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§1. Introduction

Random ergodic theorems were investigated by Kakutani [3], Morita [5]
and others. In this paper we establish generalized random ergodic theorems
which contain the results obtained by Kakutani. A prototype of a generalized
random ergodic theorem is found in the proof of the result that the Hausdorff
measures of almost all random fractals take a common number.

In Section 2 we show Hausdorff measure's constancy of random fractals to
understand a typical generalized random ergodic theorem. Random fractals
were investigated by Mauldin- Williams [4], Falconer [1] and Graf [2] and they
showed the Hausdorff dimensions of almost all random fractals equal to a
constant under some condition. In this section we show that the Hausdorff
measures of almost all random fractals equal to a constant. In the proof we
use a result which is a prototype of a generalized random ergodic theorem.

In Section 3 we develop generalized random ergodic theorems which
contain the results obrained by Kakutani [3], and in Section 4 we consider
generalized random dynamical systems with random discrete parameter, which
illustrate the idea developed in Section 3.

§2. Hausdorff measures of random fractals

The starting point for the considerations in the present paper is a scheme
used by Graf [2] for producing statistically self-similar fractals. To generate a
fractal at random, Graf starts with a probability distribution μ on the set of all
N-tuples of contractions of a given bounded separable complete metric space
X. First he chooses an TV-tuples (5l5 S2,..., SN) of contractions at random with
respect to μ and sets

For every ί'e {!,..., N}9 he chooses independently an AΓ-tuples (Sα,..., SίN) at
random with respct to μ and sets

He continues this process. Then K = (Jne^Λn is a random fractal.
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More formally we proceed as follows: Let X c Rd be a compact set with
X φ 0 where X is the set of all interior points of X. Let d be the Euclidean
metric on Rd. Let 5 be a contraction similality (briefly similality) of X, i.e., S is
a map from X into itself such that there exists an 0 < r = r(S) < 1 satisfying
d(Sx, Sy) = rd(x, y) for all x, y εX. The number r(S) is called the contraction
ratio of S.

For 0 < δ < 1 we denote by Simδ(X) the set of all contraction similarities S
of X such that r(S) > δ. The space Simδ(X) is equipped with the topology of
pointwise convergence and the Borel field of Sim^X) is denoted by <f 0. Let N
denote the set of nonegative integers. Fix a positive integer N > 2. Let

D = D(N) = UmeNCm

where Cm = Cm(N) = {1, 2,..., N}m for a positive m and C0 - {0}. If σ =
(σl5 σ2,..., σj and τ = (τ l9 τ2,..., τr) are in D, let

σ\n = (σl9 σ2,..., σn) for n < m

and

= (σ!, σ2,..., σw, τ l 9 τ2,..., τr).

Our fundamental space is 5̂  = (Simδ(X)N)D. Every element
= (Simδ(X)N)D can be expreseed as

where 5 σ = (Sσs|el(4 5σs|c2(4..., 5σs|eN(d))eSim,(Jίf and 50 = (5^4 S2(*),...,

S )̂)
Let K(d)= nm>oU< r ecmS< r,1W°S< F,2Wo...oS f f | mW(X). This K(d) is a non-

empty compact set and is considered as a fractal set constructed from an N-ary

tree of contraction similarities 0 = (_S σ)σeD. Let <ί denote the product Borel

field (£%)D of (Sim^yy.
Let μ be a Borel probalility measure on Sim^(Jί)N, and μD denote the

corresponding product measure on & = (Simδ(X)N)D.

Let Jf(X) be the space of all non-empty compact subsets of X with the
usual Hausdorίf metric. Graf showed that there exists a Borel set 5̂ 0

d (Simδ(X)N)D with /Λ^0) = 1 such that a map ψ: (Simδ(X)N)D -> jT(JSQ defined
by

if

X if

is Borel measurable. Let Pμ be the image measure of μD with respect to ^,i.e.,
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for every Borel set B c tf(X\ Pμ(B) = μD(\l/~\B}). Pμ is the unique "μ-self-
similar" probability measure on jf(X).

For a set K in Rd, the Hausdorff measure and the Hausdorff dimension of
K are defined as follows. For 0 < λ < oo and δ > 0, let

ι l^ l λ : K c UΓ=ι^, 0 < \Ut\ < δ}

where | U \ is the diameter of a set 17, and let

Then 3e λ is an outer measure. It is easy to see tf λ(S(K)) = r(S)λ3F\K) for any
similality 5. The restriction of Jjf λ to the σ-field of all measurable sets is called
the Hausdorff Λ-dimensional measure. There is a number 0 < άimn(K) < d,
called the Hausdorff dimension of K, such that Jjf λ(K) = oo if λ < dimHCK) and
tfλ(K} = 0 if λ > dimH(X).

Graf proved the following theorem:

THEOREM 1 (Graf [2]). Suppose that, for μ-a.e. (Sί9 S2,..., SN

= 0 for i, ye{l, 2,..., N} with i Φj. Then

tf*(K)Pμ(dK) < oo

and

dimH(X) = α for Pμ-a.e. K e J f ( X )

where α is such that

Furthermore the following statements are equivalent:

(1) ΣΓ=ιK^)α = 1 for μ-a.e. (Sl9 S2,..., SN) e Simδ(X)N .

(2) J*if*(K)>Q for Pμ-a.e.

(3) Pμ({K:

REMARK. Indeed the above statements with respect to Pμ-a.e.
are derived from the corresponding statements with respect to μD-a.e.

With respect to the Hausdorff measure 3tf*(K(o)\ we have the following
theorem.

THEOREM 2. Let the assumption of Theorem 1 be satisfied. Then there
exists a 0 < β < oo such that

) = β for μD-a.e. de^.
Hence

J^\K) = β for Pμ-a.e. KeJf(X).
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For the proof of Theorem 2, we require two lemmas where we suppose the
assumption of Theorem 1 is satisfied. Define φt: (Simδ(X)N)D -> (Simδ(X)N)D for
i = 1, 2,..., N by

)- 5ί5|» for σeD.

It is easy to see that each φt is μD-measure preserving, i.e., μD(φ^~1(E)) = μD(E)
for EεS*. Then we have the following lemma.

LEMMA 1.

JHKM) = Σi = ιr(SMr*"(K(<PM)) f°r ^a'e- *>

where (S^o), S2(<*)9..., SN(O)) = S_0(o).

PROOF. By the definition of K(ό)9 we have

so that

because Sfa) are similalities. Integrating both sides with respect to μD, and

using the facts that S_0(<ή and {S_σ(^)}σ^0 are independent and that φfa) and d

are identically distributed, we obtain

Since £[Jf"(ίv:(d))] < oo by Theorem 1, we have

JHKM) = Σf= i r(Sfr)rjnK(φM)) for μβ-a.e. Λ

This completes the proof.

LEMMA 2. Assume a Borel probability measure μ on Sims(X)N satisfies that
T?-ιr(Sf=l for μ-a.e. (Slt S2,..., SN)eSims(X)N. For f
μD\ we define Uf(ό) by
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Then any integrable U -invariant function (i.e., Uf(o) = f(ύ) for μD-a.e. 0) is equal
to a contant a.e. 0.

This lemma is a prototype of a generalized random ergodic theorem which
is investigated in Section 3. It can be proved directly, but we will postpone the
proof until we prove Corollary 1 in Section 3.

PROOF OF THEOREM 2. If the condition ΣfLιr(Sf)
α = 1 for μ-a.e. ( S ί 9 S2,...,

SN)eSimδ(X)N does not hold, the statement (3) in Theorem 1 fails, that is,
jr*(K(o)) = 0 for μD-a.e. o.

Assume that Σf= i r(5/)α = 1 for A*-a.e. (Sl9 S29...9 SN)eSimδ(X)N. By
Theorem 1 and Lemma I9f(<ή = J#"*(K(<ι)) is integrable and U-in variant. Hence
we have a 0 < / ? < o o such that ^fa(K(o)) — β for μD-a.e. o, using Lemma
2. This completes the proof.

EXAMPLES, (a) (Graf [2]) Let X be the unit inteval [0, 1]. Define
contraction maps 7] (i = 0, 1, 2) by T\(x) = (x + 0/3 for xe[0, 1]. Then r(T0)
= r(7\) = r(T2) = 1/3. Let μ = (e(ΓθfΓl) + ε(Γo>Γ2) + ε(Γl fΓ2))/3 on Sim,([0, I])2

with 0 < δ < 1/3. Since r(Stf + r(S2)
α = 1 for μ-a.e. where α = (log 2)/(log 3),

it follows from Theorems 1 and 2 that

dimH(A;) = α for Pμ-a.e. K,

and

jjf«(K) = β for Pμ-a.e. K

where β is some constant > 0.

(b) Let X be [0, I]2. Define contraction maps Tί9 T2, T3 and Γ1? T2, T3

by T,(x, y) = (x/3, y/3), Γ2(x, y) = ((x + l)/3, (y + 2)/3), T3(x, y) = ((x + 2)/3,

y/3) and Ti(x, y) = (x/2, y/2), f2(x, y) = ((x + l)/3, (3; + 2)/3), ?3(x, y) = ((x

+ 5)/6, y/6). Then r(rj + r(T2) + r(T3) = r(7l) + r(T2) + r(T3) = 1. Let μ

= (fi(τ l fra.r3) + fiίTΊΛ.faO/Z on Sim,([0, I]2)3 with 0 < δ < 1/6. Since r1^)

+ r1^) + rl(S3) = ! for μ-a e > it follows that

dimH(X) = 1 for P^-a.e. K

and

j#*(K) = β for Pμ-a.e. K

where j5 is some constant > 0.

§3. Generalized random ergodic theorems

In this section we develop generalized random ergodic theorems which
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guarantee Lemma 2 in Section 2.
Let (S, 38 w) be a probability space and ( Y, ^9 v) another probability space

where ( Y, ^) is a standard measurable space. Let ̂ 0 be a sub σ-field of & and
{7(5, y): s e S} a family of ^0 x J^-measurable probability density functions on

Y, i.e., γ(s9 y) > 0 and y(s, y)v(dj ) = 1 for all seS. Let Φ = [φy: ye Y} be a

family of m-measure preserving transformations φy defined on S with parameter
yeY (i.e., m(φ~i(B)) = w(B), Be^, 3>eY). Assume that Φ is & x 3?-
measurable, i.e., {(s, y): φy(s)εB}e& x 3F for Bε38 and that the sub σ-
fields Vyψy1^ and ^0 are independent. We call the quadruplet ((S, ,̂ J*0,
m), ( Y, &9 v), {7(5, y): seS}, Φ = [φy: yeY}) a generalized random dynamical
system.

REMARK 1. If 7(5, y) = 1, our formulation is the same as that of Kakutani
[3] and Morita [5]. They discussed random dynamical systems of the form

where {yi(ω)}i°=ι are independent identically distributed Y-valued random
variables.

REMARK 2. Consider (Simδ(X)N)D

9 ^ and μD which are introduced in
Section 2. Assume that the measure μ on Simδ(X)N satisfies ^f=1r(Sί)

cx = 1 for
μ-a.e. (Sl9 S2,..., SN)εSimδ(X)N where r(St) is the contraction ratio of St. Let S
= (Simδ(X)N)D, & = £, m = μD, Y= {1, 2,..., AT}, & = the set of all subsets of Y
and v({ i } )=l/JV for ίeY Let y(s, i) = Nr(St(s)γ and ^0 = σ({s: 50(s)

= (Sι(s),..., SN(s))eE}\E€^ζ). Then {y(s, i): ie7} satisfy that γ(s, i) > 0,

y(s, i)v(^0 = 1 an<i y(s? 0 is ^0-measurable. The transformations {^-(s): 5

-^5}f=1 defined by ^σ(φf(s)) = _Sί5iίσ(s) for all σeD are m-measure preserving
and V^"1^ and ̂ 0 are independent. Thus the quadruplet (((Simδ(Jί)N)D, ,̂
Λ0, μ

D), (7= {1, 2,..., ΛΓ}, ,̂ v), {Nr(St(s)Y: sε(Simδ(X)N)D}> {9i(s): ieY}) is a
generalized random dynamical system.

A generalized random dynamical system ® = ((S, £8, ^0, m), ( Y , ^, v),
{γ(s, y): seS}, Φ = {φ^: yεY}) induces a Markov process, a Markov operator
and a skew product transformation.

Induced Markov process. Let us put, for seS and

P(s, 5) = IB(φy(s))γ(s, y)v(dy).

Then (P(s9B)} are Markov transition probabilities with the invariant distribution
m(B). In fact,
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f P(s9 B)m(ds) = !
Js Js

-J.
, y)v(dy)m(ds)f

! IB(φy(s))m(ds) ! γ(s, y)m(ds)\v(dy)
-Js Js J

]

= m(B)

= m(B)

f yfe
- Js

f yfe
- JY

y)m(ds)

y)v(dy)

v(dy)

m(ds) = m(B),

where we use the facts that random functions {y(s, 3;)} and {IB(<Py(s))} defined on
(S, ̂ , m) are independent for fixed y e Y and that φy are m-measure preserving
transformations. The Markov process with transition probabilities P(s, B) and
the invariant distribution m(B) is called the Markov process induced by a
generalized random dynamical system 2 = ((S, &, &0, m), (Y, ^, v), {y(s, y):
seS}, Φ = {φy:yeY}).

Induced Markov operater. Let Ll(S) be the space of all integrable
functions defined on (5, ,̂ m). Let us define a bounded linear operator Ton
L\S) by

Tf(s)= ! P(s, dt)f(t)= ! f(φy(s))y(s, y)v(dy).
Js JY

We call T the induced Markov operator.

Induced skew product transformation. Let 7* be the infinite product space
YlfL ! Y of Y. On the product space Ω = S x 7*, we define a probability
measure P as follows: For a set E x F in Ω = S x 7* where Ee& and F = F^
xF2x - x FnxYx Yx -" c: 7* (Fi<=3r), we define P(E x F) by

P ( £ x f ) = f Γ f . - Γ f Γ f y(φyn_ί - φyι(s), yn)v(dy
Jf L j F i L J F n - i L J F n

J s J y

n-ι) • m(ds)

denoting

= γ(s, yι)y(φyί(s)9 y2)'
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By Kolmogorov's extension theorem we have a unique probability measure P
on Ω = S x 7*. Let us consider the skew product transformation φ* defined

by

φ*(s, y*) = (φyι(s), Θy*) for (s, y*)eΩ,

where y* = (yl9 y2,...)eY* and θ is the shift transformation on Y*,i.e.9 (θy*)n

= yn + 1 for weN.
We show that the transformation φ* on (5 x y*, P) is P-measure

preserving. It suffices to show that P(φ*~1(E x F)) = P(E x F) for Ee& and a
cylinder set F = F1 x F2 x ••• x Fn x yx yx ••• where Fte^. Since γ(s9 y) is
^o x J^-measurable, σ-fields φ"1^ and ̂ 0 are independent and {φy} are m-
measure preserving transformations, we have

v2eF1,..., yn+1eFn})

= llE(φyίs)IFί(y2)-IFn(yn+1)P(d(S, y*))

r*+ί

 EψyιS F>y2 F"yn + 1 γS' yi

-Lίί* Λ)m(Λ)lί'
7n(y29 9 yn+ι' > φyίs)m(ds)

= I Γ)^, JΊ)m(ds)lΓ|
Jy+iLJs JLJs

7»(3'2» ys' . y B +i5 t)m(dt) Π"=ί

- i f

~ JJs £ί ^^ F"y"+ί y"y2"

= P(£ x F).

This P-measure preserving transformation φ* is called the induced skew
product trasformation of a generalized random dynamical system Q) = ((5, ,̂
^o, m), (S #•, v), (7(5, y): Se5}, Φ = {φy: yey}).

Now we give the definition of ergodicity of a generalized random
dynamical system and summarize other well known definitions.

DEFINITION 1. A generalized random dynamical system <& = ((5, ,̂ ^0,
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m\ (Y9 &, v), {7(5, y): seS}, Φ = {φy: ye Y}) is called ergodic if /(φ-ι(ji)Δi»(s)
JsJy

γ(s9 y)v(dy)m(ds) = 0 implies m(B) = 0 or 1 for 5e^. The Δ stands for
symmetric difference.

DEFINITION 2. A Markov process with transition probabilities P(s, B) and

an invariant distribution m(B) is called ergodic if m(E) > 0 and P(s, E) = 1 for

m-a.e. s e E implies m(E) = 1 for E e ̂ .

DEFINITION 3. A Markov operator Ton LX(S, m) is called ergodic if Tf(s)

= f(s) for a.e. seS implies f ( s ) = constant a.e.

DEFINTION 4. A measure preserving transformation φ* on a probability

space (Ω9 &, P) is called ergodic if φ*~l(E] = E implies P(E) = 0 or 1 for

DEFINTION 5. A Markov operator T on Lx(5, m) is called mixing if

I T"f(s)g(s)m(ds) — ̂  f /(s)m(ds) ί
Js Js J

(s)w(ds) (n — > oo)
s s

, m) and ^(s)eL°°(S, m).

DEFINITION 6. A measure preserving transformation φ* on a probability

space (Ω, <&, P) is called mixing if

I f(φ*n(ω))g(ω)P(dω) — > f f(ω)P(dω) \ g(ω)P(dω) (n — . oo)
J β J β J β

for/MeL1^, P) and ^(ω)eL°°(ί2, P).

Let 3 = ((S, Λ, ^05 m), (i; ,̂ v), {y(s, y): seS}, Φ = (φy: ye Y}) be a
generalized random dynamical system, and T the induced Markov

operator. The ergodic theorem for the Markov operator T is as follows:

THEOREM 3. Let T be the induced Markov operator by a generalized

random dynamical system andf(s)eL1(S, $, m). Then there exists an ίntegrable

T-invarίant function J(s) such that

in the L1 sense and a.e. seS.in

PROOF. Because Tf(s) = P(s, dt)f(t) where {P(s, dt)} are the transition

probabilities of the induced Markov process, the well known ergodic theorem

for Markov operators yields the result.
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Now we show the equivalence of ergodicities in various notions. This is a
generalization of the result given by Kakutani [3].

THEOREM 4. Let @ = ((S, a, &09 m), (F, ^9 v), {γ(s, y): sεS}, Φ =
{φy: yεY}) be α generalized random dynamical system. Then the following
conditions are mutually equivalent.

(a) The generalized random dynamical system is ergodic.
(b) The induced Markov process is ergodic.
(c) The induced Markov operator is ergodic.
(d) The induced skew product transformation φ* is ergodic.

The proof is similar to that of Kakutani [3; Theorem 3], so it is given in
Appendix.

COROLLARY 1. For a generalized random dynamical system <£> = ((S, ,̂ ̂ 0,
m\ (7, &, v), {7(5, y): seS}9 Φ = {φy: yεY}\ let Y0 = {ye Y: φy is ergodic and
γ(s9 y) > 0 for m-a.e. sεS}. If v(Y0) > 0, then the induced Markov operator T is
ergodic.

PROOF. By Theorem 4, it suffices to show that the generalized random
dynamical system is ergodic. Let Be $ be such that

n_ /
y)v(dy)m(ds) = 0.

Since v(70) > 0, there exists an element yeY such that φy is ergodic and

I(<pji(B)AB)(s) = 0 for m-a.e. seS, that is, B is ψyinvariant. It follows that m(B)
= 0 or 1, and so the generalized random dynamical system is ergodic.

Using Corollary 1, we prove Lemma 2 in Section 2.

PROOF OF LEMMA 2 IN SECTION 2. As mentioned in Remark 2 in this
section, the quadruplet ((Simδ(X)N)D, @, &0, μD\ (Y= {1, 2,..., N}, &, v),
{Nr(Si(s)Y: se(Simδ(X)N)D}9 {(Pt(s): ieY}) is a generalized random dynamical
system. Note that γ(i, s) = Nr[S£s))Λ > Nδ* > 0 and {φf: i = 1, 2,..., N} are
ergodic because μD is the product measure of μ. It follows that Y0 = Y. By
Corollary 1, the induced Markov operator Tis ergodic, i.e., any integrable T-
invariant function is constant a.e. s e (Simδ(X)N)D. Since the operator U is
identical to the operator T9 this completes the proof.

THEOREM 5. Let T and φ* be the induced Markov operator and the induced
skew product transformation by a generalized random dynamical system,
respectively. Then T is mixing if and only if φ* is mixing.

PROOF. For f(s)EL\S) and g(s)eLco(S)9 it holds that
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ί Tnf(s)g(s)m(ds) = \ \ \ f(φynφyn_, - φyι(s))yB(yι,..., W s) Π^i^J
Js JsLJy"

= I f*(φ*n(s, y*))0*(s, y*)P(d(s, /*))
Jsxy*

where /*(s, j;*) =/(s) and #*(s, j;*) = g(s). Therefore T is mixing if φ* is
mixing. A similar argument used in the proof of (c) => (d) of Theorem 4 (in
Appendix) shows that φ* is mixing if T is mixing.

THEOREM 6. Suppose that a generalized random dynamical system ((S, έ%,
Λ0, m\ (Y, &9 v), {y(s, y): seS}, Φ = {φy: y e Y } ) satisfies the conditions
(i) V ? L 0 V y ι > ; V 2 yi9y,l9y2

1'" φyi

l^Q = & and (ii) the .σ-fields

V?=o VZ l,z 2, z.ey ΦzV Φzl1 ••• ΨZ^Q and φ~^φ~^ ••• φ^1 ̂  are independent for

any y l 5 , y π e7and neN. 77z^« the induced Markov operator T is mixing.

PROOF. Let @k = V f = 0

 V yι,y 2 ytΦySφy*1 "'ΦyS&o By the assumption

that yk°=1^k = ^, it suffices to show that for n > k, Tnf(s)g(s)m(ds)

Γ Γ= f(s)m(ds) g(s)m(ds) where /(s) is a ^-measurable function in Li(S) and
Js Js

g(s) is a $k-\-measurable function in L°°(5). Since yp+q(yι, " > yP+q'-> s)
. . .» y«l s)y(i(yp+!,..., }^p+β; φv ••• φyι(s)), we have for such/(s) and g(s)

f w - ΓΓf
Js JsUy"

Φyk'" Φy^8)) VkCVu •".» ^fcj s)Π?=ιv(^);ί) 0(s)w(ds)

- ί Γί
"JynLJs Ψyn φyk+l(Pyk 9yiS y»-*^ + i' " J

^(ΦfcθΊ,..-» yk; s)»ι(ds)φyk -φyι(s))m(ds) g(s)yk(yl9..., ykl s)m(ds)

= Γ ί /Ww(Λ)lΓ f g(sft jk(yι, ...,yk',s) Πί= ̂ (̂

= ί f(s)m(ds)[ g(s)m(ds)
Js Js

where in the second equality we used the condition that f(<Pyn -φyk+l

(φyk -φyiWyYn-i&k + i*.-" ^ <Pyk ' ' <Pyι(s)) and g(s)yk(yl7 . . . , yk; s) are independ-
ent functions defined on (5, ,̂ m) for fixed yί9 y29 •••, yn because
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ψy^Ψy^ '"9yk

1^ and ^k-^ SίTQ independent. This completes the proof.

COROLLARY 2. The quadruplet (((Simό(X)N)D, ®, ®o, μ°), ({1, 2,..., TV}, &,
v), {Nr(Si(s)Y: se(SimΛ(Xf)D}, (ςφ): i ε Y } ) introduced in Section 2 is mixing.

This follows immediately from Theorem 6.

§4. Discrete parameter case

In this section we consider generalized random dynamical systems with
discrete parameter space Y

Consider a generalized dynamical system Q) = ((S, ,̂ ̂ 0, w), (1^ ̂ , v), {y(s,
y):seS}, Φ= {φy: yeY}) which is defined as follows:

S = [0, 1), @ = the Borel field of S = [0, 1) and m = the Lebesgue measure;
γ= N = {1, 2, •••}, & = the Borel field of Y and v = a probability measure

on 7;
γ(s, n) = pn(0 < s < 1/4 or 3/4 < s < 1), y(s, n) = qn(l/4 <s< 3/4) for ne 7

= N, where pn9 qn>0 and Σpπv({n}) = Σ^nv({n}) = 1;
φπ(s) = (n + l)s (mod 1) if n is odd and φn(s) = — ns + 1 (mod 1) if n is even

for 0 < 5 < 1;
^o = {0> [0, 1/4) U [3/4, 1), [1/4, 3/4), [0, 1)}.

Then & is a generalized random dynamical system and φn are ergodic.
Let Tbe the induced Markov operator, i.e., Tf(s) = £„/(<?„($))y(s, n)v({n}).

Does there exist a non-constant T-invariant function?
The answer is negative if there exists an rceN such that v ( { n } ) > 0 and pnqn

> 0, because of Corollary 1 in Section 3.
On the other hand consider 0 such that v({l}) = v({2}) = 1/2 and v({n})

= 0 for n > 3; p1 = q2 = 2 and q1 = p2 = 0. Note that this Q) does not satisfy
the assumption of Corollary 1. A function/(s) defined by/(s) = α (0 < s < 1/2)
and /(s) = β (1/2 < s < 1) is a T-invariant function. If α / β, /(s) is non-
constant.

Appendix. Proof of Theorem 4

PROOF OF (a) => (b). Assume that a generalized random dynamical system
& = ((S, Λ, 009 m\ (Y, #", v), {y(s, 30: seS}, Φ = {φ,: ye 7}) is ergodic. If the
induced Markov process is not ergodic, then there exists a J'-measurable subset
B of 5 such that 0 < m(B) < 1 and P(s, B) = 1 for a.e. s<=B. Then
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m(B) = P(s, B)m(ds)
IB

= J Lf

(φy(s))IB(s)y(s, y)v(dy)m(ds).

It follows that

s, y)v(dy)m(ds) = 0
JJ

and

ίtIB(φy(s))(l-IB(s))γ(s, y)v(dy)m(ds) = 0,

because m(B) = IB(s)y(s, y)v(dy)m(ds) and m(B) = P(s, β)m(ds) =

Jfi(φy( s))y(s, y)v(dy)m(ds). This means that /(φ-ι(JI)ΔB)(s)y(s, y)v(dy)m(ds)

= 0. Since 0 < m(B) < 1, this is a contradiction to the assumption that @ is

ergodic.

PROOF OF (b) => (c). See the proof of (b) -> (d) of Theorem 3 of Kakutani

[3].

PROOF OF (c)=>(d). It suffices to show that under the assumption that

(1) lim - ΣZ=o ί Tkf(s)g(s)m(ds) = ί f(s)m(ds) ί g(s)m(ds)
n-+cc n js js js

for any functions /(s)eL1 (5, m) and #(s)eL°°(S, m), we have

(2) lim is£o Γ /*(φ*Λ(5, y*))g*(s, y*)P(d(s, y*))
"->°° n Jsxr*

Γ Γ
f*(s, y*)P(d(s, y*)) g*(s, y*)P(d(s, y*))

Jsxr* Jsxr*

for any functions /*(s, j ̂ eL1^ x 7*, P) and g*(s, y*)eL°°(S x 7*, P). Let

f*(s9 y*) and g*(s, y*) be of the form

f*(s, y*)

g*(s, y*) =

where/(sJeL1^), g(s)eL°°(5); /, m arc positive integers; f^y), gj(y)ELco(Y), i
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= 1,..., /, j = 1,..., m. Since the linear combinations of such functions are
everywhere dense in L1^ x 7*, P) and L°°(5 x 7*, P) respectively, it suffices to
prove (2) only for the case when /*(s, y*) and 0*(s, y*) are of the above
forms. Let for k > m,

(*)*: = f*(φ*k(s, y*))g*(s, y*)P(d(s,

- ffX

jJsxr"*' φ"Λ""' Ψyi

Put

and

= ί
Jy

_ r
~ }γm

 (pym<pym-i φyι

Then it holds that

(*)* = ί V(1*-mF(S))g(S)m(ds)
Js

= ί (T*-mF(s))(V*g(s))m(ds)
Js

where V* denotes the bounded linear dual operator of V. It follows that by (1),

1 _, Γ
lim -Σί=o f*(ψ (s, y*))g*(s, y*)P(d(s, y*))

= "m -ΣZ=έ I (T*-mF(s))(V*g(s))m(ds)
M-xx>H Js

-J.Js

On the other hand

ίF(s)m(ds) = \ f*(s, y*)P(d(s, y*)),
s

and

ί V*g(s)m(ds)= ί (Vl)(g(s))m(ds)
Js Js
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-i
-J.

yι> y2>—>

g*(s, y*)P(d(s, y*)).
JSxY*

This completes the proof.

PROOF OF (d)=>(a). Assume that φ* is ergodic on (5 x 7*, P). If the
generalized random dynamical system Q) is not ergodic, there exists a 38-

measurable subset B of S such that 0 < m(B) < 1 and I(φ-i(B)&B)(s)y(s> y)

v(dy)m(ds) = 0. Put B* = B x 7*, then

Δ = f
Js

)y(s, y)v(dy)m(ds) = 0.

This means that B* is φ*-invariant and 0 < P(B*) = m(B) < 1. This is a
contradiction to the assumption that φ* is ergodic on (S x Y*, P).
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