Нікозніма Матн. J. 19 (1989), 355–361

Huygens property of parabolic functions and a uniqueness theorem

Noriaki SUZUKI (Received September 2, 1988)

It is well known that the zero function is the only non-negative parabolic function (i.e., solution of the heat equation) on $\mathbb{R}^n \times (0, T)$ which vanishes continuously on $\mathbb{R}^n \times \{0\}$ (cf. [2, Part 1, Chap. XVI], [6, Chap. VIII]). In this paper, considering the Huygens property of minimal parabolic functions (see Proposition 2), we shall show the following generalization of the above result.

THEOREM. Let Ω be a Lipschitz cone in \mathbb{R}^n $(n \ge 1)$ and let $0 < T \le \infty$. If u is a non-negative parabolic function in the cylinder $\Omega \times (0, T)$ and vanishes continuously on the parabolic boundary $\partial \Omega \times [0, T] \cup \Omega \times \{0\}$, then $u \equiv 0$.

Here, we say that a domain Ω is a *Lipschitz cone* if there exists a domain E in the unit sphere S^{n-1} such that $\Omega = \{x \neq 0; x/||x|| \in E\}$ and $\Omega \cap \{x; ||x|| < 1\}$ is a Lipschitz domain, where ||x|| denotes the euclidean norm of x in \mathbb{R}^n .

In Section 5, we remark that the above assertion is also valid for solutions of parabolic equations and for a slightly more general domain Ω .

§1. The Huygens property

In this section $D = \Omega \times (0, T)$ will be a cylinder with a domain Ω in \mathbb{R}^n $(n \ge 1)$ and $0 < T \le \infty$.

A solution of the heat equation on D is said to be *parabolic* on D. We denote by $H^+(D)$ the set of all non-negative parabolic functions on D. Also we denote by $\partial_p D$ the parabolic boundary of D, i.e., $\partial_p D = \partial \Omega \times [0, T) \bigcup \Omega \times \{0\}$, and by G_D the Green function of D with respect to the heat equation (cf. [2, p.298]).

For a non-negative function u and 0 < s < T, we define a function u_s by

$$u_s(x, t) = \begin{cases} u(x, t) & \text{on } \Omega \times (0, s] \\ \int_{\Omega} G_D((x, t), (y, s)) u(y, s) dy & \text{on } \Omega \times (s, T). \end{cases}$$

Then we have

LEMMA 1. For $u \in H^+(D)$ and 0 < s < T, $u_s \in H^+(D)$ and $u_s \le u$ on D.

Noriaki Suzuki

PROOF. Let $\{\Omega_m\}_{m=1}^{\infty}$ be a regular exhaustion of Ω , that is, Ω_m is relatively compact, $\partial \Omega_m$ is sufficiently smooth and $\overline{\Omega}_m \subset \Omega_{m+1}$ for each m, and $\bigcup_{m=1}^{\infty} \Omega_m = \Omega$. Define $D_m = \Omega_m \times (0, T)$ and

$$v_m(x, t) = \begin{cases} u(x, t) & \text{on } \Omega_m \times (0, s] \\ \\ \int_{\Omega_m} G_{D_m}((x, t), (y, s))u(y, s)dy & \text{on } \Omega_m \times (s, T). \end{cases}$$

Then clearly v_m is parabolic on $\Omega_m \times (0, s) \cup \Omega_m \times (s, T)$ and continuous on D_m . This implies $v_m \in H^+(D_m)$ (cf. [2, p.276]). Since $v_m \leq u$ on $\partial_p D_m$, the maximum principle implies $v_m \leq u$ on D_m . Since $G_{D_m} \uparrow G_D$, $v_m \uparrow u_s$ as $m \to \infty$. Hence letting $m \to \infty$ we have $u_s \leq u$ on D. The parabolicity of u_s follows from the Harnack convergence theorem for parabolic functions (cf. [2, p.276]). This completes the proof.

In [6, Chap.IX], D. V. Widder discussed the semi-group property of parabolic functions in a strip, which he called the Huygens property. Following Widder, we say that $u \in H^+(D)$ with $u \neq 0$ has the Huygens property if $u = u_s$ for any $t_u < s < T$, where $t_u = \inf\{t > 0; \text{ there exists } x \in \Omega \text{ such that } u(x, t) > 0\}$.

PROPOSITION 2. Every non-zero minimal parabolic function has the Huygens property.

Here $u \in H^+(D)$ is called *minimal* if every $v \in H^+(D)$ satisfying $0 \le v \le u$ is a constant multiple of u.

PROOF. Let $u \in H^+(D)$, $u \neq 0$, be minimal and 0 < s < T. By Lemma 1, $u_s = c_s u$ with some constant $c_s \ge 0$. If $s > t_u$ there exists $y \in \Omega$ with $u_s(y, s) = u(y, s) \neq 0$. This implies $c_s = 1$ and the proof is completed.

§2. The Harnack and the boundary Harnack principles

In this section Q will be a cylinder $R \times (0, T)$ with a bounded Lipschitz domain R in \mathbb{R}^n and T > 0. Let $\{m, r_0\}$ be the *Lipschitz character* of R, i.e., mand r_0 are two positive numbers and for each $X \in \partial R$ there exist a coordinate system of \mathbb{R}^n and a Lipschitz function φ on \mathbb{R}^{n-1} with $\|\nabla \varphi\|_{\infty} \leq m$ such that in these coordinates,

$$B \cap R = B \cap \{(x', x_n); x_n > \varphi(x')\}$$

and

$$B \cap \partial R = B \cap \{(x', \varphi(x'))\},\$$

where $B = B(X, r_0)$, the open ball in \mathbb{R}^n of radius $r_0 > 0$ centered at X.

From the Harnack and the boundary Harnack principles for parabolic

functions (cf. [1], [3], [4], [5]), we derive the following two lemmas which we shall use later. We denote by d(R) the diameter of R and $\delta(x) = \text{dist}(x, \partial R)$.

LEMMA 3. There exists a constant $c = c(n, m, r_0, d(R))$ with the following property: If $u \in H^+(Q)$, then

$$u(y, s) \le \exp\left[c\left(\frac{1}{t-s} + \frac{t-s}{\delta}\right)\right]u(x, t)$$

for all x, $y \in R$ and 0 < s < t < T, where $\delta = \min\{1, s, \delta(x)^2, \delta(y)^2\}$.

PROOF. We first remark that there exists a constant $c_1 = c(m, r_0)$ with $0 < c_1 \le 1$ such that for any $z \in R$, there exists a z_0 with $\delta(z_0) \ge c_1$ satisfying dist $(\overline{zz_0}, \partial R) \ge c_1 \delta(z)$, where $\overline{zz_0}$ is the closed segment $[z, z_0]$. We can take a constant $c_2 = c(m, r_0)$ with $0 < c_2 < c_1$ and a connected compact set K satisfying $\{z \in R; \delta(z) > c_1\} \subset K \subset \{z \in R; \delta(z) > c_2\}$. Since K is compact there also exist an integer $n_0 \ge 1$ depending only on n, c_2 and d(R), and n_0 points $\{z_1, \ldots, z_{n_0}\}$ in K such that $\bigcup_{i=1}^{n_0} B(z_i, c_2/2) \supset K$.

Let (x, t), (y, s) be as in the lemma. We choose $x_0, y_0 \in K$ satisfying dist $(\overline{xx_0}, \partial R) \ge c_1 \delta(x)$ and dist $(\overline{yy_0}, \partial R) \ge c_1 \delta(y)$. Further we can choose a subset $\{y_j\}_{j=1}^k \subset \{z_i\}$ such that dist $(\overline{y_jy_{j+1}}, \partial R) \ge c_2/2$ ($0 \le j \le k$), where $y_{k+1} = x_0$. Put $y_{-1} = y$, $y_{k+2} = x$ and $s_j = s + (j+1)(t-s)/(k+3)$. Then $\{(y_j, s_j)\}_{j=-1}^{k+2}$ are points in Q. By the Harnack principle ([1, Theorem 5], [3, Theorem 0.1]), for j = -1, 0, ..., k+2,

$$u(y_j, s_j) \le \exp\left[c_0\left(\frac{(k+3)d(R)^2}{t-s} + \frac{t-s}{(k+3)\delta_j} + 1\right)\right] u(y_{j+1}, s_{j+1})$$

with some constant $c_0 = c(n) > 0$, where $\delta_j = \min\{1, s_j, \operatorname{dist}(\overline{y_j y_{j+1}}, \partial R)^2\}$. Since $\delta_j \ge (c_2/2)^2 \delta$, we have the desired inequality with $c = c_0 c_2^{-1} (n_0 + 3)^2 (d(R) + 1)^2$ by multiplying the above inequalities.

LEMMA 4. Let $(x_0, t_0) \in Q$ with $T/3 < t_0 < T$ and let $Q' = R' \times (0, s_0)$, $0 < s_0 < t_0$, be a subcylinder of Q. Let F be a compact subset of ∂R such that $\partial R' \cap \partial R$ is compactly contained in F. Put $\Gamma = \overline{R} \times \{0\} \cup F \times (0, T)$. Then there exists a constant $c = c(n, m, r_0, d(R), x_0, T, \text{dist}(R', \partial R \setminus F))$ independent of t_0 and s_0 such that for any $u \in H^+(Q)$ vanishing continuously on Γ , we have

$$u(y, s) \le \exp\left(\frac{c}{t_0 - s_0}\right) u(x_0, t_0) \quad \text{for all} \quad (y, s) \in Q'.$$

PROOF. Let $Q_1 = R' \times (0, T/4)$. By [5, Theorem 3.1] there is a constant $c_1 = c(n, m, r_0, x_0, T, \operatorname{dist}(R', \partial R \setminus F)) > 1$ such that

$$\sup_{(y,s)\in Q_1} u(y, s) \le c_1 u(x_0, t_0).$$

Hence the required inequality holds with $c = T \log c_1$ if $s_0 \le T/4$. Next, assume $T/4 < s_0 < t_0$. Set

$$2\eta = \min\{[(t_0 - s_0)/2]^{1/2}, r_0, \operatorname{dist}(R', \partial R \setminus F), \delta(x_0), 1\}$$

and

$$Q_2 = \bigcup \{ B(X, \eta) \times (s - \eta^2, s + \eta^2) \cap Q'; X \in F, T/4 \le s < s_0 \}, Q_3 = \{ x \in R; \delta(x) \ge \eta/(m+1) \} \times [T/4, s_0 + 2\eta^2).$$

Then $Q' \setminus Q_1 \subset Q_2 \cup Q_3 \subset Q$. By the Carleson estimate ([3, Theorem 0.3], [5, Theorem 3.1]), we have

$$\sup_{(y,s)\in Q_2} u(y, s) \le c_2 \sup_{(y,s)\in Q_3} u(y, s)$$

with $c_2 = c(n, m, r_0) > 0$. Further, by Lemma 3, we have

$$\sup_{(y,s)\in Q_3} u(y, s) \le \exp\left[c_3\left(\frac{1}{t_0 - s_0} + \frac{T}{\delta_1}\right)\right] u(x_0, t_0)$$

with $c_3 = c(n, m, r_0, d(R)) > 0$, where $\delta_1 = \min\{1, T/4, (\eta/(m+1))^2\}$. By the choice of η , there is $c_4 = c(r_0, T, \operatorname{dist}(R', \partial R \setminus F), \delta(x_0)) > 0$ such that if $t_0 - s_0 < c_4$ then $\delta_1 = (t_0 - s_0)/8(m+1)^2$. Thus we have

$$\sup_{(y,s)\in \mathcal{Q}_2\cup\mathcal{Q}_3} u(y, s) \le \exp\left(\frac{c_5}{t_0-s_0}\right) u(x_0, t_0)$$

with $c_5 = c(n, m, r_0, d(R), T, x_0, \text{dist}(R', \partial R \setminus F)) > 0$. This completes the proof.

§3. Compact convex set $H_0^+(D, \mu)$

In this section let $D = \Omega \times (0, T)$, where $0 < T \le \infty$ and Ω is a domain in \mathbb{R}^n such that $\Omega \cap B(0, n)$ are Lipschitz domains for all $n \ge 1$.

We denote by H(D) the space of all parabolic functions on D endowed with the topology of uniform convergence on compact sets and set

 $H_0^+(D) = \{ u \in H(D); u \ge 0 \text{ and continuously vanishes on } \partial_p D \}.$

A positive measure μ on D is called a *reference measure* if every point of D can be connected to some point of supp(μ), the support of μ , by a polygonal line having strictly increasing t-coordinate. For a reference measure μ on D we put

$$H_0^+(D, \mu) = \{ u \in H_0^+(D); \int_D u d\mu \le 1 \}.$$

Then we have

LEMMA 5. $H_0^+(D, \mu)$ is a compact convex set in H(D).

358

PROOF. The convexity is evident. Let $\{u_n\}_{n=1}^{\infty}$ be a sequence in $H_0^+(D, \mu)$. Since μ is a reference measure, the Harnack principle (cf. [2, p.277]) shows that there exists a subsequence which converges to some element u_{∞} in H(D). What remains is to prove that u_{∞} continuously vanishes on $\partial_p D$. Let $(Y, s) \in \partial_p D$. We choose t_1 , $t_2 > 0$ with $0 \le s < t_1 < t_2 < T$ and $x_0 \in \Omega$ with $||x_0 - Y||$ < 1. Set $Q = \{x \in \Omega; ||x - y|| < 1\} \times (0, t_1)$. Since $u_n \in H_0^+(D)$, by Lemma 4,

$$u_n(x, t) \le c u_n(x_0, t_2)$$
 for $(x, t) \in Q$

with some c > 0 independent of *n*. We denote by *v* the parabolic function on Q with boundary values 1 on $\partial_p Q \cap D$ and 0 on $\partial_p Q \cap \partial_p D$. Then $u_n(x, t) \leq c u_n(x_0, t_2)v(x, t)$ and hence $u_{\infty}(x, t) \leq c u_{\infty}(x_0, t_2)v(x, t)$ on Q. Thus u_{∞} continuously vanishes at (Y, s). This completes the proof.

§4. Proof of the Theorem

Let Ω be a Lipschitz cone and let $D = \Omega \times (0, T)$ with $0 < T \le \infty$. We set $\Omega(r) = \{x \in \Omega; \|x\| < r\}$ for r > 0.

We first show

LEMMA 6. Let $x_0 \in \Omega(1)$ and let $0 < t_0 < T$. Then there exists a constant $c = c(x_0, t_0, \Omega) > 0$ such that for any $u \in H_0^+(D)$ and any $0 < \tau < 1$ with $t_0 + 2\tau < T$,

$$u(y, s) \le \exp(c(||y||^2 + 1)/\tau)u(x_0, t_0 + \tau)$$

whenever $(y, s) \in \Omega \times (0, t_0 + \tau/2)$.

PROOF. Let u and τ be as in the lemma. We may assume that $u \neq 0$. By putting u = 0 on $\Omega \times (-\infty, 0]$, we may also assume that $u \in H^+(\Omega \times (-\infty, T))$. Put $Q = \Omega(2) \times (0, t_0 + 2\tau)$. By Lemma 3, there exists a constant $c_0 = c(\Omega, x_0) > 0$ such that for any $r \ge 1$,

$$u\left(x_{0}, t_{0} + 2\tau - \frac{4\tau}{3r^{2}}\right) \le \exp(c_{0}r^{2}/\tau)u\left(x_{0}/r, t_{0} + 2\tau - \frac{\tau}{r^{2}}\right)$$

and by Lemma 4, there is a constant $c'_0 = c(\Omega, x_0, t_0) > 0$ such that for any $r \ge 1$ and for any $(y, s) \in \Omega(1) \times (0, t_0 + 2\tau - 3\tau/2r^2)$

$$u(y, s) \le \exp(c'_0 r^2/\tau) u \left(x_0, t_0 + 2\tau - \frac{4\tau}{3r^2}\right).$$

Since the change of variables $(x, t) \rightarrow (x/r, (t-a)/r^2 + a)$, $a = t_0 + 2\tau$, preserves the parabolicity of a function, by the above inequalities, we have

$$u(rx_0, t_0 + 2\tau/3) \le \exp(c_0 r^2/\tau)u(x_0, t_0 + \tau)$$

and

$$u(y, s) \le \exp(c_0' r^2 / \tau) u(r x_0, t_0 + 2\tau / 3)$$

for $(y, s) \in \Omega(r) \times (0, t_0 + \tau/2)$. Hence if $y \in \Omega(r) \setminus \Omega(r-1)$ and $0 < s < t_0 + \tau/2$, we have

$$u(y, s) \le \exp(cr^2/2\tau)u(x_0, t_0 + \tau) \le \exp(c(||y||^2 + 1)/\tau)u(x_0, t_0 + \tau)$$

with $c = 2(c_0 + c'_0)$.

Next we shall show

LEMMA 7. For any reference measure μ , $H_0^+(D, \mu) = \{0\}$.

PROOF. Let u be any extremal point of $H_0^+(D, \mu)$ and assume $u \neq 0$. Then u(x, t) > 0 whenever $(x, t) \in \Omega \times (t_u, T)$. Let $x_0 \in \Omega(1)$ and $0 < \tau < 1$ with $t_u + 2\tau < T$. Further we choose $\eta > 0$ with $\eta < \min\{\tau, \tau/4c\}$, where c is the constant in Lemma 6 with $t_0 = t_u$. Then if $t_u < s < t_u + \eta/2$ we have

$$G_D((x_0, t_u + \eta), (y, s))u(y, s) \le c_0 \eta^{-n/2} \exp\left(-\frac{\|x_0 - y\|^2}{4\eta} + \frac{c(\|y\|^2 + 1)}{\tau}\right)u(x_0, t_u + \tau)$$

with some constant $c_0 > 0$. By the choice of η ,

$$\int_{\Omega} \exp(-\|x_0 - y\|^2 / 4\eta + c(\|y\|^2 + 1) / \tau) dy < \infty.$$

On the other hand, we see easily that u is minimal. Hence by proposition 2

$$u(x_0, t_u + \eta) = \int_{\Omega} G_D((x_0, t_u + \eta), (y, s))u(y, s)dy$$

for any $t_u < s < t_u + \eta/2$. By the above estimate of the integrand, we can apply the Lebesgue convergence theorem, and obtain $u(x_0, t_u + \eta) = 0$, since $\lim_{s \to t_u} u(y, s) = 0$. This is a contradiction, and hence 0 is the only extremal point of $H_0^+(D, \mu)$. The Krein-Milman theorem gives $H_0^+(D, \mu) = \{0\}$.

PROOF OF THE THEOREM. It is sufficient to remark that $H_0^+(D) = \{0\}$ if and only if $H_0^+(D, \mu) = \{0\}$ for any reference measure μ .

§5. A generalization

Let L be a parabolic operator on $\mathbb{R}^n \times (-\infty, \infty)$ of the form

$$Lu(x, t) = \sum_{i,j=1}^{n} D_{x_i} \left(a_{ij}(x, t) D_{x_j} u(x, t) \right) - u_t(x, t),$$

where the matrix $(a_{ij}(x, t))$ is bounded, measurable, symmetric, and uniformly

360

positive definite, i.e., there exists $\lambda \ge 1$ such that for all $x \in \mathbb{R}^n$, $\xi \in \mathbb{R}^n$ and $t \in (-\infty, \infty)$

$$\frac{1}{\lambda} \|\xi\|^2 \le \sum_{i,j=1}^n a_{ij}(x, t) \xi_i \xi_j \le \lambda \|\xi\|^2.$$

A solution of Lu = 0 on a domain D will be called L-parabolic on D.

By slightly modifying the arguments in the previous sections, we can also prove the following

THEOREM 8. Let Ω be an unbounded domain in \mathbb{R}^n such that $\Omega_k = \{x/k; x \in \Omega, ||x|| \le k\}, k = 1, 2, \cdots$, are all Lipschitz domains whose Lipschitz characters are uniformly bounded. If u is a non-negative L-parabolic function on the cylinder $D = \Omega \times (0, T), 0 < T \le \infty$, and vanishes continuously on the parabolic boundary $\partial_p D$, then $u \equiv 0$.

References

- D.G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rat. Mech. Anal. 25 (1967), 81–122.
- J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag, New York etc., 1984.
- [3] E. B. Fabes, N.Garofalo and S.Salsa, A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations, Illinois J. Math. 30 (1986), 536–565.
- [4] J. T. Kemper, Temperatures in several variables: Kernel functions, representations, and parabolic boundary values, Trans. Amer. Math. Soc. 167 (1972), 243-262.
- [5] S. Salsa, Some properties of nonnegative solutions of parabolic differential operators, Ann. Mat. Pura Appl. 128 (1981), 193-206.
- [6] D.V.Widder, The Heat Equation, Academic Press, New York, 1975.

Department of Mathematics, Faculty of Science, Hiroshima University