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It is well known that the zero function is the only non-negative parabolic
function (i.e., solution of the heat equation) on /?"x(0, Γ) which vanishes
continuously on /Tx{0} (cf. [2, Part 1, Chap.XM], [6, Chap. VK]). In this
paper, considering the Huygens property of minimal parabolic functions (see
Proposition 2), we shall show the following generalization of the above result.

THEOREM. Let Ω be a Lipschίtz cone in Rn (n > 1) and let 0 < T < oo. If
u is a non-negative parabolic function in the cylinder Ω x (0, T) and vanishes
continuously on the parabolic boundary dΩ x [0, T] (J Ω x {0}, then u = 0.

Here, we say that a domain Ω is a Lίpschitz cone if there exists a domain E
in the unit sphere Sn~l such that Ω = {x Φ 0; x/ | |x | |e£} and Ω f| {*; | |x| | < 1}
is a Lipschitz domain, where || x || denotes the euclidean norm of x in Rn.

In Section 5, we remark that the above assertion is also valid for solutions
of parabolic equations and for a slightly more general domain Ω.

§1. The Huygens property

In this section D = Ω x (0, T) will be a cylinder with a domain Ω in Rn

(n > 1) and 0 < T < oo.
A solution of the heat equation on D is said to be parabolic on D. We

denote by H+(D) the set of all non-negative parabolic functions on D. Also we
denote by dpD the parabolic boundary of D, i.e., dpD = dΩ x [0, T)\JΩ x {0},
and by GD the Green function of D with respect to the heat equation

(cf. [2, p.298]).
For a non-negative function u and 0 < s < T, we define a function us by

i
w(x, ί) on Ω x (0, s]

/•
GD((x, t),(y, s))u(y, s)dy on Ω x (s, T).

JΩ

Then we have

LEMMA 1. For uεH+(D) and 0 < s < T, usεH+(D) and us<u on D.
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PROOF. Let {Ωm}™= x be a regular exhaustion of Ω, that is, Ωm is relatively
compact, dΩm is sufficiently smooth and Ωm<^Ωm+1 for each m, and (Jm=ι
Ωm = Ω. Define Dm = Ωm x (0, T) and

tφc, t) on Ώm x (0, 5]

GDm((x, ί), (y, s))u(y, s)dy on ί2m x (s, T).

Then clearly vm is parabolic on ί2m x (0, s) U Ωm x (s, T) and continuous on
Dm. This implies ι;me#+(DJ (cf. [2, p. 276]). Since ϋm < u on dpDm, the
maximum principle implies vm<u on Dm. Since GDm | GD, um j ws as m
-> GO. Hence letting m-^ oo we have us<u on D. The parabolicity of ws

follows from the Harnack convergence theorem for parabolic functions (cf. [2,
p. 276]). This completes the proof.

In [6, Chap.DC], D.V. Widder discussed the semi-group property of
parabolic functions in a strip, which he called the Huygens property. Following
Widder, we say that ueH+(D) with u φ 0 has the Huygens property if u = us

for any tu < s < T, where tu = inf{ί > 0; there exists x e Ω such that iφc, ί) > 0}.

PROPOSITION 2. Every non-zero minimal parabolic function has the Huygens
property.

Here ueH+(D) is called minimal if every veH+(D) satisfying 0 < v < u is a
constant multiple of u.

PROOF. Let ueH+(D\ uφQ, be minimal and 0 < s < T. By Lemma 1,
us = csu with some constant cs > 0. If 5 > tu there exists yeΩ with ws(y, 5)
= u (y, s) φ 0. This implies cs = 1 and the proof is completed.

§2. The Harnack and the boundary Harnack principles

In this section Q will be a cylinder R x (0, T) with a bounded Lipschitz
domain R in Rn and T > 0. Let {m, r0} be the Lipschitz character of #, i.e., m
and r0 are two positive numbers and for each XedR there exist a coordinate
system of Rn and a Lipschitz function φ on /Γ"1 with || V φ || ̂  < m such that in
these coordinates,

and

where # = B(X, r0), the open ball in Rn of radius r0 > 0 centered at X.
From the Harnack and the boundary Harnack principles for parabolic
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functions (cf. [1], [3], [4], [5]), we derive the following two lemmas which we
shall use later. We denote by d(R) the diameter of R and δ(x) — dist(x, dR).

LEMMA 3. There exists a constant c=c(n, w, r0, d(R)) with the following
property: IfuεH+(Q), then

u(y, s) < exp 4-^-^ + t—^-j iφc, t)

for all x, yeR and 0 < s < t < T, where δ = min{l, s, δ(x)2, δ(y)2}.

PROOF. We first remark that there exists a constant c1 = c(m, r0) with 0
< c1 < 1 such that for any zεR, there exists a z0 with δ(z0) > c1 satisfying

dist( zz0 , dR) > c±δ(z\ where zz0 is the closed segment [z, z0]. We can take

a constant c2 = c(m, r0) with 0 < c2 < c± and a connected compact set K
satisfying {zeR; δ(z) > c^} a K c [zeR; δ(z) > c2} Since K is compact there
also exist an integer rc0 > 1 depending only on n, c2 and d(R\ and n0 points

{z l9..., zπo} in K such that U?=i#fe, c 2 /2)^X.
Let (x, ί), (3;, s) be as in the lemma. We choose x0, y0eK satisfying

dist( xx0 , dR) > c^(x) and dist( yy0 , dR) > c^(y). Further we can choose a

subset {χ/}j=ι c {^J such that dist(j^71? dR) > c2/2 (0 <; < /c), where yk+1

= x0. Put 3^-1=^ yk + 2 = x and s;. = s + (7 + l)(ί - s)/(k + 3). Then
{(yp sj)}kj=-ι are Points in Q. By the Harnack principle ([1, Theorem 5], [3,
Theorem 0.1]), for j = - 1, 0,..., k + 2,

with some constant c0 = c(n) > 0, where δj = min{l, s7 , dist(^J <yJ + 1? ^K)2}. Since

δj > (c2/2)2δ, we have the desired inequality with c = c0c2 ^ΠQ + 3)2(d(#) + I)2

by multiplying the above inequalities.

LEMMA 4. Let (x0^o)e6 w'̂  T/3 <t0<T and let Q' = R' x (0, s0), 0
< s0 < ί0, be a subcylinder of Q. Let F be a compact subset of dR such that
dR Π dR is compactly contained in F. Put Γ = R x {0} (J F x (0, T). Then
there exists a constant c = c(n, m, r0, d(R\ x0, T, dist(#r, dR\F)) independent of
t0 and s0 such that for any ueH+(Q) vanishing continuously on Γ, we have

u(y, s) < exp - - ιφc0, ί0) for all (y, s)εQ'.
\to ~ 5o/

PROOF. Let Q! = R' x (0, Γ/4). By [5, Theorem 3.1] there is a constant

x = c(n, m, r0, xθ9 T, dist^', dR\F)) > 1 such that

lM(};, 5) < c^ίxo, ί0)
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Hence the required inequality holds with c = Tlogc^ if s0 < T/4. Next,

assume T/4 < s0 < ί0 Set

2η = min{[(ί0 - so)/!]1/2, r0, dist(K', dR\F), 5(x0), 1}

and

Q2 = \J{B(X, η)x(s-η2, s + >/2) Π β'; XeF, T/4 < s < s0},

; δ(x) > η/(m + 1)} x [Γ/4, s0 + 2f/2).

Then β'\6ι c 62 U 63 <= G By the Carleson estimate ([3, Theorem 0.3], [5,
Theorem 3.1]), we have

)eQ3φ, S)

with c2 = c(n, w, r0) > 0. Further, by Lemma 3, we have

suP(y,s)eQ3M0;' s) ̂  exP c3(- - + T- ) M(XO, t0)
L \Γo — so dι/ J

with c3 = φ, m, r0, ί/(Λ)) > 0, where (5i = min{l, T/4, (?7/(m + I))2}. By the

choice of η, there is c4 = φ0, ^ dist(R', dR\F)9 δ(x0)) > 0 such that if ί0 - s0

< c4 then ^! = (ί0 — 50)/8(m + I)2. Thus we have

/ . c \
suP(y,5)eQ2uQ3w(>;

ί s )<exp - — 5— \u(x09 ί0)
\ro ~~ 5o/

with c5 = c(w, m, r0, ̂ ), ^ x0? dist(Λ', dR\F)) > 0. This completes the proof.

§3. Compact convex set H^(D9 μ)

In this section let D = Ω x (0, T), where 0 < T < oo and Ω is a domain in

Rn such that ί2f)^(0, n) are Lipschitz domains for all n > 1.

We denote by H(D) the space of all parabolic functions on D endowed with

the topology of uniform convergence on compact sets and set

HQ(D) = {ueH(D)\ u > 0 and continuously vanishes on dpD}.

A positive measure μ on D is called a reference measure if every point of D

can be connected to some point of supp(μ), the support of μ, by a polygonal line

having strictly increasing ί-coordinate. For a reference measure μ on D we put

{ue//o(D); \
JD

udμ < 1}.
D

Then we have

LEMMA 5. HQ(D, μ) is a compact convex set in H(D).
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PROOF. The convexity is evident. Let {un}™=l be a sequence in HQ(D, μ).
Since μ is a reference measure, the Harnack principle (cf. [2, p.277]) shows that

there exists a subsequence which converges to some element u^ in H(D). What

remains is to prove that u^ continuously vanishes on dpD. Let (Y, s)edpD.

We choose ί l 5 t2 > 0 with 0 < s < ί 1 < f 2 < T and x0εΩ with | | x 0 — > Ί I
< 1. Set β = (xeί2; ||x - y\\ < 1} x (0,^). Since une#o(D), by Lemma 4,

wπ(x, ί) < cun(xθ9 t2) for (x, t)eQ

with some c > 0 independent of n. We denote by v the parabolic function on

Q with boundary values 1 on dpQ Π D and 0 on dpQ f) dpD. Then wπ(x, ί)

< cwn(x0, t2)v(x, t) and hence w^x, t) < CU^XQ, t2)v(x, t) on ζλ Thus w^

continuously vanishes at (Y, s). This completes the proof.

§4. Proof of the Theorem

Let Ω be a Lipschitz cone and let D = Ω x (0, T) with 0 < T < oo. We set

ί2(r) = {xeΩ; \\x\\ < r} for r > 0.

We first show

LEMMA 6. Lei x0eΩ(l) and let 0 < ί0 < Γ. TTieπ there exists a constant c

= c(x0, t0,Ω) > 0 swc/z //zύtf /or α«y ueH^D) and any 0 < τ < l wiίh

t0 + 2τ< T,

u(y, s) < exp(c(||>;||2 + l)/τ)ιι(x0, ί0 + τ)

whenever (y, s)eΩ x (0, ί0 + τ/2).

PROOF. Let u and τ be as in the lemma. We may assume that u φ 0. By
putting u = 0 on Ω x (— oo, 0], we may also assume that ueH + (Ω x (— oo, T)).

Put Q = ί2(2) x (0, ί0 + 2τ). By Lemma 3, there exists a constant c0 = c(ί2, x0)
> 0 such that for any r > 1,

-

and by Lemma 4, there is a constant c'0 = c(Ω, x0, ί0) > 0 such that for any
r > 1 and for any (y, s)eί2(l) x (0, ί0 + 2τ - 3τ/2r2)

x0, ί0 + 2τ -

Since the change of variables (x, ί) -> (x/r, (ί — α)/r2 + α), α = ί0 + 2τ, preserves

the parabolicity of a function, by the above inequalities, we have

u(rx0, ί0 + 2τ/3) < exp(c0r
2/τ)M(x0, ί0 + τ)

and
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u(y, s) < exp(<^r2/τ)w(rx0, ί0 + 2τ/3)

for (y, s)εΩ(r) x (0, ί0 + τ/2). Hence if yeΩ(r)\Ω(r - 1) and 0 < s < ί0 + τ/2,
we have

w(y, 5) < exp(cr2/2τ)ιφc0> t0 + τ) < exp(c(||^|| 2 + l)/τ)tφc0, *o + τ)

with c = 2(c0 + 4).

Next we shall show

LEMMA 7. For any reference measure μ, HQ(D, μ) = {0}.

PROOF. Let u be any extremal point of HQ(D, μ) and assume u φ 0. Then
tφc, ί) > 0 whenever (x, ί)eΩ x (tu9 T). Let x0 e Ω(l) and 0 < τ < 1 with ίu

+ 2τ < T. Further we choose 77 > 0 with η < min{τ, τ/4c}, where c is the
constant in Lemma 6 with ί0 = ίu. Then if tu < s < tu + η/2 we have

tu + η), (y, s))u(y, s)

with some constant c0 > 0. By the choice of η,

ί exp( -\\xo-y\\ 2/4η + c( \\ y || 2 + l)/τ)^ < oo.
J Ω

On the other hand, we see easily that u is minimal. Hence by proposition 2

M(XO, tu + η)= GD((x0, tu + η), (y, s))u(y, s)dy
J Ω

for any tu < s < tu -f fy/2. By the above estimate of the integrand, we can apply
the Lebesgue convergence theorem, and obtain u(x0, tu + η) = 0, since
lims^ίMM(;y, s) = 0. This is a contradiction, and hence 0 is the only extremal
point of HQ(D, μ). The Krein-Milman theorem gives H£(D, μ) = {0}.

PROOF OF THE THEOREM. It is sufficient to remark that H£ (D) = {0} if and
only if HQ (D, μ) = {0} for any reference measure μ.

§5. A generalization

Let L be a parabolic operator on Rn x ( — oo, oo ) of the form

Lφc, t) = Σlj=ιDXiij(x, t)DXju(x, ί ) - f φ c , ί),

where the matrix (<z//x, ί)) is bounded, measurable, symmetric, and uniformly
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positive definite, i.e., there exists λ>\ such that for all xeRn, ζeRn and
ίe(— oo, oo)

\\\ζ\\2 <Zlj=i"ij(x, ίKiί;<UII£ll 2

A solution of Lu = 0 on a domain D will be called L-parabolic on D.
By slightly modifying the arguments in the previous sections, we can also

prove the following

THEOREM 8. Let Ω be an unbounded domain in Rn such that Ωk = {x//c;
xeΩ, \\x\\ < /c}, k = 1,2,•••, are all Lίpschίtz domains whose Lίpschίtz characters

are uniformly bounded. If u is a non-negative L-parabolic function on the
cylinder D = Ώ x (0, T), 0< T < oo, and vanishes continuously on the parabolic
boundary dpD, then u = 0.
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