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It is well known that the zero function is the only non-negative parabolic
function (i.e., solution of the heat equation) on R"x (0, T) which vanishes
continuously on R"x {0} (cf. [2, Part1, Chap.XVI], [6, Chap.VI[]). In this
paper, considering the Huygens property of minimal parabolic functions (see
Proposition 2), we shall show the following generalization of the above result.

THEOREM. Let Q be a Lipschitz cone in R" (n > 1) and let 0 < T < co0. If
u is a non-negative parabolic function in the cylinder Q x (0, T) and vanishes
continuously on the parabolic boundary 092 x [0, T R x {0}, then u=0.

Here, we say that a domain 2 is a Lipschitz cone if there exists a domain E
in the unit sphere S"~! such that @ = {x #0; x/||x||€E} and Q N {x; | x|l < 1}
is a Lipschitz domain, where | x| denotes the euclidean norm of x in R".

In Section 5, we remark that the above assertion is also valid for solutions
of parabolic equations and for a slightly more general domain Q.

§1. The Huygens property

In this section D = Q x (0, T') will be a cylinder with a domain 2 in R"
(n>1) and 0< T < o0.

A solution of the heat equation on D is said to be parabolic on D. We
denote by H* (D) the set of all non-negative parabolic functions on D. Also we
denote by d,D the parabolic boundary of D, i.e., d,D = 02 x [0, T)|J 2 x {0},
and by G the Green function of D with respect to the heat equation
(cf. [2, p.298]).

For a non-negative function u and 0 < s < T, we define a function u; by

u(x, 1) on € x(0, s]
us(xa t) = [

fGD((x, £),(y, )uly, s)dy on Qx(s, T).
Then we have

LEMMA 1. For ue H*(D) and 0 <s < T, u;e H*(D) and u, < u on D.
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ProOOF. Let {Q,}_, be a regular exhaustion of €, that is, 2,, is relatively
compact, 82, is sufficiently smooth and 2,, = 2,,,, for each m, and UZ-,
Q, = Q. Define D,,=Q,, x(0, T) and

u(x, t) on €, x(0, s]
O, 1) = [
J‘g GDm((xs t)? (y’ S))u(y’ S)dy on Qm X (Sa T)

Then clearly v, is parabolic on Q, x (0, s)|J Q,, X (s, T) and continuous on
D,. This implies v,eH*(D,) (cf. [2, p.276]). Since v, <u on 9,D,, the
maximum principle implies v, <u on D,. Since G, 1Gp v,Tu; as m
— 00. Hence letting m - o0 we have u,<u on D. The parabolicity of u
follows from the Harnack convergence theorem for parabolic functions (cf. [2,
p-276]). This completes the proof.

In [6, Chap.IX], D.V.Widder discussed the semi-group property of
parabolic functions in a strip, which he called the Huygens property. Following
Widder, we say that ue H*(D) with 4 # 0 has the Huygens property if u = u
for any ¢, < s < T, where t, = inf{t > 0; there exists x € Q2 such that u(x, t) > 0}.

PROPOSITION 2. Every non-zero minimal parabolic function has the Huygens
property.

Here ue H*(D) is called minimal if every ve H* (D) satisfying 0 < v <u is a
constant multiple of u.

Proor. Let ue H*(D), u # 0, be minimal and 0 <s < T. By Lemma 1,
u, = cu with some constant ¢, > 0. If s> t, there exists yeQ with uy(y, s)
=1u(y, s) # 0. This implies ¢, =1 and the proof is completed.

§2. The Harnack and the boundary Harnack principles

In this section Q will be a cylinder R x (0, T) with a bounded Lipschitz
domain R in R" and T > 0. Let {m, ro} be the Lipschitz character of R, ie., m
and r, are two positive numbers and for each X e R there exist a coordinate
system of R" and a Lipschitz function ¢ on R"~! with | V¢| ., < m such that in
these coordinates,

BNR =B {(x, x,); x,> o(x)}
and

BN OR = BN {(x, ¢(x))},

where B = B(X, r,), the open ball in R" of radius r, > 0 centered at X.
From the Harnack and the boundary Harnack principles for parabolic
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functions (cf. [1], [3], [4], [5]), we derive the following two lemmas which we
shall use later. We denote by d(R) the diameter of R and d(x) = dist(x, JR).

LEMMA 3. There exists a constant ¢ =c(n, m, ro, d(R)) with the following
property: If ue H*(Q), then

u(y, s) < exp[c(t 1 ot t?TS> ]u(x, t)

for all x, yeR and 0 <s <t < T, where § = min{l, s, §(x)%, &(y)*}.

ProOF. We first remark that there exists a constant c¢; = c(m, ry) with 0
<c¢; <1 such that for any zeR, there exists a z, with d(z,) > ¢, satisfying
dist( zzy , OR) > c,6(z), where zz, is the closed segment [z, z,]. We can take
a constant ¢, = ¢(m, ry) with 0 <c, <c,; and a connected compact set K
satisfying {z€R; 6(z) > ¢;} =« K = {z€R; d(z) > ¢,}. Since K is compact there
also exist an integer ny, > 1 depending only on n, ¢, and d(R), and n, points
{z4,..., zp,} in K such that (J{2,B(z;, c,/2) > K.

Let (x, t), (y, s) be as in the lemma. We choose x,, y,€K satisfying
dist(xxq, OR) > ¢,6(x) and dist( yy,, dR) > ¢,8(y). Further we can choose a
subset {y;}*_; = {z;} such that dist(y;y;1, OR) > c,/2 (0 <j < k), where y,,,
=Xxo. Put y_ =y Wps2=x and s;=s+ (j+ 1)t — s)/(k + 3). Then
{(vj s;)}%2, are points in Q. By the Harnack principle ([1, Theorem 5], [3,
Theorem 0.1]), for j=—1,0,..., k + 2,

k + 3)d(R)? —
u(yj, s; < exp[c(,(( _tt—)s( ) + (kt+ 35)6 + 1>:|u(yj+1, Sj+1)

with some constant ¢, = c(n) > 0, where J; = min{1, s;, dist(y;y;+,, 0R)*}. Since
8 > (c,/2)*8, we have the desired inequality with ¢ = coc; '(no + 3)*(d(R) + 1)?
by multiplying the above inequalities.

LEMMA 4. Let (xo,t)eQ with T/3 <ty <T and let Q' = R' x (0, sg), 0
< $o < tg, be a subcylinder of Q. Let F be a compact subset of OR such that
OR' N dR is compactly contained in F. Put I'=Rx {0} UF x (0, T). Then
there exists a constant ¢ = c(n, m, ry, d(R), x4, T, dist(R’, R\ F)) independent of
to and s, such that for any ue H*(Q) vanishing continuously on I, we have

u(y, s) < exp( ¢ . >u(x0, to) for all (y, s)eQ'.
— 90

Lo

Proor. Let Q; = R'x (0, T/4). By [5, Theorem 3.1] there is a constant
c; =c(n, m, ry, xo, T, dist(R’, IR\ F)) > 1 such that

SUPy,sc0, Uy 8) < cqu(xo, to).
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Hence the required inequality holds with ¢ = Tloge, if s, < T/4. Next,
assume T/4 < sy <ty Set

20 = min{[(ty — So)/2]"'2, o, dist(R’, IR\F), 8(xo), 1}
and
Q, =U{BX, mx(s—n* s+n*)NQ; XeF, T/4 <s<so},
Q3 = {xeR; d(x) = n/(m+ 1)} x [T/4, so + 2n?).

Then Q'\Q, = @, U Q3 = Q. By the Carleson estimate ([3, Theorem 0.3], [5,
Theorem 3.17), we have

Sup(}’,s)eQzu(ya S) < Czsup(y,s)ngu(y, S)

with ¢, = c¢(n, m, ry) > 0. Further, by Lemma 3, we have

1 T
sup(y,s)ng“(.)’» S) < €Xp C3 + u(x09 tO)
to— S0 0y

with ¢; = c(n, m, roy, d(R)) >0, where 6, = min{1, T/4, (n/(m + 1))*>}. By the
choice of n, there is ¢4 = c(ry, T, dist(R’, OR\ F), 6(x,)) > O such that if t, — s,
< c, then 8; = (t; — $o)/8(m + 1)>2. Thus we have

Cs
SUD(.5c0,00,4()s §) < exp P u(xo, to)
0~ 90

with ¢5 = c(n, m, ry, d(R), T, x,, dist(R’, R\ F)) > 0. This completes the proof.

§3. Compact convex set Hj (D, p)

In this section let D =Q x (0, T), where 0 < T < o0 and Q is a domain in
R" such that () B(0, n) are Lipschitz domains for all n > 1.

We denote by H(D) the space of all parabolic functions on D endowed with
the topology of uniform convergence on compact sets and set

Hg (D) = {ue H(D); u>0 and continuously vanishes on 0,D}.

A positive measure p on D is called a reference measure if every point of D
can be connected to some point of supp(u), the support of u, by a polygonal line
having strictly increasing t-coordinate. For a reference measure 4 on D we put

Hg (D, p) = {ue Hg (D), J udp < 1}.
D

Then we have

LEmMMA 5. HJ (D, p) is a compact convex set in H(D).
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Proor. The convexity is evident. Let {u,};>, be a sequence in Hg (D, ).
Since u is a reference measure, the Harnack principle (cf. [2, p.277]) shows that
there exists a subsequence which converges to some element u,, in H(D). What
remains is to prove that u, continuously vanishes on J,D. Let (Y, s)ed,D.
We choose t;, t, >0 with 0<s<t¢, <t,<T and x,eR with |x,— Y]
<1. Set Q={xe;|x—yll <1} x(0,¢,). Since u,e H§(D), by Lemma 4,

u,(x, t) < cu,xo, t;) for (x, t)eQ

with some ¢ > 0 independent of n. We denote by v the parabolic function on
Q with boundary values 1 on 6,0 \D and 0 on 6,00,D. Then u,(x, t)
< cuy(xqg, t)v(x, t) and hence u,(x, t) < cu(xo, ty)v(x, t) on Q. Thus u,
continuously vanishes at (Y, s). This completes the proof.

§4. Proof of the Theorem

Let Q be a Lipschitz cone and let D = Q x (0, T) with 0 < T < oo. We set
Q)= {xeQ, |x|| <r} for r>0.
We first show

LEMMA 6. Let xo€€2(1) and let 0 <ty < T. Then there exists a constant ¢
= C(Xgt0,2) >0 such that for any ueHZ(D) and any 0<t<1 with
to+2t<T,

u(y, s) < exp(c(llyll* + 1)/t)u(xo, to + 1)
whenever (y, s)eQ x (0, ty + 1/2).

ProOF. Let u and 7 be as in the lemma. We may assume that u # 0. By

putting u = 0 on Q x (— oo, 0], we may also assume that ue H* (2 x (— oo, T)).

Put Q = Q(2) x (0, to + 27). By Lemma 3, there exists a constant ¢, = ¢(£2, x,)
> 0 such that for any r > 1,

4
u<x0, to + 27 — %) < exp(corz/r)u<x0/r, to + 21 — :_2>

and by Lemma 4, there is a constant cy = ¢(2, xq, to) > 0 such that for any
r>1 and for any (y, s)eQ(1) x (0, t, + 21 — 31/2r?)

4
uy, s) < exp(c(’,rz/r)u<x0, to + 21 — 3—:2>

Since the change of variables (x, t) = (x/r, (t — @)/r? + a), a = t, + 21, preserves
the parabolicity of a function, by the above inequalities, we have

u(rxo, to + 21/3) < explcor?®/t)u(xg, to + 1)
and
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u(y, s) < exp(cor?/tulrxy, to + 21/3)

for (y, s)e2(r) x (0, to + 7/2). Hence if ye Q(r)\Q2(r — 1) and 0 <s <ty + 1/2,
we have

u(y, ) < exp(cr?/2t)u(xo, to + 1) < exple(l|y % + 1)/tulxo, to + 1)
with ¢ = 2(co + ¢g)-
Next we shall show
LEMMA 7. For any reference measure pu, Hg (D, p) = {0}.

ProoF. Let u be any extremal point of Hy (D, p) and assume u # 0. Then
u(x, t) > 0 whenever (x, t)eQ x (t,, T). Let xoe (1) and 0 <t <1 with ¢,
+ 2t < T. Further we choose >0 with n < min{r, 7/4c}, where ¢ is the
constant in Lemma 6 with t, =t,. Then if t, <s <t, + n/2 we have

GD((xO’ tu + ’7)9 (y’ s))u(y, S)

_ 2 2 1
S00,1_n,2(,,,q,<_||x0 yI? , ellyl® + )>u(x0, o

4n T
with some constant c, > 0. By the choice of 7,

f exp(— [ xo — y11*/4n + c(lyI* + 1)/1)dy < co.
2

On the other hand, we see easily that u is minimal. Hence by proposition 2

“(an tu + 11) = j GD((XO’ tu + 71), (y’ S))u(y’ S)dy

o]

for any t, < s <t, + n/2. By the above estimate of the integrand, we can apply
the Lebesgue convergence theorem, and obtain wu(xy,t, +#) =0, since
lim_, u(y, s) = 0. This is a contradiction, and hence 0 is the only extremal
point of Hg(D, p). The Krein-Milman theorem gives Hg (D, u) = {0}.

ProoF oF THE THEOREM. It is sufficient to remark that Hy (D) = {0} if and
only if Hg (D, u) = {0} for any reference measure u.

§5. A generalization

Let L be a parabolic operator on R" x (— o0, oo ) of the form

Lu(x5 t) = Z;l,j=le.-<aij(x7 t)iju(xa t)> - ut(x’ t),

where the matrix (a;{x, t)) is bounded, measurable, symmetric, and uniformly
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positive definite, i.e., there exists A > 1 such that for all xeR", (e R" and
te(— oo, )

1
‘i”é“ < Yii=1ai(x, &L < AL 2,

A solution of Lu =0 on a domain D will be called L-parabolic on D.
By slightly modifying the arguments in the previous sections, we can also
prove the following

THEOREM 8. Let Q be an unbounded domain in R" such that Q, = {x/k;
xeQ, | x| <k}, k=1,2,---, are all Lipschitz domains whose Lipschitz characters
are uniformly bounded. If u is a non-negative L-parabolic function on the
cylinder D = Q x (0, T), 0 < T < oo, and vanishes continuously on the parabolic
boundary 0,D, then u = 0.
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