dynamical system 2 = ((S, 8, %4, m), (Y, Z, v), {y(s,
y)seS}, @ = {p,- yeY}) which is defined as follows:

S = [0, 1), # = the Borel field of S = [0, 1) and m = the Lebesgue measure;

Y=N=/{1,2,---}, # = the Borel field of Y and v = a probability measure
on Y;

y(s, n) =p,0<s<1/4or3/4<s<1),ys n=gq,(1/4<s<3/4) forneY
=N, where p,, ¢, =0 and Y pv({n}) = Yq.,v({n}) = 1;

@.(s) = (n + 1)s (mod 1) if n is odd and ¢,(s) = — ns + 1 (mod 1) if n is even
for0<s<1;

Bo = {, [0, 1/9U[3/4, 1), [1/4, 3/4), [0, 1)}.

Then 2 is a generalized random dynamical system and ¢, are ergodic.

Let T be the induced Markov operator, i.e., Tf(s) = 3., f(@.(5)¥(s, nv({n}).
Does there exist a non-constant T-invariant function?

The answer is negative if there exists an ne N such that w({n}) > 0 and p,g,
> 0, because of Corollary 1 in Section 3.

On the other hand consider 2 such that v({1}) = v({2}) = 1/2 and v({n})
=0forn>3;p;, =q,=2and q, =p, =0. Note that this 2 does not satisfy
the assumption of Corollary 1. A function f(s) defined by f(s) = « (0 < s < 1/2)
and f(s)=p (1/2<s< 1) is a T-invariant function. If o # B, f(s) is non-
constant.

Appendix. Proof of Theorem 4

PROOF OF (a)=>(b). Assume that a generalized random dynamical system
2 =((S, B, Bo, m), (Y, F, v), {35, y): s€S}, ® = {o,: yeY}) is ergodic. If the
induced Markov process is not ergodic, then there exists a #-measurable subset
B of S such that 0 <m(B)<1 and P(s, B)y=1 for a.e. se B. Then
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"
m(B) = | P(s, B)m(ds)

JB
r

= [j I5(@,(5)) (s, )’)V(dy)]m(dS)
Y

Jv B
= JIB(%(S))IB(S)Y(& y)v(dy)m(ds).

It follows that

.
J I5(s)(1-I5(9,(5)))7 (s, y)v(dy)m(ds) =0

and
HIB(%(S))(LIB(S))Y(S’ y)v(dy)m(ds) = 0,

because m(B) = J J Ig(s)y (s, y)v(dy)m(ds) and m(B) = f P(s, Bym(ds) = JJ
S

Iy(@,(9)7(s. y)v(dy)m(ds). This means that f f Loz 1man(8)7(s, Y)V(dy)m(ds)
=0. Since 0 < m(B) < 1, this is a contradiction to the assumption that 2 is
ergodic.

PrOOF OF (b)=>(c). See the proof of (b) —» (d) of Theorem 3 of Kakutani
[3].

ProOOF OF (c)=(d). It suffices to show that under the assumption that

n— oo

1 lim %ZE%J T*(s)g(sym(ds) = J f(s)m(ds) j g(s)ym(ds)
N N S

for any functions f(s)e L'(S, m) and g(s)e L°(S, m), we have

1
(2 lim=Y7Z3 f F*@* (s, y*))g*(s, y*)Pd(s, y*))
SxY* .

= S*(s, y¥)P(d(s, y*)) g*(s, y*)Pd(s, y*))
SxY* SxY*
for any functions f*(s, y*)e L}(S x Y*, P) and g*(s, y*)eL®(S x Y*, P). Let
f*(s, y*) and g*(s, y*) be of the form
¥ y*) =) Ti=1 /i),
g*(s, y*) = g@[1j-19,(v)
where f(s)e L'(S), g(s)e L™(S); I, m are positive integers; f;(y), g;(y)e L*(Y), i
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=1,.., 1, j=1,..., m. Since the linear combinations of such functions are
everywhere dense in LY(S x Y*, P) and L®(S x Y*, P) respectively, it suffices to
prove (2) only for the case when f*(s, y*) and g*(s, y*) are of the above
forms. Let for k > m,

(*)y: =I SH@* (s, y*)g*(s, y¥)Pd(s, y*))
SxY*

= I f [0y, 8y, - 0D Ti= /10149 TTT=195()
SxYk+1
Ve+1V1s Vaoeoor Virss S)Hﬁl’iv(dy.-)m(dS)-

Put

F(s) =‘[ f(s)l—[£=1fi()’i))’1(yl’ Vaseees Y5 5)1_[5=1V(d}’i)
YI

and

Vh(S) = J‘ h((pym(pym- 0 (Pyl(s))l_[;‘n= lgj(yj)ym(yl’ y2a CERE] ym’ S) ].—I;n= lv(dyi)'
ym
Then it holds that

(e = f V(T*~™F (s))g(s)m(ds)
S

= J (T*~™F (s))(V*g(s))m(ds)
N

where V* denotes the bounded linear dual operator of V. It follows that by (1),

1
Hm —Yi28 | fXe*(s, y¥))g*(s, y*)Pd(s, y*))

n—oo N SxY*

T f (T*~"F ())(V*g(s))m(ds)
S

n—oo

= j F (s)m(ds)f V*g(s)m(ds).
S S

On the other hand

J F(s)m(ds) = f (s, y¥)Pd(s, y*)),
S

SxY*

and

f V*g(s)m(ds) = f (V1)(g(s))m(ds)
N

N
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= f [17=19;0)m1s Yasoeos Yms D17 1v(dy))g(s)m(ds)
SxY*

B J g*(s, Y9P((s, y¥)).
SxY*

This completes the proof.

PrOOF OF (d)=>(a). Assume that ¢* is ergodic on (S x Y*, P). If the
generalized random dynamical system 2 is not ergodic, there exists a %-

measurable subset B of S such that 0 < m(B) <1 and f f Iio- 18)aB)(5)Y(S, ¥)
sdy 7
v(dy)m(ds) = 0. Put B* = B x Y*, then

P(¢*~'(B*) A B¥) = J L(gr-189ann (s, y*)Pd(s, y*))

SxY*

= JJ Lio; 1ap)(9)7(s, y)v(dy)m(ds) = 0.
SJY

This means that B* is ¢*-invariant and 0 < P(B*) =m(B) < 1. This is a
contradiction to the assumption that ¢* is ergodic on (S x Y*, P).
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